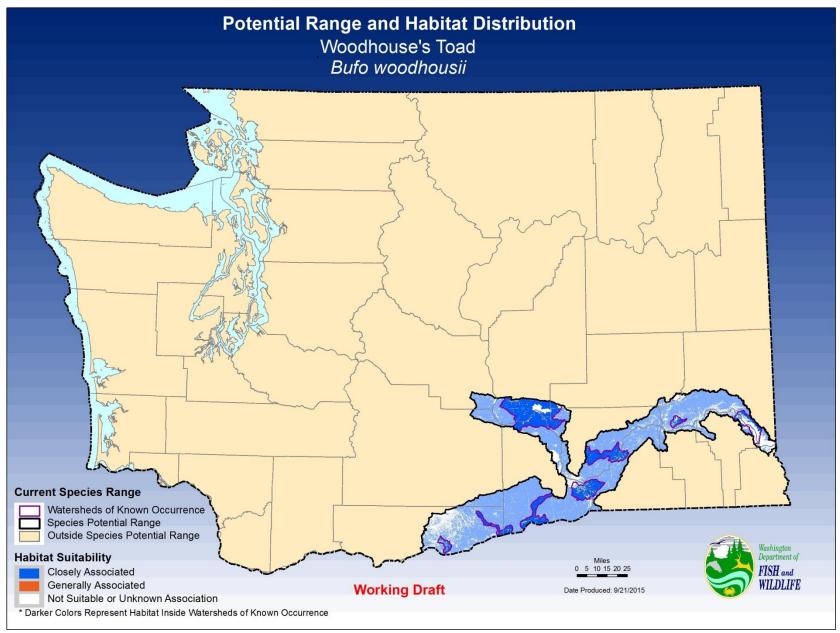
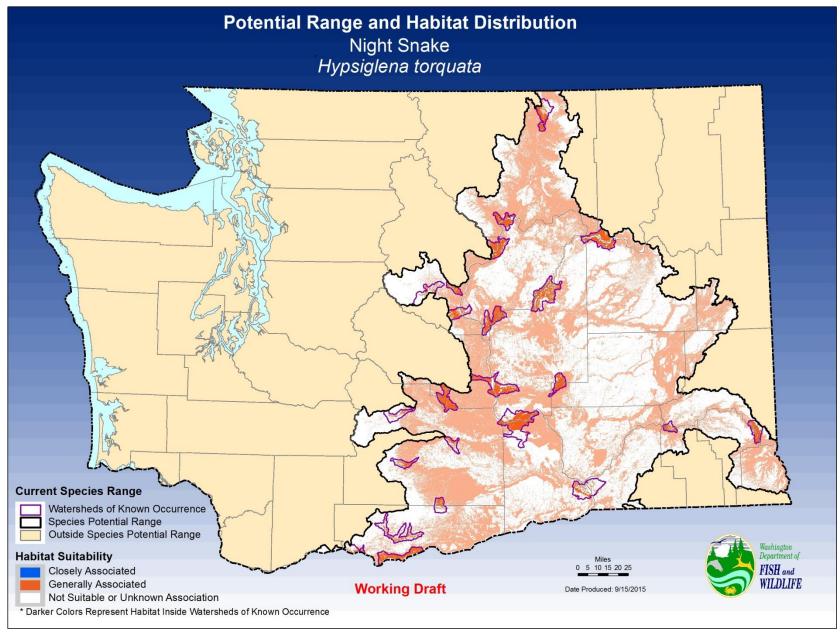
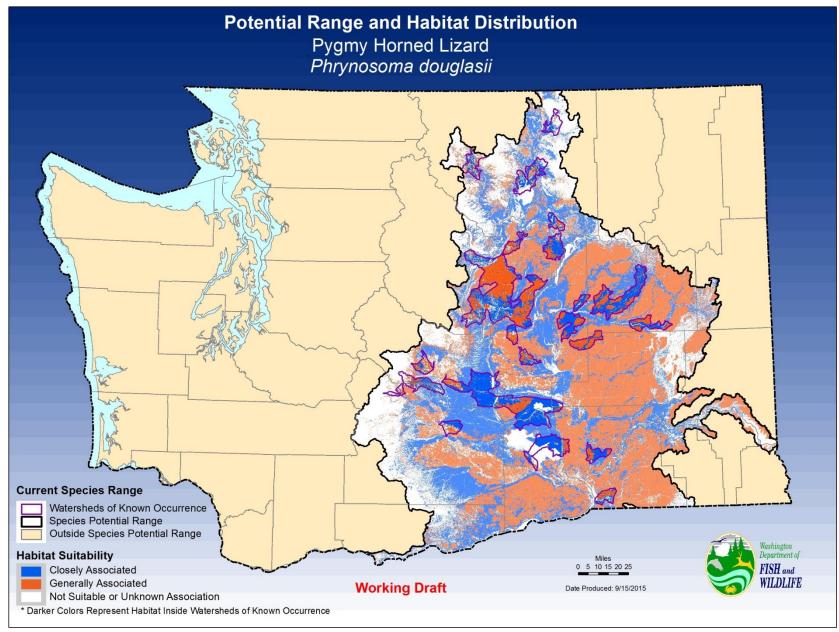
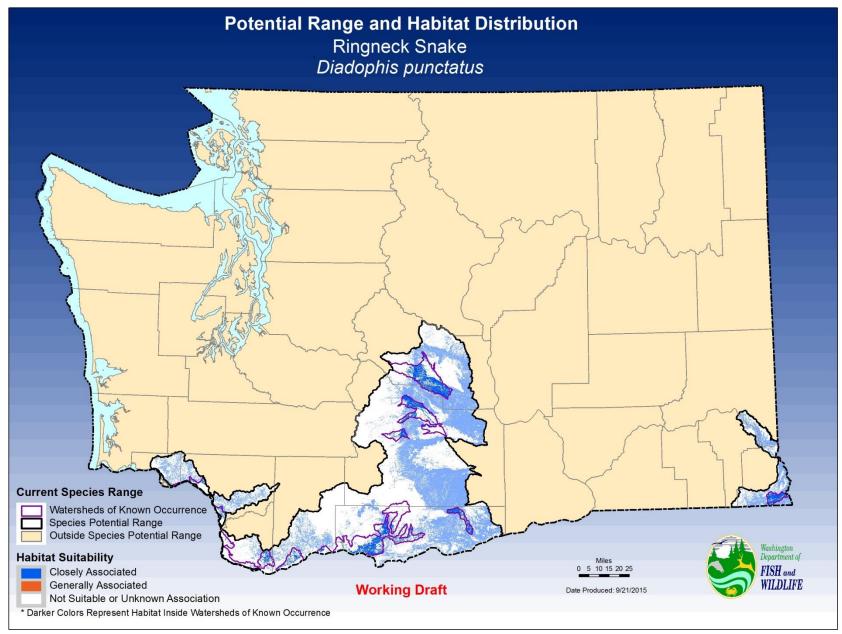
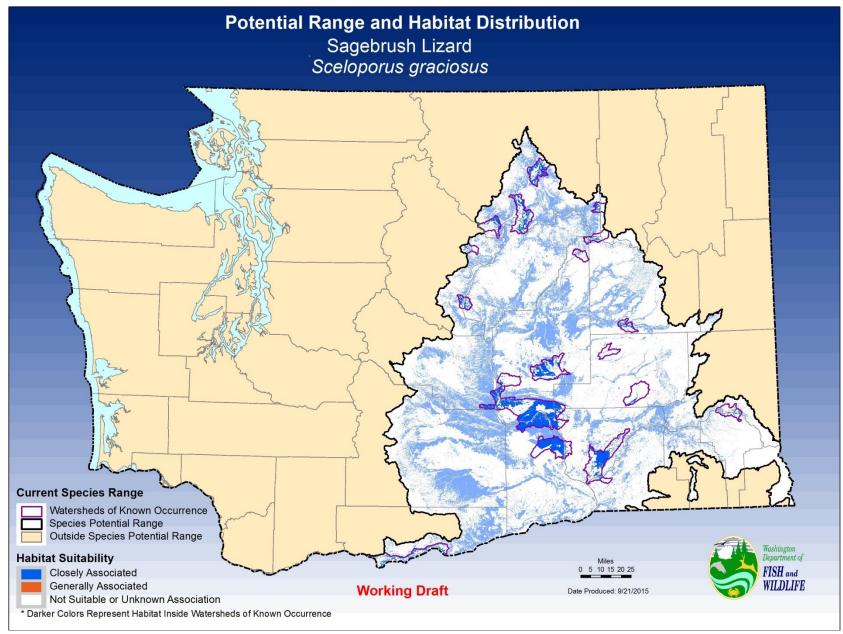

Tiger Salamander

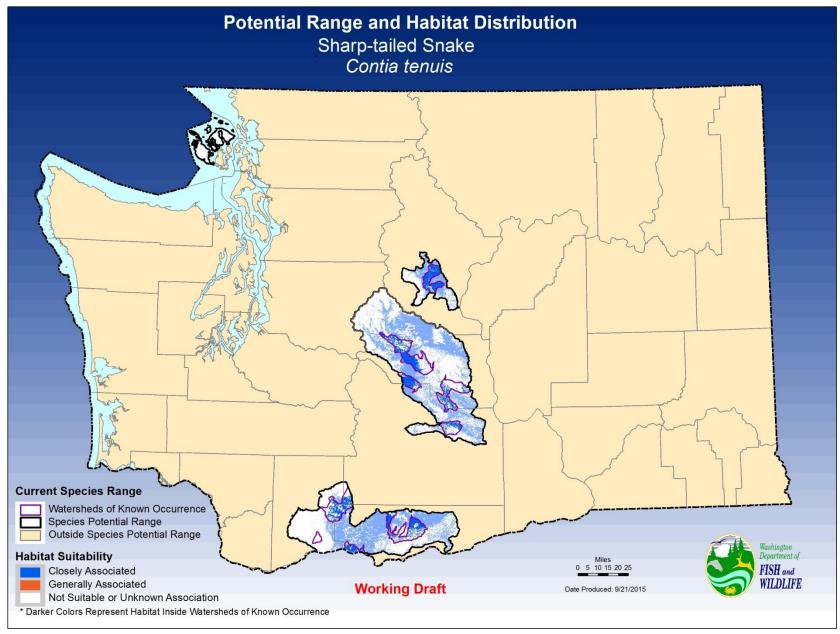

Van Dyke's Salamander

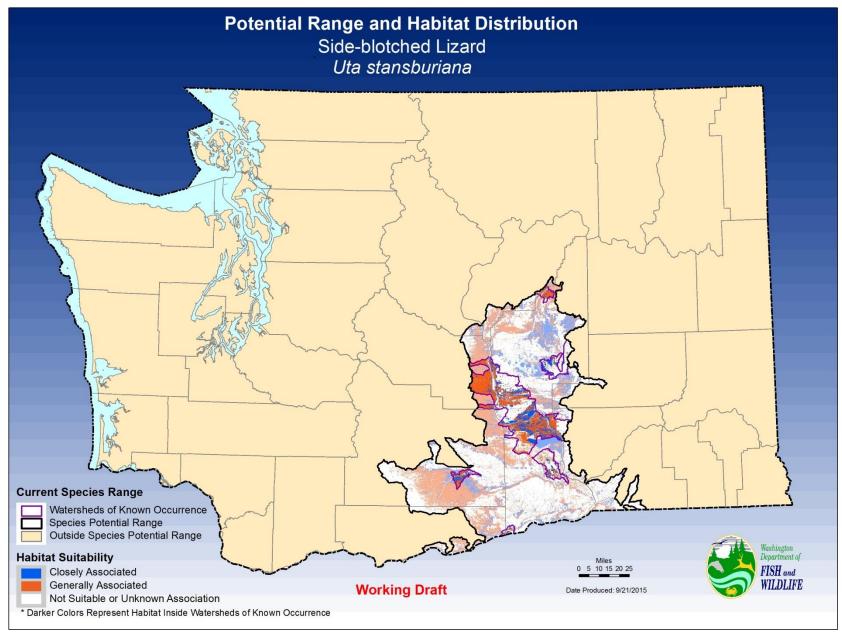

Western Toad

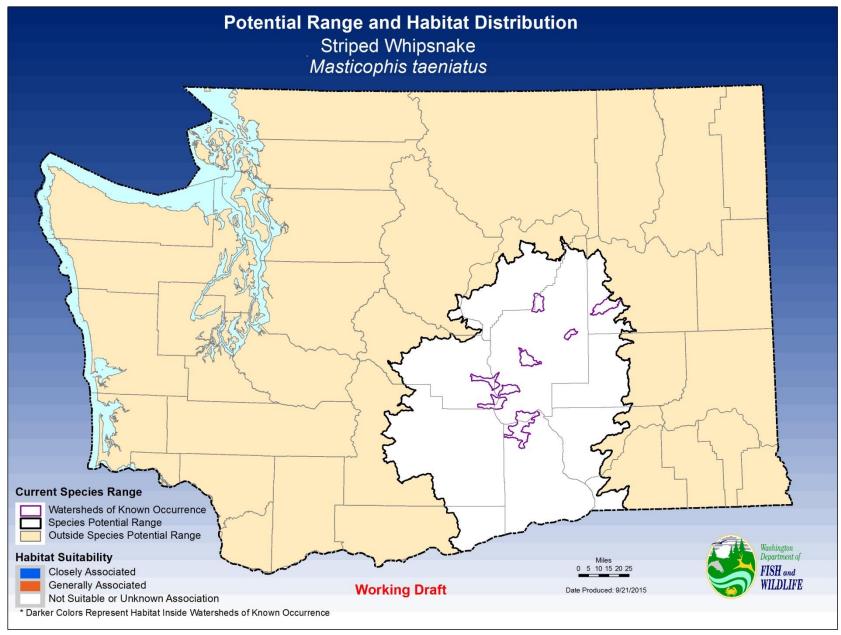

Woodhouse's Toad

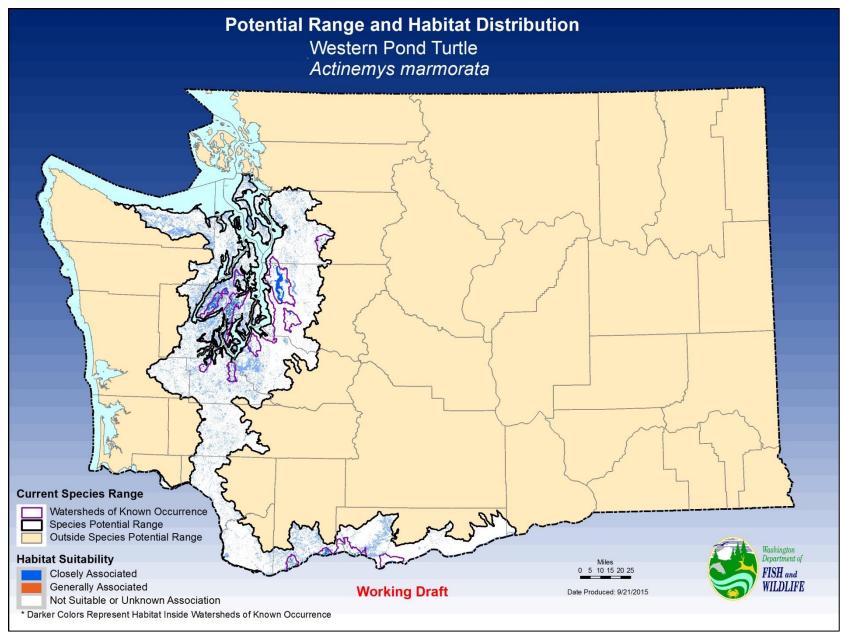

Night Snake

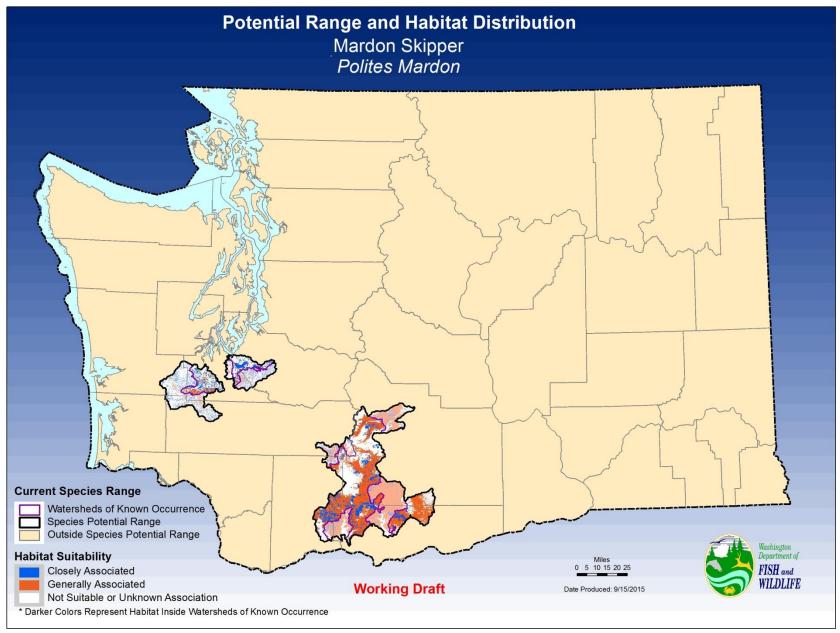

Pygmy Horned Lizard


Ringneck Snake

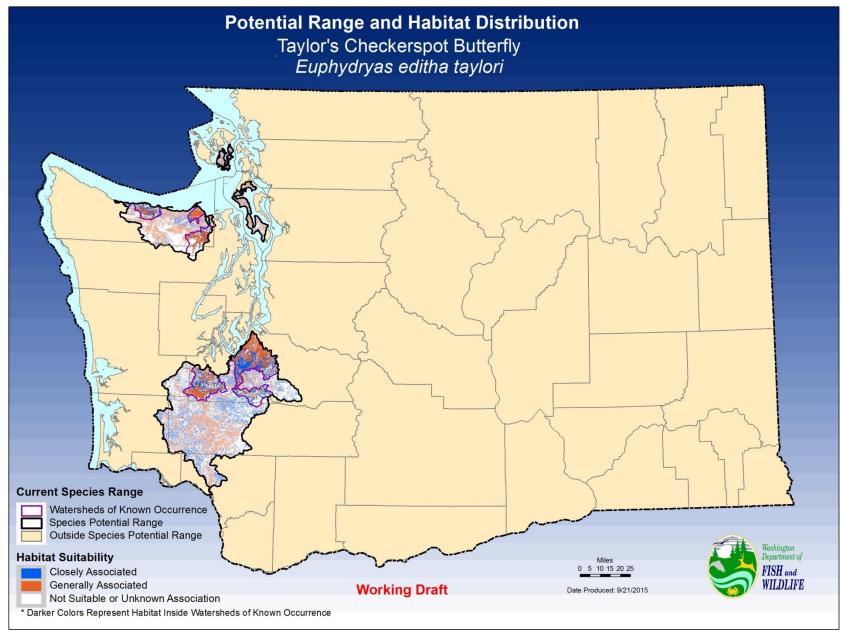

Sagebrush Lizard

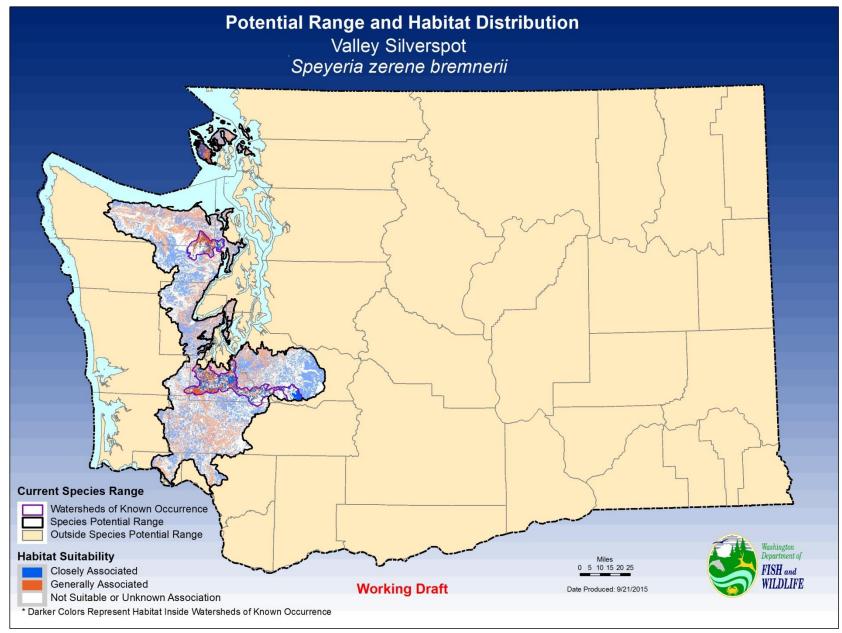

Sharp-tailed Snake


Side-blotched Lizard


Striped Whipsnake

Western Pond Turtle


Mardon Skipper


Oregon Silverspot

Taylor's Checkerspot Butterfly

Valley Silverspot

Appendix C

Climate Change: Supporting Information

Table of Contents

C.0	Introduction and Overview	1
C.1	Summary of Projected Climate Change in Washington State C.1.1 Climate Impacts of Concern	
	Air Temperature	
	Examples of impacts of changes in air temperature on habitats and species	
	Precipitation	
	Examples of impacts of changes in precipitation on habitats and species	9
	Water Temperature	9
	Examples of impacts of warmer water temperatures on habitats and species	
	Examples of impacts of changes in ocean temperature on habitats and species	12
	Sea Level	12
	Examples of impacts of sea level rise on habitats and species	13
	Water Chemistry	13
	Examples of impacts of changes in oxygen on habitats and species	
	Examples of impacts of changes in pH on habitats and species	15
C.2	SGCN Vulnerability Rankings	20
	C.2.1 Mammal Vulnerability Rankings	
	C.2.2 Bird Vulnerability Rankings	34
	C.2.3 Reptile and Amphibian Vulnerability Rankings	
	C.2.4 Fish Vulnerability Rankings	
	C.2.5 Invertebrate Vulnerability Rankings	99
C.3	References	130

LIST OF TABLES

Table C-1: Observed and projected trends of secondary impacts caused by warming temperature	. 2
Table C-2: Observed and projected changes of secondary impacts caused by precipitation changes	.6
Table C-3: Historic behavior and future projected responses of various watershed types in Washington	
State	.8
Table C-4: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	10
Table C-5: Observed and projected changes of secondary impacts caused by warming ocean	
temperatures	11
Table C-6: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	12
Table C-7: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	14
Table C-8: Observed and projected changes of secondary impacts caused by changes in pH	14
Table C-9: Summary of key climate factors, trends, observed and projected changes, and compounding	
factors in Washington State	

Appendix C Climate Change: Supporting Information

C.0 Introduction and Overview

This appendix contains background materials and additional information to support the summary of climate impacts and species and habitat vulnerability presented in Chapter 5. Two major items are included here: 1) a full summary of projected climate change in Washington State in a 30-50 year time frame, with a focus on how these changes will impact fish and wildlife species and their habitats, and 2) a complete list of the vulnerability rankings for all SGCN and Ecological systems of concern, with narrative explanations and references. A complete list of references is provided at the end of the appendix.

