

Market-based performance requirements for barrier-treated specialty paper & board

Dr. Joseph N. Ishley, Daikin America, Inc.

Dr. Frank A. Adamsky, Daikin America, Inc.

Oil & Grease Resistant Paper & Board

- Markets by segment & history
- Trends growth by segment

Regulatory updates

- FDA effective phase out C-8 in 2011
- EPA continued PMN's for C-6

Paper & Board Market Overview

Overall North American Fluorochemical-treated tons:

301,300 tpy all segments, all grades

- 48,500 tpy popcorn
- 68,000 tpy pet food
- 184,800 tpy QSR/retail

6.31 million lb/yr FC supplied for these tons

- 1,010 klb/yr popcorn
- 1,950 klb/yr pet food
- 3,350 klb/yr QSR/retail

A Brief History

Before 1999: 90+% one supplier

- 10 million lb/yr sold into North America
- 90+% electrofluorination surfactant-type

1999~2007

- Use drops to 3.5 million lb/yr in North America
- Switch to C-8 acrylate and then C-6 and C-2/C-3 types (PFPE)
- Chemistry moving from surfactant to polymer-type

2008~present

- Use just starting to tick up ~4+ million lb/yr
- C-8 phased out (Aug. 2011), C-6 acrylate phasing in by FDA & EPA, etc...

5

Retail trends

- QSR -
 - maybe >2% (greater than GDP)
 - # of checks flat, but \$/check up
- Pet food
 - estimated >5% from 2011
 - aging pet population & boomer spending
- Popcorn
 - near 2% growth from 2011
 - new packaging/flavors

North American Market Status

Daikin America customer conversion by market segment:

- Carpet Conversion completed in 2008.
- Nonwoven Complete conversion by end of 2012.
- Paper No phase out. Entered market with C6.
- Textile Complete conversion by end of 2012.

Evolution of EPA policy on PFOA

Initial EPA response (2000-2005)

- Information collection (e.g., ECA proceeding)
- Risk assessment (e.g., 2005 draft, SAB proceeding)
- Site-specific assessments (e.g. 3M, DuPont MOUs)

Voluntary Phase Out (2006-2015)

- Voluntary PFOA Stewardship Program
- Supporting research and development of alternatives
- International cooperation on stewardship programs

Current Activities

- Long-Chain (C8 and Longer) Perfluorinated Chemicals Action Plan
 - Regulatory backstop for PFOA Stewardship Program
 - Targeting Regulation of imported articles (i.e., apparel, rugs, furniture, etc.)

C6 – New Direction

- U. S. EPA 2010/2015 Voluntary PFOA Stewardship Program
 - 95% Reduction of PFOA from plant emissions and products by 2010
 - - Daikin achieved 1 year early
 - Eliminate PFOA from plant emissions and products by 2015
 - Daikin will achieve 3 years early (2012)
- EPA, FDA, BfR, CEPA, DSC, METI, and several other regulatory organizations have approved C6 as alternatives to C8's.
 - EPA has reviewed more than 100 Pre-manufacturing Notices (PMNs) since new information on C-6 became available and added the new chemicals to the TSCA Inventory
 - Daikin has successfully listed many, specifically engineered, C6 telomer chemistries.
 - Daikin has completed all testing required by EPA under TSCA.

FDA Update

- Most everyone familiar with 21CFR 176.170 & 176.180 positive list style
 - 176.170 aqueous/fatty foods
 - 176.180 dry foods
- FDA began implementing FCN process in 2000
 - Allows live link to FDA
 - Should contain environmental assessment

<u>http://www.fda.gov/Food/FoodIngredientsPackaging/FoodContactSubstancesFCS/ucm116567.htm</u>

http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm
?rpt=opaListing

FDA Update

- FDA now works off of conditions A-J for FCN's
 - Table 2--Condition of useHigh temperature heat-sterilized (e.g., over 212 deg.F).
 - A Boiling water sterilized.
 - B Hot filled or pasteurized above 150 deg.F.
 - C Hot filled or pasteurized below 150 deg.F.
 - D Room temperature filled and stored (no thermal treatment in the container).
 - E Refrigerated storage (no thermal treatment in the container).
 - F Frozen storage (no thermal treatment in the container).
 - G Frozen or refrigerated storage: Ready-prepared foods intended to be reheated in container at time of use:
 - H Aqueous or oil-in-water emulsion of high- or low-fat or aqueous, high- or low-free oil or fat.
 - I Irradiation
 - J Cooking at temperatures exceeding 250 deg.F.

http://www.fda.gov/Food/FoodIngredientsPackaging/FoodContactSubstancesFCS/ucm109358.htm

Oil & Grease Resistant Paper & Board

Technical Aspects

- End Use Applications
- Test Methods
- Methods of Application
- Types of Barrier Chemistries
- Use in Baking Sheet Papers
- Best Practices for the Use of FC

and

Fluorochemical Treatment for Paper & Paperboard

Reason for Treatment

- To impart Oil & Grease Resistance (OGR) to food-contact papers paperboard.
- This allows the seller of the finished product to present a clean & healthy image, thus protecting the brand value.

