

February 15, 2026

Washington Department of Ecology
P.O. Box 47600
Olympia, WA 98504-7600

Submitted electronically at <https://aq.ecology.commentinput.com/?id=FaEigPmWS>

RE: Utility Group Informal Comments for Chapter 173-448 WAC, Air Quality in Overburdened Communities Highly Impacted by Air Pollution

Avista Corporation, Cascade Natural Gas Corporation, Northwest Natural Gas Company d/b/a NW Natural, and Puget Sound Energy, Inc. (collectively, “Utilities”) submit this comment letter to provide feedback on the Chapter 173-448 WAC, Air Quality in Overburdened Communities Highly Impacted by Air Pollution draft rule (“Draft Rule”) proposed by the Washington Department of Ecology (“Ecology”).

The Utilities support working in a cost-effective manner to achieve emissions reductions in overburdened communities. However, because the Utilities are already subject to numerous statutory regimes centered on emission reductions—including the federal Clean Air Act, Clean Energy Transformation Act, and Climate Commitment Act—subjecting utility facilities to further emission reduction requirements would be redundant, potentially infeasible, and impose significant costs and energy reliability issues that would unduly burden our customers. Instead, Ecology should focus on reducing emissions from sources that are not already heavily controlled. Our recommendations in this comment letter provide solutions for how the Draft Rule can best achieve emissions reductions in a methodologically sound, efficient manner that furthers environmental, energy, and economic equity in Washington.

I. The Draft Rule should focus on unpermitted sources instead of the utility sector, which is already subject to multiple emission reduction regimes.

The Utilities urge Ecology to focus their efforts on regulating nonpermitted sources that are not already subject to extensive emission reduction regulations, such as mobile or wood smoke sources. Failure to do so could result in redundant, costly, and infeasible standards that do more harm than good by worsening energy affordability and reliability issues in Washington.

The current Draft Rule could mandate excessively costly or unachievable air quality targets. WAC 173-448-050(2)(a) states that when setting an air quality target, Ecology will select

whichever of the following two options are determined to be the most protective of public health: (1) the calculated or estimated design value of a criteria pollutant in the neighboring community; or (2) the National Ambient Air Quality Standards (“NAAQS”) under 40 C.F.R. Part 50. The Utilities recognize this portion of the Draft Rule aligns with RCW 70A.65.020(2)(b)(i). However, this narrow focus could lead to unachievable air quality targets if the neighboring communities have minimal industry or emission sources, or if a significant source in such a community is shut down for a significant amount of time. The Utilities are already well-regulated under several statutory emission-reduction regimes, including the Clean Air Act (“CAA”), the Clean Energy Transformation Act (“CETA”), and the Climate Commitment Act (“CCA”). As such, the Utilities respectfully advocate that the statute should be amended to recognize the rigor and purpose of existing regulatory requirements and align with NAAQS values.

Under the CAA, EPA sets both general air quality standards and specific control requirements for electric generating units to reduce air pollution. Every five years, EPA must review and revise, as appropriate, the primary NAAQS, “the attainment or maintenance of which in the judgement of the [EPA] Administrator, based on such criteria and allowing for an adequate margin of safety, are requisite to protect the public health.”¹ In setting these standards, EPA conducts an extensive review of current scientific literature on health and welfare effects associated with a particular pollutant, which includes literature searches, study selection, evaluation of individual study quality, evaluation, synthesis, and integration of the evidence, and development of causality determinations and other scientific conclusions.² Based on this scientific assessment, EPA then develops quantitative assessments of exposure and/or risk of health and/or welfare effects, accounting for any uncertainties associated with inconclusive scientific and technical information available at the time of standard setting while providing a reasonable degree of protection against hazards that research still needs to identify.³ EPA conducts these assessments with advice from an independent scientific review committee composed of “seven members including at least one member of the National Academy of Sciences, one physician, and one person representing State air pollution control agencies.”⁴

EPA completed its most recent review of the PM_{2.5} NAAQS in 2024, which confirmed that the NAAQS is already set at a level protective of at-risk populations.⁵ EPA based its evaluation on a thorough review of available scientific evidence on a broad range of human health effects

¹ 42 U.S.C. §§ 7409(b)(1), (d).

