Phylogenetic analysis of the Lancinae (Gastropoda, Lymnaeidae) with a description of the U.S. federally endangered Banbury Springs lanx

David C. Campbell', Stephanie A. Clark ${ }^{2.4}$, Charles Lydeard ${ }^{3}$
I Department of Natural Sciences, Gardner-Webb University, PO Box 7260, Boiling Springs, NC, 28017, USA 2 Invertebrate Identification, 6535 N Mozart St, Chicago, IL, 60645, USA 3 Department of Biology and Chemistry, Morehead State University, 103 Lappin Hall, Morehead, KY, 40351, USA 4 Invertebrates, Gantz Family Collections Center, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA

Corresponding author: David C. Campbell (pleuronaia@gmail.com)

Academic editor: E. Neubert | Received 24 November 2016 | Accepted 13 March 2017 | Published 28 March 2017
http://zoobank.org/232968CB-A494-47BF-9653-B764C9132D00
Citation: Campbell SC, Clark SA, Lydeard C (2017) Phylogenetic analysis of the Lancinae (Gastropoda, Lymnaeidae) with a description of the U.S. federally endangered Banbury Springs lanx. ZooKeys 663: 107-132. https://doi. org/10.3897/zookeys.663.11320

Abstract

We examined the patelliform snails of the subfamily Lancinae, endemic to northwestern North America, to test whether morphological variation correlated with genetic and anatomical differences. Molecular analyses using cox1, 16S, calmodulin intron, and 28 S rDNA partial sequences and anatomical data supported recognition of four species in three genera. The relationships of lancines within Lymnaeidae are not yet well-resolved. The federally endangered Banbury Springs lanx is described as a new genus and species, Idaholanx fresti, confirming its distinctiveness and narrow endemicity.

Keywords

Lanx, Fisherola, Basommatophora, anatomy, molecular

Introduction

The lancines are relatively large freshwater limpets (up to 20 mm in length), found from the upper Sacramento and Pit Rivers of northern California, north to the Columbia River system in the states of Idaho, Oregon, Washington and Montana in the United States and the province of British Columbia, Canada. Some freshwater limpets in related families have been shown to have high morphological variation within relatively few, widespread species (Walther et al. 2006a, b), but no previous study has analyzed the lancines in detail.

Because of their larger size and color pattern, Tryon (1870) incorrectly suspected that some lancines were mislabeled marine forms. Despite the differences, lancines were generally classified along with other freshwater limpets in Ancylinae until Pilsbry (1925) and H. B. Baker (1925) examined the anatomy and showed that they were lymnaeids. Further studies (Morrison 1955, Walter 1969) have confirmed the lymnaeid anatomy. Although several lymnaeids tend towards few whorls and wide apertures, these are the only truly patelliform members extant in the family. Within the Lancinae, three generic names have been proposed: Lanx Clessin, 1880, Fisherola Hannibal, 1912, and Walkerola Hannibal 1912, but whether they should be recognized as genera, subgenera, or synonyms has varied between authors. Current classification typically recognizes Lanx and Fisherola but treats Walkerola as a subgenus or synonym of Lanx (Burch \& Tottenham, 1980). Nine names (plus one unpublished name cited in the literature) have been proposed for extant species (Table 1). However, there is little agreement in the literature as to whether the variation in shell shape, height, color, and anatomy between populations provide an adequate basis for recognizing all of these taxa (Morrison 1955).

Of particular importance are the questions relating to the status of the Banbury Springs lanx. Banbury Springs lanx was discovered by Terry Frest in 1988 and thought to be a new, undescribed species within the genus Lanx. It is listed as federally endangered in the United States (U.S. Fish and Wildlife Service 1992). Although the small size and different shape distinguish it from other lancines, normal Fisherola occur nearby in the Snake River, raising the possibility that it is just a local ecomorph. However, no populations of Fisherola are known from any other springs (U.S. Fish and Wildlife Service 2006).

The primary objective of this study was to determine the taxonomic status of the United States federally endangered Banbury Springs lanx. We describe it as a new genus and species based on molecular and anatomical data. Secondly, we examine the phylogenetic relationships of the Lancinae using mitochondrial and nuclear gene regions.

Materials and methods

We sampled populations from throughout the geographic range of Lanx and Fisherola, emphasizing morphologically or geographically distinct populations (Table 2). A few additional lymnaeids were sampled as outgroups. Specimens were preserved in ethanol

Table I. Nominal Recent species names in Lancinae.

Species name	Type locality	Assignment in present study
Ancylus altus Tryon, 1865	Klamath River	Lanx alta (Tryon, 1865)
Ancylus crassus Haldeman, 1844	Columbia drainage	Fisherola nuttallii (Haldeman, 1841)
Lanx hannai Walker, 1925	upper Sacramento River	Lanx patelloides (Lea, 1856)
Lanx (Walkerola) klamathensis Hannibal, 1912	Klamath River	Lanx alta (Tryon, 1865)
Ancylus kootaniensis Baird, 1863 [kootenaiensis is an invalid emendation]	Kootenai River (restricted by Morrison 1955)	probably Fisherola nuttallii (Haldeman, 1841) but not directly sampled
Fisherola lancides Hannibal, 1912	Snake River	Fisherola nuttallii (Haldeman, 1841)
Ancylus newberryi Lea, 1858	upper Sacramento (correction by Pilsbry 1925)	Lanx patelloides (Lea, 1856)
Ancylus (Velletea) nuttallii Haldeman, 1841	Columbia drainage	Fisherola nuttallii (Haldeman, 1841)
Ancylus patelloides Lea, 1856	upper Sacramento River	Lanx patelloides (Lea, 1856) Ancylus practlarus Stimpson ms. cited in Lea, 1867
not validly proposed; Lea stated that newberryi differs from it in several ways but never directly said anything about praeclarus		
Ancylus subrotundatus Tryon, 1865	Umpqua River	Lanx alta (Tryon, 1865)

in the field. Dissections were carried out using a stereomicroscope fitted with a camera lucida. Typically at least two specimens per population were dissected; in some cases only one specimen was available. DNA extraction used digestion in CTAB overnight at $37^{\circ} \mathrm{C}$, followed by chloroform-isoamyl alcohol separation, isopropanol precipitation, and washing with 70% ethanol before drying and dissolving in TE (Campbell et al. 2005). PCR amplification was often difficult, so several genes were attempted in an effort to find genes with suitable variation that amplified consistently. ITS failed to amplify. 16S (using the primers from Krebs et al. 2003) amplified for few populations. Coxl (using primers LCO1490 from Folmer et al. 1994 and the external primer from Carpenter and Wheeler 1999) amplified for several but not all samples. The best amplification was obtained for 28 S (primers 2/3F and 6R from Park and Ó Foighil 2000) and calmodulin intron (primers from Schilthuizen et al. 1999 and new primers ATGAAGTGGATGCTGAYGG and ATTCTGGGAARTCTATYG). However, as observed for other gastropods (Simpson et al. 2005), multiple highly divergent calmodulin intron alleles were obtained, suggesting that multiple copies of calmodulin exist in basommatophorans. The sequence length variation was sufficient to make selection of a single copy straightforward using gel extraction (QIAquick gel extraction kit, Qiagen). The band of about 420 bp (including primers) was selected because it consistently amplified strongly. Because the key variable region in 18 S is in the first part of the gene, we used the $1 \mathrm{~F}-4 \mathrm{R}$ primers (Giribet et al. 1996) to amplify that portion of the gene. PCR cycles used were $95^{\circ} \mathrm{C}, 3 \mathrm{~min} ; 5$ cycles at $92^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 40^{\circ} \mathrm{C}$ for 30 sec ,
Table 2. Populations sequenced. Species names under "Morphospecies" were assigned based on shell form. Designation is the name assigned based on the present results and used in the trees. A single individual from the Rogue system yielded two distinct calmodulin intron sequences and unique sequences for 28 S and cox 1 .

