Biochar: A Renewable Material for Removing Contaminants from Water

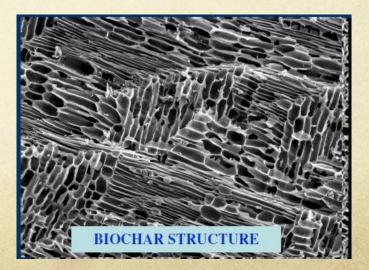
> Pusker Regmi, Jose Luis Garcia Moscoso, Doris Hamill^{*}, Sandeep Kumar[#], and Gary Schafran

Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA-23529

NASA Langley Research Center, Mail Stop 254, Hampton, VA 23681-2199

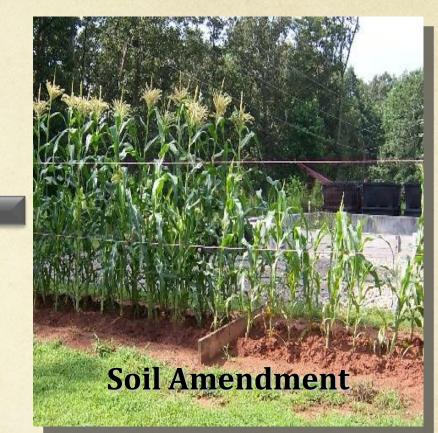
> <u>skumar@odu.edu</u> (757) 683-5354

What is Biochar?

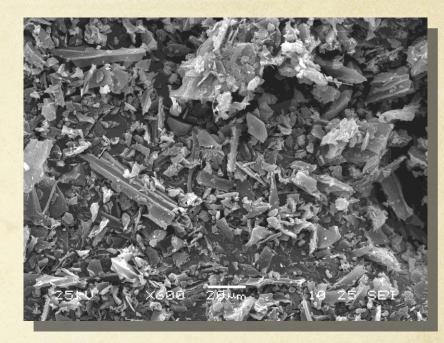

Carbon rich, high energy density solid product resulting from the thermal degradation of biomass. It consists of C, H, O, N, and ash

Essentially a charcoal

Unlike charcoal it is not used as primary fuel


- Highly porous and irregular surface
- □ Its potential as soil amendment was utilized by indigenous people of Amazon

Soil Application


Carbon sequestration

- ✓ Historically, biochar has been used in soil to enhance the plant growth.
- ✓ It helps in improving the water quality.
- The leaching of nutrients from soil, which is one of the cause of ground water pollution is retarded in the presence of biochar

Biochar as Sorbent for Water Treatment

- Porous structure, irregular surface, high surface to volume ratio, and presence of functional group
- Adsorbs both organic pollutants and heavy/trace metals

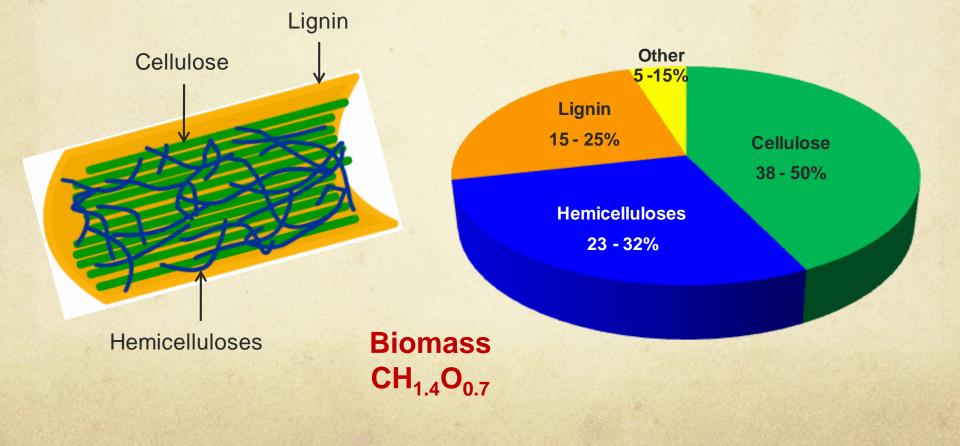
Biochar can be cost effective alternative to activated carbon