² See U.S. Environmental Protection Agency, *Overview of the Environmental Protection Agency’s Process for Reviewing the National Ambient Air Quality Standards*, 4-1 (December 2024), available at https://www.epa.gov/system/files/documents/2024-12/naaqs-process-document_dec-2024v_0.pdf.

³ See *id.* at 2-15.

⁴ 42 U.S.C. § 7409(d)(2)(A).

⁵ Reconsideration of the National Ambient Air Quality Standards for Particulate Matter, 89 Fed. Reg. 16,202 (March 6, 2024).

associated with long- and short-term exposures to PM_{2.5} in the ambient air, including mortality, cardiovascular effects, respiratory effects, cancer, nervous system effects, as well as any remaining uncertainties in health effects evidence and implications for at-risk populations.⁶

In light of the rigor that goes into setting the NAAQS, for Ecology to determine that the calculated or estimated design value of a criteria pollutant in the neighboring community is in fact most protective of public health, Ecology would need to engage in similarly thorough, burdensome scientific evaluations to ensure that such a standard resulted in greater public health benefits than the existing NAAQS. It is unclear if Ecology has the resources to do this type of work, and setting standards more stringent than the NAAQS could also generate the same type of litigation that the U.S. Environmental Protection Agency has faced when it sets new or revised NAAQS levels.⁷

The public health-based standards set by the NAAQS are implemented through various other CAA programs targeting emission reductions for specific source categories. For instance, the New Source Review (“NSR”) program provides further air quality protections through preconstruction permitting for both new facilities and for modifications to existing facilities to help areas to achieve and maintain attainment with the NAAQS. In areas already attaining the NAAQS, sources are subject to the best available control technology (“BACT”) for each regulated pollutant, which must be based on “the maximum degree of reduction” that is achievable for that source, taking into account energy, environmental, and economic impacts and other costs.⁸ Sources in nonattainment areas are subject to a lowest available emission reduction (“LAER”) requirement, based on either (1) the most stringent emission limitation contained in the implementation plan of any state for that source category, or (2) the most stringent emission limitation achieved in practice by that source category, whichever is most stringent.⁹ In determining both BACT and LAER, permitting authorities evaluate a broad range of control technologies to ensure that the NSR program’s stringent requirements are met.¹⁰

Other CAA programs impose broader emission reduction requirements designed to protect public health and welfare. For instance, under CAA Section 111, EPA sets “standards of performance” for new, modified, or reconstructed sources within any source category that the EPA Administrator determines “causes, or contributes significantly to, air pollution which may

⁶ See *id.*

⁷ See, e.g., *New York v. EPA*, Case No. 21-1028 (D.C. Cir.) (case regarding EPA’s 2020 determination to retain existing NAAQS for ozone).

⁸ 42 U.S.C. § 7479(3); 40 C.F.R. § 52.21(b)(12).

⁹ 42 U.S.C. § 7501(a)(3); 40 C.F.R. § 51.165(a)(1)(xiii).

¹⁰ See NSR WORKSHOP MANUAL (Oct. 1990), available at <https://www.epa.gov/sites/default/files/2015-07/documents/1990wman.pdf>.

reasonably be anticipated to endanger public health or welfare.”¹¹ These new source performance standards (“NSPS”) are based on “the degree of emission limitation achievable through the application of the *best system of emission reduction*” that “has been adequately demonstrated,” taking into account “the cost of achieving such reduction and any non-air quality health and environmental impact and energy requirements.”¹² Consistent with this requirement, EPA must determine both the “best system of emission reduction” (“BSER”) for regulated sources and the “degree of emission limitation achievable through the application of the [BSER].”¹³ EPA must then review these standards every eight years, and, as appropriate, revise them to account for new control developments.¹⁴ The NSPS drive industries “to work toward constant improvement in techniques for preventing and controlling emissions from stationary sources,” given the stringent BSER requirement.¹⁵ While EPA factors cost into its standard-setting process, compliance costs may still pose a substantial burden for covered utilities. For example, in 2024, EPA estimated that its greenhouse gas standards for power plants would impose annual compliance costs of \$860 million between 2024 and 2047.¹⁶