Designation	Morphospecies	Locality	Drainage	Accession number		
Idaholanx fresti	Banbury lanx	Banbury Springs, Idaho	Snake	$\begin{array}{c}\text { calmodulin HM230326, 28S HM230308, } \\ \text { cox1 HM230356, 16S KT267273 }\end{array}$		
Idaholanx fresti	Banbury lanx	Box Canyon Springs, Idaho	Snake	$\begin{array}{c}\text { calmodulin HM230327, 28S HM230309, } \\ \text { cox1 HM230357, 16S KT267273 }\end{array}$		
Idaholanx fresti	Banbury lanx	Briggs Spring, Idaho	Snake	28S HM230310		
Idaholanx fresti	Banbury lanx	Thousand Springs, Idaho	Snake	calmodulin HM230328, 28S HM230311		
Fisherola nuttallii	F. lancides	off Bancroft Springs, Snake River, Idaho	Snake	$\begin{array}{c}\text { calmodulin HM230330, 28S HM230315, } \\ \text { cox1 HM230359, 16S HM230355 }\end{array}$		
Fisherola nuttallii	F. nuttallii	Deschutes River, RM 6.3, Oregon	Columbia	calmodulin HM230329,28S HM230314, 16S KT267274		
Fisherola nuttallii	F. nuttallii	$\begin{array}{c}\text { Owyhee River, Whistling Bird Rapids, } \\ \text { Oregon }\end{array}$	Snake	calmodulin HM230331, 18S HM230306,		
28S HM230316, cox1 HM230360					$]$	calmodulin HM230336, 18S HM230307
:---						

Designation	Morphospecies	Locality	Drainage	Accession number
Lanx patelloides	L. patelloides	Battle Creek, Sacramento River, California	Sacramento	calmodulin HM230343
Lanx patelloides	L. patelloides	Pit River at CA Hwy 299 bridge, California	Sacramento	calmodulin HM230347
Lanx patelloides	L. patelloides	Sucker Springs lower spring channel, California	Pit	calmodulin HM230348, 28S HM230323
Lanx patelloides	L. species	Lava Creek Lodge, Eastman Lake, Fall River, California	Pit	calmodulin HM230344, HM230349(long), 16S KT267276
Lanx patelloides	L. species	Lost Creek source spring	Pit	calmodulin HM230345

$65^{\circ} \mathrm{C}$ for 2 min ; and 40 cycles with at $92^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, \mathrm{x}^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 65^{\circ} \mathrm{C}$ for 2 min , where x is about $2^{\circ} \mathrm{C}$ below the lower primer annealing temperature; finishing with 10 \min at $72^{\circ} \mathrm{C}$ before cooling to $4^{\circ} \mathrm{C}$. In some cases with weak amplification, nested PCR for calmodulin intron using the Schilthuizen et al. (1999) primers followed by the new primers was used. PCR products were purified using DyeEx 2.0 kits (Qiagen). Sequencing used ABI BigDye 3.1 with cycle sequencing reactions of 4 minutes at $96^{\circ} \mathrm{C}$, followed by 40 cycles with 15 sec at $96^{\circ} \mathrm{C}, 15 \mathrm{sec}$ at about $2^{\circ} \mathrm{C}$ below the lower primer annealing temperature, and 4 min at $65^{\circ} \mathrm{C}$, followed by 10 min at $72^{\circ} \mathrm{C}$ before cooling to $4^{\circ} \mathrm{C}$. Sequences were aligned in BioEdit 7.0.5.3 (Hall 1999). Preliminary alignments made use of CLUSTAL W (Larkin et al. 2007), followed by manual editing to eliminate unnecessary gaps, inconsistent alignment of identical sequences, and other problems. Outgroups were selected based on the availability of 28 S sequence data and at least one of the other included genes. To obtain more complete genetic coverage, three outgroups (Carinifex sp., Polyrhytis emarginata s.l., and Galba modicella s.l.) combined sequences from more than one nominal species, but the species in question are closely related and have sometimes been synonymized.

DNA data were analyzed in PAUP* 4.0a152 (Swofford 1998), TNT (Goloboff et al. 2008) and MrBayes3.2 (Ronquist et al. 2011). Duplicate sequences were eliminated from the phylogenetic analyses. Partition-homogeneity tests ($\mathrm{P}_{\text {ILD }}$ of Dowton and Austin 2002) were run in PAUP*4.0a152 with 100 replicates of 10 random addition replicates each. This test is sensitive to other factors, such as partition size and evolutionary model, besides data compatibility (Dowton and Austin 2002), but may provide a rough idea of agreement between data sets. Despite the problems of the ILD type of tests, no better alternative has gained wide acceptance. The test requires data for each included taxon and partition, so pairwise comparisons were made between all genes. The only significantly incompatible gene was 16 S data, so it was analyzed separately, but the others were concatenated. Indels were coded as missing data. Parsimony analyses in PAUP* used 500 replicates of TBR swapping, with random taxon addition sequence and holding 10 trees at each addition step. Parsimony bootstrapping used 500 replicates, each replicate being a random-addition heuristic search with 10 random replicates. MrModeltest 2.2 (Nylander 2004) was used to select a maximum likelihood model for the nucleic acid sequences that was then input into MrBayes. Bayesian analyses used 2,000,000 generations and 8 chains, with revmat, shape, pinvar, and statefreq unlinked, and the concatenated sequence had the genes identified as partitions. Duplicate sequences were excluded.

Abbreviations

FMNH Field Museum of Natural History, Chicago, Illinois, U.S.A.
SAC Invertebrate Identification's invertebrate reference collection, Chicago, Illinois, U.S.A.
DCS Deixis Consultants mollusc reference collection, Seattle, Washington, U.S.A.

Table 3. Outgroup sequences analyzed. Source gives locality for new specimens and literature citation for published sequences. * indicates newly generated sequences.

Taxon	Gene	Accessions	Sources
Acroloxus lacustris (Linnaeus, 1758)	16S	AY577462	Jorgensen et al. 2004
Acroloxus lacustris (Linnaeus, 1758)	28S	DQ328296	Walther et al. 2006b
Acroloxus lacustris (Linnaeus, 1758)	cox 1	DQ328271	Walther et al. 2006b
Ancylus fluviatilis Müller, 1774	16S	AY577466	Jorgensen et al. 2004
Ancylus fluviatilis Müller, 1774	28S	DQ328295	Walther et al. 2006b
Ancylus fluviatilis Müller, 1774	cox 1	DQ328270	Walther et al. 2006b
Austropeplea tomentosa (L. Pfeiffer, 1855)	16S	EU556238	Puslednik et al. 2009
Austropeplea tomentosa (L. Pfeiffer, 1855)	28S	HQ156217	Holznagel et al. 2010
Austropeplea tomentosa (L. Pfeiffer, 1855)	coxl	AY227365	Remigio and Hebert 2003
Carinifex newberryi (Lea, 1858)	28S	*HM230312	Lava Creek, 1st spring pool N. of Hanna Boathouse, CA
Carinifex ponsonbyi Smith, 1876	16S	*HM230354	Hagelstein Park, mid channel E. side center, Klamath River, OR
Carinifex ponsonbyi Smith, 1876	cox 1	*HM230358	Hagelstein Park, mid channel E. side center, Klamath River, OR
Dilatata dilatata (Gould, 1841)	28S	*HM230313	Sipsey River near Benevola, Greene Co. AL
Dilatata dilatata (Gould, 1841)	cox 1	EF012173	Albrecht et al. 2007
Galba modicella (Say, 1825)	coxl	KM612000	Dewaard et al. 2015
Galba obrussa (Say, 1825)	16S	AF485658	Remigio 2002
Galba obrussa (Say, 1825)	28S	*HM230317	Sipsey River near Benevola, Greene Co. AL
Galba obrussa (Say, 1825)	cam	*HM230332	Sipsey River near Benevola, Greene Co. AL
Lymnaea stagnalis (Linnaeus, 1758)	16S	AF485661	Remigio 2002
Lymnaea stagnalis (Linnaeus, 1758)	28S	AY427490	Vonnemann et al. 2005
Lymnaea stagnalis (Linnaeus, 1758)	cox 1	KT831385	Gordy et al. 2016
Orientogalba ollula (Gould, 1859)	16 S	U82067	Remigio and Blair 1997
Orientogalba ollula (Gould, 1859)	28S	AY465065	Jung et al., unpublished
Orientogalba ollula (Gould, 1859)	coxl	KC135900	Park et al. 2012
Physa acuta (Draparnaud, 1805)	16S	JQ390525	Nolan et al. 2014
Physa acuta (Draparnaud, 1805)	28S	DQ256738	Holznagel et al. 2010
Physa acuta (Draparnaud, 1805)	coxl	JQ390525	Nolan et al. 2014
Planorbella trivolvis (Say, 1817)	16 S	AY030234	DeJong et al. 2001
Planorbella trivolvis (Say, 1817)	28S	AF435688	Morgan et al. 2002
Planorbella trivolvis (Say, 1817)	cox 1	KM612028	Dewaard et al. 2015
Polyrhytis emarginata (Say, 1821)	28S	DQ328299	Walther et al. 2006b
Polyrhytis elodes (Say, 1821)	16 S	AF485652	Remigio 2002
Polyrhytis exilis (Lea, 1834)	cox 1	*HM230364	Ditch along the Stump Lake access road, Jersey Co., IL
Radix auricularia (Linnaeus, 1758)	16S	JN794284	von Oheimb et al. 2011
Radix auricularia (Linnaeus, 1758)	28S	AY465067	Jung et al., unpublished
Radix auricularia (Linnaeus, 1758)	cox 1	KP242340	Patel et al. 2015
Radix balthica (Linnaeus, 1758)	16S	HQ330989	Feldmeyer et al. 2010
Radix balthica (Linnaeus, 1758)	28S	EF417136	Sonnenberg et al. 2007
Radix balthica (Linnaeus, 1758)	cox 1	KP098541	Feldmeyer et al. 2015