C.1 Summary of Projected Climate Change in Washington State

Climate in the Pacific Northwest has been changing significantly over the past century as a result of natural climate variability and greenhouse gas emissions, resulting in warmer air temperatures and variable precipitation patterns. Air temperatures are projected to continue increasing over the next century, while precipitation will remain variable but largely exhibit summer declines, leading to a future with significantly altered snowpack, streamflow patterns, water availability, wildfire risk, ocean pH, and sea levels. These changes will have various impacts on terrestrial, aquatic, and marine and coastal habitats and their associated species in Washington State, potentially contributing to range and phenological shifts, biodiversity threats, habitat degradation, species displacement, changes in important stressors (e.g., invasive species, disease), and other impacts.

This overview outlines priority climate change factors and impacts to consider for the Pacific Northwest, general anticipated changes amongst the various habitat types of Washington State, and the potential effects on Washington's fish, wildlife, and plant species. A table summarizing observed and projected changes can be found at the end of this narrative overview (Table C-9). Although this overview provides projections based on the most current available information, it is important to note that future greenhouse gas emissions will play a large role in determining the magnitude of projected changes. For example, emissions from the first years of the 21st century were higher than predicted by most climate models.¹ In addition, climate shifts and associated impacts may be exacerbated or ameliorated by human activities and responses (e.g., habitat destruction vs. restoration treatments).

C.1.1 Climate Impacts of Concern

Air Temperature

Average annual air temperatures in the Pacific Northwest have been increasing over the past century, including increases in all seasons and in both maximum and minimum air temperatures (Table C-9). Temperatures are projected to continue increasing in all seasons through the end of this century (Table C-9) at rates between 0.1-0.6°C (0.2-1.0°F) per decade and exceeding the previous century's historic ranges of year-to-year variability. Summer temperatures are projected to warm more rapidly than

¹ Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., & Field, C. B. (2007). Global and regional drivers of accelerating CO₂ emissions. *Proceedings of the National Academy of Sciences, 104*(24), 10288-10293.

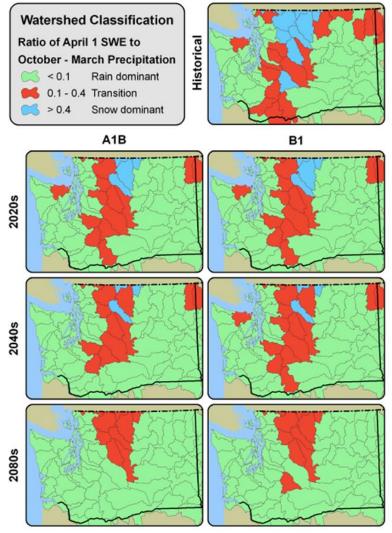
winter temperatures' and the interior of Washington State is projected to experience slightly greater warming than coastal areas. In addition, the number, mean duration, and maximum duration of extreme heat events are expected to increase, particularly in south central Washington and lowlands in western Washington.

Secondary impacts:² Temperature increases have already caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-1).

Secondary Impact	Observed Change	Projected Change
Reduced snowpack	Snowpack declined significantly (average 25%) during the latter half of the 20 th century, and although there have been recent increases this is likely due to natural variability.	April 1 st snowpack is projected to continue decreasing significantly throughout this century (-53% to -65% by 2080) as warmer temperatures drive shifts from snow to rain. Snowpack losses will be greatest at lower elevations and more modest at higher elevation.
Earlier snowmelt	Snowmelt occurred 0-30 days earlier (depending on location) in the Cascade Mountains during the latter half of the 20 th century.	Snowmelt is projected to occur increasingly earlier by 2050, potentially three-four weeks earlier than 20 th century average.
Drought risk	The PNW has experienced several droughts over the last decade, some which are attributed to warmer temperatures, reduced water storage in snowpack, and elevated evaporation and evapotranspiration. ³	Enhanced drought stress as warmer temperatures drive increased evapotranspiration and reduced snowpack storage.
Hydrological shifts	Over the past half-century, snow- dominated watersheds have experienced earlier snowmelt runoff and reduced snowmelt contributions. All watersheds are experiencing reduced summer flows.	Future hydrological responses will largely vary by basin type (Table C-3), relative influence of groundwater input, elevation, aspect, and other factors. Warmer temperatures will likely drive shifts from snow-dominant to transient or rain-dominant basins (Figure C-1), and streamflow timing will likely occur earlier in snow-dominant and transient basins.

Table C 1, Observed and	projected trends of	cocondany importo	s coursed by wormin	a tomporaturas
Table C-1: Observed and	projected trends of	Secondary impacts	s causeu by warmin	glemperatures

² Includes observed and projected physical, ecological, and biological changes.


³ Bumbaco, K. A., & Mote, P. W. (2010). Three recent flavors of drought in the Pacific Northwest. *Journal of Applied Meteorology and Climatology*, *49*(9), 2058-2068.

Secondary Impact	Observed Change	Projected Change
Flood risk and erosion	20 th century warming caused no change in flood risk for rain- dominant basins, reduced flood risk in snow-dominant basins (due to reduced snowpack), and highly variable but generally elevated flood risk in transient basins. ⁴	Increasing flood risk and erosion in transient basins. Snowmelt and rain-dominant basins will see minimal or slight increases (Table C-3).
Soil moisture changes	Spring soil moisture recharge has been occurring earlier in the Pacific Northwest over the past half century (1943-2003). Over the same time period, July 1 soil moisture trends have been variable, and warmer areas (e.g., the Washington coast) have experienced declines.	July 1 soil moisture is largely projected to decline across Washington State (-15 to -18% by 2080) although directions and rates of change vary depending on location. For example, areas west of the Cascades are projected to experience decreased soil moisture.
Wildfire risk	Warmer temperatures have contributed to increasing wildfire frequency and extent in the Pacific Northwest since the 1970s.	Increased lightning activity and projected temperature increases will contribute to increased fire frequency, severity, intensity, and total area burned in the Pacific Northwest, although the magnitude of change will likely vary by eco-region and suppression efforts. Forested ecosystems are projected to experience a larger relative increase in area burned than non-forested, and western forests will likely experience larger increases in burn area and severity than eastern forests or forests of the Columbia Plateau.
Insect and disease risk	Warmer temperatures have contributed to more mountain pine beetle outbreaks and elevated disease exposure, increasing tree mortality.	Insects: range expansions upward in elevation, earlier arrival or emergence, and accelerated reproductive cycles. Disease: increased disease incidence.
Range shifts	Tree seedlings have already exhibited shifts to cooler locations than parent trees. ⁵	Continued northward or higher elevation shifts in species distributions.

⁴ Hamlet, A. F., & Lettenmaier, D. P. (2007). Effects of 20th century warming and climate variability on flood risk in the western US. *Water Resources Research, 43*(6).

⁵ Monleon, V. J., & Lintz, H. E. (2015). Evidence of tree species' range shifts in a complex landscape. *PloS One, 10*(1), e0118069.

Secondary Impact	Observed Change	Projected Change
Pheno- logical shifts	Phenological changes have already been observed, including earlier flowering and leaf unfolding.	Continued shifts in phenological timing (e.g., earlier migration, earlier algal blooms, earlier plant bloom/senescence), which can affect habitat quality and/or desynchronize life history traits with key environmental conditions (e.g., outmigration of salmon and oceanic prey availability).

Figure C-1: Watershed Classification Maps Watershed Classification Maps⁶ for simulated runoff in the historic period (1970-99), 2020s, 2040s,

⁶ Image from page 234 of Washington Climate Impacts Group. (2009). The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.

and 2080s in Washington State. Simulations using A1B emissions are in the lower three rows of the left column, while those using B1 emissions scenarios are in the lower three rows of the right column.

Examples of impacts of changes in air temperature on habitats and species

- Declines in certain vegetation types (e.g., pine forests, Douglas fir, subalpine forests, sagebrush steppe) and expansions in others (e.g., prairie) as suitable habitat ranges shift, driving alterations in wildlife habitat availability and species distributions.
- Changes in productivity amongst many vegetation types (e.g., increases in higher elevation forests due to lengthened growing season, decreases in lower elevation forests due to heat and moisture stress).
- Shifts in phenology, affecting plant reproduction and/or productivity and animal life histories, survival, reproduction, and growth.
- Increases in wildfire frequency due to reduced fuel moisture, affecting plant survival and composition and forest-dependent wildlife species.
- Altered flow regimes (e.g., low summer flows), affecting salmon and steelhead migration, reproductive success, and habitat availability.
- Increases in forest disease risk and mortality due to exacerbated moisture stress.
- Changes in the frequency and severity of flood risk, affecting riparian vegetation community composition and structure.
- Increases in mountain pine beetle vulnerability (short-term) as beetles shift upward in elevation and trees experience increased moisture stress, with declines in vulnerability (long-term) as temperatures exceed insect thermal tolerance.
- Alterations in invasive species pressure; some species may expand, while some may decline.

Precipitation

Separated by the Cascade Mountains, eastern and western Washington feature distinct precipitation regimes, with western zones receiving significantly more rainfall than eastern zones. There has been no significant trend in precipitation over the past century (Table C-9), as this region experiences high natural variability. Precipitation projections are highly variable, and may include either increases or decreases in annual precipitation over the next century (Table C-9); these changes are small when compared to ranges of natural variability in the Pacific Northwest. There is higher certainty regarding seasonal precipitation trends; by the end of the century, winters will likely be wetter and summers will likely be drier. Precipitation intensity may also increase, particularly in the North Cascades and northeastern Washington.

Secondary impacts:⁷ Shifts in precipitation timing, amount, and form have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-2).

⁷ Includes observed and projected physical, ecological, and biological changes.

Secondary	Observed Change	Projected Change
Impact		
Snowpack changes	Snowpack declined significantly (average -25%) during the latter half of the 20 th century.	High elevation areas may potentially experience increased snowfall as a result of increasing winter precipitation. Basins with low elevation snow may experiences snowpack declines as more precipitation falls as rain.
Hydrological shifts	Declining summer streamflows have been recorded in all basin types since 1950.	Streamflow: winter streamflows will likely increase in all basins, while summer flows will likely decrease as a result of reduced summer precipitation and shifts in snowpack. Runoff: mean annual runoff is projected to increase over the course of the century due to increased winter precipitation, with winter streamflow increases and summer streamflow decreases. Individual stream response will largely depend on basin classification (Table C-3), elevation, aspect, and groundwater influx, among other factors
Flood risk and erosion	Variability in 20 th century cool season precipitation increased flood risk in rain-dominant and transient basins.	Increases in extreme precipitation and winter precipitation could increase flood risk and erosion significantly in transient basins, with slight increases possible rain- dominant basins (Table C-3).
Drought risk	The Pacific Northwest has experienced several droughts over the last decade, some of which are attributed to reduced winter and/or summer precipitation. ⁸	Declines in summer precipitation will likely exacerbate drought stress caused by increasing temperatures and evapotranspiration.

Table C-2: Observed and projected changes of secondary impacts caused by precipitation changes

⁸ Bumbaco, K. A., & Mote, P. W. (2010). Three recent flavors of drought in the Pacific Northwest. *Journal of Applied Meteorology and Climatology*, *49*(9), 2058-2068.

Secondary Impact	Observed Change	Projected Change
Soil moisture changes	July 1 soil moisture trends have been variable from 1943-2003, and warmer areas (e.g., the Washington coast) have experienced declines.	July 1 soil moisture is largely projected to decline across Washington State (-15 to - 18% by 2080) although directions and rates of change vary depending on location. For example, areas west of the Cascades are projected to experience decreased soil moisture, while some areas east of the Cascades will experience soil moisture increases as increased winter precipitation/snowpack at the highest elevations recharges moisture in deep soil horizons.
Wildfire risk	Drier conditions have contributed to increasing wildfire frequency and extent in the Pacific Northwest since the 1970s.	Precipitation variability (particularly drier summers) and water-deficit increases over the next century will likely contribute to increasing fire frequency, severity, intensity, and total area burned in the Pacific Northwest, although the magnitude of change will likely vary by eco-region, vegetation type, and suppression effort.
Insect and disease risk	Moisture stress has contributed to higher forest vulnerability and mortality from insects and disease.	Insect and disease risk will likely increase with drier conditions.

Table C-3: Historic behavior and future projected responses of various watershed types in Washington State

Watershed		
classification	Historic characteristics	Future projected responses
Rain dominant	 Peak streamflow in winter with peak precipitation (November- January) Low summer streamflow 	 Slightly increased winter streamflows and flood risk Decreased summer low flows
Snowmelt dominant	 Peak streamflow with spring/early summer snowmelt (May-July) Low winter streamflow 	 Slightly increased winter and spring streamflows Minimal shifts in flood risk Earlier and reduced summer peak and low flows May transition to transient classification
Transient	 Two streamflow peaks, one with peak precipitation (winter) and one with snowmelt (spring/early summer) 	 Larger and more consistent winter streamflows Increased flood risk Earlier and reduced and/or loss of snowmelt-associated summer streamflows, decreased low flows May transition to rain dominant classification

Modified from Elsner et al. (2009, pgs. 70, 92) and Climate Impacts Group (2012, pg. 5)

Examples of impacts of changes in precipitation on habitats and species

- Shifts in soil moisture and nutrient and energy fluxes may contribute to changes in habitat distributions (e.g., declines in pine forests, Douglas fir, subalpine forests, sagebrush steppe due to moisture stress; prairie expansions due to tolerance of xeric conditions), driving shifts in wildlife habitat availability and species distributions.
- Shifts in vegetation productivity (e.g., moisture and nutrient deficits can undermine productivity).
- Increased nutrient loss due to increasing extreme precipitation events and elevated runoff.
- Decreased fuel moisture content may increase wildfire risk, affecting vegetation distribution and composition and forest-dependent wildlife species.
- Reduced annual low flows may increase aquatic organism vulnerability to water pollution and heat stress, and affect salmon and steelhead migration and reproductive success.
- Changes in frequency and severity of flood risk, affecting riparian vegetation community composition and structure, fish habitat (e.g., bull trout), and aquatic organism exposure to water pollution (e.g., sediments, pathogens, and pollutants).
- Increases in mountain pine beetle vulnerability and forest disease susceptibility due to moisture stress.

Water Temperature

Freshwater temperature

Stream temperatures in the northwest United States experienced a net increase from 1980-2009 largely as a result of increasing air temperatures, with rates of summer warming of 0.22°C per decade.⁹ Spring and summer stream temperatures are projected to continue increasing across the state,^{10,11} including increases in the frequency and duration of unfavorable temperature events (periods with water temperatures >21°C). These trends will be particularly pronounced in eastern Washington (Yakima River), the Columba River (near Bonneville Dam), the Lower Snake River, and in western Washington (Stillaguamish River, Lake Washington, Lake Union). Similar to streamflow, stream temperature changes will vary according to location, groundwater input, topography, and other factors.

Secondary impacts:¹² Shifts in freshwater temperature have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-4).

⁹ Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. *Climatic Change*, *113*(2), 499-524.

¹⁰ Beer, W., & Anderson, J. (2011). Sensitivity of juvenile salmonid growth to future climate trends. *River Research and Applications*, *27*(5), 663-669.

¹¹ Mantua, N., Tohver, I., & Hamlet, A. (2010). Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. *Climatic Change*, *102*(1-2), 187-223.

¹² Includes observed and projected physical, ecological, and biological changes.

Table C-4: Observed and projected changes of secondary impacts caused by warming freshwater temperatures

Secondary Impact	Observed Change	Projected Change
Stratification and	Lake and reservoir stratification is	Enhanced spring/summer lake
hypoxia	occurring earlier as a result of warmer	stratification, reduced primary
	water temperatures, extending the length	productivity, and reduced
	of summer stratification. Stratification	oxygen solubility, contributing
	causes lower dissolved oxygen levels and	to increasing incidence of
	stresses aquatic species. ¹³	hypoxia.
Algal blooms	Longer algal growing seasons observed	Increased likelihood of lake
	with warmer temperatures.	algal blooms.
Range shifts	Bull trout have exhibited range	Cool- and cold-water habitats
	contractions to higher, cooler refugia in the	will likely shift further
	Rocky Mountains in response to warmer	upstream. The range of warm-
	temperatures. ¹⁴	adapted aquatic invaders will
		likely expand.
Phenological	Fish migration (e.g., lamprey) has been	Continued or exacerbated
shifts	documented to occur earlier in years with	behavioral changes, affecting
	warmer and lower streamflow. Predator-	migration, spawning timing,
	prey mismatch has caused mortality and	and/or foraging success and
	population declines of some freshwater	survival.
	species.	

Examples of impacts of warmer water temperatures on habitats and species

- Declines in suitable aquatic habitat and prey availability, and exceed fish thermal limits, contributing to increased fish kills, undermined fish health (e.g., enhanced disease susceptibility), altered reproductive success, and/or inhibited migration.
- Upstream shift in suitable stream habitat for many aquatic species, potentially reducing overall habitat availability. These shifts will be largest in flat rivers and smallest in steeper streams, and most pronounced in transient river basins.
- Enhanced vulnerability to aquatic invasive species, which can displace, compete with, or prey upon native aquatic biota.
- Increased fish metabolic and growth rates provided enough food and oxygen is available.

¹³ Mantua, N., Tohver, I., & Hamlet, A. (2009). Impacts of climate change on key aspects of freshwater salmon habitat in Washington State. *Washington Climate Change Impacts Assessment: Evaluating Washington's future in a changing climate. Climate Impacts Group, University of Washington, Seattle, Washington.*

¹⁴ Eby, L. A., Helmy, O., Holsinger, L. M., & Young, M. K. (2014). Evidence of climate-induced range contractions in Bull Trout Salvelinus confluentus in a Rocky Mountain watershed, USA. *PloS one, 9*(6), e98812.

Ocean temperature

Global sea surface temperatures have increased 0.6°C (1.1°F) since 1950, but no significant ocean warming offshore of North America was observed between 1900-2008, except in localized areas (e.g., west of Vancouver Island). However, northwest ocean temperatures are projected to increase 1.22°C (2.2°F) by the 2040s. Projections for coastal ocean temperatures are less clear due to high natural variability and upwelling influence.

Secondary impacts:¹⁵ Shifts in ocean temperature have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 5).

Secondary	Observed Change	Projected Change
Impact		
Stratification and altered ocean circulation	Increased stratification, reducing vertical mixing and affecting primary productivity.	Further stratification and altered ocean mixing, affecting primary productivity. Shifts in upwelling also expected as temperatures gradients between land and sea change.
Algal blooms	Highest bloom activity with warmer water temperatures in Puget Sound. ¹⁶ Prolonged growth. season and enhanced competitive advantage for dinoflagellate algal blooms, increasing bloom duration and toxicity. ¹⁷	More frequent, earlier and longer algal blooms. ¹⁸
Lower dissolved oxygen	Reduced oxygen delivery to deeper waters.	Decreased oxygen levels in the open ocean and coastal waters.
Reduced primary productivity	Reductions in primary productivity, expansion in surface water area with low phytoplankton biomass.	Potential reductions in primary productivity, leading to hypoxic conditions and marine food web alterations.

Table C-5: Observed and projected changes of secondary impacts caused by warming ocean temperatures

¹⁵ Includes observed and projected physical, ecological, and biological changes.

¹⁶Moore, S. K., Mantua, N. J., Hickey, B. M., & Trainer, V. L. (2009). Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. *Harmful Algae, 8*(3), 463-477.

¹⁷ Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., & Fleming, L. E. (2008). Impacts of climate variability and future climate change on harmful algal blooms and human health. *Environmental Health*, 7(2), S4.

Examples of impacts of changes in ocean temperature on habitats and species

- Altered abundance, distribution, and composition of marine and coastal species (e.g., reduced salmon and squid abundance, northward shift of sardines).
- Altered prey availability (e.g., reduced surface prey for foraging seabirds).
- Phenological shifts, including developmental changes, age to sexual maturity, growth, and spawning changes.
- Enhanced disease risk and invasive species spread.

Sea Level

Global sea levels rose 1.8 (+/- 5) mm/yr between 1961-2003, with rates accelerating to 3.1 (+/- 0.7) mm/yr in the last decade of observation. In the Pacific Northwest, sea levels are largely increasing, although some areas are experiencing decreases. Rates of sea level rise are projected to continue increasing globally over the next century,¹⁸ and Washington State could experience increases of +4 to +56 inches by 2100 (relative to 2000). However, there will be high local variability caused by vertical land deformation (i.e., uplift and subsidence), seasonal ocean elevation change (i.e., wind-enhanced sea level rise during winters and El Niño events), and other factors (e.g., groundwater withdrawal). For example, Puget Sound is projected to keep pace with global sea level rise and experience the most sea level rise by the end of the century (Table 2). The northwest Olympic Peninsula, which is experiencing significant uplift (>2 mm/yr), will see much lower increases and/or declines in sea level by 2100. The central and southern coasts, which may be experiencing moderate uplift (0-2 mm/yr), will likely experience sea level increases with magnitudes in between the other two regions during the same time period. Across the state, these general trends will fluctuate depending on changes in atmospheric circulation and wind patterns, short- and long-term land deformation events, and ice loss rates in Greenland and Antarctica. For example, sea levels can fluctuate up to 12 inches according to the El Niño Southern Oscillation or the Pacific Decadal Oscillation.

Secondary impacts:¹⁹ Shifts in sea level have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 6).