Similarly, CAA Section 112 imposes technology-based reduction requirements for hazardous air pollutants (“HAPs”), based on “the *maximum degree of reduction in emissions* of the [HAP] subject to this section (including a prohibition on such emissions, where achievable) that the Administrator, taking into consideration the cost of achieving such emission reduction, and any nonair quality health and environmental impacts and energy requirements, determines is achievable.”¹⁷ In determining the maximum degree of emission reduction that is achievable, EPA must evaluate the average emission limitation achieved by the “best performing” sources in a particular source category.¹⁸ Every eight years, EPA must also identify and address any “residual” risk by updating standards as needed to provide an “ample margin of safety,” taking into account “developments in practices, processes, and control technologies.”¹⁹

¹¹ 42 U.S.C. § 7411(b); 40 C.F.R. Part 60.

¹² 42 U.S.C. § 7411(a) (emphasis added).

¹³ *See West Virginia v. EPA*, 597 U.S. 697, 709 (2022).

¹⁴ 42 U.S.C. § 7411(b)(1)(B).

¹⁵ S. Rep. No. 91-1196, at 17.

¹⁶ Regulatory Impact Analysis for the New Source Performance Standards for Greenhouse Gas Emissions from New, Modified, and Reconstructed Fossil Fuel-Fired Electric Generating Units; Emission Guidelines for Greenhouse Gas Emissions from Existing Fossil Fuel-Fired Electric Generating Units; and Repeal of the Affordable Clean Energy Rule, EPA-HQ-OAR-2023-0072-8913, 3-18 (Apr. 2024), available at <https://www.regulations.gov/document/EPA-HQ-OAR-2023-0072-8913>.

¹⁷ 42 U.S.C. § 7412(d)(2) (emphasis added).

¹⁸ *See* 42 U.S.C. § 7412(d)(3).

¹⁹ 42 U.S.C. §§ 7412(d)(6), (f)(2).

While this is not a comprehensive overview of all CAA requirements, which are detailed and complex, it highlights the extent to which each permitted facility under the Act must comply with stringent emissions limitations across a broad range of air pollutants and overlapping air quality protection programs. These federal programs are explicitly designed to protect public health and prevent disproportionate impacts to at-risk communities by evaluating the most stringent emission reductions achievable, while balancing competing economic needs.

In Washington specifically, the Notice of Construction process for point source facilities requires a review of BACT and in many cases the facilities are subject to MACT reviews for controls on toxic air pollutants. Washington also has protective air toxics regulations for point source facilities and requires a review of Acceptable Source Impact Levels for facilities emitting any level of air toxics through the Notice of Construction process.²⁰ Point source facilities also are typically subject to periodic air agency inspections to ensure that required pollution controls are being properly operated and maintained.

On top of CAA requirements, the Utilities also must comply with CETA and the CCA, which will indirectly lead to emission reductions of criteria pollutants as well. Under CETA, electric utilities must achieve greenhouse gas neutrality for energy serving Washington load by 2030, and they must generate 100% of such energy from renewable or zero-carbon resources by 2045. Relatedly, the CCA caps the number of allowances available across multiple sectors, including the electric and gas utility sectors, and reduces the allowance cap annually to cut emissions by 45% by 2030, 70% by 2040, and 95% by 2050 (from 1990 levels).

In light of the numerous statutory emissions regimes the Utilities already comply with, the Draft Rule's contemplation of additional emissions limitations on utility facilities would likely be redundant, or at the very least, not cost-effective. As such, Ecology should focus on reducing emissions from other sectors that are not already subject to extensive emission regulations. Notably, Ecology has published data that over 70% of air toxics cancer risk comes from on-road and off-road transportation, and that major facilities are responsible for less than 1% of cancer risk from air toxics.²¹ Additionally, the Puget Sound Clean Air Agency has concluded that 85% of air toxics risk in the Puget Sound Region comes from exposure to diesel exhaust.²² Wood smoke from wildfires and wood heating is also another major source of particulate pollution and cancer risk from air toxics exposure.²³ Ecology should focus its emission reduction strategies on the sources

²⁰ WAC 173-460-080(1).