Results

Amplification of 28 S and calmodulin intron were most successful, but representatives of each species (as recognized herein) also amplified for coxl. Within Lancinae, interspecies and intergenus percent variation was lowest for 28 S and highest for coxl. However, the calmodulin intron sequence for lancines was more divergent from Galba obrussa than the maximum variation between lymnaeids for coxl (26-30\% versus 22%) (Table 4). Calmodulin sequences for planorbids generated in ongoing study on Vorticifex were apparently homologous based on the beginning and end of the intron sequence, but the middle of the intron was too divergent in sequence and length to obtain a meaningful alignment between the planorbids and lymnaeids. One calmodulin intron paralog of significantly different length was sequenced, but no homology with the chosen paralog was evident (GenBank accession number HM230349).

Several populations yielded identical or nearly identical sequences. These are enumerated in Table 2. No indels were found in coxl within the sampled species, though other Hygrophila do have insertions (pers. obs.). 28 S , 16 S , and calmodulin intron all had several small indels. MrModeltest (Nylander 2004) favored a HKY model for calmodulin intron and GTR $+\mathrm{I}+\mathrm{G}$ for $28 \mathrm{~S}, 16 \mathrm{~S}$, and cox1. Figures $1-2$ show the results of phylogenetic analyses.

Parameters for the trees from these analyses are in Table 5. All Bayesian analyses had a final average standard deviation of split frequencies below 0.6%. Roughly 70% bootstrap support or 95% Bayesian posterior probability are thought to reflect significant support, though these empirical estimates are affected by several data and tree characteristics.

As 18 S typically shows little resolution at the species level, it was only sequenced for two species from different lancine genera, and those sequences were identical. Table 6 gives the E10-1 variable region for lymnaeids (present results and published data). The sequences are sufficiently variable to make alignment uncertain. Parsimony analyses using different alignments gave substantially different phylogenetic patterns, so we did

Table 4. Range of percent differences in DNA sequence (raw data, gaps treated as missing).

Gene	Lymnaeidae	lancine genera	Lanx species	lancine intraspecies
$28 S$	up to 7.6%	$1.2-2.8 \%$	$0.79-1.2 \%$	$0.00-0.40 \%$
CAM intron	up to 30.1%	$4.8-8.0 \%$	$1.3-2.6 \%$	$0.00-1.87 \%$
$\operatorname{cox} 1$	up to 21.1%	$12.9-21.1 \%$	$7.9-8.6 \%$	$0.15-1.0 \%$
16 S	up to 21.3%	$12.8-16.6$	no data	$0.00-2.5 \%$

Table 5. Tree statistics.

Gene	Parsimony		Bayesian		
	\# trees	length	burnin	maximum ln likelihood	mean ln likelihood
28S, CAM intron, and cox1	18	1670	165000	-9578.885	-9602.83
$16 S$	2	719	65000	-3414.11	-3427.56

- 0.01 substitutions/site

Figure I. Phylogram of the Bayesian majority-rule consensus tree for 28S, cox1, and calmodulin intron sequence data. Numbers on branches are bootstrap percentages before the slash, then Bayesian posterior probabilities. - indicates a value under 50% or 0.5 when the other method gave higher values. Taxon names in bold are lancines; starred taxa are Acellinae.
not use them. The alignment in the table is to facilitate comparison and may not reflect actual homology. However, several groups of species have closely similar or identical sequences, supporting a close relationship within these groups.
Table 6. Hypervariable portion of the E10 region of 18 S genes for lymnaeids. * indicates newly generated data. The alignment is meant to facilitate comparison between the different species. Differences between the more divergent sequences are too great for confident homologizing.

Species	Accession number	Sequence
Aenigmomphiscola europaea, A. kazakbstanica, Lymnaea stagnalis, Omphiscola glabra, Stagnicola palustris	AY577484, FR797819-FR797829, JN614363, JN614364, HQ659966, JN614368, JN614367	CCGCG------TGC-GG--GGCGACTCGT-GCGCGGCG
Fisherola nuttallii	HM230306*	CCGT-CGC-GCGGGGCGTCAAACCCTCGCCG-GCGGCG
Galba cousini	FN598151, JN614345, JN614344	CCGT-------CGCGGCGCAAGCCGAG-----GCGGCG
Galba cubensis	Z83831, JN614326-JN614331, JN614334	CCGTGTCGTGCCGCGGTGCAAGCCGTGGTCGCGCGGCG
Galba humilis	FN182190	CCGT-------CGCGGCGCAGGCCGAG-----GCGGCG
Galba schirazensis	FR772291, JN614335-JN614343	CCGGC----CATTCATTCACTTGCGTGG----TCGGCG
Galba truncatula	Y09019, Z73985, EU152270, EU728668, HQ659965, JN614346-JN614354, FR797815, FR797816	CCGT-------CCT-TTC----GCGAGG----GCGGTG
Galba viator	AF239912	CCGTGTGCCTCCGTGGTGCAAGCCGTGGTCGCGCGGCG
Galba viator	AM412222, AY057088, AY057089, JN614332, JN614333	CCGTGTGCCTCCGCGGTGCAAGCCGTGGTCGCGCGGCG
Lanx alta	HM230307*	CCGT-CGC-GCGGGGCGTCAAACCCTCGCCG-GCGGCG
Lymnaea stagnalis	EF489345	CCG------------------------------CGGCG
Lymnaea stagnalis, Omphiscola glabra, Stagnicola palustris	Y09018, Z73984, AY427525,Y09015, Z73982, JN614365, JN614366, Y09016, Z73983	CCGCG------TGCCGG--GGCGACTCGT-GCGCGGCG
Pectinidens diaphana	EU241865, JF909497, JN614361, JN614362	CCGC-------CGC-GG--CTCGCGCCGT-G-GCGGCG
Pseudosuccinea columella	FN598152, JN614358-JN614360	CCGT-------CGGTCC--CGCGAGGGGCCG-GCGGTG
Pseudosuccinea columella	EU241866	CCGTT------CGGTCC--CGCGAGGGGCCG-GCGGTG
Radix auricularia, Radix peregra	Z73980, Y09017, Z73981, FR797817, FR797818, JN614356, JN614357	CCGCG------TGCTC---TTCGCGGGGT-GCGCGGTG
Radix natalensis	AF192272, EU152269	CCGCG------TGCTC---CTCACGGGGT-GCGCGGTG
Radix natalensis	AF192273	CCGCG------TGCTC---CTCACGGGGT-GCGTGGTG