Secondary Impact	Observed Change	Projected Change
Shoreline erosion/loss	Erosion rate varies by location.	Higher sea levels will generally increase erosion and/or expose new areas to erosion, contributing to shoreline loss and forced inland migration of coastal habitats.
Saltwater	Aquifer saltwater intrusion	More frequent saltwater intrusion into
intrusion	already occurring in some	coastal aquifers and wetlands may

Table C-6: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	

¹⁸ Projected rates of global sea level rise vary, but many studies project that global sea levels will rise somewhere between 2-4 ft during the 21st century.

¹⁹ Includes observed and projected physical, ecological, and biological changes.

	locations (e.g., Whidbey Island). ²⁰	compromise water quality and force habitat conversion to more salt-tolerant species.
Storm surge	Increased beach erosion with	Higher sea levels could allow storm
	winter storms and larger wave	surges to reach new areas, causing more
	heights.	frequent inundation and erosion.

Examples of impacts of sea level rise on habitats and species

- Shifts in coastal habitat extent and quality as a result of increased inundation and erosion (e.g., beaches, tidal flats, coastal wetlands may decline, marshes may expand).
- Habitat or breeding ground loss for some species (e.g., shorebirds), habitat increases for other species (e.g., marsh associates).
- Shifts in species composition and biodiversity in coastal habitats, as well as shifts in species interactions.
- Larger marine food webs may be affected if important food species or habitat (e.g., estuarine nursery) is lost.
- Increases in salinity associated with sea level rise may facilitate invasive species spread in estuaries and/or stress freshwater coastal species.

Water Chemistry

<u>Oxygen</u>

The coastal waters of Washington State have been experiencing seasonal hypoxic conditions since at least 1950,²¹ and feature the lowest recorded dissolved oxygen (DO) levels of the California Current System.²² Hypoxic conditions are most common during the upwelling season (May-October), with DO levels fluctuating according to the DO content of upwelled waters, runoff nutrient input, and primary productivity.¹⁹ Coastal hypoxia episodes may increase as a result of climate change due to warmer sea surface temperatures, which affect oxygen solubility, and intensified upwelling as a result of shifting wind patterns.²³

Secondary impacts:²⁴ Shifts in oxygen availability have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 7).

²⁰ Huppert, D. D., Moore, A., & Dyson, K. (2009). Impacts of climate change on the coasts of Washington State. *Washington Climate Change Impacts Assessment: Evaluating Washington's Future in a Changing Climate*, 285-309.

²¹ Connolly, T., Hickey, B., Geier, S., & Cochlan, W. (2010). Processes influencing seasonal hypoxia in the northern California Current System. *Journal of Geophysical Research: Oceans (1978–2012), 115*(C3).

 ²² Peterson, J. O., Morgan, C. A., Peterson, W. T., & Lorenzo, E. D. (2013). Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998–2012. *Limnology and Oceanography, 58*(6), 2279-2292.
 ²³ Morgan, E., & Siemann, D. (2010). Climate Change Effects on Marine and Coastal Habitats in Washington State

Prepared for the Ecosystems, Species, and Habitats Topic Advisory Group. Available at:

http://dfwwbolyhq01.dfw.wa.gov/conservation/climate_change/publications/marine_coastal_climate_science_summ ary.pdf

²⁴ Includes observed and projected physical, ecological, and biological changes.

Table C-7: Observed and projected changes of secondary impacts caused by warming freshwater temperatures

Secondary Impact	Observed Change	Projected Change
Dead zones	Increasing frequency and prevalence of hypoxic dead zones in coastal areas since 1960. ²⁵	More frequent and persistent low oxygen conditions due to warming and elevated stratification, with potential expansion into shallower waters. This is especially a concern in Hood Canal.

Examples of impacts of changes in oxygen on habitats and species

- Altered aquatic organism behavior, health, growth, reproductive success, and survival.
- Altered aquatic organism distribution and composition; sessile organisms may be less able to migrate in response to changing hypoxic conditions.
- Impaired biological, ecological, and biogeochemical processes.
- Altered prey availability.
- Reduced oxygen availability due to increased algal blooms, further contributing to hypoxic conditions.
- Increased sensitivity to pollutants and contaminants.

Acidity (pH)

Global ocean surface pH has declined 0.1 units since 1750, with rates of -0.02 units/yr in the past two decades.²⁶ Since 1800, outer coastal water acidity in Washington State has increased 10-40%, translating to a pH decline of -0.05 to -0.15. Global ocean surface pH, as well as pH in the North Pacific, is projected to decline an additional -0.2 to -0.3 units by 2100, translating to a 100-150% increase in ocean acidity.²⁷

Secondary impacts:²⁸ Shifts in acidity have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 8).

Secondary Impact	Observed Change	Projected Change
Dead zones	Increasing frequency and prevalence of hypoxic dead	pH decreases will contribute to the formation of dead zones.

Table C-8: Observed and projected changes of secondary impacts caused by changes in pH

²⁵ Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. *Science*, *321*(5891), 926-929.

²⁶ Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: present conditions and future changes in a high-CO2 world. *Oceanography*, *22*(4), 37-47.

²⁷ Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., . . . Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. *Estuarine, Coastal and Shelf Science, 88*(4), 442-449.

²⁸ Includes observed and projected physical, ecological, and biological changes.

	zones in coastal areas since 1960; ²⁹ exacerbates and exacerbated by acidification. ³⁰	
Algal blooms	Increased growth and/or toxicity of algal blooms observed in more acidic waters. ³¹	Increased acidity may contribute to more algal blooms. ³²
Nutrient and metal solubility	Lowered calcium-carbonate saturation states.	pH can change the quantity of available nutrients; too many nutrients may cause plant overgrowth and as the plants decompose, dissolved oxygen levels lower even further. More acidic water typically increases the solubility of heavy metals, making these metals more toxic to species.

Examples of impacts of changes in pH on habitats and species

- Reduced shellfish populations due to calcium carbonate declines.
- Reduced ability for plankton to form calcium carbonate shells, significantly affecting marine food webs and the survival, growth, and reproductive capacity of fish populations.
- Increased growth rates of seagrass.
- Increased risk of invasive species establishment.

²⁹ Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. *Science*, *321*(5891), 926-929.

³⁰ Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., . . . Wang, Y. (2011). Acidification of subsurface coastal waters enhanced by eutrophication. *Nature Geoscience*, *4*(11), 766-770. Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., . . . Wang, Y. (2011). Acidification of subsurface coastal waters enhanced by eutrophication. *Nature Geoscience*, *4*(11), 766-770.

³¹ Moore, S. K., Mantua, N. J., Hickey, B. M., & Trainer, V. L. (2009). Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. *Harmful Algae, 8*(3), 463-477.

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
Air temperature	Increasing	+0.13°F/decade (1895-2011) Pacific Northwest (1920-2000): • Annual: +0.91°C (1.64°F) • Summer: +1.07°C (1.93°F) • Winter: +1.83°C (3.3°F) • Spring: +0.57°C (1.03°F) • Fall: +0.18°C (0.32°F)	Increases, with warming most severe in summer Pacific Northwest (relative to 1970-99): 2020s Annual: +1.1°C (2.0°F) Summer: +1.3-1.7°C (2.3-3.1°F) Winter: +1.1-1.2°C (2.0-2.2°F) Spring: +1.0°C (1.8°F) Fall: +1.0-1.1°C (1.8-2.0°F)	 Natural climatic patterns, such as the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) Increasing electrical demand for cooling and water demand for irrigation Human development
			2040s Annual: +0.91°C (1.64°F) Summer: +1.9-2.7°C (3.4-4.9°F) Winter: +1.6-1.9°C (2.9-3.4°F) Spring: +1.4-1.7°C (2.5-3.1°F) Fall: +1.5-2.0°C (2.7-3.6°F)	
			2080s Annual: +3.0°C (5.3°F) Summer: +3.0-4.5°C (5.4-8.1°F) Winter: +2.7-3.3°C (4.9-5.9°F) Spring: +2.1-2.8°C (3.8-5.0°F) Fall: +2.4-3.4°C (4.3-6.1°F)	
Precipitation	Variable	No significant trend	Annual precipitation will be variable, but there will be declines in summer precipitation Pacific Northwest (relative to 1970-99) 2020s • Annual: +1% (-9 to +12%) • Winter: +2% (-14 to +23%)	 ENSO/PDO Increasing electrical demand for cooling and water demand for irrigation

Table C-9: Summary of key climate factors, trends, observed and projected changes, and compounding factors in Washington State

^{**********} Compounding factors or synergistic effects that may exacerbate or ameliorate the effects of climate change on habitats and species.

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
			 Summer: -6% (-30 to +12%) 2040s Annual: +2% (-11 to +12%) Winter: +3% (-13 to +27%) Summer: -8% (-30 to +17%) 2080s Annual: +4% (-10 to +20%) Winter: +8% (-11 to +42%) Summer: -2% (-2% to +14%) 	
Snowpack	→	Pacific Northwest: Significant declines (average -25%) during latter half of 20 th century. Recent increases likely due to natural variability.	• Summer: -13% (-38% to +14%) Further declines (-53% to -65% by 2080). Snowpack losses will be greatest at lower elevations and more modest at higher elevations.	• ENSO/PDO
Snowmelt	Earlier	Cascade Mountains: occurred 0-30 days earlier (depending on location) during latter half of 20 th century.	Will occur increasingly earlier by 2050.	• ENSO/PDO
Drought	increasing	Pacific Northwest: experienced several droughts since 2001. Droughts attributed to several causes including: warmer temperatures, reduced snowpack and earlier snowmelt, and reduced winter and/or summer precipitation.	Increasing across the state, particularly in summer, even with potential increases in winter precipitation.	 Water withdrawals Changes in land use and land cover
Streamflow/ru noff	Variable	Snow-dominant and transient basins: earlier snowmelt runoff, leading to lower summer base flows. Rain-dominant: variable depending on annual precipitation.	Earlier streamflow timing in snow-dominant and transient basins. Annual runoff is projected to increase slightly, with increases in winter streamflow and declines in summer streamflows. Potential shifts from snow-dominant to transient or rain-dominant basins.	 ENSO/PDO Groundwater and soil moisture influence Topography Adjacent land use Water resources

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
				infrastructure ●
Wildfire risk	increasing	Wildfire frequency and extent have been increasing in the Pacific Northwest since the 1970s.	Increased fire frequency, severity, intensity, and total area burned. Magnitude of change will likely vary by eco-region, vegetation type, and suppression effort.	 ENSO/PDO Fire suppression Drought stress Invasive species and disease compromising tree/vegetation health
Freshwater temperature	↑ 	Net increase from 1980-2009; summer warming rate increased 0.22°C per decade	Increasing across the state, including increases in frequency and duration of unfavorable temperature events (periods with water temperatures >21°C)	 Low streamflows (caused by climate and/or water withdrawals) Water resources infrastructure (e.g., dams) Changes in land use and land cover
Ocean temperature	↑ 	Global: increased 0.6°C (1.1°F) since 1950 North America: no significant trends (1900-2008); some warming in localized areas (e.g., west of Vancouver Island)	Northwest ocean temperatures to increase 1.22°C (2.2°F) by the 2040s	 ENSO/PDO Changes in land use and land cover
Sea level	↑, some areas↓	Global: increased 1.8 (±0.5) mm/yr between 1961-2003; rates accelerated to 3.1 (±0.7) mm/yr from 1993-2001 Washington: • Friday Harbor: +0.4 in/decade • Neah Bay: -0.7 in/decade (1934-2008) • Seattle: +0.8 in/decade (1900-2008)	Continued increases, although some areas will experience decreases Washington: +4 to +56 in by 2100 - Northwest Olympic Peninsula: • 2050: 0 in (-5 to +14 in) • 2100: +2 in (-9 to +35 in) - Central & Southern Coast • 2050: +5 in (+1 to +18 in) • 2100: +11 in (+2 to +43 in) - Puget Sound • 2050: +6 in (+3 to +22 in)	 Habitat degradation of existing coastal habitat via dredging, development, pollution, and coastal modifications Sediment supply changes Development and natural barriers Land subsidence Storm wave heights ENSO/PDO

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
			• 2100: +13 in (+6 to +50 in)	
Oxygen concentrations	→	Seasonal hypoxia since at least 1950 during upwelling periods (May- October)	Increase due to warmer sea surface temperatures/decreased oxygen solubility and intensified upwelling	 Nutrient runoff (e.g., nitrogen) Freshwater input Reduced upwelling Stratification Removal of vegetation
рН	\rightarrow	Ocean surface pH declined 0.1 units since 1750; outer coastal acidity increased 10-40%	Decrease an additional -0.2 to -0.3 units by 2100	 Nutrient inputs from runoff Fishing pressure Habitat destruction

C.2 SGCN Vulnerability Rankings

C.2.1 Mammal Vulnerability Rankings

Constant	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
American	Moderate	Low	Moderate	Moderate	> Increased	Overall, there is a lack of information about the sensitivity of the
Badger					temperatures	American Badger to climate change. In general, sensitivity of this species
					> Changes in	appears to be driven by prey and habitat specialization. It occurs in
					precipitation	shrub-steppe, grassland, and semi-desert habitats, requires friable soils
					> Reduced soil	for burrows, and preys primarily on ground squirrels and pocket
					moisture	gophers. Warmer, drier conditions that harden soils may negatively
					> Altered fire	affect the American Badger or its prey species' ability to burrow.
				regimes	Warmer and drier conditions may allow grassland expansion, creating	
					> Increased	more habitat for this species. However, warmer, drier conditions that
					invasive weeds	lead to more frequent and hotter fires and/or encourage the growth of
						invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for
						this species. Altered fire regimes in the Columbia Basin will likely
						negatively impact some prey species such as ground squirrels.
American	High	High	High	Moderate-	> Increased	The American Pika displays high sensitivity because of its preferred
Pika				High	temperatures	habitat type and condition, very low reproductive rate, and limited
					> Reduced	dispersal ability. The American Pika requires a moderate amount of
					snowpack	snowpack in order to provide insulation during the winter months;
					> Shifts from	decreasing snowpack because of rising temperatures and shifting
					snow to rain	precipitation patterns with more rain than snow will negatively impact
						this species. American Pika have high energetic demands, partly because
						they do not hibernate; increasing temperatures and extreme heat
						events may affect this species' ability to forage during the day. In
						addition, climate change will likely alter the composition of vegetation in
						montane habitats; this shift may be to plant species less suited to the
						species' nutritional needs.
Bighorn	Moderate	High	Moderate	Moderate	> Increased	Warmer temperatures may reinforce thermoregulatory behavior of
Sheep					temperatures	Bighorn Sheep in order to minimize heat stress (e.g. foraging on
					> Reduced	northern and easterly slopes). Warmer temperatures, reduced
					snowpack	snowpack and earlier snowmelt may increase foraging opportunities by
					> Earlier	extending the growing and foraging season and increasing the upper
					snowmelt	limits of plant growth (e.g. grass); increased foraging opportunities

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					> Altered fire regimes	could potentially increase lamb survival. However, reduced snowpack and earlier snowmelt may also increase predation risk by allowing earlier predator access to subalpine/alpine habitats and/or by increasing predator cover via tree encroachment. Fire may moderate tree encroachment, thereby maintaining forage habitat and reducing predator risk.
Black-tailed Jackrabbit	Moderate	Moderate	Moderate	Moderate	 > Altered fire regimes > Changes in wind > Increased invasive weeds > Increased disease outbreaks 	The Black-tailed Jackrabbit occupies habitats with a wide temperature range and minimal moisture levels (e.g. grassland, scrub, desert); they are highly capable of thermoregulating and conserving water. They are sensitive to disturbance regimes, such as fire and wind; widespread fire can remove vegetation that provides nesting and thermal cover and foraging species, while wind has been shown to affect this species feeding behavior. Increased invasive weeds (e.g. cheatgrass) have little to no forage value for this species and may contribute to increased fire, further eliminating important sagebrush habitat. Climate change may amplify effects of disease and parasites on this species.
Blue Whale	Low- Moderate	High	Low- Moderate	Moderate	 > Increased ocean temperatures > Altered circulation and/or upwelling patterns > Declines in pH 	Due to their migratory patterns and the wide range of ocean conditions they experience, Blue Whales are unlikely to have physiological sensitivity to climate-induced ocean changes (e.g. increased sea surface temperature, decreased pH). Their overall sensitivity will be higher due to potential changes in their primary prey, euphausiids. Blue Whales require large aggregations of euphausiids for optimal foraging, and euphausiid conditions are strongly linked with oceanographic variability Cooler, upwelling waters support high primary production and thus euphausiid biomass, while warmer waters like those found during positive Pacific Decadal Oscillations cycles or strong El Niño lead to lower primary productivity and decreased euphausiid abundance. Therefore, increases in sea surface temperature or changes in ocean circulation, as well as declines in pH, could lead to declines in euphausii abundance and limited prey availability for Blue Whales. Additionally, changes in peak primary productivity and euphausiid abundance could lead to alterations in Blue Whale migration timing.
Brush Prairie Pocket Gopher	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Increased temperatures > Changes in 	There is no information on the sensitivity of the Brush Prairie Pocket Gopher to climate change. There is some evidence that pocket gophers in general may be sensitive to changes in temperature and precipitation

. ·	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					precipitation > Reduced soil moisture	that affect soil moisture and hardness, which impacts pocket gopher digging activity (i.e. burrows include foraging tunnels and chambers for nesting and food caching).
Cascade Red Fox	High	High	High	Moderate- High	 Increased temperatures Reduced snowpack Altered fire regimes 	The Cascade Red Fox is presumably adapted to colder climates, and is restricted to alpine and subalpine ecosystems and high elevation meadows. The overall sensitivity of this species to climate change is likely driven by their dependence on these colder, high elevation habitats. Warmer temperatures and reduced snowpack may negatively impact this species by further contracting suitable habitat ranges and/or facilitating movement of Coyotes (potential competitor and predator) into the range of Cascade Red Foxes. Altered fire regimes that degrade or eliminate alpine and subalpine habitat is also likely to negatively impact this species.
Columbian White-tailed Deer	Moderate	Moderate	Moderate	Moderate	 > Increased flooding > Sea level rise > Increased extreme precipitation events > Increased disease outbreaks 	Occupying riparian habitats, bottomlands, and tidelands, Columbian White-tailed Deer are vulnerable to periodic habitat loss and subsequent population declines due to flooding. Past flood events have caused significant population reductions, followed by slow recovery. Consistent or consecutive yearly flooding and inundation as a result of sea level rise and/or shifting storm frequencies and intensities could significantly threaten the persistence of various populations, potentially forcing migration to marginal habitat areas. However, current efforts to translocate deer and establish new populations along the lower Columbia River increases overall population resilience to flooding and inundation impacts. Sea level rise and shifts in precipitation that elevate groundwater tables may also affect available forage by extending the range of relatively unpalatable reed canary grass. Reduced habitat or forage quality as a result of climate change could also increase deer vulnerability to various diseases.
Destruction Island Shrew	Low- Moderate	Low	Moderate	Low- Moderate	 > Reduced soil moisture > Increased extreme events 	Limited information is available regarding the biology and ecology of Destruction Island Shrews and their potential response to climate change. This species is likely sensitive to climate-driven changes in prey availability (e.g. insects, spiders, worms, centipedes) and habitat suitability (e.g. vegetation cover). For example, soil moisture may affect burrowing and/or suitability and availability of grassland habitat. In addition, as this species is endemic to Destruction Island, it is likely

MAMMALS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						vulnerable to extirpation during extreme events and/or unfavorable climatic periods.
Fin Whale	Low- Moderate	Moderate	Low- Moderate	Moderate	 Increased ocean temperatures > Declines in pH 	Fin Whales are likely to have low sensitivity to changes in ocean temperature and other changing oceanographic conditions (e.g. pH, salinity) due to their migratory patterns and exposure to varying ocean conditions. However, the prey they feed on, such as euphausiids and copepods, may experience population declines as a result of increases in ocean temperature and decreases in pH. Limited prey availability could lead to decreased Fin Whale fecundity and population declines, though they may be able to adapt by switching target prey species (e.g. feeding more on small finfish as opposed to krill) depending on abundance.
Fisher	Moderate	Moderate	Moderate	Moderate	 Increased temperatures Reduced snowpack Altered fire regimes Increased insect and disease outbreaks 	Fishers exhibit some physiological sensitivity to temperature, as they behaviorally avoid extreme daily high temperatures by foraging during cooler periods of the day and seeking cooler habitats (e.g. dense canopies, riparian areas). Fishers also appear sensitive to snowpack; deep snow limits fisher movement, particularly juvenile dispersal. Reductions in snowpack could increase successful juvenile winter dispersal, alter competitive interactions (e.g. with Pacific Marten), or enhance predatory success. Warmer, drier conditions as well as altered fire regimes and insect and disease outbreaks that affect habitat extent and structural complexity influence the sensitivity of this species. Some disturbance (e.g. wind, fire, insects & disease) helps to create important habitat structures (e.g. snags, downed logs, den sites) while disturbances outside the natural range of variability may negatively impact this species.
Gray Whale	Moderate	High	Moderate	Moderate	 Increased ocean temperatures > Declines in pH 	Due to their migratory patterns and broad range of habitat, Gray Whales are unlikely to be sensitive to changes in ocean temperature or chemistry. However, their sensitivity will be increased by potential changes in prey abundance. Decreases in pH could lead to declines in small invertebrates that Gray Whales feed on. Additionally, temperature increases could also lead to declines in invertebrate prey. For Atlantic Gray Whale populations, increases in sea surface temperature were thought to cause declines in amphipods, a primary prey for Gray Whales, leading to decreases in Gray Whales survival. At the northern end of their range in Alaska, Gray Whales may also experience