²¹ Washington Department of Ecology, *National air quality standards*, <https://ecology.wa.gov/air-climate/air-quality/air-quality-targets/air-quality-standards> (last visited Feb. 12, 2026).

²² Puget Sound Clean Air Agency, *Air Toxics*, <https://pscleanair.gov/162/Air-Toxics> (last visited Feb. 12, 2026).

²³ Washington Department of Ecology, *National air quality standards*, <https://ecology.wa.gov/air-climate/air-quality/air-quality-targets/air-quality-standards>; Washington Department of Ecology, *Particle pollution in*

of pollution that will provide the highest levels of community health benefits. For example, programs that provide incentives and grant funding for zero-emission transportation and for reducing wood smoke from home heating will provide significant health benefits in overburdened communities. Such programs are more a cost-effective use of limited resources that will produce greater public health benefits in overburdened communities rather than spending disproportionate resources on point source facilities that are already well-controlled.

At the very least, if there is no cost-effective manner for a utility facility to achieve further emission reductions as determined by Ecology, in consultation with the Washington Utilities and Transportation Commission, the facility should be deemed to be in compliance with Ecology's regulations.

II. Ecology should not apply the Draft Rule to facilities with current approved air quality permits.

The Draft Rule appears to contemplate Ecology imposing additional air quality standards on facilities that already have approved air quality permits.²⁴ However, Ecology lacks authority to modify existing air quality permits to further the goals of RCW 70A.65.020. RCW 70A.15.2260(1) explicitly states, "A permit may be modified or amended during its term at the request of the permittee, or for any reason allowed by the federal clean air act." The federal CAA does not allow air quality permits to be modified or amended to help realize the goals of RCW 70A.65.020.²⁵ Obtaining air quality permits involves a lengthy and rigorous process, so it is with good reason that Washington law protects existing permits in this manner. For example, a business must complete an air operating permit application 12 months before the business has the potential to emit (1) more than 100 tons per year of any air pollutant; (2) more than 10 tons per year of any hazardous pollutant; or (3) more than 25 tons per year of a combination of hazardous pollutants.²⁶

Additionally, existing facilities with current approved air quality permits already comply with stringent emissions limitations. These facilities have made siting, design, and financing decisions in reliance on final permits. Imposing new permit conditions on facilities with approved

Washington's air, <https://ecology.wa.gov/air-climate/air-quality/air-quality-targets/air-quality-standards/particle-pollution> (last visited Feb. 12, 2026).

²⁴ See Draft Rule, WAC 173-448-070(2) ("Ecology will determine the permitted or registered sources it considers to be high priority significant emitters . . ."); WAC 173-448-080(1) ("Within one year of being notified of the high priority emitter designation, a high priority emitter must submit an emission monitoring plan to Ecology and the local air authority.").

²⁵ See generally 40 C.F.R. § 70.7.

²⁶ Washington Department of Ecology, *Air operating permit for large sources of air pollution*, <https://ecology.wa.gov/regulations-permits/permits-certifications/air-quality-permits/air-operating-permit> (last visited Feb. 12, 2026); see also Washington Department of Ecology, *Air Operating Permit Application and Instructions*, Publication No. 94-175 (revised Oct. 2024), <https://apps.ecology.wa.gov/publications/documents/94175.pdf>.

air quality permits would not only violate Washington law, but also disrupt settled expectations, raise due process concerns, may constitute a regulatory taking, and potentially exacerbate energy affordability concerns.

III. Longer term averages of criteria pollutant data would be more representative.

WAC 173-448-040 states that if there are at least three years of data to calculate or estimate the design value of a criteria pollutant in an identified community, Ecology will calculate or estimate the design value for the pollutant at each monitor or sensor that meets the criteria of WAC 173-448-040(1) and (2). However, three-year averages could allow anomalies to skew the data. Air quality data can vary significantly year-to-year due to meteorological conditions and episodic events such as wildfires or the COVID-19 pandemic.²⁷

If Ecology proceeds to utilize only a three-year average, a single year with extreme events may disproportionately influence the average. This can either overstate poor air quality or understate it, potentially driving inappropriate regulatory action or misleading comparisons to targets. Because the Draft Rule aims to identify and address long-term inequities in community exposure, a longer averaging period such as five years would reduce the influence of outlier years and provide a more robust, representative baseline.