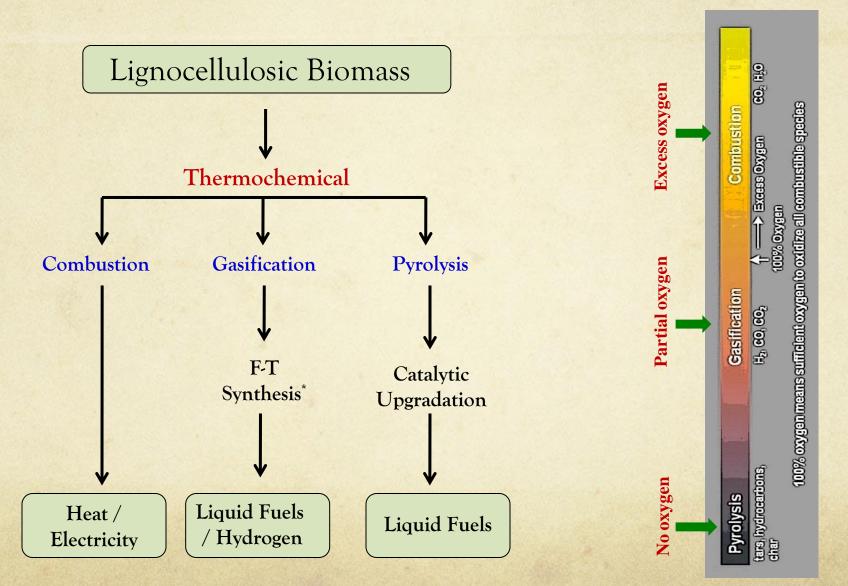
Feedstock for Biochar?

Essentially, all forms of biomass can be converted to biochar.
 Lignocellulosics such as forest thinning, herbaceous grasses, crop residues, manure, and paper sludge are some of the potential feedstock.

Forest Residue

Wood Mill Residue


Bark


Switchgrass Corn Stover Bagasse Wood chips Image: Corn Stover Image: Corn Stover Image: Corn Stover Image: Corn Stover

Lignocellulosic Biomass

- Renewable organic material
- Non starch based fibrous part of plant material
- □ Major feedstock for achieving 36 BYG of biofuels by 2022 (EISA, 2007)

Thermochemical Conversion of Biomass for Biofuels

A Byproduct from Future Biorefineries

Process	Temperature (°C)	Time	Biochar Yield (%)
Gasification	~ 750	~ 10-20 s	10
Pyrolysis			
Fast	400-700	~ 1 s	12
Moderate	400-700	~ 10-20 s	20
Slow	400-700	~ 5-30 min	35
Hydrothermal Carbonizatio	on 200-350	30-90 min	30-60

Biochar Yield

Oxygen is present in biochar

Biochar (CH_{1.2}O_{0.2})