Species	Accession number	Sequence
Radix natalensis	AF192274	CCGCG------TGCTC---CTCCCGGGGT-GCGCGGTG
Radix natalensis	JN614355	CCGCG------TGCTC---CTCGCGGGGT-GCGCGGTG

Sources: Bargues and Mas-Coma 1997 (Z73980-5); Bargues et al. 1997 (Z83831); Bargues et al. 2007 (AM412222); Bargues et al. 2009 (FN182190); Bargues et al. 2011a (FR772291); Bargues et al. 2011b (FN598151-2); Bargues et al. 2012 (JF909497); Correa et al. 2011 (JN614326-68); Dayrat et al. 2011 (HQ6599656); Duffy et al. 2009 (AF239912, AY057088-9, EU241865-6, EU728668); Jorgensen et al. 2004 (AY577484); Klamath River at Collier Rest Area, California (HM230307*); Klussmann-Kolb et al. 2008 (EF489345) (Note: their analyses excluded variable regions, so perhaps the region was excised from the published sequence rather than originally absent); Marquez, unpublished (Y09015-9); Owyhee River, Whistling Bird Rapids, Oregon (HM230306*); Stothard et al. 2000 (AF192272-4); Vinarski et al. 2011 (FR797815-29) Vonnemann et al. 2005 (AY427525); Walker et al. 2008 (EU152269, EU152270). Only the E10 region is considered above, so there may be differences in other parts of the sequence for ones that are grouped in the table.

Figure 2. Phylogram of the Bayesian majority-rule consensus tree for 16 S sequence data. Numbers on branches are bootstrap percentages before the slash, then Bayesian posterior probabilities. - indicates a value under 50% or 0.5 when the other method gave higher values. Taxon names in bold are lancines; starred taxa are Acellinae.

Discussion

In agreement with the anatomical data, molecular data give strong support for placing Lancinae in Lymnaeidae, which favors treating lancines as a subfamily rather than as a separate family. The relationships of lancines to other lymnaeids are not yet well-
resolved. Anatomy (Walter 1969) supports an affinity between Lancinae and the predominantly New World "advanced stagnicoline" group (subfamily Acellinae). Amphipepleinae (Radix, Austropeplea, and Orientogalba) was consistently supported as monophyletic, but the relationships between Amphipepleinae, Lancinae, and the remaining lymnaeids were not well-resolved, probably a function of the limited number of taxa. Sampling of additional lymnaeids, as well as additional genetic data (especially 28S) should greatly improve resolution of the relationships in this diverse and important but taxonomically problematic family.

The Lancinae appear supported as a monophyletic group, relatively divergent from other lymnaeids. Most of the analyses, the 18 S sequence similarity, and several morphological features all support Lancinae. Morphological synapomorphies include the fully patelliform shell, shape of the penial complex and C-shaped to circular columellar muscle (Baker 1925, this work). Patelliform lymnaeids evolved convergently multiple times in the Miocene Paratethys lakes of southeastern Europe (Harzhauser and Mandic 2008), so the molecular data provides a useful test of the morphological similarities. However, the monophyly of Lancinae received low bootstrap support and, in the 16 S analysis, low Bayesian posterior probabilities. Within the Lancinae, the present analyses had Idaholanx more closely related to Fisherola than to Lanx. Some singlegene analyses (not shown) had other patterns of intergeneric relationships in Lancinae. The weak resolution may reflect the limited number of available outgroups with 28 S data. Additionally, variation in the coxl gene may be approaching saturation within Lancinae, as the maximum percent difference between lancines, the maximum difference between any two lymnaeids, and the differences between lymnaeids and other basommatophorans were all about 20%. As a result, convergent effects of multiple mutations in the variable sites probably obscure higher-level relationships in this data set. MacNeil (1939) reported Cretaceous lancines, so the subfamily has had enough time to develop significant genetic variation.

The genetic data consistently support recognition of three major groups within Lancinae. Two correspond to the presently recognized genera Lanx and Fisherola, while the third includes only the Banbury lanx. These results suggest that the Banbury lanx deserves recognition as a distinct genus and species (see description below). Each lancine genus was strongly supported as monophyletic. Genetic variation within Fisherola and Idaholanx was minimal. Within Lanx, there was one clear division and one ambiguous division between populations. The Sacramento-Pit system populations of Lanx (L. patelloides) consistently differed from those from farther west and north. These western and northern Lanx populations include L. alta in the Klamath and Umpqua systems and genetically more variable populations from the Smith and Rogue River systems. The difference between the Smith and Rogue forms and standard L. alta was less than the difference between L. alta and L. patelloides (in the case of 28S, only a few bases) but greater than the variation within other drainages. One specimen from the Rogue River system had both the standard L. alta allele and the Smith River allele for calmodulin intron, and the two calmodulin intron alleles obtained for Smith River specimens appear paraphyletic relative to the standard L. alta allele. The
variation within the Rogue and Smith systems therefore appears infraspecific, and the populations are assigned to L. alta. However, the genetic variation may be evolutionarily significant for the conservation of this species. H. B. Baker (1925) and Morrison (1955) noted that the Rogue River population did not exactly match described species from other drainages. Lanx alta, as defined herein, is very plastic in shell shape, so this may not be significant.

The relatively high genetic differences between lancine species contrasts with many other lymnaeids. The present results suggest that only one lancine species is present in each river system, with the exception of Idaholanx fresti in a few springs and Fisherola nuttallii in the main rivers, both in the Columbia-Snake system. The recognition of only two species in Lanx contrasts with most previous classifications. In particular, the widely recognized L. subrotunda and L. klamathensis are synonymized herein with L. alta. Previous tentative synonymization of L. hannai with L. patelloides and F. lancides with F. nuttallii are also supported (Morrison 1955, Burch 1982). Although specific populations assigned to F. kootaniensis and L. newberryi were not sampled in this study, the observed lack of variation within river systems supports previous synonymization with F. nuttallii and L. patelloides, respectively (Pilsbry 1925). Pilsbry (1925) also pointed out that F. crassus is an objective synonym of F. nuttallii, Haldeman having apparently renamed the same specimen. These synonymies suggest that lancines are relatively variable in shell shape and color pattern, as suspected by Morrison (1955). Similar results from Walther et al. (2006a, b) for the ancylids Ferrissia and Laevapex suggests that lim-pet-shaped Hygrophila have been taxonomically oversplit due to ecomorphic variation. Effects of environmental parameters correlate with shell shape in limpets (Basch 1963, McMahon and Whitehead 1987, Tanaka et al. 2002), and there is also extensive unexplained variation within populations (McMahon 2004). Additionally, limpet shape may be affected by the available substrate (Ridgway et al. 1999). Albrecht et al. (2004) discuss several factors potentially influencing shell shape in freshwater limpets and suggest that waves or currents and predators are the most likely selective pressures. Denny (2000) found that marine intertidal limpets are not optimized to resist wave-produced forces, presumably because the grasping force of a stationary marine limpet typically greatly exceeds observed wave forces. However, the smaller size and thin shells of freshwater limpets and the different environmental parameters for a stream with continual flow versus unpredictably directed waves during tide changes may result in different environmental pressures. Evolutionary pressures and convergent evolution relating to the limpet shape are reviewed in Vermeij (2016), including discussion of the lymnaeids.