IV. Data from outside the boundaries of an overburdened community should not be considered.

The Utilities recommend the removal of language in WAC 173-448-040(2) which allows Ecology to determine air quality based on sensors located outside of an identified community. This does not comport with the purpose of the regulation, which is to address air quality in overburdened communities. It is furthermore unclear what “outside the boundaries of an identified community that are representative of pollution concentrations in the identified community” means. The regulations provide a definition of “neighboring communities”, but that is distinct from the “outside the boundaries” language used in this provision. It is also unclear how, by definition, a monitor located outside the identified community can represent the pollution concentrations in that community.

²⁷ See, e.g., ACS Chemistry for Life, *Fires could emit more air pollution than previously estimated*, (Dec. 29, 2025), <https://www.acs.org/pressroom/presspacs/2025/december/fires-could-emit-more-air-pollution-than-previousl-estimated.html>; Bujin Bekbulat et al., *Changes in criteria air pollution levels in the US before, during, and after Covid-19 stay-at-home orders: Evidence from regulatory monitors*, SCIENCE OF THE TOTAL ENVIRONMENT, (2021), https://depts.washington.edu/airqual/Marshall_136.pdf.

V. Emissions baselines should be based on normal operating conditions.

Under WAC 173-448-090(2), Ecology is considering that for high priority emitters in communities identified in 2023, the emission baselines must be the “(2) highest two-year average of the combined emissions of criteria air pollutant and its precursors from 2018 to 2022.” While Ecology’s objective of establishing a clear emissions baseline is commendable, this baseline should be based on emissions from normal operating conditions, as using the highest two-year average of the highest emissions will likely skew data for some facilities. Furthermore, utilities operate peaker resources needed to support energy reliability when there are low renewable resources and high energy demand, as is often the case in the winter months. Ecology should not set a baseline that penalizes the operation of energy resources to ensure Washington’s energy needs are met.

Selecting the *highest* two-year average within a limited historical window inherently biases the baseline towards periods reflecting abnormal or atypical operations, including unplanned outages, temporary equipment failures, or unusual production demands. By design, this methodology does not identify “typical” emissions. As a result, the baseline may reflect a facility’s most anomalous operating years rather than emissions that reasonably characterize ongoing operations.

Baselines that overstate normal emissions can distort regulatory outcomes. Facilities with a single anomalous two-year period may appear comparable to facilities with consistently elevated emissions, even though their long-term emissions profiles differ materially. This undermines comparability across facilities and communities and weakens the technical foundation of subsequent planning decisions.

VI. Ecology should consider energy reliability and affordability when formulating Emission Reduction Plans.

WAC 173-448-100 should be revised to expressly require Ecology to consider energy reliability and affordability impacts when evaluating Emission Reduction Plans.

For energy-producing facilities, Emission Reduction Plans may negatively impact energy production, harm the development of intermittent renewable resources which require fossil-fuel units on the system as capacity backstop for when the wind doesn’t blow or the sun doesn’t shine, and require equipment that is not readily available in the current market. In some cases, extended procurement timelines, supply-chain limitations, or installation challenges could affect a facility’s ability to operate reliably or respond to system demand, particularly during peak conditions or emergencies. This is particularly concerning, given increasing reliability challenges in the Pacific Northwest region. Energy+Environmental Economics (“E3”) recently found that “[a]ccelerated

load growth and continued retirements create a resource gap beginning in 2026 and growing to 9 GW by 2030.²⁸ For context, 9 gigawatts is approximately the load of the state of Oregon.²⁹ E3 also found that “[p]REFERRED resources such as wind, solar and batteries make only small contributions to meeting resources adequacy needs,” and that “[t]he timely development of all resources is extremely challenging due to permitting and interconnection delays, federal policy headwinds, and cost pressures.”³⁰ Notably, “[t]he most constraining reliability conditions are extended wintertime cold weather events during very low water years,” with many loss-of-load events exceeding 50 hours in duration and some exceeding 100 hours.³¹ The E3 study underscores the need to ensure that all Washington communities have reliable access to energy while continuing to pursue emissions reductions.