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						disruptions in timing and distribution of food sources due to earlier season sea ice melt and increases in sea surface temperature. Gray Whales may also be sensitive to losses in key breeding habitat, like coastal lagoons in Mexico, due to sea level rise.
Gray Wolf	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Altered fire regimes > Increased insect and disease outbreaks 	The Gray Wolf is a habitat and diet generalist. This species can thrive in a variety of habitats at different elevations, including forests, tundra, deserts, swamps, mountains, and prairies, where they feed mainly on a wide range of ungulate prey (small mammals, fish, and livestock are only a small portion of prey for most wolves). They require large, contiguous habitats and are therefore somewhat vulnerable to habitat fragmentation that restricts connectivity or brings them into great contact with people. Gray Wolves also display high reproductive and dispersal capacity. Their sensitivity to climate change will depend largely on the vulnerability of ungulate prey to disturbance regimes such as fire and disease; prey abundance may decline with larger and more intense fires and/or forest die off from insects as well as timber harvest.
Gray-tailed Vole	N/A	N/A	Unknown	N/A	None known	There is no information on the sensitivity of Gray-tailed Voles to climate change.
Grizzly Bear	Moderate	High	Moderate	Moderate	 > Increased temperatures > Earlier snowmelt > Changes in precipitation timing 	Grizzly Bears are diet generalists, feeding on a variety of food items, which may decrease overall sensitivity of this species. However, where and how food sources change could potentially exacerbate human/bear conflict and mortality. Additionally, warmer temperatures, delayed snowfall, and earlier snowmelt may alter the timing of den entry and exit, which could increase the potential for bear/human conflicts in spring and fall. Altered fire regimes may remove important habitat but could also open up new areas.
Hoary Bat	Low- Moderate	Low	Low- Moderate	Moderate	 > Altered fire regimes > Changes in precipitation 	The Hoary Bat displays low physiological sensitivity with a generalist's diet and a broad geographic distribution in both coniferous and deciduous forests across a wide temperature gradient from 32 to 71°F at elevations from 0 to 5315 feet in the Pacific Northwest. It is moderately sensitive to disturbance regimes, including fire and disease (e.g. white-nose syndrome). In general, climate changes that affect roosting and foraging habitat could negatively impact this species. For example, altered fire regimes could degrade or eliminate roosting habitats. Warmer, drier conditions as well as altered fire regimes and

MAMMALS			a ii i			
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						increased invasive weeds may affect the availability of foraging resources to Hoary Bats. Changes in precipitation and/or water availability near maternity sites could affect reproductive output.
Humpback Whale	Low- Moderate	High	Low- Moderate	Moderate	 > Increased ocean temperatures > Declines in pH 	Humpback Whales migrate over great distances and occupy a broad range of ocean conditions; they are thus unlikely to have high physiological sensitivity to changes in ocean conditions. However, they are likely to have increased sensitivity due to potential declines in preferred food sources, such as small krill like euphausiids. Humpback Whale populations have been shown to be found in areas with high euphausiid production, thus any changes or declines in this food source (e.g. declining pH or increasing ocean temperatures) could have negative impacts on Humpback Whales such as decreased reproductive success and lower fecundity. Additionally, Humpback Whales often use shallow coastal lagoons for breeding; thus, sea level rise and potential loss of coastal habitat could also negatively influence this species.
Keen's Myotis	Moderate- High	High	Moderate- High	Moderate	> Increased temperatures	Keen's Myotis has a specialist's diet and its sensitivity is therefore tightly linked to both the timing and abundance of its prey. This species does not migrate, which makes it very sensitive to changes in microclimate, especially during winter hibernation; changes in temperature that drive the timing and length of winter hibernation could result in a mismatch in timing of insect prey availability and emergence from hibernation. It has a small geographic distribution; however, field identification of this species is difficult because of strong similarities with the western long- eared myotis, making statements about distribution, population size, and trends less certain. Cooler temperatures may energetically stress this species.
Killer Whale	Southern residents: Moderate- High; Transient/ Offshore: Low- Moderate	High	Southern residents: Moderate Transient/ Offshore: Low- Moderate	Southern residents: Moderate- High; Transient/ Offshore: Moderate	 > Increased ocean and fresh water temperatures > Increased precipitation > Increased runoff > Declines in 	Some Killer Whale populations occupy a wide temperature range; thus these are unlikely to experience physiological sensitivity to increasing ocean temperatures. However, their overall climate sensitivity is much higher due to potential declines in prey abundance. For the southern resident populations in particular, since they feed primarily on Chinook salmon, declines in Chinook abundance (stemming from a number of climate factors, such as increases in sea surface and fresh water temperature or higher levels of precipitation and runoff) could lead to decreases in survival and fecundity of southern resident Killer Whales.

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					рН	The transient population feeds on other marine mammals and has a larger variety of targeted prey and thus may be less sensitive; however, climate-induced changes in marine food webs (e.g. declines in small crustaceans that other marine mammals feed on due to acidification) could lead to declines in prey availability for transients. The offshore population is thought to feed mainly on sharks and other fish, but better dietary information is needed to draw firmer conclusions on impacts.
Kincaid Meadow Vole	Low- Moderate	Low	Low- Moderate	Moderate	 Increased temperatures Changes in precipitation 	There is no information on the sensitivity of Kincaid Meadow Voles to climate change. In general, this species likely does not exhibit much physiological sensitivity to climate change. Their association with damp meadows, marshy areas along creeks, and around lakes in the Columbia Basin seems likely to increase this subspecies' sensitivity if warmer and drier conditions degrade or eliminate these habitats in this region.
Lynx	High	High	High	High	 Increased temperatures Reduced snowpack Earlier snowmelt Altered fire regimes Increased insect and disease outbreaks 	Lynx exhibit sensitivity to warming temperatures, decreased snowpack and earlier snowmelt, and altered fire regimes. Lynx are reliant on consistent snowpack during winter months for hunting, which provides them a competitive advantage over other predators. Lynx are usually considered hare specialists; increasingly variable timing of the arrival and melting periods of snowpack may lead to local extirpations of Snowshoe Hares, potentially affecting Lynx survivorship and recruitment. However, Lynx have been known to switch prey items when hares are limited. Altered fire regimes, insect and disease outbreaks that reduce mature stands, early seral-stage coniferous stands and/or dense understory cover further increases the sensitivity of this species.
Mazama Pocket Gopher	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Increased temperatures > Reduced soil moisture > Increased invasive species > Altered fire regimes 	There is little to no information on the sensitivity of the Mazama Pocket Gopher to climate change. Mazama Pocket Gophers may exhibit some sensitivity to warmer, drier soil moisture conditions that make burrowing more challenging. Sensitivity of this species may be enhanced if invasive species such as Scotch broom increase under future climate conditions. However, prairie and grassland habitats may expand under future climate conditions (e.g. altered fire regimes that prevent conifer encroachment and/or adaptations to warmer, drier conditions), potentially benefitting this species.
Merriam's	Low-	Low	Low-	Moderate	> Drought	Merriam's Shrews likely have low physiological sensitivity to climate

MAMMALS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Shrew	Moderate		Moderate		 Increased flooding Altered fire regimes 	change, but may be sensitive to climate-driven changes in prey (e.g. small invertebrates) and habitat (e.g. arid shrub, shrub-steppe, and grasslands) availability. This species inhabits drier habitats than other shrew species, but may be sensitive to shifts in habitat availability due to drought, flooding, and fire, as well as habitat conversion (e.g. for agriculture).
Minke Whale	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Increased ocean temperatures > Declines in pH 	Though limited information is available regarding the sensitivity to climate change of Minke Whales in the North Pacific, given their migration patterns and the wide range of conditions they experience, they are unlikely to have direct physiological sensitivity to climate- induced changes in ocean conditions. Their sensitivity will be higher due to potential fluctuations in preferred prey availability, like forage fish (e.g. Pacific Herring) and krill. Though warmer ocean temperatures could lead to declines in herring availability, studies have shown that Minke Whales are generalists and easily switch between different types of prey depending on abundance, which allows them to adjust well to seasonal variability in prey. Potential declines in krill abundance (e.g. declines in pH) could also increase sensitivity of Minke Whales.
North Pacific Right Whale	Moderate	Moderate	Moderate	Moderate	 > Declines in pH > Altered circulation and/or upwelling patterns 	Limited information is available regarding the sensitivity of North Pacific Right Whales to climate change. In general, their overall sensitivity is likely due to changes in abundance of their primary prey, copepods. Because North Pacific Right Whales are limited in the type of prey they can consume and require large aggregations of copepods for optimal feeding, declines in copepod production that could be triggered by changing ocean circulation or potential decreases in pH could greatly impact North Pacific Right Whales. Decreases in copepod abundance could lead to decreased calf and adult survival.
Northern Bog Lemming	Moderate- High	High	Moderate- High	Moderate- High	 > Increased temperatures > Changes in precipitation > Drought > Altered fire regimes 	The Northern Bog Lemming's physiological sensitivity to climate is likely moderate-high, as populations may have historically been reduced in size and number when the climate was warmer and the species is moderately restricted to relatively cool or cold environments in most of its range. Additionally, Washington is at the very southern edge of the species' geographic range, which may increase sensitivity to warming temperatures. The overall sensitivity of this species is likely driven by their dependence on cold, moist habitats such as peatlands and

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						sphagnum moss, which are sensitive to changes in temperature and precipitation that lead to reduced moisture. Altered fire regimes that degrade or eliminate habitat may also impact this species.
Olympic Marmot	Moderate- High	High	Moderate- High	Moderate- High	 > Increased temperatures > Reduced snowpack > Altered fire regimes 	Olympic Marmots' sensitivity to climate is likely driven by their association with subalpine meadows that are vulnerable to increasing temperatures and reduced snowpack that result in habitat alterations (e.g. increased forest encroachment into meadows). Altered fire regimes may benefit subalpine meadows by preventing conifer encroachment. Olympic Marmots are also indirectly sensitive to climate change through effects on their primary predator, Coyotes. Warmer winters and lower snowpack are thought to allow Coyotes to persist at higher elevations than they could otherwise, increasing their predation on Olympic Marmots. Some evidence suggests that Olympic Marmots may also be directly sensitive to changes in snowpack; prolonged spring snow cover may be detrimental to survival and reproduction while sparse winter snow cover increases winter mortality.
Pacific Marten (Coastal population)	Moderate- High	High	Moderate- High	Moderate- High	 > Reduced snowpack > Altered fire regimes > Drought 	Sensitivity of the Pacific Marten to climate change will likely be driven by its habitat specificity and reliance on deep snowpack. Altered fire regimes and/or drought that result in reductions in the distribution and connectivity of important habitat features (e.g. large diameter tree stands with high canopy cover) may negatively impact this species. Pacific Martens rely on deep and persistent snowpack to exclude predators, provide high-quality hunting conditions, and provide winter resting and denning sites. Future reductions in snowpack may affect both the Pacific Marten and its prey species due to creation of more thermally variable subnivean space, and may alter Pacific Marten spatial distributions and/or competition with Fishers.
Preble's Shrew	Low- Moderate	Low	Low- Moderate	Moderate	 > Changes in precipitation > Altered fire regimes > Increased invasive weeds 	Limited information is available regarding the biology and ecology of Preble's Shrews and their potential response to climate change. Preble's Shrews appear to occupy a variety of habitat types throughout their range, but may be vulnerable to climate changes (e.g. precipitation, fire) that affect occupied habitat in Washington and/or prey availability (e.g. insects). Further expansion of cheatgrass could be detrimental to this species.
Pygmy Rabbit	Moderate-	Moderate	Moderate-	Moderate	> Altered fire	The Pygmy Rabbit is sensitive to changes in fire regimes such as extent

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	High		High		regimes > Increased invasive weeds	and frequency, especially fire-driven spread of the invasive cheatgrass that degrades the species' primary habitat and food source, sagebrush. Climate change will cause more frequent, intense, and larger wildfires. There are documented declines in Pygmy Rabbit populations with climate-driven changes in sagebrush habitat over the last 4,000 years.
Sea Otter	Low- Moderate	Moderate	Low- Moderate	Moderate	 Increased ocean temperatures Declines in pH Increased winter storm intensity and high surf conditions 	Limited information is available regarding the response of Sea Otters to climate change. Their sensitivity will be primarily due to changes in prey abundance (e.g. Red Urchins, clams, bivalves), particularly since Sea Otters require large amounts of prey (approximately 30% of their body mass per day) to meet their metabolic requirements. Sea Otter prey may be sensitive to decreases in pH, and declines in prey abundance could impact Sea Otters, though their sensitivity may not be as high due to their ability to switch between prey species. Additionally, increasing temperatures could promote survival of marine bacterial pathogens that infect Sea Otters and cause mortality, though there are high levels of uncertainty regarding the level of increase in and potential effects of bacterial pathogens on sea otters. Sea Otters may also be sensitive to increased winter storm intensity and resulting high surf conditions that could result in higher mortality.
Sei Whale	Low- Moderate	Low	Low- Moderate	Low- Moderate	 Increased ocean temperatures Altered circulation and/or upwelling patterns 	Though very limited information is available regarding the sensitivity of Sei Whales to climate change, it is likely that their main sensitivity will be due to any changes in their preferred prey species (zooplankton [e.g. copepods], squid, and small schooling fish). Sei Whales feed primarily or zooplankton and are found in areas with high zooplankton concentrations; thus, any changes in zooplankton abundance, which could be caused by increases in sea surface temperature or changes in ocean circulation patterns, could limit prey availability for Sei Whales. However, because Sei Whales are able to target multiple types of prey, they may be less sensitive to changes in zooplankton abundance and may be able to switch to other prey species (e.g. small forage fish).
Shaw Island Townsend's Vole	N/A	N/A	Unknown	N/A	None known	There is no information on the sensitivity of Shaw Island Townsend's Voles to climate change.
Silver-haired Bat	Low- Moderate	Low	Low	Moderate	> Altered fire regimes	The Silver-haired Bat has a broad geographic distribution throughout North America and displays a preference for old-growth forests and

<u> </u>	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						riparian areas between 0 to 6000 feet in elevation, although they also use caves and abandoned mines. There are both migratory individuals and year-round residents in Washington; during spring migration, there has been documented mortality at wind energy facilities. In general, climate changes that affect roosting and foraging habitat could negatively impact this species. For example, altered fire regimes that degrade or eliminate tree-roosting habitats such as large trees and snags may affect the Silver-haired Bat.
Sperm Whale	Low- Moderate	Moderate	Low- Moderate	Low- Moderate	 > Increased ocean temperatures > Altered circulation and/or upwelling patterns 	Though limited information is available regarding the sensitivity of Sperm Whales to climate change, their overall sensitivity is likely to be influenced by changes in the availability of their primary prey, squid. For Sperm Whales in the Gulf of California, abundance was linked to distribution and abundance of squid, and in the North Sea, higher sea surface temperatures and declines in squid abundance were thought to have potential links to increased Sperm Whale strandings. Thus, potential declines in squid populations (which could be prompted by changes in sea surface temperature or ocean circulation) could impact Sperm Whale populations. Given that males and females tend to occupy different habitats and ranges (with females preferring warmer, more southerly waters and males having a broader range), male and female Sperm Whales may exhibit different levels of sensitivity.
Spotted Bat	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Changes in precipitation > Altered fire regimes 	The Spotted Bat occupies a wide range of habitats in Washington from forests (e.g. ponderosa pine, Douglas-fir) and shrub-steppe to cliffs and water sources (e.g. marshes, open water, riparian areas) from 1000 to 2800 feet in elevation. There is limited information about this species' population size and trends and reproductive and wintering behavior, although there is some evidence that the Spotted Bat moves to lower elevations to overwinter. They appear to roost almost exclusively in the crevices of steep cliffs, which may make them vulnerable to recreationa rock climbing or other manmade or natural destruction of cliff habitat (e.g. road construction, rockslides). Changes in precipitation that limit water availability directly or result in a decrease of prey could negatively affect this species. Increased fire and shrub-steppe degradation in the Columbia Basin could reduce habitat quality for this species.

MAMMALS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Big-eared Bat	High		High		temperatures > Changes in precipitation > Altered fire regimes > Drought	United States; the species' distribution appears to be tightly linked to the presence of suitable roosting habitat and hibernacula located near foraging habitat. Roosting habitat selection is driven by temperatures within structures; in Washington, this habitat includes lava tube caves, mines, old buildings, bridges, and concrete bunkers. Increased temperatures may therefore reduce the availability of suitable hibernacula, forcing this species to move out of its current range to higher elevations or latitudes. Approximately 90% of the Townsend's Big-eared Bat's diet is composed of moths, making this species sensitive to prey availability (e.g. pesticides used to control outbreaks of moths). Altered disturbance regimes such as fire and drought that can destroy habitat will likely negatively impact this species. Changes in precipitation that limit water availability directly or result in a decrease of prey could negatively affect this species. In arid regions, periods of drought near maternity sites could affect reproductive output.
Townsend's Ground Squirrel	Moderate	Moderate	Moderate	Moderate	 > Increased temperatures > Changes in precipitation > Drought > Altered fire regimes > Increased invasive species 	Sensitivity of Townsend's Ground Squirrel is likely driven by their association with shrub-steppe, sagebrush, and grassland habitats. Warmer temperatures and changes in precipitation, including drought, could alter the phenology of important food plants, affecting the Townsend's Ground Squirrel's ability to accumulate adequate fat reserves before hibernation. Warmer, drier conditions that lead to more frequent and hotter fires and/or encourage the growth of invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for this species. Some evidence suggests that those individuals occurring in sagebrush habitat may be less sensitive to the impacts of drought (e.g. less decline in persistence and density, produce young) than those occurring in grassland habitats.
Washington Ground Squirrel	Moderate	Moderate	Moderate	Moderate	 > Increased temperatures > Changes in precipitation > Drought > Altered fire regimes > Increased 	Similar to Townsend's Ground Squirrel, sensitivity of Washington Ground Squirrels is likely driven by their association with shrub-steppe and grassland habitats, although they are able to inhabit a number of habitat subtypes which may decrease sensitivity. Warmer temperatures and changes in precipitation, including drought, could alter the quality and quantity of important forage plants, affecting juvenile survival as well as the ability to accumulate adequate fat reserves before hibernation. A series of drought years reduced the occurrence of

Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
opecies	Vulnerability	Confidence	Rank	Rank	Exposure	
					invasive species	Washington Ground Squirrels in 1994. Warmer, drier conditions that lead to more frequent and hotter fires and/or encourage the growth of invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for this species.
Western Gray Squirrel	Low- Moderate	Moderate	Low- Moderate	Moderate	 Increased temperatures Changes in precipitation Altered fire regimes Increased disease outbreaks 	Sensitivity of the Western Gray Squirrel in Washington is partially driven by their association with Oregon white oak habitats. Habitat quality in Washington is generally thought to be relatively poor due to a lower number of large-seeded, mast-bearing tree species, affecting Western Gray Squirrel population numbers. However, Oregon white oak habitats are projected to expand under warmer, drier conditions and may benefit Western Gray Squirrels in Washington. Altered fire regimes that further degrade habitat quality increase the sensitivity of this species. For example, the large Carlton Complex fire in the Okanogan in 2014 destroyed Western Gray Squirrel habitat and caused direct mortality to the species. Additionally, this species is sensitive to disease outbreaks (e.g. mange, Western equine encephalitis virus), which could become more frequent with warmer temperatures.
Western Spotted Skunk	Low	Low	Low	N/A	None known	There is little to no information on the sensitivity of the Western Spotted Skunk to climate change. Overall, it appears that this species exhibits low sensitivity due to its generalist diet and ability to occupy different habitats (e.g. wooded areas, tallgrass prairies, rocky canyons).
White-tailed Jackrabbit	Moderate	Moderate	Moderate	Moderate	> Drought > Altered fire regimes	The White-tailed Jackrabbit appears to be fairly tolerant of a wide temperature range in a variety of habitats within a broad range of elevations from 130 to 14000 feet, including prairie grassland, shrubland steppe, and montane shrublands. In areas in which populations of the White-tailed and Black-tailed Jackrabbits overlap and compete, the White-tailed Jackrabbit tends to move to higher elevations. Drought conditions that alter foraging habitats (e.g. bunchgrasses, rabbitbrush) may negatively impact this species. Altered fire regimes in the Columbia Basin could negatively affect this species.
Wolverine	Moderate- High	High	High	Moderate	> Increased temperatures > Reduced snowpack	Wolverines exhibit sensitivity to temperature and declines in snowpack. Wolverines are obligatorily associated with persistent spring snow cover, which provides critical thermal advantages such as predator refugia for denning females and young, preventing competition with other scavengers, and important prey caching/refrigeration areas.

Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Temperature appears to play a role in fine-scale habitat selection, and may affect prey caching success. Warming temperatures and declines in snowpack could lead to decreased habitat patch size, quality, and connectivity; reduced success of caching/refrigeration of carrion prey with subsequent impacts on survivorship and recruitment; limited den sites and/or loss of thermal refugia important for juvenile survival; and/or increased dispersal costs.
Woodland Caribou	High	High	High	High	 Increased temperatures Changes in precipitation Altered fire regimes Reduced snowpack Earlier snowmelt Increased insect and disease outbreaks 	Woodland Caribou occupy higher elevations and rely on old-growth Engelmann spruce/subalpine fir and western red cedar/western hemlock forests that support arboreal lichens, which constitute a large portion of the Woodland Caribou diet. In combination with fire, warmer temperatures, precipitation changes, climate-driven increases in forest disease and insect mortality, and reduced snowpack and earlier snowmelt are likely to alter suitable habitat and predation risk for Woodland Caribou. Fire creates younger-age stands and edge habitat that attract deer, elk, and Moose; higher ungulate densities increases associated predator density, and these predators (e.g. bears, Gray Wolves, Cougars) prey opportunistically on Woodland Caribou. Woodland Caribou require deep, consolidated snow for movement at higher elevations during winter. Reduced snowpack and earlier snowmelt will affect the seasonal movements of Woodland Caribou and other ungulates, likely increasing predation risk by extending the length of time Woodland Caribou share habitat with other ungulates. In general, warmer and drier conditions will favor the expansion of deer, elk, and Moose by increasing overwinter survival, exacerbating predation risk and shifts in Woodland Caribou habitat.

Please be in touch if you'd like to view the excel spreadsheet.