The potential for self-fertilization in Hygrophila may account for high genetic divergence. Self-fertilization varies from rare to common in different species (Njiouku et al. 1993, Dillon et al. 2005, Puurtinen et al. 2007). The ultimate population bottleneck of a single individual would produce extreme founder effects and genetic drift, while also producing a genetically uniform founding population, thus accounting for high divergence between taxa and low variation within. Bolotov et al. (2016) found evidence for high divergence due to founder effect in the postglacial invasion of Iceland by lymnaeids. Although the long geologic history of lancines would allow for plenty
of time to accumulate changes, if the modern genera diverged fairly early, the lancines are unusually divergent in coxl protein sequence relative to the other lymnaeids, suggesting additional factors at work. Variation between populations within a river system was quite low. The largest difference between any two alleles within a river system was 9 to 10 bases between calmodulin intron alleles in the Smith and Rogue River populations. Outside of those, there was one individual of L. alta from the Klamath River with a single deletion of 6 bases in the calmodulin intron.

The low species diversity of lancines (four species from the entire Pacific Northwest region) contrasts with freshwater caenogastropods such as Juga and Fluminicola in the same river systems, which show high local endemicity within drainages (Hershler et al. 2007, Campbell et al. 2016). The habitat preferences of lancines resemble those of the associated caenogastropods, primarily in cool, flowing, well-oxygenated water, often in springs or spring-influenced areas. The potential for a single hermaphroditic individual to found a new population facilitates dispersal in Hygrophila, in contrast to the gonochoristic caenogastropods. However, unlike many lymnaeids, lancines have a poorly developed lung and are not known to survive out of water for extended periods of time, limiting their potential for dispersal by birds or other overland travel. Dispersal therefore likely occurs primarily within drainages, yet somehow lancines maintain high genetic homogeneity across much larger distances than Juga and Fluminicola, despite apparently similar ecology.

Thus, the present data supports recognition of the Banbury Springs lanx as a distinct genus and species. However, variation within Fisherola and Lanx seems to be largely ecophenotypic, giving a total of only four extant species in the subfamily Lancinae.

Systematic descriptions

Family Lymnaeidae Rafinesque, 1815

Idaholanx Clark, Campbell \& Lydeard, gen. n.

http://zoobank.org/5E7508F1-1AF1-4051-AFD3-E7733DEF094F

Type species. Idaholanx fresti Clark, Campbell \& Lydeard sp. n.
Description. Shell (Figs 3, 5A). Patelliform, 2.0-3.9 mm in height and 4.0-6.7 mm in length and $3.0-5.4 \mathrm{~mm}$ in width. Aperture elliptical. Protoconch smooth, apex positioned posteriorly. Teleoconch sculpture of concentric growth lines. Shell pale to dark reddish brown. Internal columellar muscle scar C-shaped.

Non-genital anatomy. Columnar muscle C-shaped (Fig. 5B), gap on right side, roughly central. Digestive gland, kidney and lung typical of Lymnaeidae and that seen for Lanx and Fisherola (Baker 1925, SAC personal observations). Animal colour dark grey to black.

Genitalia anatomy (Fig. 4): The distinction between the praeputium and penial sheath is not clearly defined, the praeputium and the penial sheath are both about half

Figure 3. Shell, holotype of Idaholanx fresti sp. n.

Figure 4. Reproductive anatomy, holotype of Idaholanx fresti sp. n. AG albumen gland BW body wall NG nidamental gland \mathbf{O} oviduct $\mathbf{O T}$ ovotestis \mathbf{P} penis $\mathbf{P B}$ pyriform body $\mathbf{P G}$ prostate gland $\mathbf{P S}$ penial sheath \mathbf{S} spermatheca $\mathbf{S D}$ spermathecal duct $\mathbf{S V}$ seminal vesicle \mathbf{U} uterus \mathbf{V} vagina $\mathbf{V D}$ vas deferens.
the length of the penial complex. Penis is short and thick. The prostate is elongate and tube like, with the vas deferens entering apically. The uterus is strongly folded, and is surrounded by a large albumen gland. The uterus connects to the proximal part of the oviduct (oviduct I) by a short tubular duct. A roundish nidamental gland joins here. The oviduct widens into the pyriform body which is relatively large, with the anterior portion slightly more swollen than the distal portion. The short oviduct II terminates with a small vagina. The spermatheca is of moderate size and ovate. The spermathecal duct is long and widens at its opening to the vagina.

Figure 5. Comparison of shells and animals of Idaholanx n. gen., Fisherola and Lanx. The shells are oriented with the head of the animal facing right, while the whole animals without shells are dorsal views with the head up. Idaholanx fresti sp. n. A shell B whole animal. Fisherola nuttalli: C shell D whole animal. Lanx patelloides. \mathbf{E} shell \mathbf{F} whole animal. The red arrows indicate the position of the head in \mathbf{A}, \mathbf{C}; the position of the gap in the columella muscle in \mathbf{B}, \mathbf{D} and the narrow connection in \mathbf{F}. Images not to scale.

Distribution. Idaholanx, as currently recognised, is known from four isolated cold water springs (Thousand, Banbury, Briggs and Box Canyon Springs) that flow into eastern side of an 8 km section of the Snake River, in Gooding County, Idaho.

Remarks. Idaholanx gen. n. differs from Fisherola by having a smaller, taller shell with its apex located towards the middle of the shell and not posteriorly. It differs from Lanx by being smaller and taller and having an open C-shaped columellar muscle and not a closed circular columellar muscle (Fig. 5C-F).

Etymology. A combination of Idaho, the only state the genus is known to occur in and Lanx, the genus it has been historically referred to and which is currently only known from northern California and southern Oregon.

Idaholanx fresti Clark, Campbell \& Lydeard, sp. n.
 http://zoobank.org/9B243DB3-ABD2-40CC-B9A0-BC4DD1778971

Type locality. 21-24 ${ }^{\text {th }}$ runs of the lower outflow of Banbury Springs, Gooding County, Idaho, U.S.A. $42^{\circ} 41^{\prime} 20.5^{\prime \prime} \mathrm{N}, 114^{\circ} 49^{\prime} 18^{\prime \prime} \mathrm{W}, 879 \mathrm{~m}, 4$ Sept 2003. Coll: T. Frest \& E. Johannes.

Type material. Holotype Field Museum of Natural History (FMNH) 342894 (dissected), paratypes FMNH 342895, DCS, SAC S.26084; FMNH 342896, DCS, SAC S. 26085 (shell), $13-15^{\text {th }}$ runs of the lower outflow of Banbury Springs, about middle of spring complex along trail with wooden bridges, $42^{\circ} 41^{\prime} 21^{\prime \prime} \mathrm{N}, 114^{\circ} 49^{\prime} 18^{\prime \prime} \mathrm{W}$, 21 Sept 1989; FMNH 342901, lower outflow of Banbury Springs, $42^{\circ} 41^{\prime} 21.8^{\prime \prime} \mathrm{N}$, $114^{\circ} 49^{\prime} 19.4 " W, 11$ Jan 2006; FMNH 342904, SAC S. 23967 (shell), lower outflow of Banbury Springs, $42^{\circ} 41^{\prime} 21^{\prime \prime} \mathrm{N}, 114^{\circ} 49^{\prime} 18^{\prime \prime} \mathrm{W}, 6$ Aug 2006; FMNH 342897 (shells), SAC S. 25699 (shell), lower outflow of Banbury Springs, $42^{\circ} \mathrm{H}^{\prime} 21.8^{\prime \prime} \mathrm{N}$, 114³9'18.5"W, 25 May 2016.