Relatedly, the Western Electricity Coordinating Council Northwest was identified in the 2025-2026 Winter Reliability Assessment issued by the North American Electric Reliability Corporation (“NERC”) as having the potential for thermal plant outages caused by extreme winter weather.³² The report also cited to increased winter peak demand for the area that is expected to be 2.9 GW higher (9.3%) than the previous year.³³

Imposing potentially costly emissions control measures on energy generators at a time of energy scarcity will only increase costs on the overburdened communities this proposed regulation aims to support. The overburdened communities targeted by the rule are those that face the greatest risk from rising energy prices. Ecology’s *Policy Statement on Identification of Overburdened Communities Highly Impacted by Air Pollution* designates overburdened communities based on community indicators.³⁴ Among the community indicators considered are the EJScreen Demographic index, which is an average of the percent of low-income populations and people of color.³⁵ The Department of Ecology’s 2025 Report on Overburdened Communities Highly Impacted by Air Pollution also identifies the correlation between income and pollution exposure.³⁶

²⁸ Washington Utilities and Transportation Commission Docket UE-210096, E3, *Resource Adequacy and the Energy Transition in the Pacific Northwest: Phase 1 Results*, 2 (Sept. 22, 2025) (Emphasis in original).

²⁹ *Id.*

³⁰ *Id.* (Emphasis in original).

³¹ *Id.* at 11.

³² North American Electric Reliability Corporation, *2025-2026 Winter Reliability Assessment*, 6 (Nov. 2025), https://www.nerc.com/globalassets/our-work/assessments/nerc_wra_2025.pdf.

³³ *Id.*

³⁴ Washington Department of Ecology, *Policy Statement: Identification of Overburdened Communities Highly Impacted by Air Pollution (Section 3 of the Climate Commitment Act)*, (March 2023), <https://apps.ecology.wa.gov/publications/documents/2302016.pdf>.

³⁵ *Id.*

³⁶ Washington Department of Ecology and Washington State Department of Health, *2025 Report: Overburdened Communities Highly Impacted by Air Pollution*, (Dec. 2025), <https://apps.ecology.wa.gov/publications/documents/2502037.pdf>.

The potential for this action to impose emission limits and other control requirements on utilities will constrain already limited resources. For Washington’s already well-controlled utility facilities, any emission limitation imposed by this rule could likely only be met by reducing plant operation and electricity generation, thereby straining already limited resources, impacting reliability in an energy system that needs backup capacity to maintain reliability while bringing renewables online, and increasing energy costs for the same overburdened communities this rule is intended to assist.

In addition, capital-intensive control technologies and facility modifications may significantly increase the cost of producing or delivering energy. Those increased costs are ultimately borne by ratepayers and consumers, potentially exacerbating existing energy burdens—especially for low-income households and communities already facing affordability challenges. Notably, electricity prices in Washington are rapidly increasing due to increasing electricity demand from transportation electrification and other electric demand needs, increasing large loads, and costs to end reliance on coal power and bring more renewable power to the grid. Without explicit consideration of affordability, Emission Reduction Plans risk creating cost impacts that are not fully evaluated or mitigated.

Requiring Ecology to consider both reliability and affordability would not diminish the Draft Rule’s overall equity objectives. After all, if the agency were to prioritize emissions reductions without analyzing the equitable impacts of the costs to enable such reductions, this would risk creating additional inequities in overburdened communities. Emission Reduction Plans should be technically feasible, economically sustainable, and consistent with the broader public interest, including the provision of reliable and affordable energy service.

Accordingly, Ecology should revise WAC 173-448-100 to require that Emission Reduction Plans include an assessment of potential impacts on energy reliability and affordability, including effects on operational flexibility, system resilience, consumer prices, integrating renewables, and implementation feasibility, and to allow consideration of alternative measures that achieve emissions reductions while minimizing adverse reliability and affordability impacts.

VII. Ecology should use validated, direct sources of emissions data to determine significant sources and high priority significant emitters that are not already permitted.