C.2.2 Bird Vulnerability Rankings

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
American White Pelican	Low	Moderate	Low	Low	Increases in precipitation that lead to flooding	American White Pelicans may be sensitive to climate change through changes to their breeding habitat. Increases in precipitation could affect flooding regimes in lakes and potentially limit nesting areas, although this species is highly adapted to take advantage of changing situations. Sensitivity may be increased by direct physiological responses to increases in temperature, such as potential vulnerability of chicks and juveniles to higher temperatures and earlier migration timing of adults, although this is highly uncertain.
Bald Eagle	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Altered fire regimes > High wind events > Increased temperatures > Changes in precipitation/ Altered hydrology 	Bald Eagles may experience some sensitivity due to habitat and foraging requirements. Nest sites may be affected by altered disturbance regimes (e.g. fire and wind) while warmer temperatures and changes in precipitation could limit food availability and quality (i.e. salmon carcasses). However, Bald Eagles are opportunistic foragers and may be able to switch prey species.
Band-tailed Pigeon	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Increased temperatures > Changes in precipitation > Altered fire regimes > This species is considered "climate threatened" (i.e. projected to lose >50% of current global range 	Very little information exists regarding sensitivity of Band-tailed Pigeons to climate change. In general, this species may exhibit some sensitivity due to habitat requirements. Warmer temperatures and changes in precipitation that lead to declines in water levels may adversely affect this species. Similarly, altered fire regimes that lead to loss of forested habitat could negatively impact the species.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					by 2080) in the Audubon Birds and Climate Change Report.	
Barrow's Goldeneye	Moderate- High	Moderate	Moderate -High	Moderate -High	 > Altered fire regimes > Declines in pH and dissolved oxygen > Reduced snowpack 	Barrow's Goldeneye dependence on specific nesting, breeding, and wintering sites significantly increases this species' sensitivity to climate change. Disturbances such as fire could result in nesting tree loss, and changes in water chemistry (e.g. dissolved oxygen, pH) or temperature may lead to declines in food availability (e.g. mussels, aquatic insects, crustaceans, clams, etc.). Diminished snowpack that leads to wetland drying could also impact this species.
Black Scoter	Moderate	Low	Moderate	Moderate	 > Increased ocean temperatures > Declines in pH, salinity, and/or dissolved oxygen 	Very limited information is available regarding sensitivity of Black Scoter to climate change, particularly in Washington. Generally, this species appears to exhibit some sensitivity to climate change due to potential impacts on food availability. For example, changes in sea surface temperature, oxygen, salinity, and/or pH could lead to declines in marine forage (e.g. Pacific Herring, mussels).
Brown Pelican	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Sea level rise > Increased ocean temperatures > Altered circulation and/or upwelling patterns 	Brown Pelicans are likely to have low physiological sensitivity to climate change. Their sensitivity may be increased by disturbances to coastal roosting sites from rising sea levels (e.g. sandbars and sand spits), which could limit availability of preferred roosting sites and force Brown Pelicans to select lower-quality roosting sites further away from foraging areas, though Brown Pelicans have been shown to adapt well to habitat disturbances. Sensitivity will also be affected by changes in preferred prey availability (e.g. Pacific Sardines, mackerel), which are likely to shift depending on ocean circulation patterns, such as El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Warmer ocean temperatures and decreases in coastal upwelling could lead to declines in small forage fish, and thus limited prey availability for Brown Pelicans.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Burrowing Owl	Low- Moderate	Low	Low- Moderate	Low- Moderate	 Increased temperatures Changes in precipitation 	Burrowing Owls may exhibit low to moderate sensitivity due to climatic effects on breeding ranges, and decreasing habitat availability from land development pressures. Temperature-driven changes may cause this species to lose up to 77% of its existing breeding range and alter its winter range with only 33% remaining intact by 2080. Although temperature and precipitation changes may affect the availability of its preferred prey (insects), the Burrowing Owl has a generalist's diet, including other birds, small mammals (e.g. mice, voles), frogs, salamanders, and snakes. This species also depends upon other species such as American Badgers, prairie dogs and ground squirrels to create its nesting burrows.
Cinnamon Teal	Moderate	Low	Moderate	Moderate	 > Increased temperatures > Reduced snowpack > Altered hydrology 	Very limited information is available regarding sensitivity of Cinnamon Teal to climate change, particularly in Washington. Generally, their overall sensitivity is likely due to potential impacts on habitat availability and quality. Habitat factors such as amount of food and floods (i.e. spring floods and American Beavers) have been linked to breeding success. Declines in snowpack or altered flow regimes that affect these habitat factors could impact the number of Cinnamon Teal broods. If this species exhibits low phenotypic plasticity in terms of timing of breeding (i.e. less able to track environmental change), climate warming could also affect its breeding success due to timing mismatch.
Clark's Grebe	Moderate	Low	Moderate	Moderate	 > Declines in pH > Changes in water level (e.g. water drawdowns or declines in precipitation) 	Though there is limited information available regarding the sensitivity of Clark's Grebe to climate change, their primary sensitivity will occur through potential changes in small fish and invertebrate prey species that they target. Declines in pH could lead to declines in invertebrate prey and changes in water level in lakes and marshes could also lead to declines in available prey. This species also exhibits some sensitivity to fluctuating water level (high or low), which could lead to loss of eggs and nesting sites. In Washington, greater water drawdowns in reservoirs (i.e. because of expanded agricultural irrigation caused by climate change) may lead to increased nest loss.
Columbian Sharp-tailed Grouse	Moderate	Moderate	Moderate	Moderate	> Increases in spring precipitation	Columbian Sharp-tailed Grouse may exhibit some physiological sensitivity as young chicks may experience mortality due to prolonged wet spring weather. Overall sensitivity of this species is likely driven by

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					 > Altered fire regimes > Changes in precipitation overall > Increased invasive weeds 	habitat specialization (e.g. grassland or shrub-steppe). Habitat suitability for this species could decrease or shift in response to altered fire regimes, invasive species spread (i.e. cheatgrass), and/or changes in precipitation.
Common Loon	Low- Moderate	Low	Moderate	Low- Moderate	 > Increased temperatures (air and ocean) > Altered global climate patterns (i.e. El Niño) 	Though limited information is available regarding the sensitivity of Common Loons to climate change, they may experience some direct sensitivity to climate change through northward contractions of their range with increasing temperatures and altered migration timing. Their sensitivity may be increased by changes to their prey and habitat. For instance, Pacific Herring, a primary food source for Common Loons, have previously experienced declines during El Niño years, leading to high mortality for Common Loons. More frequent and stronger El Niño conditions could lead to greatly decreased food supply for Common Loons.
Dusky Canada Goose	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Uncertain. Loss of agricultural foraging habitats is primary threat. Winter wheat production is likely to increase in the short-term. 	The physiological sensitivity of this species is likely low. However, their overall sensitivity may be slightly higher due to their winter habitat and foraging requirements. Changes in food abundance and availability on wintering grounds such as agricultural crop lands could affect mortality and survival rates, although impacts of climate change on these habitats is unclear.
Ferruginous Hawk	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Drought > Increased storminess and winds 	Little to no information exists regarding Ferruginous Hawk physiological sensitivity to temperature and precipitation. Overall sensitivity of this species may be enhanced due to prey specialization (i.e. jackrabbits, cottontail rabbits, ground squirrels, prairie dogs, pocket gophers) and habitat requirements (i.e. grasslands). Droughts that lead to declines in prey may adversely affect this species. Warmer

BIRDS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						temperatures may benefit this species due to grassland expansion. Increased extreme weather events (e.g. heavy rain and high winds) may affect hawk reproduction and survival.
Flammulated Owl	Moderate	Moderate	Moderate	Moderate	 > Increased temperatures > Changes in precipitation > Altered fire regimes 	Flammulated Owls may be sensitive to temperature and moisture; upper limits of Flammulated Owl occupancy may be set by low nocturnal temperatures or high humidity, while lower limits may be set by high diurnal temperatures or high humidity. In addition, changes in temperature may alter the availability of primary prey species (e.g. insects), which may influence their distribution. Flammulated Owls are habitat specialists, requiring old-growth ponderosa pine and/or Douglas-fir stands, making them vulnerable to changes in habitat extent and quality due to shifting wildfire regimes, precipitation changes, and habitat loss or degradation.
Golden Eagle	Moderate	High	Moderate	Moderate	> Increased temperatures > Altered fire regimes	Golden Eagles may experience some sensitivity to warmer temperatures. For example, nest success and brood size is inversely related to days with temperatures >90°F. Sensitivity of this species is also influenced by foraging requirements (e.g. prey abundance and habitat), which can affect nest success and ability to lay eggs. Golden Eagles prey on hares, rabbits, ground squirrels, prairie dogs, and marmots, among others, and their ability to forage can be negatively affected when prey habitat is lost (e.g. wildfires) and/or prey abundance declines.
Great Gray Owl	Moderate	Low	Moderate	Moderate	 > Increased temperatures > Altered fire regimes > High wind events 	The plumage of Great Gray Owls may make this species somewhat sensitive to warmer temperatures, although featherless portions of the Great Gray Owl's underwing may help dissipate heat. Great Gray Owls may also exhibit some sensitivity to disturbance regimes such as fire and wind that destroy suitable habitat.
Greater Sage- grouse	Moderate- High	Moderate	Moderate -High	Moderate	 > Drought and/or moisture stress > Increased 	Greater Sage-grouse may exhibit some physiological sensitivity to drought conditions, which could result in decreased nest success and/or reduced chick survival. However, their overall sensitivity will be higher due to habitat and foraging requirements. Changes that reduce the availability and quality of sagebrush habitat (e.g. increased

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					temperatures > Altered fire regimes	temperatures, drought and/or moisture stress, altered fire regimes), which Greater Sage-grouse depend on for forage, nesting, and brood- rearing, will adversely impact this species.
Harlequin Duck	Moderate- High	Low	Moderate -High	Moderate -High	 > Changes in precipitation (timing and amount) > Earlier snowmelt > Increased flood events > Increased water temperatures > Declines in pH 	The overall sensitivity of this species is likely moderate-high due to habitat (i.e. inland freshwater areas for breeding and coastal areas for wintering) and forage (i.e. aquatic invertebrates, Pacific Herring spawn) specialization. Breeding habitats and success as well as forage could be altered by flood events, while changes in temperature and pH could affect availability of key forage species. Additionally, earlier snowmelt can result in phenological mismatch with Harlequin Duck breeding ecology.
Lewis' Woodpecker	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Increased temperatures > Altered fire regimes 	Warmer temperatures and precipitation changes influence sensitivity of Lewis' Woodpecker by affecting prey availability and habitat extent. Warmer temperatures are linked with higher surface-bark insect abundance and enhanced forage opportunities, which are thought to control the timing of Lewis' woodpecker breeding more than photoperiod. Altered wildfire regimes may affect habitat extent, although this species is often classified as a specialist in burned pine forest habitat.
Loggerhead Shrike	Low	Moderate	Low	Low- Moderate	 > Increased temperatures > Drought > Increased storminess and/or high wind events 	Loggerhead Shrikes likely exhibit low physiological sensitivity to climate change, although very little information currently exists on this topic. They are more sensitive to changes in prey abundance, habitat availability, and competition as a result of climate change. Loggerhead Shrikes prey on insects, reptiles, and small mammals and birds; insect prey, in particular, may vary in availability in response to temperature and drought. Loggerhead Shrikes favor open habitats with low-stature vegetation and available trees and shrubs for nesting; prairie/grassland habitats may expand with climate change, benefitting this species. They also successfully inhabit many altered systems (e.g. agricultural

BIRDS			6 11 1			
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						fields). Wind, drought, and/or cold/wet weather events may contribute to nest or brood loss from nest damage or shifts in prey availability.
Long-tailed Duck	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased ocean temperatures > Sea level rise > Declines in dissolved oxygen and pH 	Very limited information is available regarding sensitivity of Long-tailed Ducks to climate change, particularly in Washington. Generally, Long- tailed Ducks may exhibit some sensitivity to climate change due to potential impacts on food availability. Increases in temperature or sea level as well as changes in water chemistry that affect food sources such as Pacific Herring, crustaceans, mussels, etc. could impact this species.
Marbled Godwit	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Sea level rise	Marbled Godwits may experience some phenological sensitivity to increases in air temperature, as warmer temperatures could alter their migration timing and length of overwintering season in Washington. Temperature-induced alterations in migration timing may also affect breeding season timing and productivity. Overall sensitivity will be higher due to their dependence on intertidal sand and mudflats as foraging sites, which may decrease in extent due to sea level rise and coastal inundation. Because of their long legs, Marbled Godwits may be able to withstand coastal sea level changes by foraging in deeper waters.
Marbled Murrelet	Moderate	Moderate	Moderate	Moderate	 Increased ocean temperatures Increased storminess and winds > Altered fire regimes 	The main sensitivities of Marbled Murrelets to climate change will likely be due to potential changes in prey availability and habitat. Increasing sea surface temperatures could lead to declines in target prey abundance (e.g. Pacific Herring, Pacific Sand Lance, crustaceans) and declines in Marbled Murrelet productivity, though their ability to target multiple types of prey may help this species adapt to shifts in prey abundance. Alterations in nesting habitat, which occurs in inland mature and old growth forests, could also lead to declines in populations. Potential increased storminess and higher winds could impact nesting sites, as could drier, warmer conditions that lead to increased fires and more fragmented habitat for nesting.
Mountain Quail (Eastern WA only)	Moderate	Low	Moderate	Moderate	 Increased temperatures Changes in precipitation 	Mountain Quail inhabit dry areas and are dependent upon surface and preformed water availability. They exhibit sensitivity to increased temperatures or changes in precipitation that limit water supply. Increased fire severity and frequency that results in the conversion of

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Altered fire regimes	suitable habitat also increases the overall sensitivity of this species.
Northern Spotted Owl	Moderate- High	Moderate	Moderate -High	West- side: Moderate East-side: Moderate -High	 > Increased temperatures > Altered fire regimes > Increased insect outbreaks 	This species exhibits some sensitivity to increased temperatures both directly (i.e. physiologically) and indirectly through effects on prey availability. This species also exhibits some sensitivity to altered disturbance regimes (i.e. fire and insect outbreaks) that lead to habitat changes. For example, in the eastern Cascades in Oregon, high severity wildfire has reduced the number of Northern Spotted Owls pairs in a USFS Ranger Unit. However, it appears that dense old forests may be relatively stable on the west side of the Cascades, while more active management may help address fire risk in dry east-side forests.
Oregon Vesper Sparrow	Low- Moderate	Low	Moderate	Low- Moderate	 > Temperature changes (increase or decrease) > Changes in precipitation > Altered fire regimes 	Oregon Vesper Sparrow sensitivity is largely driven by their dependence on open habitats, seeds, and insects. They nest and forage on the ground in open habitats (e.g. grasslands or shrublands with patchy vegetation and some bare ground). Increasing fire frequency, temperatures, and more variable precipitation may decrease habitat availability, quality and connectivity and/or alter foraging opportunities. They may have some physiological sensitivity; for example, low temperatures can undermine nestling growth by increasing thermoregulatory costs and/or decreasing insect prey availability.
Peregrine Falcon	Low	High	Low	Low	> No specific climate factors identified as it is a generalist	Overall sensitivity of Peregrine Falcons is likely low as this species utilizes a variety of habitat types and forages on a diversity of species.
Purple Martin	Low- Moderate	Low	Moderate	Low	 > Changes in precipitation > Drought > Increased temperatures (possibly) 	Purple Martins are sensitive to climate-driven changes in habitat and prey availability. Low temperature periods, particularly in conjunction with precipitation, limit foraging opportunities and are the largest contributor to Purple Martin mortality. Drought can also affect food availability. Warming temperatures are causing earlier spring insect availability peaks, but Purple Martins are long-distance migrants, and have not yet shown adaptive response in migration timing in response

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						to earlier spring food availability, at least in eastern U.S. populations. This mismatch between spring arrival and peak food availability contributes to undermined reproductive success and mortality; further studies are needed to see if selective pressures will advance migration timing for this species. Purple Martins nest in snags in secondary cavities formed by woodpeckers in montane areas and the Pacific lowlands; high habitat specificity makes them more vulnerable to climate change, although increasing fire frequency may increase habitat in burned forests.
Pygmy Nuthatch	Moderate	Moderate	Moderate	Moderate	> Altered fire regimes > Increased temperatures	Pygmy Nuthatches likely exhibit physiological sensitivity to cold temperatures, but utilize controlled hypothermia, communal roosting, and sheltered roosting cavities to survive cold periods. Pygmy Nuthatches are likely more sensitive to climate changes that affect foraging and nesting opportunities. Low- and moderate-severity, high- frequency fire helps maintain mature, open ponderosa pine habitat preferred by this species, but severe fire can destroy habitat in the short-term and inhibit ponderosa pine regeneration. Warming temperatures and xeric conditions may facilitate habitat expansion to higher elevations and into previously mesic areas, but can also lead to mortality of mature ponderosa pine individuals, affecting foraging and nesting opportunities. Warmer temperatures will likely increase insect foraging opportunities.
Red Knot	Moderate- High	Moderate	Moderate	Moderate -High	 > Timing mismatches in favorable food, habitat, and weather conditions > Sea level rise > Declines in pH > Increased storminess 	Red Knots are unlikely to have direct physiological sensitivity to changes in climate during their migration through Washington. However, their overall sensitivity will be higher due to their habitat and foraging requirements. Prime foraging areas, like mudflats, may decline due to sea level rise and coastal flooding of these habitats. Additionally bivalve populations, a major source of prey, may experience declines due to ocean acidification as well as changes in period of tide flat exposure and area of tide flat exposure. Preferred roosting sites such as sand islands and marshes may also become more limited due to rising sea level and/or increased storminess. In particular, changes in temperature leading to migration timing mismatches (i.e. timing of departure and arrival to coincide with favorable food, habitat and weather conditions) will negatively affect

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						this species.
Red-necked Grebe	Low- Moderate	Low	Moderate	Low- Moderate	 > Sea level rise > Increased storminess > Declines in pH 	Very limited information is available regarding the sensitivity of Red- necked Grebes to climate change, particularly in Washington. Though Red-necked Grebes are unlikely to have direct physiological sensitivity to climate change, their sensitivity may be increased by climate-related changes in nesting and roosting habitat and prey availability. Sea level rise and coastal erosion could lead to declines in protected winter habitat. Increased storminess or wind may enhance vulnerability of nests. Additionally, juveniles feed mainly on invertebrates (e.g. crustaceans, mollusks); thus, any declines in these populations due to ocean acidification could limit prey availability for juvenile Red-necked Grebes.
Rock Sandpiper	Low- Moderate	Moderate	Low- Moderate	Moderate	> Sea level rise > Increases in wave action	Rock Sandpipers are likely to have low physiological sensitivity to increases in air temperature. However, their overall sensitivity will be higher due to their dependence on habitats that may be negatively impacted by climate change. Rising sea levels and increased wave action may disturb prime foraging area and lead to declines in food sources (e.g. intertidal mussels). Additionally, during their Alaskan breeding season, declines in sea ice due to rising air and ocean temperatures could limit breeding and roosting habitat.
Sage Thrasher	Moderate- High	Moderate	Moderate -High	Moderate	 > Increased invasive weeds > Altered fire regimes > Increased temperatures > Changes in precipitation > Drought 	As sagebrush obligates, Sage Thrashers are sensitive to climate changes that affect the extent of sagebrush habitat. Increasing fire frequencies, which are perpetuated by invasive species (e.g. cheatgrass), may reduce breeding habitat. Invasive species also degrade foraging opportunities in the sagebrush understory. Warming temperatures, precipitation variability, and drought are also likely to contribute to reductions in sagebrush habitat, negatively affecting Sage Thrasher reproduction and foraging.
Sagebrush Sparrow	Moderate- High	Low	Moderate -High	Moderate	 > Increased invasive weeds > Altered fire regimes > Increased 	Very limited information is available regarding sensitivity of Sagebrush Sparrows to climate change, particularly in Washington, and particularly due to recent taxonomic separation from Bell's Sparrow. However, as sagebrush obligates that require relatively intact and undisturbed sage for breeding, Sagebrush Sparrows are likely