Additional material examined. Idaho. Gooding County. FMNH 342905 (shells), SAC S. 25842 (shell) lower outflow of Box Canyon Spring, about 110 m below diversion dam, $42^{\circ} 42^{\prime} 26.5^{\prime \prime N}, 114^{\circ} 49^{\prime} 02^{\prime \prime} \mathrm{W}, 24$ May 2016; FMNH 342898 (shells) lower outflow of Box Canyon Spring, about 160 m below diversion dam, $42^{\circ} 42^{\prime} 27^{\prime \prime} \mathrm{N}$, $114^{\circ} 49^{\prime} 04^{\prime \prime} \mathrm{W}$, Apr 2016; FMNH 342899 (1 dissected), FMNH 342900 (shell) lower outflow of Box Canyon Spring, about 400 m below diversion dam, $42^{\circ} 42^{\prime} 27.5^{\prime \prime} \mathrm{N}$, $114^{\circ} 49^{\prime} 14.5^{\prime \prime W}$ W, 11 Jan 2006; FMNH 342902 (1 dissected) outflow of Briggs Spring just below road crossing, $42^{\circ} 40^{\prime} 26.3^{\prime \prime} \mathrm{N}, 114^{\circ} 48^{\prime} 33.4^{\prime \prime} \mathrm{W}, 24$ Jan 2006; FMNH 342906 (shells), SAC S. 25707 (shell) outflow of Briggs Spring about 15 m below diversion dam, $42^{\circ} 40^{\prime} 26.9^{\prime \prime} \mathrm{N}, 114^{\circ} 48^{\prime} 39.2^{\prime \prime} \mathrm{W}, 24$ May 2016; FMNH 342903 (1 dissected), outflow of Thousand Springs, $42^{\circ} 44^{\prime} 51.7^{\prime \prime N}, 114^{\circ} 50^{\prime} 42.3^{\prime \prime W}, 24$ Jan 2006.

Description. Shell and anatomical description as for genus. Holotype 2.8 mm in height, 4.8 mm in length and 3.6 mm in width.

Etymology. Named for the late Dr Terrence J. Frest, for his significant contribution to the knowledge of land and freshwater molluscs of North America, especially of the western states and who was also a colleague and friend.

Ecology. This species is found under and on the sides of stones in cold flowing water in the range of $12.2-16.7^{\circ} \mathrm{C}$. It is not known exactly when egg laying occurs or how many eggs are laided at a time. It could be similar to the closely related species

Figure 6. Distribution of Idaholanx fresti. Insets show location of Idaho in the US and of the springs in Idaho.

Fisherola nuttallii (Haldeman, 1841) which occurs in the Snake River and other major tributaries of, as well as the main stem of the Columbia River. Coutant and Becker (1970) observed Fisherola nuttallii laying transparent, suboval gelatinous egg masses containing between $1-12$ eggs laid from April to June in the Washington, U.S.A. portion of the Columbia River. They noted that growth rates increased as the availability
of food and temperature increased and that the life span was about a year, with adult mortality increasing rapidly after egg laying and after the temperatures increased above $17.3^{\circ} \mathrm{C}$.

Distribution. Currently known from four small to large isolated spring complexes along an eight kilometer stretch of the Snake River in Gooding County, Idaho (Fig. 6).

Conservation status. Listed as endangered under the U.S. Endangered Species Act of 1973 , under the name Banbury Springs lanx, Lanx sp.

Acknowledgements

Dave Hopper (U.S. Fish \& Wildlife Service, Boise, Idaho) and Steve Lysne (formerly at the U.S. Fish \& Wildlife Service, Boise now at the College of Western Idaho, Boise, Idaho) helped with collecting specimens, guiding one of us (SAC) to three of the four known locations of Idaholanx and providing access to habitat and ecological data they have collected. Nicolas Hardy, Idaho BLM, Boise, Idaho generated the map. Juna Kurihara did the illustrations of the shell and reproductive anatomy of Idaholanx fresti. Ed Johannes and the late Terry Frest collected specimens and provided copies of their reports. The ABI 3100 automated sequencer was funded by a NSF equipment grant to C. Lydeard, R. Mayden, M. Powell, and P. Harris (DBI-0070351). John Tucker collected the Polyrhytis exilis specimens. Andrew Campbell helped collect the new Hinkleyia caperata specimen. The TNT program is available with the sponsorship of the Willi Hennig Society.

References

Albrecht C, Kuhn K, Streit B (2007) A molecular phylogeny of Planorboidea (Gastropoda, Pulmonata): insights from enhanced taxon sampling. Zoologica Scripta 36: 27-39. https:// doi.org/10.1111/j.1463-6409.2006.00258.x
Albrecht C, Wilke T, Kuhn K, Streit B (2004) Convergent evolution of shell shape in freshwater limpets: the African genus Burnupia. Zoological Journal of the Linnean Society 140: 577-586. https://doi.org/10.1111/j.1096-3642.2003.00108.x
Baker HB (1925) Anatomy of Lanx, a limpet-like lymnaeid mollusk. Proceedings of the California Academy of Sciences 14: 143-169.
Bargues MD, Artigas P, Dillon RT, Mas-Coma S (2009) Molecular characterization of Lymnaea humilis ($=$ L. modicella), a major fascioliasis vector in North America, and evaluation of the usefulness of nuclear rDNA and mtDNA markers for Lymnaeidae. Unpublished data on GenBank.
Bargues MD, Artigas P, Khoubbane M, Flores R, Glöer P, Rojas-García R, Ashrafi K, Falkner G, Mas-Coma S (2011a) Lymnaea schirazensis, an overlooked snail distorting fascioliasis data: genotype, phenotype, ecology, worldwide spread, susceptibility, applicability. PLoS ONE 6(9): e24567. http://dx.doi.org/10.1371/journal.pone. 0024567

Bargues MD, Artigas P, Khoubbane M, Mas-Coma S (2011b) DNA sequence characterisation and phylogeography of Lymnaea cousini and related species, vectors of fascioliasis in northern Andean countries, with description of L. meridensis n . sp. (Gastropoda: Lymnaeidae). Parasites \& Vectors 4(July): 132. http://dx.doi.org/10.1186/1756-3305-4-132
Bargues MD, Artigas P, Mera y Sierra RL, Pointier JP, Mas-Coma S (2007) Characterisation of Lymnaea cubensis, L. viatrix and L. neotropica n. sp., the main vectors of Fasciola hepatica in Latin America, by analysis of their ribosomal and mitochondrial DNA. Annals of Tropical Medicine and Parasitology 101(7): 621-641. https://doi.org/10.1179/136485907X229077
Bargues MD, Mangold AJ, Munoz-Antoli C, Pointier JP, Mas-Coma S (1997) SSU rDNA characterization of lymnaeid snails transmitting human fascioliasis in South and Central America. Journal of Parasitology 83(6): 1086-1092. https://doi.org/10.2307/3284367
Bargues MD, Mas-Coma S (1997) Phylogenetic analysis of lymnaeid snails based on 18 S rDNA sequences. Molecular Biology and Evolution 14(5): 569-577. https://doi.org/10.1093/oxfordjournals.molbev.a025794
Bargues MD, Mera y Sierra RL, Artigas P, Mas-Coma S (2012) DNA multigene sequencing of topotypic specimens of the fascioliasis vector Lymnaea diaphana and phylogenetic analysis of the genus Pectinidens (Gastropoda). Memórias do Instituto Oswaldo Cruz 107(1): 111-124. http://dx.doi.org/10.1590/S0074-02762012000100016
Basch PF (1963) Environmentally influenced shell distortion in a fresh-water limpet. Ecology 44(1): 193-194. https://doi.org/10.2307/1933204
Bolotov IN, Aksenova OV, Bespalaya YV, Gofarov MY, Kondakov AV, Paltser IS, Stefansson A, Travina OV, Vinarski MV (2016) Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia 787(1):73-98. https://doi.org/10.1007/s10750-016-2946-9
Burch JB (1982) Freshwater snails (Mollusca: Gastropoda) of North America. United States Environmental Protection Agency, Cincinnati, vi +294 pp.
Burch JB, Tottenham JL (1980) North American freshwater snails; Species list, ranges and illustrations. Walkerana 1(3): 81-215.
Campbell DC, Clark SA, Johannes EJ, Lydeard C, Frest TJ (2016) Molecular phylogenetics of the freshwater gastropod genus Juga (Cerithioidea: Semisulcospiridae). Biochemical Systematics and Ecology 65: 158-170. https://doi.org/10.1016/j.bse.2016.01.004
Campbell DC, Serb JM, Buhay JE, Roe KJ, Minton RL, Lydeard C (2005) Phylogeny of North American amblemines (Bivalvia, Unionoida): prodigious polyphyly proves pervasive across genera. Invertebrate Biology 124(2): 131-164. https://doi.org/10.1111/j.17447410.2005.00015.x