Typical End Uses

- Fast food wraps/folded carton
- Pizza boxes
- Bakery/confectionary papers
- Paper plates

- Boxes for oily mechanical parts
- Pet food bags
- Fresh produce shipping boxes
- Microwavable popcorn bags

Performance Test Methods

Measures of grease/solvent barrier performance

Mill/General tests:

- Kit, folded Kit,
- Hot oil & saline
- RP-2, AGR
- Turpentine
- Charcoal Lighter Fluid
- Baking Tests
- Mill Specific

Real world tests:

- Jungle room
- Hot box
- Test Kitchen

Methods of Application

(1) Surface application by size press or calendar box or blade/rod coater

- (2) Internal application by direct addition to pulp
 - For applications that need folded performance
 - Topic for a future presentation

Typical Barrier Chemistries In Use

The types of barrier chemistries in use:

Film (physical) barriers

- Hydrocarbon LDPE, PP, Wax
- Synthetic PVAc, PET, cPET, PVOH
- Latex Acrylic, Styrene acrylic, SB, Vinyl acrylic
- Natural Modified starches

Chemical barriers

- Perfluoroacrylate copolymers (PFA)
- Perfluoropolyethers (PFPE)

Other

• Pigment – hyper-platy kaolin

Use of FC in Grease Resistant Baking Papers

Types of Baking Sheet Substrates

- Silicone Treated Papers
 - Most Expensive
 - Easy Release
 - Withstands High Temperatures
 - Can Be Multi-use
- Parchment Paper
 - Slightly Less Expensive
 - Lower Performance

Use of FC in Grease Resistant Baking Papers

Types of Baking Sheet Substrates

- Quilon Treated Papers
 - Least Expensive
 - Limited to Certain Foods
 - Browns/Chars at High Temperatures
 - Not Multi-use
 - Single Chemical Source
- FC Treated papers
 - Low Cost
 - Good Performance on Certain Foods
 - Full Performance Range to be Determined
 - Potential for Multi-use
 - Readily Available Chemical

FC-Treated Baking Sheet Performance Results

Cinnamon Bun Results

More Robust Performance Tests

- Cinnamon Buns provide basic Pass / Fail test.
- Next level more demanding foods with butter, oil and/or sticky ingredients.
- Interest in determining how FC's can be used to meet these requirements.

More Robust Performance Tests

Other Foods:

- Sliced Potatoes / French Fries
- Bread and rolls
- Caramel Cookies
- Macaroons

Non-food Screening test:

Wax Pick Test – generic test to replace foods.

Best Practices – Fluorochemicals (Neat)

Addition Points:

- Suction side of pump going to the size press.
- Top of run tank.
- Do not dose starch cook tank high temperatures can be detrimental to performance.

Other Recommendations:

- No pre-mixing or recirculation unless advised.
- Proper storage no freezing.
- Hard water less than 200 ppm
- Minimize chelant usage EDTA or DPTA if necessary.

Best Practices – Defoamers

Addition Points:

- Suction side of pump going to the size press.
- Same location with FC line added through a T-connection.
- Top of run tank with adequate agitation.

Other Recommendations:

- Do not overdose.
- Start DF prior to FC addition.
 - Foam is easier to prevent than to remove.

<u>Best Practices – Defoamer Types</u>

Good foam prevention / control has been observed with:

- Ethoxylated Tall Oil + Hydrophobic Amorphous Silica.
- Glycol Concentrate.
- Fatty Alcohol Alkoxylate.
- Others consult your chemical supplier.

Best Practices – Pumps for Neat FC

Use low shear type pumps:

- Progressive cavity.
- Air diaphram.
- Peristaltic.

Avoid high shear type pumps:

- Centrifugal.
- Gear.

Best Practices – Miscellaneous

- Eliminate long drops of size press solution.
 - Chemical addition.
 - Return lines.
- Moderate agitation in the run tank.
 - Avoid air entrainment.
 - Reduce foaming.
- Minimize filler use at wet-end.
 - Competes for FC absorption.
- Control / Minimize wet-end sizing
 - AKD little or no problems.
 - ASA possible problems at high usage.
 - Rosin bad interactions with FC.
- Eliminate or by-pass vibrating screens
 - Source of foam generation.

Following these recommendations and best practices will allow the papermaker to produce various greaseproof papers and boards in an productive and cost-efficient manner. Consult with us for more specific information.

Thank you for your attention

Questions and Comments.

Contact information:

Dr. Ishley Dr. Adamsky

<u>Ishley@daikin-america.com</u> <u>Adamsky@daikin-america.com</u>

256-260-6354 256-260-6349

Daikin America, Inc. 905 State Docks Road Decatur, AL 35601