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					temperatures > Changes in precipitation > Drought	vulnerable to any climate changes that affect the extent, quality, and connectivity of sagebrush habitats. Increasing fire frequencies (due to climate change and perpetuated by invasive species, e.g. cheatgrass), warming temperatures, precipitation variability, and drought are likely to contribute to reductions in sagebrush habitat, negatively affecting this species. Sagebrush Sparrows may also be physiologically sensitive to warming temperatures; they avoid nesting on hot southwest aspects, and position nests to maintain airflow (which is hypothesized to ameliorate high temperatures during nesting periods).
Sandhill Crane (Greater)	Moderate	Low	Moderate	Moderate	> Drought > Altered hydrology	Sandhill Cranes appear to have low physiological sensitivity to changes in climate, although very little information currently exists on this topic. Sandhill Cranes generally require wetlands for nesting and some feeding, and prefer open water with little emergent vegetation for roosting. They are likely more sensitive to drought, low flows, or flooding that decrease available nesting, foraging, or roosting habitat.
Short-eared Owl (Western WA only)	Low	Low	Low- Moderate	Low	> No specific climate factors identified, although changes prey availability will negatively impact this species.	The Short-eared Owl has low physiological sensitivity due to its wide geographic distribution throughout North America, South America, Eurasia, and Africa; temperature does not appear to be a limiting factor for this species. Barn Owls may be direct competitors in some locations and displace Short-eared Owl populations. Variation in Short- eared Owl population size has been attributed to variations in small mammal abundance, thus this species is sensitive to changes in prey availability.
Short-tailed Albatross	Low	Low	Low- Moderate	Low	> Altered circulation and upwelling patterns	Although Short-tailed Albatross are unlikely to have physiological sensitivity to climate change and their breeding habitat is also unlikely to be affected by climate change, their sensitivity will be increased by potential shifts in prey availability. Given that Short-tailed Albatross primarily forage in areas with strong upwelling and high oceanic productivity along the continental shelf, potential shifts in ocean circulation could limit the availability of prey (e.g. squid, crustaceans, flying fish). Additionally, potential northward shifts of primary prey species like squid could result in a northward shift in Short-tailed Albatross populations.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Slender-billed White- breasted Nuthatch	Low- Moderate	Low	Low- Moderate	Low- Moderate	 > Increased temperatures > Changes in precipitation > Altered fire regimes 	This species likely has low physiological sensitivity to climate change, but little information is available. As a near-obligate of oak woodlands, this species is likely more sensitive to changes in mature oak woodland nesting and foraging habitat as a result of climate change. Snags and large, mature trees provide superior forage grounds and more space for nesting cavities, which are created by woodpeckers. Increased fire frequencies may help restore more open, mature oak habitat by reducing oak density and conifer encroachment. Fire and wind events may also create important edge openings preferred by this species. Temperature increases and precipitation changes may affect insect prey availability. Any reductions in oak habitat in response to climate change would likely negatively affect this species, for although they will nest in mixed deciduous-coniferous woodlands, past oak woodland loss has been associated with species extirpation from portions of Washington (e.g. Puget Sound).
Spruce Grouse	High	High	Moderate -High	High	 > Altered fire regimes > Increased insect and disease outbreaks 	Sensitivity of Spruce Grouse appears to be driven by their dependence on high elevation conifer forests. Spruce Grouse prefer relatively young successional stands of dense conifers, and populations appear to fluctuate over time in response to the degree of maturation of post- fire regrowth. Altered fire regimes and insect and disease outbreaks that lead to habitat degradation increase the sensitivity of Spruce Grouse to climate change.
Streaked Horned Lark	Moderate	Moderate	Moderate	Moderate	 Increased temperatures Altered hydrology Altered sediment accretion and erosion patterns (coastal) 	Streaked Horned Larks likely exhibit physiological sensitivity to warmer temperatures; they have been documented to alter behavior during warm periods (e.g. forage in shade, use wings to shade nests) and heat events have interrupted breeding season in other states. Streaked Horned Larks prefer open habitats with ample bare ground and very sparse, low stature vegetation. Populations in grassland areas may benefit from increasing fire frequencies that reduce vegetative cover and shrub/tree encroachment. Populations nesting on the banks of the Columbia River may be vulnerable to shifting flow regimes and flood peaks. Populations in beach/dune habitats along the Washington coast are vulnerable to changing sediment accretion and erosion patterns, which can change in response to hydrological shifts, current changes, changing precipitation patterns, and human management practices.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Surf Scoter	Moderate- High	Moderate	Moderate -High	Moderate	 Increased ocean temperature Sea level rise Declines in dissolved oxygen and pH 	Surf Scoter ducklings may exhibit some physiological sensitivity to climate change, as local weather conditions can affect survival. However, the overall sensitivity of Surf Scoters is primarily due to dependencies on specific breeding and foraging habitats that could be affected by climate change. Increases in temperature or sea level as well as changes in water chemistry may alter prey species composition and Pacific Herring spawn as well as alter subtidal foraging habitats. Surf Scoters are a late-nesting species and may also exhibit reduced flexibility in their timing of breeding, increasing their overall sensitivity to climate change.
Tufted Puffin	Moderate	Moderate	Moderate	Moderate	 > Increased ocean temperatures > Increased storminess > Sea level rise 	The main ways in which Tufted Puffins will be sensitive to climate change are through alterations to their breeding habitat and food supply. Predicted increases in sea surface temperature could lead to declines in abundance of zooplankton and small forage fish that this species preys upon. During breeding season Tufted Puffins stay close to their young and forage very close to breeding sites; thus, local declines in prey availability could lead to slower growth rates and reproductive failure, since adults will not be able to travel long distances to find alternate food sources. Additionally, sea level rise could impact breeding and foraging habitat for Tufted Puffins by altering the intertidal and subtidal areas where they deposit eggs and forage. Nesting habitat (i.e. burrowing sites) could also be impacted by increased storm frequency, which could result in damage and destruction of nesting areas.
Upland Sandpiper	Moderate	Low	Moderate	Moderate	 Increased temperatures Changes in precipitation 	Very limited information is available regarding the sensitivity of Upland Sandpipers to climate change, particularly in Washington. In the Midwest, Upland Sandpipers have exhibited some sensitivity to increasing temperatures, with earlier spring migration arrival positively correlated with increasing temperature. Declines in their preferred grassland and wet meadow habitat have already contributed to possible extirpation of the Upland Sandpiper in Washington; climate changes such as altered precipitation patterns that lead to further habitat loss will negatively impact this species. Altered fire regimes that remove shrubs and promote grasses may benefit this species.
	1				1	Significant historical declines of Western Bluebird populations in

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Bluebird (Western WA only)	Moderate		Moderate	Moderate	Colder/wetter spring conditions > Increased storminess (frequency or intensity)	western Washington are linked with wet conditions that affected prey availability, as well as habitat loss due to human activity. This species likely exhibits physiological sensitivity to temperature (particularly cold temperatures); adults elevationally migrate in response to shifting temperatures, and nestlings may become hypothermic during cold, wet periods. In addition, insect foraging opportunities decline during inclement weather, contributing to nestling mortality via starvation. Western Bluebirds nest in snag and tree cavities, and wildfire likely maintains preferred open woodland-prairie habitat and snag nesting opportunities, although it can eliminate specific nesting trees. Open woodland-prairie habitat in the Northwest may expand with drier conditions.
Western Grebe	Moderate	Low	Moderate	Moderate	 > Changes in water level (e.g. increased water drawdowns or changes in precipitation) > Increased temperatures (air and ocean) 	Disturbances to nesting habitats and declines in prey availability are the primary pathways through which Western Grebes will exhibit sensitivity to climate change. This species also exhibits some sensitivity to fluctuating water level (high or low), which could lead to declines in nesting habitats. In Washington, increased nest loss due to greater water drawdowns in reservoirs could occur due to the need for expanded agricultural irrigation caused by climate change. Also, damage associated with increased declines in preferred forage fish prey (primarily Pacific Herring) during the non-breeding season are thought to have led to a southern shift of the species to California, and further decreases in Pacific Herring (e.g. warmer ocean temperatures) could lead to additional Western Grebe population declines. Increases in air temperature could also prompt shifts in Western Grebe migration timing.
Western High Arctic Brant	Moderate	Moderate	Moderate	Moderate	 > Sea level rise > Increased ocean temperatures > Increased storminess > Changes in salinity 	This species likely exhibits moderate sensitivity to climate due to its habitat and foraging requirements. In particular, food abundance at wintering areas appears to have a direct effect on population reproduction. Key foraging areas such as eelgrass beds may decrease or increase due to changes in temperature or salinity, or sea level rise. Extreme events (e.g. severe winter weather) that reduce food abundance and availability could also affect this species (e.g. mortality).
Western	Moderate	Low	Moderate	Moderate	> Increased	Western Screech Owls may exhibit some physiological sensitivity to

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Screech Owl					temperatures > Changes in precipitation timing > Drought > Altered fire regimes > Increased insect outbreaks	increased drought, as Western Screech Owl populations in southwestern Arizona declined 70% in three years during a drought. Changes in the timing of precipitation and warmer temperatures may alter timing of prey availability and abundance, with potential impacts on Western Screech Owl fecundity. Similar to the Northern Spotted Owl, this species may be sensitive to altered disturbance regimes (i.e. fire and insect outbreaks) that lead to habitat changes.
Western Snowy Plover	Moderate- High	Moderate	High	Moderate	 > Sea level rise > Increased coastal erosion > Increased storminess/sto rm surge 	The dependence of Western Snowy Plovers on coastal beaches and marshes as habitat for breeding and nesting increases their sensitivity to climate change. Sea level rise, beach erosion, and storm surges may cause declines in suitable habitat and decreases in local carrying capacity. Additionally, increased rainfall and storms could lead to declines in nesting success.
White-headed Woodpecker	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Increased temperatures > Altered fire regimes > Changes in precipitation 	Sensitivity of White-headed Woodpeckers is influenced by warmer temperatures and precipitation changes that affect prey availability and habitat extent. Warmer temperatures are linked with higher surface bark insect abundance and enhanced forage opportunities. White-headed Woodpeckers require montane coniferous forests dominated by pines, which may be sensitive to precipitation changes and altered wildfire regimes, although these impacts could benefit the species (e.g. by providing more snags). Higher nesting and incubation success has been associated with warmer temperatures.
White-tailed Ptarmigan	High	High	High	High	 Increases in winter minimum temperatures Increased temperatures overall 	Physiological sensitivity of White-tailed Ptarmigan is likely low- moderate as this species is well-adapted to high altitude climatic variation and harsh conditions, although it has been shown that high winter minimum temperatures can retard population growth rates. The sensitivity of this species will primarily be driven by its dependence on high elevation habitats likely to be affected by or shrink in response to climate change, as well as its dependence on willow for foraging.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Reduced snowpack	
White-winged Scoter	Moderate	Moderate	Moderate	Moderate	 > Increased ocean temperature > Sea level rise > Declines in dissolved oxygen and pH 	Sensitivity of White-winged Scoters to climate change is primarily driven by their dependence on coastal estuaries, bays, and open coastlines with shallow water over shellfish beds and/or sand or gravel bottoms for foraging. Changes in ocean temperature, water chemistry, or sea level rise that affect food supply or foraging habitats could impact this species. White-winged Scoters are a late-nesting species and may also exhibit reduced flexibility in breeding timing, increasing their overall sensitivity to climate change.
Yellow-billed Cuckoo	Low- Moderate	Low	Low- Moderate	Moderate	> Increased temperatures > Increased drought and/or temperature change.	In Washington, Yellow-billed Cuckoos are likely sensitive to climate change through impacts in the availability of food resources. Warming temperatures may decrease the availability of food resources such as lepidopterans and/or lead to earlier spring peaks in food abundance which Yellow-billed Cuckoos may miss. Changes in precipitation or temperature may affect the peak timing of insect emergence or the timing of Yellow-billed Cuckoo arrival from wintering grounds, resulting in reduced food availability and possible impacts to breeding success.

C.2.3 Reptile and Amphibian Vulnerability Rankings

REPTILES AND	AMPHIBIANS					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
California Mountain Kingsnake	Low- Moderate	Low	Moderate	Low- Moderate	 > Changes in precipitation > Altered fire regimes 	No information exists regarding the sensitivity of this species to climate change. Due to its occurrence in moist microhabitats in Oregon white oak-ponderosa pine forest, this species may have some sensitivity to altered precipitation and fire regimes that result in habitat loss or degradation. In Washington, species distribution is extremely small (around 20 miles) and is at the northern extent of the range, and occurrence is isolated and disjunct from the rest of the range by 200 miles.
Cascade	High	High	High	High	> Increased	Cascade Torrent Salamanders are likely highly sensitive to climate

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Torrent Salamander					temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from snow to rain > Earlier snowmelt	change due to their inability to tolerate desiccation and specialized habitat requirements. Declines in water availability and timing (e.g. reduced snowpack and earlier snow melt), as well as increased sedimentation (e.g. shifts from snow to rain), could decrease suitable headwater habitat for this species. This species may also be physiologically limited by high temperatures.
Columbia Spotted Frog (Columbia Basin only)	Moderate- High	Moderate	Moderate -High	Moderate	 > Changes in precipitation (rain and snow) > Altered hydrology 	Though there is very limited information available regarding the sensitivity of the Columbia Spotted Frog to climate change, their main sensitivity is likely to stem from any climate-induced changes in their pond and stream breeding habitat. If streams and ponds become drier, this could limit available breeding and juvenile habitat for this species, particularly for juveniles who are unable to travel long distances to more suitable habitat. Changes in precipitation patterns could also affect the Columbia Spotted Frog through alterations in breeding timing, egg survival, and availability of prey. However, predicted increases in temperature and milder winters may positively impact this species, as studies have shown that warmer and less severe winters are linked to increases in survival and breeding probability.
Columbia Torrent Salamander	Moderate- High	Moderate	High	Moderate -High	 > Increased temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from snow to rain > Earlier snowmelt 	Similar to Cascade Torrent Salamanders, Columbia Torrent Salamanders are likely highly sensitive to climate change due to their inability to tolerate desiccation and specialized habitat requirements. Declines in water availability and timing (e.g. reduced snowpack and earlier snow melt), as well as increased sedimentation (e.g. shifts from snow to rain), could decrease suitable headwater habitat for this species. This species appears to prefer north-facing, steep slopes, suggesting that this species may be sensitive to higher water temperatures and drier microclimates.

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Cope's Giant Salamander	Moderate- High	Moderate	Moderate -High	Moderate -High	 Increased temperatures Changes in precipitation Shifts from snow to rain 	Cope's Giant Salamanders appear sensitive to temperature and precipitation factors that cause microhabitat desiccation as well as high flow events that degrade aquatic habitat. Elevated temperatures (although one study has shown these salamanders may tolerate a wider temperature range), increased solar radiation, and moisture loss, as well as declines in stream flow that reduce aquatic habitats, will likely negatively affect this species. Additionally, the species' occurrence in rain-on-snow transient zones makes it particularly sensitive to rain-on-snow events that result in high flow events and increased sedimentation. Range contractions are projected for the southern Cascades ecoregion, with possible expansions in the northern Cascades and/or low-mid elevation southern coastal streams.
Dunn's Salamander	Moderate- High	Low	Moderate -High	Moderate	 > Increased temperatures > Changes in precipitation > Reduced snowpack > Earlier snowmelt 	Little to no information exists regarding sensitivity of the Dunn's Salamander to climate change. This species may exhibit some sensitivity to warmer temperatures; however, its overall sensitivity is likely driven by its dependence on moist microhabitats that could be lost or degraded due to changes in snowpack amount and runoff timing.
Green Sea Turtle	Moderate	Moderate	Moderate -High	Low- Moderate	 > Increased temperatures (air and ocean) > Declines in pH 	Green Sea Turtles will be sensitive to climate change through a number of pathways. The species may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns, nesting and hatch timing, and prompt mismatches between Green Sea Turtle abundance and prey availability. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and decreases in pH could lead to alterations of macroalgal species that Green Sea Turtles prey upon and limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Green Sea Turtles may allow them to search out different suitable nesting habitat,

Consider	Overall	Overall	Sensitivity	Exposure	Summary of	Current of Consisti its
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						although nesting occurs outside of Washington.
Larch Mountain Salamander	Moderate- High	Moderate	High	Moderate	 Increased temperatures Changes in precipitation 	Sensitivity of Larch Mountain Salamanders to climate change is likely driven by its specialized habitat requirements; it prefers forested talus environments. This species also exhibits physiological sensitivity to temperature and precipitation, seeking out suitable microclimates (e.g. active at the surface during periods of high humidity and moderate temperature) as needed. Warmer and drier conditions could negatively affect this species through loss of suitable habitat, population isolation due to inability to disperse, and/or direct mortality because they depend on moist skin surfaces for oxygen uptake.
Leatherback Sea Turtle	Moderate	Moderate	Moderate -High	Low- Moderate	 > Increased temperatures (air and ocean) > Changes in upwelling/circ ulation 	Leatherback Sea Turtles will be sensitive to climate change through a number of pathways. They may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns, northward species shift, and alterations in nesting and hatch timing, which could prompt mismatches between Leatherback Sea Turtle abundance and prey availability. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and potential changes in upwelling and ocean circulation could affect the jellyfish that Leatherback Sea Turtles tend to prey upon and limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Leatherback Sea Turtles may allow them to search out different suitable nesting habitat; they have low nest-site fidelity and thus may be able to switch nesting sites depending on conditions, although nesting occurs outside of Washington.
Loggerhead Sea Turtle	Moderate- High	Moderate	Moderate -High	Moderate	 Increased temperatures (air and ocean) > Declines in pH 	Loggerhead Sea Turtles will be sensitive to climate change through a number of pathways. They may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns and alterations in nesting and hatch timing, which could prompt mismatches between turtle abundance and prey availability; Loggerhead Sea Turtles were

REPTILES AND	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						found to have decreased nesting abundance with warmer sea surface temperature. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and decreases in pH could affect invertebrates (e.g. crabs, crustaceans, mollusks) that Loggerhead Sea Turtles prey on and potentially limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Loggerhead Sea Turtles may allow them to search out different suitable nesting habitat, although nesting does not generally occur in Washington.
Night Snake	N/A	N/A	Unknown	Moderate	 > Altered fire regimes > Increased invasive weeds 	No information exists regarding the sensitivity of this species to climate change. Due to a lack of information on status and distribution in Washington, it is also difficult to estimate habitat sensitivities to climate change. In general, individuals associated with shrub-steppe vegetation are sensitive to altered fire regimes and invasive weeds that degrade or eliminate habitat.
Northern Leopard Frog	Moderate- High	Moderate	Moderate -High	Moderate	 > Increased temperatures > Changes in precipitation > Altered hydrology 	There is very limited information available regarding the sensitivity of Northern Leopard Frogs to climate change. They may experience some sensitivity to potential increases in temperature, which could lead to earlier timing of mating and breeding. Their sensitivity will be increased by potential climate-induced changes in their pond habitat. Adults need deep water, seasonal ponds, and wetlands for breeding habitat, and potential warmer and drier conditions could lead to declines in available breeding habitat. Drier conditions could even lead to localized population extinctions if breeding ponds become too shallow or disappear completely.
Olympic Torrent Salamander	High	High	High	Moderate -High	 > Increased temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from 	Overall sensitivity of this species is likely high due to high physiological sensitivity and specific habitat requirements—they are associated with permanent, high elevation, silt-free cold water sources with steep gradients. Increasing water temperatures and moisture loss will negatively impact this species, as it is desiccation-intolerant and cannot survive where water temperatures are too high. Reduced snowpack and shifts from snow to rain that lead to high flow events, erosion and scouring could reduce headwater riparian habitat for the Olympic Torrent Salamander.

<u> </u>	Overall	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Species	Vulnerability					
	-				snow to rain	
Oregon Spotted Frog	Moderate- High	Low	Moderate -High	Moderate	 > Increased temperatures > Changes in precipitation > Altered hydrology 	Very limited information is available regarding the sensitivity of the Oregon Spotted Frog to climate change. Its main sensitivity is likely to be due to changes in pond and wetland habitat. This species prefers shallow water ponds and vegetated pools for breeding and tadpole development. Potential warmer and drier conditions could lead to alterations in or disappearance of shallow ponds and changes in vegetation, which could impact breeding and tadpole survival. Additionally, warmer temperatures could lead to increases in invasive warm water predators that prey upon Oregon Spotted Frogs, like American Bullfrogs and some invasive fish species, thus leading to potential population declines.
Pygmy Horned Lizard	Moderate	Low	Moderate	Moderate	 > Increased temperatures > Altered fire regimes > Increased invasive weeds 	Little to no information exists regarding sensitivity of the Pygmy Horned Lizard to climate change. Physiological sensitivity of this species may be low to moderate, as it is inactive during cold weather or extended periods of heat. It appears to exhibit behavioral thermoregulation and burrows when inactive. Its inability to disperse long distances may increase sensitivity of this species. Overall sensitivity of this species is likely driven by its occurrence in shrub- steppe habitats, which are sensitive to altered fire regimes and invasive weeds.
Ring-necked Snake	Low- Moderate	Low	Low- Moderate	Moderate	 > Changes in precipitation (rain and snow) > Altered fire regimes 	Overall, there is a lack of information regarding sensitivity of the Ring- necked Snake to climate change. Individuals that occur in shrub-steppe habitats are often associated with riparian areas, and may have higher sensitivity due to drying habitat or altered fire regimes that degrade or eliminate habitat.
Rocky Mountain Tailed Frog	Moderate- High	Moderate	Moderate -High	Moderate -High	 Increased stream temperatures Changes in precipitation Altered fire regimes Altered 	Though there is limited information available regarding the sensitivity of the Rocky Mountain Tailed Frog to climate change, particularly for Washington populations, this species may exhibit some sensitivity to predicted increases in stream temperature with climate change. Rocky Mountain Tailed Frogs breed in streams and tadpoles spend many summers in stream habitat. Increases in stream temperature during the summer could lead to declines in tadpoles and adults. Both adults and juveniles may be able to avoid summer increases by migrating to

Curacian	Overall	Overall	Sensitivity	Exposure	Summary of	Current of Constitution
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					hydrology (i.e. increased flooding)	areas of the stream with cooler water, and some studies have shown an ability to withstand increases in stream temperature. Additionally, potential warmer and drier conditions and increases in wildfires could alter this species' preferred forest habitat and lead to reductions in population size. Increases in winter and spring precipitation could also lead to increased flooding events, disturbing available habitat for juveniles.
Sagebrush Lizard	Moderate- High	Low	Moderate -High	Moderate	 > Altered fire regimes > Increased invasive weeds 	Little to no information exists regarding sensitivity of the Sagebrush Lizard to climate change. It is likely that their overall sensitivity is greater since they are vegetated sand dune specialists. This habitat is vulnerable to invasive grasses or altered fire regimes that eliminate habitat.
Sharp-tailed Snake	Moderate	Low	Moderate	Moderate	 > Increased temperatures > Changes in precipitation > Altered fire regimes 	Overall, there is a lack of information regarding sensitivity of the Sharp- tailed Snake to climate change. Sensitivity of this species may be influenced by its occurrence along edges of coniferous or open hardwood forest, which are sensitive to warming temperatures, moisture stress, and changing fire patterns. This species may also exhibit some sensitivity to warmer temperatures and changes in precipitation since they are often associated with moist habitats.
Side-blotched Lizard	Moderate	Moderate	Moderate	Moderate	 Increased temperatures Changes in precipitation Altered fire regimes Increased invasive weeds 	Side-blotched Lizards appear to exhibit low reproductive sensitivity to climate, as warming temperatures (particularly warmer nights during breeding season) may increase reproductive output and subsequent survival. Further, Side-blotched Lizards appear to select specific temperature microhabitats, indicating behavioral thermoregulation. However, this species may exhibit some physiological sensitivity to changes in precipitation and warming winter temperatures (e.g. if warmer temperatures increase energetic demands). Overall sensitivity of this species is somewhat higher due to its association with shrub- steppe habitats, which are sensitive to altered fire regimes and invasive weeds that degrade or eliminate habitat.
Striped Whipsnake	Low- Moderate	Low	Low- Moderate	Moderate	 > Changes in precipitation > Increased invasive weeds 	Overall, there is a lack of information regarding sensitivity of the Striped Whipsnake to climate change. Sensitivity of this species may be influenced by its occurrence in shrub-steppe habitats, which are sensitive to changes in precipitation, invasive weeds, and altered fire regimes.