Carpenter JM, Wheeler W (1999) Towards simultaneous analysis of morphological and molecular data in Hymenoptera. Zoologica Scripta 28(1-2): 251-260. https://doi.org/10.1046/ j.1463-6409.1999.00009.x

Clessin S (1882) Die familie der Ancylinen. Systematisches Conchylien-Cabinet 1(6): 1-80, plates 1-9.
Correa AC, Escobar JS, Noya O, Velásquez LE, González-Ramírez C, Hurtrez-Boussès S, Pointier J-P (2011) Morphological and molecular characterization of Neotropic Lymnaeidae
(Gastropoda: Lymnaeoidea), vectors of fasciolosis. Infection, Genetics and Evolution 11(8): 1978-1988. http://dx.doi.org/10.1016/j.meegid.2011.09.003
Coutant CC, Becker CD (1970) Growth of the Columbia River Limpet, Fisherola nuttalli (Haldeman), in normal and reactor-warmed water. BNWL-1537, Pacific Northwest Laboratory, Richland, Washington, 14 pp. https://doi.org/10.2172/4077701
Dayrat B, Conrad M, Balayan S, White TR, Albrecht C, Golding R, Gomes SR, Harasewych MG, De Frias Martins AM (2011) Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): new insights from increased taxon sampling. Molecular Phylogenetics and Evolution 59(2): 425-437. http://dx.doi.org/10.1016/j.ympev.2011.02.014
DeJong RJ, Morgan JAT, Paraense WL, Pointier J-P, Amarista M, Ayeh-Kumi PFK, Babiker A, Barbosa CS, Bremond P, Canese AP, de Souza CP, Dominguez C, File S, Gutierrez A, Incani RN, Kawano T, Kazibwe F, Kpikpi J, Lwambo NJS, Mimpfoundi R, Njiokou F, Poda JN, Sene M, Velasquez LE, Yong M, Adema CM, Hofkin BV, Mkoji GM, Loker ES (2001) Evolutionary relationships and biogeography of Biomphalaria (Gastropoda: Planorbidae) with implications regarding its role as host of the human bloodfluke, Schistosoma mansoni. Molecular Biology and Evolution 18: 2225-2239. https://doi.org/10.1093/ oxfordjournals.molbev.a003769
Denny MW (2000) Limits to optimization: fluid dynamics, adhesive strength and the evolution of shape in limpet shells. Journal of Experimental Biology 203: 2603-2622.
Dewaard JR, Telfer A, Young MR (2015) Barcoding Canada Data Release. Data on GenBank.
Dillon RT Jr, McCullough TE, Earnhardt CE (2005) Estimates of natural allosperm storage capacity and self-fertilization rate in the hermaphroditic freshwater pulmonate snail, Physa acuta. Invertebrate Reproduction and Development 47(2): 111-115. https://doi.org/10.1 080/07924259.2005.9652151
Dowton M, Austin AD (2002) Increased congruence does not necessarily indicate increased phylogenetic accuracy - the behavior of the incongruence length difference test in mixed model analyses. Systematic Biology 51: 19-31. https://doi.org/10.1080/106351502753475853
Duffy T, Kleiman F, Pietrokovsky S, Issia L, Schijman AG, Wisnivesky-Colli C (2009) Realtime PCR strategy for rapid discrimination among main lymnaeid species from Argentina. Acta Tropica 109(1): 1-4. https://doi.org/10.1016/j.actatropica.2008.08.003
Feldmeyer B, Greshake B, Funke E, Ebersberger I, Pfenninger M (2015) Positive selection in development and growth rate regulation genes involved in species divergence of the genus Radix. BMC Evolutionary Biology 15: 164. https://doi.org/10.1186/s12862-015-0434-x
Feldmeyer B, Hoffmeier K, Pfenninger M (2010) The complete mitochondrial genome of Radix balthica (Pulmonata, Basommatophora), obtained by low coverage shot gun next generation sequencing. Molecular Phylogenetics and Evolution 57(3): 1329-1333. http:// dx.doi.org/10.1016/j.ympev.2010.09.012

Folmer O, Hoeh WR, Black MB, Vrijenhoek RL (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada-Arthropoda clade. Molecular Biology and Evolution 13: 76-84. https://doi.org/10.1093/oxfordjournals.molbev.a025573

Goloboff P, Farris J, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774-786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
Gordy MA, Kish L, Tarrabain M, Hanington PC (2016) A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta, Canada. Parasitology Research 115: 3867-3880. https://doi.org/10.1007/s00436-016-5152-9
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Hannibal H (1912) A synopsis of the Recent and Tertiary freshwater Mollusca of the Californian Province, based upon an ontogenetic classification. Proceedings of the Malacological Society of London 10(2): 112-166, plates 5-6.
Harzhauser M, Mandic O (2008) Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 417-434. https://doi.org/10.1016/j.palaeo.2007.12.013
Hershler R, Liu H-P, Frest TJ, Johannes EJ (2007) Extensive diversification of pebblesnails (Lithoglyphidae: Fluminicola) in the upper Sacramento River basin, northwestern USA. Zoological Journal of the Linnean Society 149(3): 371-422. https://doi.org/10.1111/ j.1096-3642.2007.00243.x

Holznagel WE, Colgan DJ, Lydeard C (2010) Pulmonate phylogeny based on 28S rRNA gene sequences: A framework for discussing habitat transitions and character transformation. Molecular Phylogenetics and Evolution 57(3): 1017-1025. http://dx.doi.org/10.1016/j. ymper.2010.09.021
Jorgensen A, Kristensen TK, Stothard JR (2004) An investigation of the 'Ancyloplanorbidae’ (Gastropoda, Pulmonata, Hygrophila): preliminary evidence from DNA sequence data. Molecular Phylogenetics and Evolution 32(3): 778-787. https://doi.org/10.1016/j. ympev.2004.02.011
Jung Y, Morgan JAT, Burch JB, Gordon M, Joyce S, Laurson J, Light J, Meyer-Rochov V, Pointier J-P, DeJong RJ, Mkoji GM, Loker ES (Unpublished) A phylogeny of the Basommatophora (Gastropoda: Pulmonata), based on 28 S and actin sequences. Unpublished data on GenBank.
Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond - new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evolutionary Biology 8(57): 1-16. https://doi.org/10.1186/1471-2148-8-57
Krebs RA, Vlasceanu RN, Tevesz MJS (2003) An analysis of diversity in freshwater mussels (Bivalvia: Unionidae) of the Cuyahoga and Rocky River watersheds (Ohio, USA) based on the 16 S rRNA gene. Journal of Great Lakes Research 29(2): 307-316. https://doi. org/10.1016/S0380-1330(03)70436-5
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/ bioinformatics/btm404
MacNeil FS (1939) Fresh-water invertebrates and land plants of Cretaceous age from Eureka, Nevada. Journal of Paleontology 13(3): 355-360.
Marquez FJ (Unpublished) Differentiation of Lymnaea subgenus (Galba, Leptolymnaea [sic], Lymnaea s.st., Radix and Stagnicola) (Basommatophora, Lymnaeidae) in base to small
ribosomal DNA helix E10-1 sequence. [A very similar set of sequences appears in Bargues and Mas-Coma 1997]
McMahon RF (2004) A 15-year study of interannual shell-shape variation in a population of freshwater limpets (Pulmonata: Basommatophora: Ancylidae). American Malacological Bulletin 19(1/2): 101-109.
McMahon RF, Whitehead BE (1987). Environmental induction of shell morphometric variation in the European stream limpet, Ancylus fluviatilis (Müller) (Pulmonata: Basommatophora). American Malacological Bulletin 5(1): 105-124.
Meier-Brook C, Bargues MD (2002) Catascopia, a new genus for three Nearctic and one Palaearctic stagnicoline species (Gastropoda: Lymnaeidae). Folia Malacologia 10(2): 83-84. https://doi.org/10.12657/folmal. 010.008
Morgan JA, DeJong RJ, Jung Y, Khallaayoune K, Kock S, Mkoji GM, Loker ES (2002) A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites. Molecular Phylogenetics and Evolution 25(3): 477-488. https://doi.org/10.1016/S1055-7903(02)00280-4
Morrison JPE (1955) Notes on the genera Lanx and Fisherola (Pulmonata). The Nautilus 68(3): 79-83.
Njiokou F, Bellec C, Jarne P, Finot L, Delay B (1993) Mating system analysis using protein electrophoresis in the self-fertile hermaphrodite species Bulinus truncatus (Gastropoda: Planorbidae). Journal of Molluscan Studies 59(2): 125-133. https://doi.org/10.1093/ mollus/59.2.125
Nolan JR, Bergthorsson U, Adema CM (2014) Physella acuta: atypical mitochondrial gene order among panpulmonates (Gastropoda). Journal of Molluscan Studies 80: 388-399. https://doi.org/10.1093/mollus/eyu025
Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. https://doi.org/10.1006/mpev.1999.0691
Park D-S, Oh H, Lee M, Kim M, Jung C (2012) Korean Collection for Type Cultures. Data on GenBank.
Park J-K, Ó Foighil D (2000) Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Molecular Phylogenetics and Evolution 14(1): 75-88.
Patel S, Schell T, Eifert C, Feldmeyer B, Pfenninger M (2015) Characterizing a hybrid zone between a cryptic species pair of freshwater snails. Molecular Ecology 24: 643-655. https:// doi.org/10.1111/mec. 13049
Pilsbry HA (1925) The family Lancinae distinguished from the Ancylidae. Nautilus 38(3): 73-75.
Puslednik L, Ponder WF, Dowton M, Davis AR (2009) Examining the phylogeny of the Australasian Lymnaeidae (Heterobranchia: Pulmonata: Gastropoda) using mitochondrial, nuclear and morphological markers. Molecular Phylogenetics and Evolution 52(3): 643-659. https://doi.org/10.1016/j.ympev.2009.03.033
Puurtinen MK, Knott E, Suonpää S, Nissinen K, Kaitala V (2007) Predominance of outcrossing in Lymnaea stagnalis despite low apparent fitness costs of self-fertilization. Journal of Evolutionary Biology 20: 901-912. https://doi.org/10.1111/j.1420-9101.2007.01312.x