Temperature

Producing Biochar by Slow Pyrolysis

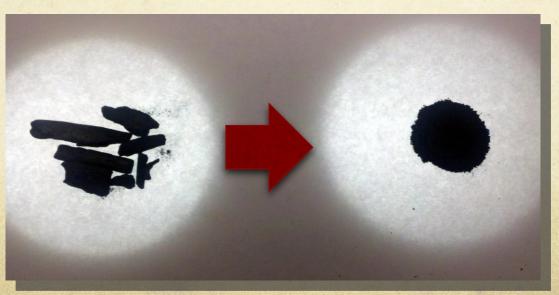
Combustion

Pyrolysis

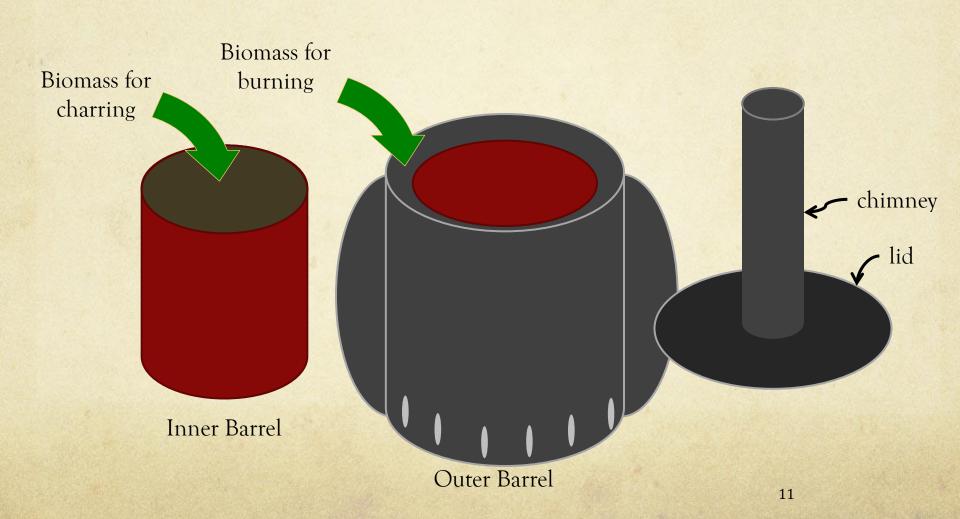
Little or no Oxygen

Abundant Oxygen

little or
no heat
little or
no CO₂
H₂O
small
organics
char


• soot

• ash


Use combustion to provide heat for pyrolysis

Biochar from Slow Pyrolysis

Two-Barrel Pyrolyzer (Developed by NASA Langley Center)

Bluebird Gap Farm, Hampton Event, Nov. 19-20, 2010

City of Hampton, NASA Langley Research Center, and Old Dominion University

Demostration of biochar production via slow pyrolysis and its application in water purification

Using Biochar to Help Plants

Use of Biochar for Water Treatment

Experimental Study with Copper, Cadmium, and Lead Contaminants

Contaminants MCL and their Sources

Trace Metal Contaminants	MCL (mg/L)	Sources
Copper	1.3	Corrosion of household plumbing system, erosion of natural deposits
Cadmium	0.005	Corrosion of galvanized pipes, erosion of natural deposits, discharge from metal refineries, runoff from waste batteries and paints
Lead	0.0	Discharge from steel and pulp mills, erosion of natural deposits, corrosion from household plumbings, erosion of natural deposits

Materials

Single ion solution Cu, Cd, and Pb were prepared

Trace Metals	Concentration (mg/L)	Chemical
Copper	40	CuSO ₄ .5H ₂ O
Cadmium	40	$Cd(NO_3)_2.4H_2O$
Lead	40	PbNO ₃

BATCH STUDY

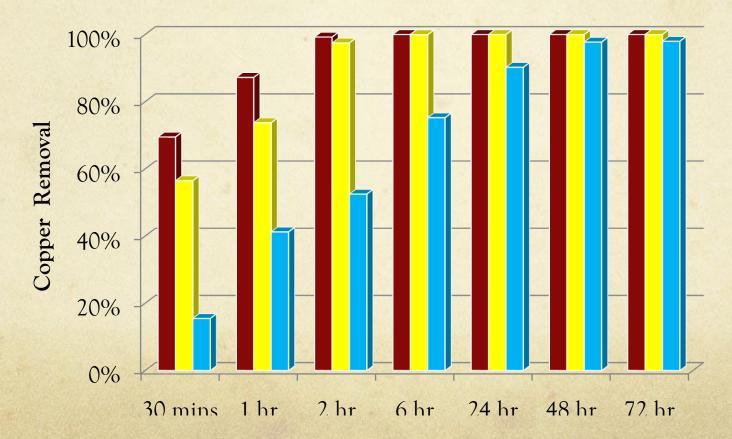
Batch Experiments

- Three metal solutions were treated with 2 g/L, 1 g/L and 0.5 g/L of biochar
- Samples were collected at 30 mins, 1 hr, 2hr, 6 hr, 24hr, 48 hr, and 72 hr