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					> Altered fire	
					regimes	
Tiger	Moderate-	High	High	Moderate	> Increased	Little information exists regarding sensitivity of the Tiger Salamander to
Salamander	High				temperatures	climate change, particularly in Washington. This species likely exhibits
					> Changes in	sensitivity to warmer and drier conditions that reduce aquatic breeding
					precipitation	habitat, lead to desiccation, and/or result in an inability to move.
					and/or	Warmer temperatures and a decrease in total annual precipitation
					reduced	(including snow), as well as an increase in drought, has led to wetland
					snowpack	desiccation and significant population declines in Yellowstone National
					> Drought	Park. Timing of reproduction may also be affected by increasing
						temperatures.
Van Dyke's	Moderate-	Moderate	High	Moderate	> Increased	Van Dyke's Salamanders are physiologically sensitive to heat and
Salamander	High				temperatures	desiccation; this sensitivity to temperature and moisture changes is
					> Changes in	driven by respiration requirements; they depend on moist skin surfaces for oxygen uptake, although they can behaviorally regulate exposure
					precipitation > Reduced	by moving underground during times of higher temperatures and less
					snowpack	precipitation. Sensitivity of this species is further increased due to their
					SHOWPACK	requirement of cool, forested stream habitat. Changes in hydrology
						(e.g. declines in snowpack or precipitation) that reduce seeps and
						springs habitat could negatively impact this species.
Western Pond	Low-	Low	Low-	Moderate	> Increased	Overall, there is a lack of information regarding sensitivity of the
Turtle	Moderate		Moderate		temperatures	Western Pond Turtle to climate change. Sensitivity of this species may
					> Changes in	be affected by warming temperatures that influence offspring sex
					precipitation	ratios, increasing the number of females even with small increases in
					(rain and	temperature (<3°F). However, it is possible that warming could benefit
					snow)	this species by providing more warm days for developing embryos, as
					> Altered	Western Pond Turtles in Puget Sound are at the northern extreme of
					hydrology	their range. Their dependence on aquatic habitats increases sensitivity
					> Increased	of this species, as these habitats are likely to be affected by increasing
					invasive	temperatures and altered hydrology. Invasive weeds that overgrow
					weeds	nesting areas further increase sensitivity of this species.
Western Toad	Moderate	Moderate	Moderate	Moderate	> Changes in	Sensitivity of the Western Toad to climate change is primarily driven by
(W WA only)			to		precipitation	its dependence on intermittent and permanent aquatic habitats (e.g.
			Moderate		(rain and	streams, seeps, wetlands, ponds, etc.) that may be lost or degraded
			-High w/		snow)	due to changes in precipitation and altered hydrology. Desiccation of

REPTILES AND	AMPHIBIANS					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
			synergistic impacts		> Altered hydrology	streams and pools along dispersal routes may create barriers to movement. Synergistic impacts such as climate changes combined with disease outbreaks increases sensitivity of this species. Physiological sensitivity of this species is unclear—some references cite sensitivities to temperature and moisture conditions, while others cite high adaptability to changes in these conditions. Greatest impacts to montane wetland-reliant taxa will most likely occur when landscapes primarily contain shallow wetlands at high risk of drying and are composed of multiple wetland types but deeper habitats are unsuitable (e.g. presence of introduced fish)
Woodhouse's Toad	Moderate- High	Moderate	Moderate -High	Moderate	 Increased temperatures Changes in precipitation Increased invasive weeds Altered fire regimes 	Juvenile toads avoid high temperatures and prefer lower temperatures when food is limited or under dry conditions. Tadpoles may be sensitive to low pH levels. Woodhouse's Toad may be better adapted to warmer, drier conditions due to their dry, leathery skin and ability to burrow to reduce exposure to high temperatures, although they need friable soils to burrow. Sensitivity of Woodhouse's Toad is greater due to their shrubland habitat specialization and dependence on wetlands and ponds for breeding, as well as low ability to disperse. Declines in shrub-steppe and wetland habitats due to climate change (i.e. changes in precipitation, invasive weeds, altered fire regimes) negatively affect this species.

C.2.4 Fish Vulnerability Rankings

FISH	FISH									
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity				
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity				
Bluntnose	Low-	High	Low-	Moderate	> Increased	Though limited information is available regarding the sensitivity of				
Sixgill Shark	Moderate		Moderate		ocean	Bluntnose Sixgill Sharks to climate change (particularly in Washington),				
					temperatures	there are a number of ways in which this species may be sensitive to				
					> Decreased	changing ocean conditions. In general, increases in temperature may				
					oxygen	affect movement and migration patterns. The use of Puget Sound by				
						juvenile Bluntnose Sixgill Sharks and their high site fidelity within Puget				

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Bocaccio (Puget Sound/Georgi a Basin DPS)	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen 	Sound could make them sensitive to climate-related changes, such as increases in temperature or potential decreases in oxygen, which could potentially lead to declines in prey availability (e.g. other sharks and rays, fish). Because they are scavengers that target a wide range of prey, they may be able to shift prey species due to changes in abundance, but the high site fidelity of juveniles within Puget Sound, as well as their life history characteristics (slow growth, long generation times, low fecundity) may increase their sensitivity to climate-induced changes in Puget Sound. However, it appears Puget Sound Bluntnose Sixgill Sharks are part of a larger, much more broadly distributed population, suggesting possible resilience to climate impacts. The main sensitivity of Bocaccio to climate change is likely to stem from changes to their prey base and resultant reductions in the likelihood of successful recruitment events. Warmer ocean conditions could lead to decreases in prey (e.g. krill, copepods) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Warmer waters could also lead to decreased success of recruitment events. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult Bocaccio use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Bocaccio, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. vears with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Broadnose Sevengill Shark	Moderate	Moderate	Moderate	Moderate	 > Increased ocean temperatures > Altered circulation patterns 	Though limited information is available regarding the sensitivity of Broadnose Sevengill Sharks to climate change (particularly in Washington), there are a number of ways in which this species may be sensitive to changing ocean conditions. In general, increases in temperature may affect movement and migration patterns of sharks. Currently the warmer summer waters of Willapa Bay, where most

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					oxygen	reproductive benefits for sharks, but shifts in temperature, changes in ocean circulation that lead to decreased productivity, or decreases in oxygen and resulting declines in prey availability could make this area less optimal. Because Broadnose Sevengill Sharks target a broad range of prey, they may be more adaptable to shifts in prey composition, but their high site fidelity to particular areas in Willapa Bay, as well as their life history characteristics (slow growth, long generation times, low fecundity) may increase their sensitivity to any climate-induced changes in habitat conditions. Overall, the generalist nature of their diet, ability to migrate to and from California and use diverse estuaries, and general hardiness suggest limited climate-related impacts.
Brown Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen 	The main sensitivity of Brown Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Brown Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Bull Trout - Coastal Recovery Unit	Moderate- High	High	Moderate- High	Moderate	 > Increased water temperatures > Altered runoff timing > Increased winter/spring flood events > Lower 	Sensitivity of Bull Trout is primarily driven by water temperature. Bull Trout are the southernmost species of Western North American char and have lower thermal tolerance than other salmonids they co-occur with. The upper incipient lethal temperature for Bull Trout was found to be 70°F, whereas the optimal temperatures for growth were in the range of 50-59°F. Thus Bull Trout have a similar thermal optima to the salmonids they co-occur with, yet a lower thermal tolerance, indicating they have a narrower thermal niche and higher sensitivity to temperature. Indeed the geographic distribution of Bull Trout, and the

FISH						
Species v	Overall /ulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Bull Trout - N	Лoderate- ligh	High	Moderate- High	Moderate	summer flows > Increased water temperatures > Altered runoff timing > Increased winter/spring flood events > Lower summer flows	persistence of populations during contemporary warming has been most strongly related to maximum water temperature. The ability of Bull Trout to persist in sub-optimally warm temperatures likely depends on food abundance. As temperature increases metabolic costs, the extent to which Bull Trout can maintain positive energy balance depends on its ability to find food. Bull Trout historically relied heavily on salmon as a food resource and may be less resilient to temperatures in areas where foraging opportunities of salmon eggs and juveniles have declined. Invasive chars (Brook and Lake Trout) now reside in many headwater streams and lakes, and may exclude Bull Trout from these potential coldwater refuges, increasing their sensitivity to warming. Bull Trout sensitivity to flows is likely to occur during two critical periods: 1) direct effects of altered runoff timing and magnitude on emerging fry in late winter/spring, and 2) indirect effects of low summer flows on all life phases of Bull Trout by mediating the duration and magnitude of thermal stress events. Sensitivity of Bull Trout is primarily driven by water temperature. Bull Trout are the southernmost species of Western North American char and have lower thermal tolerance than other salmonids they co-occur with. The upper incipient lethal temperatures for growth were in the range of 50-59°F. Thus Bull Trout have a similar thermal optima to the salmonids they co-occur with, yet a lower thermal tolerance, indicating they have a narrower thermal niche and higher sensitivity to temperature. Indeed the geographic distribution of Bull Trout, and the persistence of populations during contemporary warming has been most strongly related to maximum water temperatures likely depends on food abundance. As temperature increases metabolic costs, the extent to which Bull Trout can maintain positive energy balance depends on its ability to find food. Bull Trout historically relied heavily on salmon as a food resource and may be less resilient to temperatures in areas where

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						potential coldwater refuges, increasing their sensitivity to warming. Bull Trout sensitivity to flows is likely to occur during two critical periods: 1) direct effects of altered runoff timing and magnitude on emerging fry in late winter/spring, and 2) indirect effects of low summer flows on all life phases of Bull Trout by mediating the duration and magnitude of thermal stress events.
Burbot	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Altered flow regimes	Burbot is a cold-adapted species whose distribution, behavior, and physiology is limited by warmer water temperatures. Warmer water temperatures limit dispersal to more southerly locations and influence behavior and physiology in current habitat. Burbot have been documented to seek out cool-water thermal refugia near lake inflows, and warmer water temperatures have been documented to decrease survival and have variable impacts on growth of hatchery-raised individuals. Shifts in streamflow may affect spawning migrations and/or spawning synchrony of this winter-spawning species. For example, reduced streamflows and lake/reservoir levels can reduce or degrade spawning and rearing habitat, while high winter flows may impede upstream movements of adult Burbot.
Canary Rockfish (Puget Sound/Georgi a Basin DPS)	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen 	The main sensitivity of Canary Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods, crustaceans, euphausiid eggs) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Canary Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
China Rockfish	Moderate-	Moderate	Moderate	Moderate-	> Increased	The main sensitivity of China Rockfish to climate change is likely to stem

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	High			High	ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on China Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Columbia River Chum Salmon ESU	Moderate	High	Moderate	Moderate	 Increased water temperatures (freshwater and sea surface) > Increased winter/spring flood events 	Washington is near the southern extent of the geographic range for chum salmon, which suggests they may be sensitive to increases in water temperature (freshwater and ocean). Chum salmon incubate embryos in freshwater, but juveniles migrate to estuaries as age-zeros, typically during the spring; the spawning migrations of adult fish typically occur in late fall. Thus Columbia River chum salmon are unlikely to be exposed to thermal stress in the freshwater phase of their life history. However, altered freshwater thermal regimes could affect chum salmon by altering their phenology and potentially creating mismatch between arrival in estuaries and the timing of ideal ecological conditions in estuarine habitats. Chum salmon will likely be most sensitive to changes in marine thermal regimes. In general, Pacific salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. However, recent evidence suggests that chum salmon may be less sensitive to SST at the southern extent of their range compared with pink and sockeye. Chum salmon spawn in late fall at southern latitudes and their embryos are vulnerable to flood events that can scour redds or bury them in silt. Chum may be vulnerable to altered flow regimes that include increased flood severity, particularly in watersheds where land use has enhanced stream flashiness.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Copper Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 Increased ocean temperatures Sea level rise Declines in pH Decreased oxygen 	The main sensitivity of Copper Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Copper Rockfish, leading to higher levels of mortality across various life stages; in the past, Copper Rockfish have exhibited high mortality rates during extreme hypoxic events. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Eulachon (southern DPS)	Moderate- High	Moderate	High	Moderate	> Altered runoff timing and magnitude > Increased water temperatures (fresh and ocean)	Eulachon are vulnerable to climate-driven changes in both their oceanic rearing and freshwater spawning habitat. Eulachon exhibit site fidelity to specific spawning rivers, limiting the opportunity for adults and juveniles to move in response to changing nearshore-rearing and spawning habitat conditions. Eulachon spawn prior to the spring freshet, and egg hatch is correlated with peak spring flows to facilitate emigration. Precipitation changes, reduced snowpack, and earlier snowmelt all contribute to shifts in streamflow timing and magnitude, which could alter Eulachon spawning time and/or cause earlier emigration. Early emigration could contribute to oceanic prey mismatch and Eulachon mortality if larvae/juveniles arrive to marine rearing habitat prior to coastal upwelling initiation, which is projected to occur later in response to warmer ocean temperatures. Warming ocean temperatures may also affect eulachon forage opportunities and marine survival by affecting the abundance and composition of copepod communities, key prey for larval eulachon. Warming ocean temperatures have also facilitated the expansion of Pacific Hake, which prey upon and compete with Eulachon.
Green	Low-	Low	Low-	Moderate	> Increased	Limited information is available regarding the sensitivity of Green

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Sturgeon (southern DPS)	Moderate		Moderate		ocean temperatures > Declines in pH	Sturgeon to climate change (particularly in Washington). Green Sturgeon are wide-ranging migrants, spawning in California and appearing in Washington's coastal waters, estuaries and watersheds in late summer. Although they may be sensitive to hydrological and temperature shifts in their natal watersheds, vulnerability to climate change in Washington is likely linked with changes in the marine environment. In general, water temperatures influence fish distribution, physiology, and biology. Green Sturgeon likely exhibit some physiological sensitivity to water temperature increases. A study in the Klamath and Rogue River basins found that bioenergetic performance peaked at water temperatures between 59-66°F. A separate study theorized that Green Sturgeon utilize warmer estuarine habitats in Washington during summer to maximize growth potential. Climate change impacts (e.g. decreased pH) may also affect Green Sturgeon prey (e.g. benthic organisms such as shrimp, amphipods, small fish, mollusks).
Greenstriped Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Decreased oxygen 	The main sensitivity of Greenstriped Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods, larger crustaceans and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. As Greenstriped Rockfish tend to prefer soft sediment and muddy, sandy areas as habitat, they will be less sensitive to loss of deepwater coral habitat due to decreased pH than other rockfish species. Decreased oxygen levels may have direct physiological effects on Greenstriped Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Hood Canal	Moderate-	High	Moderate-	Moderate-	> Increased	Washington is near the southern extent of the geographic range for
Summer	High		High	High	water	chum salmon, which suggests they may be sensitive to increases in

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Chum Salmon ESU					temperatures (freshwater and sea surface) > Increased winter/spring flood events > Lower summer flows	water temperature (freshwater and ocean). Chum salmon incubate embryos in freshwater, but juveniles migrate to estuaries as age-zeros, typically during the spring; the spawning migrations of adult fish typically occur in early fall. Thus Chum Salmon may be sensitive to lower summer flows during adult migration to spawning areas. Altered freshwater thermal regimes could affect chum salmon by altering their phenology and potentially creating mismatch between arrival in estuaries and the timing of ideal ecological conditions in estuarine habitats. Chum Salmon will likely be most sensitive to changes in marine thermal regimes. In general, Pacific Salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. However, recent evidence suggests that Chum Salmon may be less sensitive to SST at the southern extent of their range compared with Pink and Sockeye. Chum Salmon embryos are vulnerable to flood events that can scour redds or bury them in silt. Chum may be vulnerable to altered flow regimes that include increased flood severity, particularly in watersheds where land use has enhanced stream flashiness.
Inland Redband Trout (landlocked populations)	Moderate- High	Low	Moderate	Moderate- High	 > Increased water temperatures > Altered timing/magni tude of spring runoff > Lower summer flows 	In general, there is little information on Inland Redband Trout sensitivity to climate change. Inland Redband Trout are likely sensitive to increasing water temperatures and altered flow regimes. While Inland Redband Trout can persist in desert streams that often exceed 68°F through what appears to be local physiological adaptation, increased water temperatures pose a threat to this species because though their thermal optima is higher than other salmonids, their thermal maxima is similar. Further, warming temperatures may lead to increased non- native species invasion or competition with native "cool water" fishes such as cyprinids and catostomids. Inland Redband Trout spawn in the spring, thus their embryos and recently emerged fry may be sensitive to changes in the timing and magnitude of spring runoff. Lower summer flows may decrease habitat volume and access to headwater reaches for this species. Inland Redband Trout exhibit broad phenotypic (e.g. age at maturity, frequency and timing of spawning, temperature tolerance, etc.) and life history diversity, which may decrease overall sensitivity of this species.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Lake Chub	Moderate	Low	Moderate	Moderate	 > Increased water temperatures > Altered flow regimes > Increased sedimentatio n 	Although little information regarding the sensitivity of Lake Chub to climate change is available for Washington, analyses from other regions (e.g. Wyoming, South Dakota, Colorado) indicate that this species may be vulnerable to changes in water temperature, water levels, and turbidity. Lake Chub occupy cool, clear water, spawn in stream or lake margins, and are obligatory sight feeders. Water temperatures affect developmental rates and likely influence spawning timing. Shifting flow regimes (including low flows and flood frequency/ magnitudes), drought conditions, and warming temperatures could affect rearing success and adult survival, particularly for fragmented or isolated populations. In addition, post-wildfire sedimentation could affect water turbidity and affect foraging success.
Leopard Dace	Moderate- High	Low	Moderate	Moderate- High	 > Increased water temperatures > Lower summer flows > Altered timing/magni tude of spring floods 	Although little information is available regarding the sensitivity of Leopard Dace to climate change (particularly in Washington), as a cool- water associate, this species is likely sensitive to increasing water temperatures (upper lethal limit is 73°F). As a summer spawning species that occupies creeks, shallow lacustrine habitats, and low- to medium- sized rivers, Leopard Dace may also be vulnerable to decreasing summer streamflows, particularly if they exacerbate temperature increases. Increasing temperatures and shifting flow and flood regimes may also affect prey availability (e.g. aquatic insect larvae, earthworms). For example, spring floods were found to be a key delivery mechanism of earthworms, which constitute a large portion of Leopard Dace spring diet.
Lower Columbia Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	 > Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events 	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	
						adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors.
						Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to 3 years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures.
						The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
		comdence	NATIK			metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type fish migrate during the cooler months of the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in late summer and fall, but spawn immediately afterward and therefore spend much less time running negative energy budgets in freshwater. Thus stream-type adults are relatively more vulnerable to heat stress and energy demands during summer residence, whereas ocean-type adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-
						incubate, reducing egg-to-fry survival. Increased severity of winter

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						floods has been linked to decreased egg-to-fry survival in Washington.
						Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean—this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Lower Columbia Coho ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased water temperatures (freshwater	In general, Coho Salmon likely exhibit sensitivity to warmer water temperatures (freshwater and ocean) and lower summer flows. Freshwater temperature and flow regimes: Central California represents
					and sea surface) > Lower summer	the southern extent of the range for Coho Salmon, suggesting that they may be less sensitive to increases in water temperature than other species of Pacific Salmon (i.e. pink, chum, and sockeye). However, due to their reliance on streams for freshwater rearing, Coho are likely

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
		Confidence	Kank	Kank	flows	sensitive to both altered flow and thermal regimes. Juveniles prefer low- velocity habitat often in off-channel areas; reduced summer flows may increase the likelihood that such off-channel habitats become inaccessible, thermally stressful, or hypoxic. Early run timing individuals might be more sensitive to fall flood events, which are projected to increase in Washington, and may also be more sensitive to warmer water temperatures and lower flows during peak migration timing (i.e. mid-August to September). Later run timing individuals should be less sensitive because they migrate as adults during cooler periods of the year and their embryos are not yet buried in the gravel during late fall flooding. However, late run individuals may be more likely to have embryos or recently emerged fry threatened by spring flooding that is predicted to increase in severity and frequency. In general, Coho Salmon populations may be less resilient to episodic mortality events caused by climate stressors, because they exhibit only moderate levels of life history diversity and do not have as much variation in age at maturity as do Sockeye Salmon and Chinook Salmon. Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Coho Salmon, while warm PDO cycles coincided with declines in salmon
						numbers. Cooler SSTs during the winter prior to and after smolt migration have also been linked to higher Coho survival. In general, changes in coastal ocean habitat quality and productivity could negatively impact Coho Salmon.
Lower Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not

FISH						
Enerica	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sansitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					nitude	predicted to negatively affect Steelhead.
					> Increased	
					water	Steelhead may also exhibit some sensitivity to warming water
					temperatures	temperatures. Direct measures of Oncorhynchus mykiss thermal
					> Lower	physiology suggest many parameters do not differ significantly from
					summer	those of other salmonids (except in locally adapted populations of
					flows	Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause Steelhead and
						Chinook Salmon to use the same thermal refuges during spawning
						migrations. Similar to Chinook Salmon, steelhead are vulnerable to high
						angling pressure when seeking refuge in cold refugia such as tributary
						junctions; thus warmer temperatures can have indirect effects on
						mortality. However, the geographic distribution of steelhead suggests
						they may be less sensitive to warm temperatures than other
						anadromous salmonids—Steelhead occur in Southern California, farther
						south than any Pacific Salmon. Further, the resident life history form of
						steelhead can persist in desert streams that often exceed 68°F through
						what appears to be local adaptation. Whether steelhead populations
						from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal
						physiology.
						physiology.
						Similar to Chinook Salmon, steelhead exhibit alternative life histories in
						regards to run-timing, which confer different sensitivities to climate.
						Summer-run Steelhead migrate higher in river networks, entering
						freshwater between late spring and fall, and overwinter before
						spawning the following spring. In contrast, winter-run Steelhead migrate
						during winter or early spring and spawn immediately. Because they
						spend more time in freshwater, summer-run populations of Steelhead
						may be more sensitive to changes in flow and temperature regimes
						across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run Steelhead during the
						several months that they hold in streams prior to spawning.
						several months that they now in streams prior to spawillig.
						The existence of a resident life history form likely buffers Steelhead

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Margined Sculpin	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures	Little information is available regarding the sensitivity of Margined Sculpin to climate change. Margined Sculpin likely prefer aquatic habitat with water temperatures below 68°F; they can withstand short exposure to 77°F water temperatures, but experience mortality at and above 80°F. Margined Sculpin are largely associated with pools and deeper habitats, although more recent studies indicate they may exhibit broader habitat usage than previously thought. However, a limited distribution (they are found in only a few drainages in Washington) likely limits their ability to move in response to climate change and human land use impacts (e.g. sedimentation, channelization, and water pollution related to logging, agriculture, development, and grazing).
Middle Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate	 > Altered spring runoff timing and amount/mag nitude > Increased water temperatures > Lower summer flows 	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not predicted to negatively affect steelhead. Steelhead may also exhibit some sensitivity to warming water temperatures. Direct measures of <i>Steelhead</i> thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids— Steelhead occur in Southern California, farther south than any Pacific

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Salmon. Further, the resident life history form of Steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology.
						Similar to Chinook Salmon, steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of Steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run Steelhead during the several months that they hold in streams prior to spawning.
						The existence of a resident life history form likely buffers Steelhead from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Mountain Sucker	Low- Moderate	Low	Low- Moderate	Moderate	 Increased water temperatures > Altered flow regimes 	Little information is available regarding the sensitivity of Mountain Sucker to climate change. Spawning typically occurs during mid- to late- summer during stable low flows and in water temperatures between 52- 66°F. Warming water temperatures may affect spawning timing and other physiological and life history components of Mountain Sucker, including length of egg incubation. Floods, droughts, and altered streamflow volume likely impact egg and juvenile survival, availability of spawning habitat, and/or food availability (i.e. algae). Wildfires and resultant effects on stream temperatures, turbidity, and flow volumes may affect the quality and availability of mountain sucker habitat, but further information is needed.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Olympic Mudminnow	Moderate	Low	Moderate	Moderate	> Increased high flood events	Olympic Mudminnows occupy slow-moving streams, ponds, and freshwater wetlands at lower elevations with minimal water flow and ample aquatic vegetation. This species appears to be fairly tolerant of temperature and oxygen fluctuations, but has been documented to seek out cooler water temperatures and shaded areas during summer temperature peaks. Relative intolerance of swift water limits Olympic Mudminnow distribution to lowland areas, and in combination with salinity intolerance, may make them vulnerable to sea level rise and saltwater intrusion in current wetland habitat, although no studies examining this risk have been conducted. This species is likely to be sensitive to any hydrological shifts (e.g. low flows, flood timing and magnitude, altered sediment delivery) that affect freshwater wetland availability, function, and composition.
Ozette Sockeye ESU	Moderate	Low	Moderate	Moderate	 > Increased water temperatures (freshwater and sea surface) > Increased winter/spring flood events 	In general, sockeye salmon likely exhibit sensitivity to warmer water temperatures (freshwater and sea surface) and increased severity or frequency of winter/spring flood events. Washington is near the southern extent of the range for Sockeye Salmon, suggesting that they will be sensitive to increases in water temperature (freshwater and ocean). For example, even at the northern extent of their range in Alaska, sockeye salmon in shallow, non-stratified lakes may be thermally stressed in the summer. In Washington, Sockeye generally rear in deep, thermally stratified lakes and can move below the thermocline if surface waters become thermally unsuitable. This suggests that Sockeye may be less sensitive to temperature during the freshwater phase of their life history, as they are able to behaviorally thermoregulate. Additionally, sockeye may be somewhat more buffered from metabolic stresses associated with warmer water temperatures because lake food webs are generally more productive than that of streams. In general, Pacific salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. Indeed, recent research suggests that survival rates of sockeye salmon are strongly affected by variations in regional SST during early ocean life, with lower survival rates during years with warm SST anomalies (however, the mechanisms driving this trend may be upwelling and marine productivity rather than temperature per se).