Remigio EA (2002) Molecular phylogenetic relationships in the aquatic snail genus Lymnaea, the intermediate host of the causative agent of fascioliasis: insights from broader taxon sampling. Parasitological Research 88(7): 687-696. https://doi.org/10.1007/s00436-002-0658-8
Remigio EA, Blair D (1997) Molecular systematics of the freshwater snail family Lymnaeidae (Pulmonata: Basommatophora) utilising mitochondrial ribosomal DNA sequences. Journal of Molluscan Studies 63(2): 173-185. https://doi.org/10.1093/mollus/63.2.173
Remigio EA, Hebert PD (2003) Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution 29(3): 641-647. https://doi.org/10.1016/S1055-7903(03)00140-4
Ridgway TM, Stewart BA, Branch GM (1999) Limited population differentiation in the bearded limpet Patella barbara (Gastropoda: Patellidae) along the coast of South Africa. Journal of the Marine Biological Association of the United Kingdom 79(4): 639-651. https://doi.org/10.1017/S0025315498000800
Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2011) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029
Schilthuizen M, Hoekstra RF, Gittenberger E (1999) Selective maintenance of a rare haplotype in a land snail hybrid zone. Proceedings of the Royal Society of London, Biological Sciences 266(1434): 2181-2185. https://doi.org/10.1007/s00239-004-0232-3
Simpson RJ, Wilding CS, Grahame J (2005) Intron analyses reveal multiple calmodulin copies in Littorina. Journal of Molecular Evolution 60(4): 505-512.
Sonnenberg R, Nolte AW, Tautz D (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4(6): 12 p . http://dx.doi. org/10.1186/1742-9994-4-6
Stothard JR, Bremond P, Andriamaro L, Loxton NJ, Sellin B, Sellin E, Rollinson D (2000) Molecular characterization of the freshwater snail Lymnaea natalensis (Gastropoda: Lymnaeidae) on Madagascar with an observation of an unusual polymorphism in ribosomal small subunit genes. Journal of Zoology 252(3): 303-315. https://doi. org/10.1111/j.1469-7998.2000.tb00625.x
Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.
Tanaka MO, Duque-Estrada TEM, Magalhães CA (2002) Dynamics of the acmaeid limpet Collisella subrugosa and vertical distribution of size and abundance along a wave exposure gradient. Journal of Molluscan Studies 68(1): 55-64. https://doi.org/10.1093/mollus/68.1.55
Tryon GW (1870) A Monograph of the Fresh-water Univalve Mollusca of the UnitedStates. Continuation of Prof. S. S. Haldeman's work. Philadelphia, 1-238. https://doi. org/10.5962/bhl.title. 54506
U.S. Fish and Wildlife Service (1992) Endangered and threatened wildlife and plants: determinations of endangered or threatened status for five aquatic snails in South Central Idaho. Federal Register 57: 59244-59256.
U.S. Fish and Wildlife Service (2006) Banbury Springs Lanx (Lanx n. sp.) (undescribed) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service Snake River Fish and Wildlife Office, Boise, Idaho, ii+30+VII pp.
Vermeij GJ (2016) The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history. Biological Journal of the Linnean Society [Online Early view, not yet assigned to a volume]. https://doi.org/10.1111/bij. 12883
Vinarski MV, Schniebs K, Glöer P, Hundsdoerfer AK (2011) The taxonomic status and phylogenetic relationships of the genus Aenigmomphiscola Kruglov and Starobogatov, 1981 (Gastropoda: Pulmonata: Lymnaeidae). Journal of Natural History 45(33-34): 2049-2068. https://doi.org/10.1080/00222933.2011.574800
Vonnemann V, Schrödl M, Klussmann-Kolb A, Wägele H (2005) Reconstruction of the phylogeny of the Opisthobranchia (Mollusca, Gastropoda) by means of 18 S and 28 S rDNA sequences. Journal of Molluscan Studies 71(2): 113-125. https://doi.org/10.1093/mollus/ eyi014
von Oheimb PV, Albrecht C, Riedel F, Du L, Yang J, Aldridge DC, Bößneck U, Zhang H, Wilke T (2011) Freshwater biogeography and limnological evolution of the Tibetan Plateau - insights from a plateau-wide distributed gastropod taxon (Radix spp.). PLoS ONE 6(10): e26307. https://doi.org/10.1371/journal.pone. 0026307
Walker SM, Makundi AE, Namuba FV, Kassuku AA, Keyyu J, Hoey EM, Prodohl P, Stothard JR, Trudgett A (2008) The distribution of Fasciola hepatica and Fasciola gigantica within southern Tanzania - constraints associated with the intermediate host. Parasitology 135(4): 495-503. https://doi.org/10.1017/s0031182007004076
Walter HJ (1969) Illustrated biomorphology of the 'angulata' lake form of the basommatophoran snail Lymnaea catascopium Say. Malacological Review 2: 1-102.
Walther AC, Taehwan L, Burch JB, Ó Foighil D (2006a) Confirmation that the North American ancylid Ferrissia fragilis (Tryon, 1863) is a cryptic invader of European and East Asian freshwater ecosystems. Journal of Molluscan Studies 72(3): 318-321. https://doi. org/10.1093/mollus/eyl009
Walther AC, Taehwan L, Burch JB, Ó Foighil D (2006b) E Pluribus Unum: A phylogenetic and phylogeographic reassessment of Laevapex (Pulmonata: Ancylidae), a North American genus of freshwater limpets. Molecular Phylogenetics and Evolution 40(2): 501-516. https://doi.org/10.1016/j.ympev.2006.03.019