Metal olution

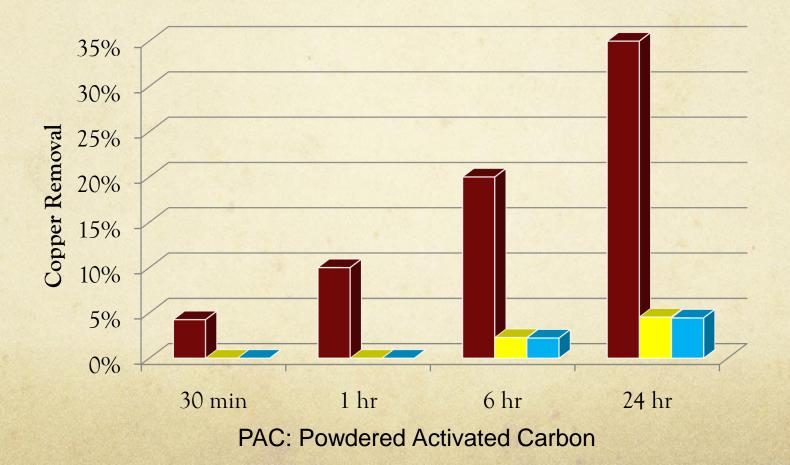
> Biochar

Atomic absorption spectrometer (AAS Hitachi Z-8230) to measure metal contaminants

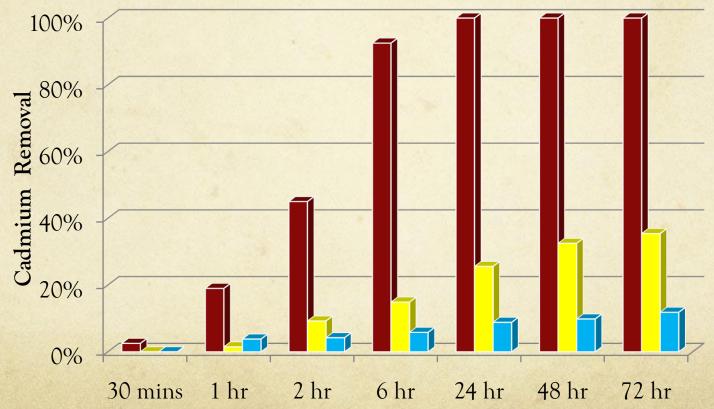


Analysis:

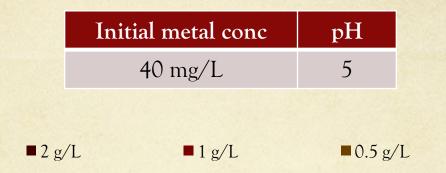
Copper Removal

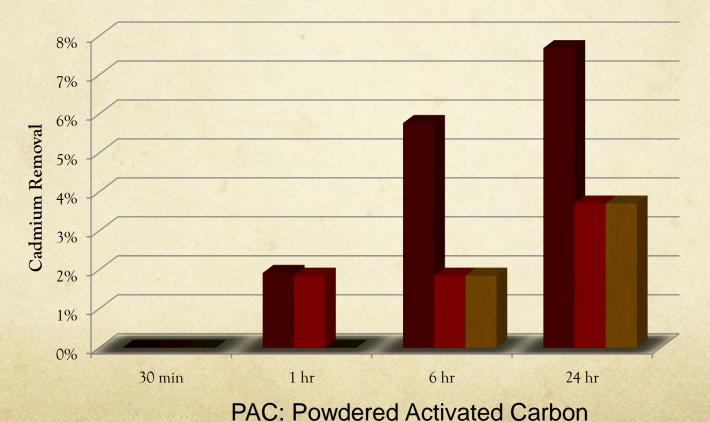

Initial metal conc	pH
40 mg/L	7

■ 2 g/L ■ 1 g/L ■ 0.5 g/L


PAC: Copper Removal

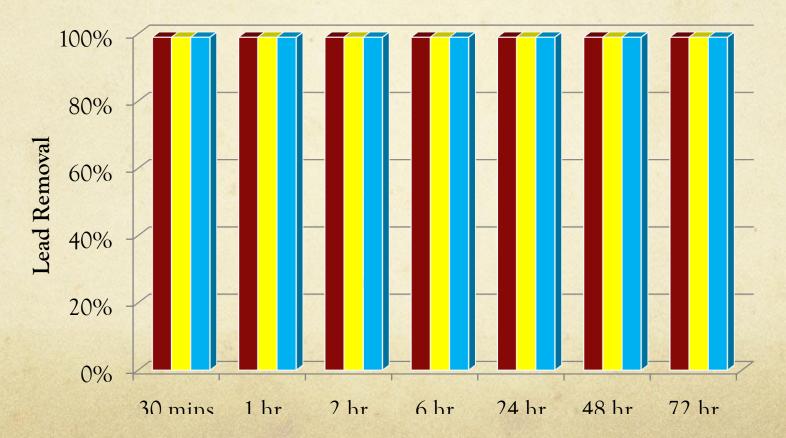
	Initial metal conc	pН	
	40 mg/L	5	
■2g	/L <u>1</u> g/L	0.5	o/I

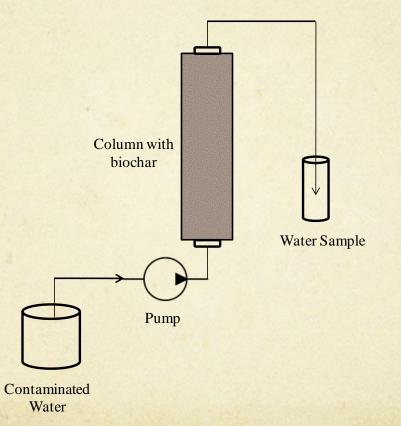



Cadmium Removal

■ 2 g/l ■ 1 g/L ■ 0.5 g/L

PAC: Cadmium Removal




Lead Removal

Initial metal conc	pН
40 mg/L	7

■ 2 g/L ■ 1 g/L ■ 0.5 g/L

COLUMN STUDY



Schematic of column test apparatus

Copper and Lead removal

- Biochar particle size : 0.5 to 1.0 mm
- Measured porosity : 53%
- Volume used in column : 50 ml
- Flow rate for Cu: 2.5 ml/min
- Flow rate for Pb: 3.0 ml/min
- Measurements every 30 min, and 1h after 18 hours of experiment
- Samples analyzed using AAS Hitachi Z-8230

Copper and Lead removal: column study

•2.5 cm diameter columns•50ml of filtering media used

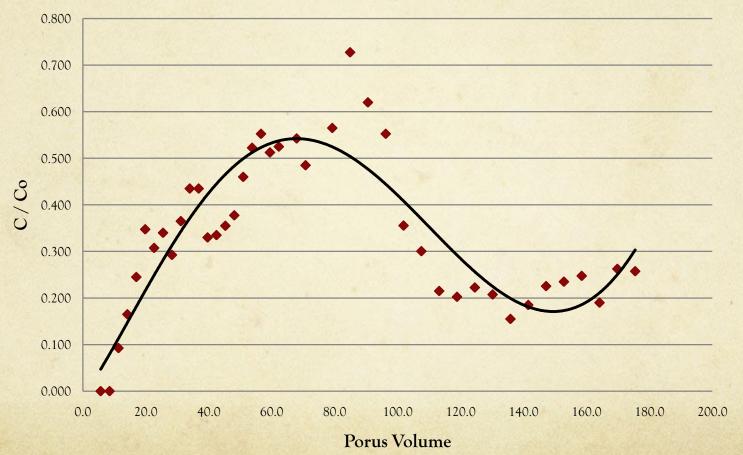
•0.5 – 1.0 mm biochar particles

Copper removal

Time (hours)	C (mg/l)	Time (hours)	C (mg/l)
1	0.0		21.7
	0.0	12	21.7
1.5	0.0	12.5	19.4
2	3.7	14	22.6
2.5	6.6	15	29.1
3	9.8	16	24.8
3.5	13.9	17	22.1
4	12.3	18	14.2
4.5	13.6	19	12.0
5	11.7	20	8.6
5.5	14.6	21	8.1
6	17.4	22	8.9
6.5	17.4	23	8.3
7	13.2	24	6.2
7.5	13.4	25	7.4
8	14.2	26	9.0
8.5	15.1	27	9.4
9	18.4	28	9.9
9.5	20.9	29	7.6
10	22.1	30	10.5
10.5	20.5	31	10.3
11	21.0	Const.	