WAC 173-448-070(1)(a) provides that Ecology “may use, but will not be limited to,” a broad range of information sources to determine which sources are having a significant impact on air quality and constitute the greatest contributors within an identified community, including emissions information, monitoring data, air quality models and studies, and community

engagement. The same categories of information are incorporated by reference in WAC 173-448-070(2)(a) and (3)(b). Narrowing this language to validated, direct non-permitted sources of emissions information associated with specific emissions sources would create clear connections to specific emitting activities and ensure data supports identification of specific sources as high priority emitters that are not already regulated, such as mobile sources or residences or businesses using wood as a fuel source.

While it is appropriate for Ecology to consider multiple types of information in assessing community air quality, the Draft Rule should more clearly prioritize validated, source-specific emissions information that can be directly attributed to particular emitting activities when identifying facilities as high-priority emitters. Narrowing the operative language to emphasize direct, validated emissions data associated with specific sources would improve clarity, transparency, and technical defensibility.

Ambient monitoring data, modeling results, and community input can provide important contextual information, but these data often reflect aggregate conditions, indirect inferences, or qualitative observations rather than emissions directly attributable to a particular facility. Without a clear requirement to anchor high priority significant emitter determinations in source-specific emissions data, there is a risk that facilities could be identified as high-priority emitters based on correlative or generalized information that does not reliably establish a causal connection to specific emitting activities.

VIII. Ecology should not require the submission of an emission monitoring plan if the source has already submitted equivalent information.

WAC 173-448-080(1) requires that, within one year of being notified of a high-priority emitter designation, a facility submit an emission monitoring plan describing how emissions of criteria pollutants and their precursors are monitored and calculated. For facilities that already operate under air quality permits, this requirement risks being duplicative and unnecessary. As discussed above, the Utilities are already subject to multiple rigorous emission reduction regimes.

Permitted facilities are already required, as part of their permit applications and ongoing compliance obligations, to provide detailed descriptions of emissions units, monitoring methodologies, calculation procedures, recordkeeping, and reporting for criteria pollutants and precursors. These requirements are typically reflected in permit conditions, which are subject to agency review and approval and are enforceable.

Requiring permitted facilities to submit a separate emission monitoring plan under WAC 173-448-080(1) that covers the same information would impose additional administrative burden on both regulated entities and agencies without a corresponding regulatory benefit. To avoid

redundancy and promote efficient implementation, Ecology should revise WAC 173-448-080(1) to clarify that permitted facilities may satisfy the emission monitoring plan requirement by referencing existing, approved permitting documents and emissions reports,³⁷ or that facilities with current, enforceable permit conditions addressing emissions monitoring and calculation are deemed to have met this requirement. Such clarification would preserve Ecology's access to necessary emissions information while reducing unnecessary duplication and allowing both the agency and regulated entities to focus resources on substantive air quality improvements.

IX. Ecology should define “Source” in the Draft Rule.

The Utilities recommend that Ecology define “Source” in the Draft Rule by incorporating WAC 173-400-030, which defines this term as follows: “**“Source”** means all of the emissions unit(s) including quantifiable fugitive emissions, that are located on one or more contiguous or adjacent properties, and are under the control of the same person or persons under common control, whose activities are ancillary to the production of a single product or functionally related groups of products.”

* * * *

The Utilities appreciate the opportunity to engage with Ecology on this rulemaking. If you would like to further discuss this comment or have any questions, please reach out to Lorna Luebbe (lorna.luebbe@pse.com), Janna Dubnicka (janna.dubnicka@avistacorp.com), Abbie Krebsbach (abbie.krebsbach@mdu.com), and Kathryn Williams (kathryn.williams@nwnatural.com).

/s/ Lorna Luebbe

Lorna Luebbe
Senior Vice President,
Chief Sustainability Officer, and
General Counsel
Puget Sound Energy

/s/ Kathryn Williams

Kathryn Williams
Vice President, Chief Public Affairs and
Sustainability Officer
NW Natural

/s/ Janna Dubnicka

Janna Dubnicka
Clean Energy Policy &
Implementation Manager
Avista

/s/ Abbie Krebsbach

Abbie Krebsbach
Environmental Director
Cascade Natural Gas Corporation

³⁷ To this end, WAC 173-488-080(1) does state that the emission monitoring plan “may refer to other documents that describe the information,” which is helpful.