C/Co = ratio of contaminant removed

C = Concentration measured after filter Co = Initial concentration (40mg/l)


Porus Volume = amount of water that went through the filter porus volume

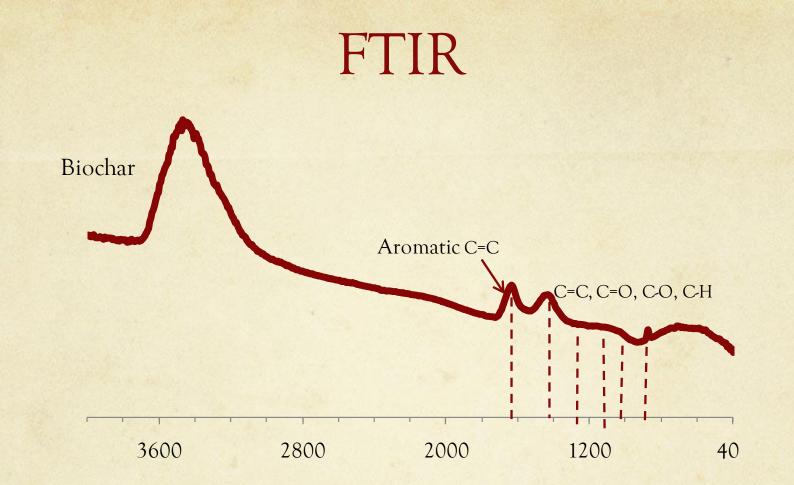
Filter volume = 50ml
Porosity = 0.53
Porus space = 26.5ml
Flow rate = 2.5 ml/min
pH = 4

Porus volume = (Flow rate * Time) / Porus space

Copper removal

Filter Column Study : Cu removal

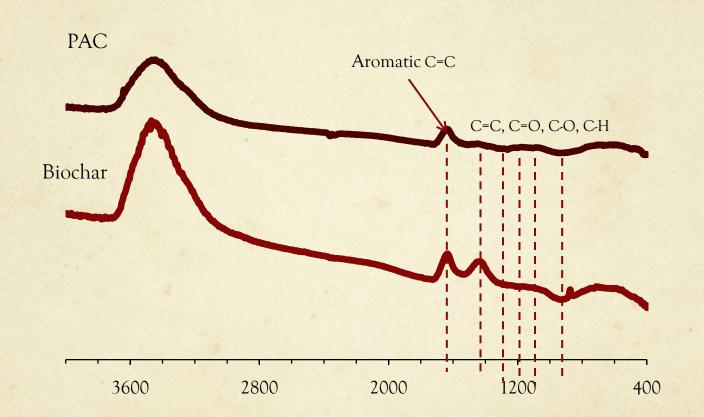
Lead removal


Time (hours)	C (mg/l)
1	0
1.5	0
2	0
2.5	0
3	0
3.5 4	0
4	0
4.5 5	0
5	0
5.5	0
6	0
6.5	0
7	0
7.5	0
8.0	0
8.5	0
9.0	0

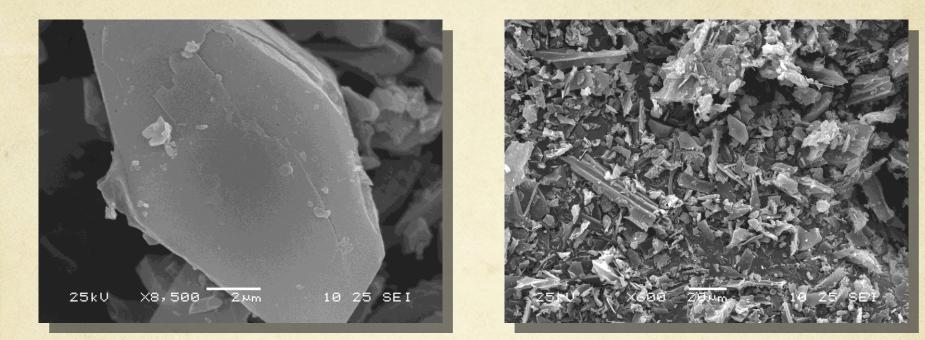
After 9 hours of sampling no lead was detected after filtration.

Experiment is still running

C= 0 even after 48 h


Why biochar worked so well?

• Presence of oxygen containing functional groups such as carboxyl (-COOH), lactone (C=O) and hydroxyl groups


Including Powdered Activated Carbon

(Calgon WPH)

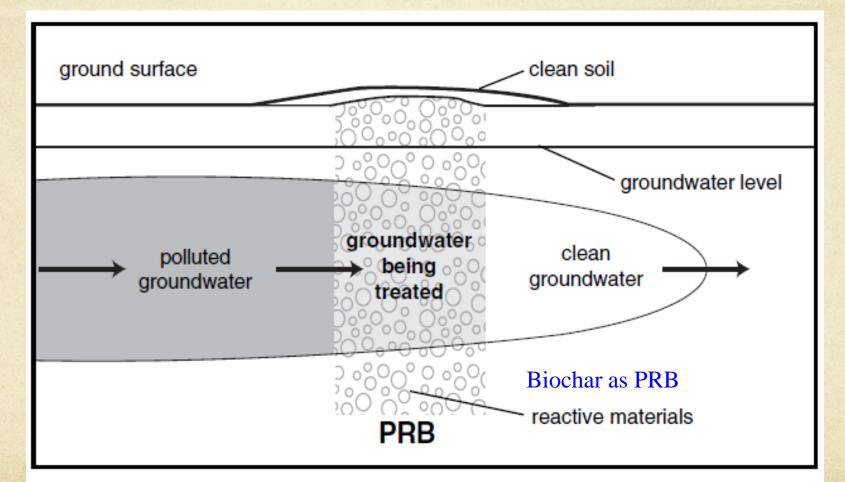
• Lack of oxygen containing functional groups in PAC

Biochar surface

	Biochar	PAC (Calgon WPH)
BET surface area	$70 \text{ m}^2/\text{g}$	$726 \text{ m}^2/\text{g}$

 Irregular surface with high BET surface area (not seen high temperature as in PAC)

Biochar Sorbent Properties


- ✓ The presence of oxygen rich organic compounds on the biochar surfaces adds substantial cation exchange capacity.
- Reported to adsorbs dissolved organic compounds from the soil solution and make them less bioavailable.
- High molecular weight polycyclic aromatic hydrocarbons (PAH) have been reported to be sorbed strongly to biochar surfaces.
- Biochar produced at higher temperature have benefits of high pH, cation exchange capacity, and surface area.
 http://www.biochar-international.org/biochar

Biochar potential applications

Filter water
O Ground water
O Stormwater applications (BMPs)
O Industrial wastewater

Possible Treatment Applications Using Biochar as Sorbent

Biochar as a permeable reactive barrier (PRB) in groundwater treatment

Schematic of groundwater treatment using PRB system. (Source: www.epa.gov/tio/download/citizens/citprb.pdf)

Stormwater Applications

Intercepting storm water flow through the biochar bed

Types of BMPs and proposed biochar application:

i. Infiltration Trenches / Basins:

Proposal: Biochar bed are proposed to be laid over the stones. This may reduce the groundwater contamination by working as a filtration medium.

ii. Detention Basins / Ponds :

Proposal: Lay down a bed of biochar covered with sand / gravel to stop contaminants going to the ground water.

Similar applications of biochar are proposed in (iii) Retention Basins / Ponds (iv) Grassed Swales, and (v) Filter Strips and Buffers types of BMPs around Hampton

Covering the edges of the lawn and garden using biochar, sand and gravel mix

Ref: http://www.hrstorm.org/BMP.shtml

Conclusion

- Small scale community based slow pyrolyzer may be a costeffective option to produce biochar from mixed biomass residue
- Biochar derived from mixed biomass residue can be used as sorbent for water contamination removal and cleaning up waterways
- Trace metal contaminants such as copper, cadmium and lead were almost completely removed by the bichar
- Lead was most amenable to treat with biochar

Even at 0.5 g/L in 30 mins >99% removal was observed

• To understand the amenability of biochar to treat metal several analysis are being performed

Acknowledgement

- Daren Robinson at Hampton's Community Development Department
- Master Gardeners associated with community biochar project at Hampton
- Office of Research at ODU