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. Sockeye Salmon are also likely sensitive to winter flood events that can scour substrates or move gravel and silts to bury embryos. Increased severity of winter floods has been linked to decreased egg-to-fry survival in fall-spawning Pacific salmon of Washington.
Pacific Cod (Salish Sea population)	High	High	High	Moderate- High	> Increased ocean temperatures	Though limited information is available regarding the sensitivity of the Salish Sea population of Pacific Cod to climate change, their main sensitivity will be due to potential increases in sea surface temperature. Pacific Cod spawning and recruitment are strongly linked to temperature, with colder water supporting larger hatch size and maximizing growth performance. Cooler waters also support higher abundance of zooplankton prey (e.g. copepods), which is thought to be linked to increased recruitment. Temperature over 45°F appear to be associated with poor spawning success and limited recruitment. For Atlantic Cod, declines in recruitment with increasing temperature were particularly high for cod at the limits of their distribution. Pacific Cod in Washington are already at the upper end of their thermal preference, which is likely to increase their sensitivity to any increases in temperature and could lead to northward population shifts.
Pacific Hake (Georgia Basin DPS)	Low- Moderate	Moderate	Low- Moderate	Moderate	 > Increased ocean temperatures > Altered upwelling patterns 	Pacific Hake are unlikely to experience direct physiological sensitivity to climate change. However, increases in sea surface temperature, changes in upwelling patterns, and the associated changes that these trigger in zooplankton abundance will increase their sensitivity. Pacific Hake have already been documented as moving northward into Canadian waters; this shift is thought to be linked to higher food abundance in more northerly waters. Pacific Hake primarily target euphausiids, which often decline in abundance with warmer water conditions. Potential increases in water temperature could lead to decreases in euphausiid prey, declines in recruitment, and further northward shifts of Pacific Hake.
Pacific Herring	Moderate-	High	Moderate	Moderate-	> Increased	A main way in which Pacific Herring will be sensitive to climate change is
(Georgia Basin	High	Ŭ		High	ocean	through change in their prey availability and the distribution of

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
DPS)		Connuence	Ralik	Kalik	temperatures > Altered upwelling patterns > Changes in salinity > Saltwater intrusion in estuarine habitat	appropriate spawning habitat. Primary and secondary productivity are strongly linked to juvenile abundance, as juveniles tend to prey on zooplankton (e.g. copepods). Predicted increases in sea surface temperature and changes in upwelling, such as delayed and shorter upwelling seasons, could affect the timing and abundance of available prey for juveniles, though the magnitude of these effects is uncertain. In Washington, Pacific Herring populations have already shown northward movement for spawning and smaller juvenile cohorts, and these patterns could increase with predicted increases in sea surface temperature. Increased temperatures could also lead to northward shifts and increased abundance of Pacific Hake, which prey upon Pacific Herring and could thus lead to population declines through increased predation. Pacific Herring will also be sensitive to potential changes in nearshore and estuarine spawning habitat, such as increased salinity due to sea level rise and saltwater intrusion in estuaries, which could create suboptimal conditions for spawning and larval growth. Additionally, the suite of vegetative species used by this species as spawning substrate could change with long-term variation in water temperature and acidity. The prevalence and composition of this algal mat could result in degradation of spawning habitat to a degree that ultimately reduces incubation success.
Pacific Lamprey	Moderate- High	Moderate	Moderate- High	Moderate- High	 > Increased water temperatures > Lower summer/fall flows > Increased winter flood events > Altered fire regimes 	Pacific Lamprey exhibit physiological sensitivity to warming water temperatures. Egg and ammocoete survival is lowest and larval deformations most common at 72°F relative to lower water temperatures. Warmer summer water temperatures (>68°F) have also been found to compound adult body size reductions and accelerate sexual maturation and post-spawning death the following spring. All life stages of Pacific Lamprey are likely vulnerable to shifting flow regimes due to reduced snowpack, earlier snowmelt, and shifting precipitation regimes. Warmer water temperatures and low summer and fall flows can affect adult spawning migration timing (i.e. migration occurs earlier in warmer, lower flow years) and/or inhibit adult migrations upriver by constricting channels or causing thermal barriers. Reduced streamflows can also limit or degrade floodplain habitat for spawning and rearing by elevating water temperatures and/or contributing to juvenile and nest

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Pacific Sand Lance	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased air and ocean temperatures > Decreased oxygen > Sea level rise > Increased coastal erosion 	stranding and desiccation. Juvenile Pacific Lamprey, which occupy low velocity stream margins, and Pacific Lamprey nests, which are found in low gradient stream reaches, may also be vulnerable to scouring via winter flood events. Wildfire may also affect survival and rearing by reducing stream shading; high shade is correlated with higher Pacific Lamprey ammocoete abundance. Climate-driven changes in the marine environment may also affect Pacific Lamprey, but little is known about this part of their life stage. Though there is limited information regarding the sensitivity of Pacific Sand Lance to climate change, their sensitivity is likely to stem from climate-induced changes in their intertidal spawning habitat and changes in prey distribution and abundance. Increasing air and sea surface temperatures could lead to suboptimal sediment temperature and lower oxygen conditions in sediments where Pacific Sand Lance prefer to burrow, forcing them to emerge from the sediment and making them more susceptible to predation. Pacific Sand Lance tend to return to the same burrowing sediment habitat interannual, so changes in nearshore habitat (e.g. due to rising sea level or coastal erosion from increased storms) could limit burrowing and spawning habitat availability. Increasing sea surface temperature could also lead to declines and changes in distribution in zooplankton, limited prey availability for sand lance, and decreased recruitment.
Puget Sound Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	 Increased freshwater temperatures Lower summer flows Increased winter/spring flood events 	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. Puget Sound Chinook Salmon may be more sensitive to warmer summer temperatures and lower flows, as their spawning migration encounters the warmest part of the year (later summer and early fall). Cool tributaries may provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures.
						Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Puget Sound Chinook Salmon rear in streams for up to 1 year, they may be vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures.
						migrating adults. Mass mortality events in both fall and spring-run Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (stream-

FISH						
. ·	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington. Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Puget Sound Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	 > Altered spring runoff timing and amount/mag nitude > Increased water temperatures > Increased flood events and associated sedimentatio n and/or scour > Lower summer 	In general, Steelhead appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows (particularly summer and early fall) can reduce the probability of survival in rearing juveniles. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Steelhead may be able to shift the timing of a life stage transition to reduce the probability of exposure to changes in temperature or flow through phenotypic plasticity. Similar to Chinook Salmon, Steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					flows	during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run steelhead during the several months that they hold in streams prior to spawning. The existence of a resident life history form likely buffers Steelhead from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes. Temperature: Steelhead may exhibit some sensitivity to warming water temperatures. Direct measures of steelhead thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of redband rainbow trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, Steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of Steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids— Steelhead occur in Southern California, farther south than any Pacific Salmon. Further, the resident life history form of <i>Steelhead</i> can persist in desert streams that often exceed 68°C through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology.
						Flow regimes: The survival of Steelhead embryos or recently emerged
						fry may be sensitive to the timing and magnitude of spring runoff rather

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not predicted to negatively affect Steelhead. Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival,
Pygmy Whitefish	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased water temperatures > Altered fire regimes 	and migrations of salmonids. Pygmy Whitefish occupy cool lakes and streams with temperatures below 50°F, and are likely adapted to cold and low-productivity environments (i.e. small size, early maturation), making them sensitive to increasing water temperatures. Warmer water temperatures may have direct physiological effects, allow upstream expansion of some populations (provided no barriers exist) and/or affect ecological interactions by expanding the range of potential predators or competitors. Wildfires that remove stream- or lakeside vegetation may exacerbate temperature increases and/or contribute to sedimentation, which can affect spawning habitat.
Quillback Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen 	The main sensitivity of Quillback Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods for juveniles, larger crustaceans, small fish, and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Quillback Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Redstripe Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 > Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen 	The main sensitivity of Redstripe Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods for juveniles, larger crustaceans, small fish, and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Redstripe Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for
River Lamprey	Moderate- High	Low	Moderate- High	Moderate	 > Increased water temperatures (fresh and ocean) > Lower summer/fall flows > Increased winter flood events 	populations to recover from climate-related declines. Little is known about River Lamprey vulnerability to climate change (particularly in Washington), but they likely have similar vulnerability to Pacific Lamprey because they exhibit similar life history stages (spawning, rearing, and migration), although they typically occupy larger rivers at lower elevations. Rearing individuals may be vulnerable to shifts in flow regimes (e.g. desiccation or stranding due to low flows, enhanced scouring from high flows) and water quality (e.g. temperature increases), and adult River Lamprey may also be vulnerable to temperature and migration barriers resulting from reduced streamflows. Changes in the marine and estuarine environment that affect River Lamprey hosts (e.g. Pacific Herring, Surf Smelt) will likely affect the marine survival of this species.
Salish Sucker	Moderate- High	Moderate	Moderate	Moderate- High	 > Lower summer flows > Increased high flood events (frequency 	Salish Suckers occupy lakes and pools of headwater streams, spawn in riffles, and prefer long/deep pools with slower water velocities that are adjacent to shallow habitat with abundant vegetation (i.e. in-stream and over-stream cover). They are likely sensitive to climate-driven changes in habitat availability and quality. Declining summer and spring streamflows may affect pool length and depth, availability of spawning areas, and/or habitat connectivity. Altered riparian cover due to wildfire

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and magnitude) > Decreased oxygen	and land use changes can affect rearing habitat availability and quality and exacerbate increasing water temperatures. Altered flood frequencies or magnitudes may also affect this species, particularly if off-channel refugia is not available. Salish Suckers appear to be fairly tolerant of various water temperatures; spawning typically begins around 45-46°F, but has been documented in water temperatures up to 68°F. However, sublethal effects of warmer water temperatures are unknown (e.g. impacts on growth, fecundity, disease incidence). Hypoxic conditions are increasingly threatening this species, and are exacerbated by warmer water temperatures and streamflow reductions.
Snake River Spring/Summ er Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	 > Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events 	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration.
						Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to

SpeciesOverall VulnerabilityOverall RankSensitivity RankSummary of ExposureSummary of Summary of SensitivitySpeciesVulnerabilityRank <t< th=""><th>FISH</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	FISH						
Vulnerability Conductor Kank Exposure warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonistic. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fail. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower river populations (particularly the temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fail runs, respectively) each have their own unique sensitivites to temperature- situative exposure to potential water temperature- induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories	Granica	Overall	Overall	Sensitivity	Exposure	Summary of	Cummons of Consistivity
 come at a price, such as increased exposure to angling pressure, later arrival a spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmolds. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream - and ocean-type life histories (i.e., spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream - type fish rear longer in freshwater, and thus have greater cumulative exposure to portalial were repeater serves and may be increased streass on the higher mater such sensitivities to temperature endered increases in metabolic costs as are upriver populations. In ter	Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
arrival at spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly cean-type/fall run stocks) have lower revergy solid solid cean-ands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivits to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero firg) and may be more vulnerable to any energetic tripedial ware temperature in lower trivers and estuaries.							warming temperatures. However, time spent in thermal refugia can
Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type if all run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream-and ocean-type if histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperature in one rivers and destuaries.							come at a price, such as increased exposure to angling pressure, later
have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warning temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life historis difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly cocan-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature. Stream-and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer ingring-related stressors in tributary streams. However, ocean-type mide vulnerable to temperature.							arrival at spawning grounds, and other factors.
have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warning temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life historis difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly cocan-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature. Stream-and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer ingring-related stressors in tributary streams. However, ocean-type mide vulnerable to temperature.							
maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. In terms of run timing, stream- and ocean-type /fall run stocks) have lower river spopulations (particularly ocean-type ifall runs, stow at mus of run timing, stream- and oxean-type ifall runs stoks are upriver populations. In terms of run timing, stream- and oxean-type ifall runs stote at a a smaller size (typically age-zero fry) and ma							
dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warning temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature. Stream-type fish rear longer in greation. Howesher, these stress core and may be just as vulnerable to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-induced in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							-
 which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salumonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations, for example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water elated stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zer fry) and may be more vulnerable to as an elargite stores and eaviers. 							
models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
 capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of lates summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. 							
Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to see at a smaller size (typically age-zero fry) and may be more vulnerable to amp energetic impacts of warmer temperatures in lower rivers and destuaries.							
stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. In terms of run river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature- indcreases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							The variation in sensitivity among Chinook Salmon populations and life
increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							histories is difficult to predict. Upriver populations are potentially more
metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							sensitive to water temperature and/or low flows because of their
are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							increased cumulative exposure to thermal stress and the higher
compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries.							
energetic impacts of warmer temperatures in lower rivers and estuaries.							
LAS adults, stream-type individuals migrate during the cooler months of							As adults, stream-type individuals migrate during the cooler months of

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in late summer and fall, but spawn immediately afterward and therefore spend much less time running negative energy budgets in freshwater. Thus stream-type adults are relatively more vulnerable to heat stress and energy demands during summer residence, whereas ocean-type adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (stream- type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter
						floods has been linked to decreased egg-to-fry survival in Washington.
						Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean-this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run
						Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many

Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
		-	-	-	 populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration. Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon. In general, Steelhead appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows (particularly summer and early fall) can reduce the probability of survival in rearing juveniles. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Steelhead may be able to shift the timing of a life stage transition to reduce the probability of exposure to changes in temperature or flow through phenotypic plasticity. Similar to Chinook Salmon, Steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate.
					Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before
					spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase
	Vulnerability	Vulnerability Confidence Unitation Unitation Unitation	Vulnerability Confidence Rank Vulnerability Image: Confidence Rank Image: Confidence Im	Vulnerability Confidence Rank Vulnerability Confidence Rank Noderate- High Moderate-	VulnerabilityConfidenceRankRankExposureImage: Strain Strai

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	Exposure	
						several months that they hold in streams prior to spawning.
						The existence of a resident life history form likely buffers steelhead from
						environmental stochasticity and may make populations less vulnerable
						to extirpation. For example, anadromous individuals can survive
						ephemeral periods of unsuitability in their natal streams while they are
						away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
						Temperature: Steelhead may exhibit some sensitivity to warming water
						temperatures. Direct measures of Steelhead thermal physiology suggest
						many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow
						Trout in desert streams). In addition, contemporary temperature
						regimes in the Columbia River cause steelhead and Chinook Salmon to
						use the same thermal refuges during spawning migrations. Similar to
						Chinook Salmon, Steelhead are vulnerable to high angling pressure
						when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However,
						the geographic distribution of Steelhead suggests they may be less
						sensitive to warm temperatures than other anadromous salmonids-
						steelhead occur in Southern California, farther south than any Pacific
						salmon. Further, the resident life history form of steelhead can persist in
						desert streams that often exceed 68°F through what appears to be local adaptation. Whether steelhead populations from warmer streams
						exhibit higher thermal tolerance is poorly understood, as is the potential
						rate of evolution in attributes of thermal physiology.
						Flow regimes: The survival of Steelhead embryos or recently emerged
						fry may be sensitive to the timing and magnitude of spring runoff rather
						than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning
						salmonids are not predicted to negatively affect Steelhead.
						same are not predicted to negatively direct of confead.
						Marine: Increases in ocean and estuarine temperature, increased

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids.
Snake River Fall Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	 > Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events 	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors.
						have negative effects even when temperatures are not near the thermal

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Consistivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Species			-	-	-	Summary of Sensitivity maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater
						cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at
						a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type individuals migrate during the cooler months of
						the year in spring and then reside upriver before spawning in the fall;
						whereas ocean-type fish migrate during the warmest part of the year in
						late summer and fall, but spawn immediately afterward and therefore
						spend much less time running negative energy budgets in freshwater.
						Thus stream-type adults are relatively more vulnerable to heat stress
						and energy demands during summer residence, whereas ocean-type

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
		Conidence	Капк	Капк	Exposure	adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run Chinook salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (stream- type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington.
						Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean-this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Surf Smelt	Moderate- High	High	Moderate- High	Moderate- High	 > Increased air temperatures > Altered upwelling patterns > Sea level rise > Increased storminess 	timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon. The primary presumed threat to Surf Smelt as a result of climate change is a reduction in spawning habitat due to sea level rise, acting in concert with shoreline armoring – a situation known as the "coastal squeeze." Because Surf Smelt utilize intertidal beaches for spawning, and the backshores of these beaches tend to be armored with bulkheads and other structures, rising sea level will effectively eliminate these habitats. Surf Smelt may also experience some physiological sensitivity to climate change since warmer and drier beach conditions have been shown to lead to higher levels of egg mortality. Surf Smelt sensitivity will be increased by potential changes in zooplankton prey availability. Predicted delayed and shorter upwelling systems could affect the timing and abundance of prey and lead to declines in prey availability, particularly for juveniles, though the magnitude of these impacts is uncertain. Additionally, since Washington Surf Smelt tend to use a small number of beaches for spawning, changes in beach habitat due to sea level rise and stronger and increased storms could lead to declines in available spawning area.
Tiger Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	 Increased ocean temperatures Sea level rise Declines in pH Decreased oxygen 	The main sensitivity of Tiger Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Tiger Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Tui Chub	Low- Moderate	Low	Low- Moderate	Moderate	 Increased water temperatures Altered flow regimes Altered fire regimes 	Little information is available regarding the sensitivity of Tui Chub to climate change. Tui Chub inhabit lakes and slow-moving pools in riverine environments, spawning and rearing in shallow areas in spring and summer. Similar to other minnow species, they are likely sensitive to climate-driven shifts in rearing and spawning habitat near stream and lake margins (e.g. reduced habitat due to reduced spring/summer low flows or lake water levels caused by reduced snowpack, earlier snowmelt, shifting precipitation regimes and/or drought). Wildfire may also affect streamside vegetative cover and rearing habitat, as young Tui Chub are typically found close to shore in areas with heavy vegetation. Tui Chub are also likely sensitive to increasing water temperatures, as yearly spring temperature increases cue spawning timing.
Umatilla Dace	Moderate	Low	Low- Moderate	Moderate- High	> Lower stream flows	Little information is available regarding the sensitivity of Umatilla Dace to climate change. Umatilla Dace may benefit from increasing water temperatures, as they are currently restricted to warmer habitat areas (e.g. mainstem and downstream areas), preferring zones with slightly warmer water temperatures (64-68°F). They are also found in cooler habitats, although they may exhibit reduced mobility and retreat to interstitial spaces at cooler temperatures. Umatilla Dace is likely sensitive to reduced streamflows resulting from reduced snowpack, earlier snowmelt, and drought, particularly if streamflow declines are exacerbated by shifts in human water use. Juveniles and young-of-the- year occupy stream margins, making them vulnerable to stranding as streamflows decline.
Upper Columbia River Spring Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	 > Increased freshwater temperatures > Lower summer flows > Increased 	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect

Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure winter/spring	Summary of Sensitivity adult migration.
	Vulnerability	Confidence	Rank	Rank	-	
					winter/spring	adult migration
					flood events	Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life

	Summary of Sensitivity	Summary of	Exposure	Sensitivity	Overall	Overall	Species
	Summary of Sensitivity	Exposure	Rank	Rank	Confidence	Vulnerability	species
ntially more f their gher opulations stress e, lower induced erms of run fall runs, nperature. reater d stressors te to sea at erable to any nd estuaries months of n the fall; f the year in I therefore eshwater. eat stress ean-type Assessing ion in am-type en heavily e stressful fo ng-run to low ows to allow	The variation in sensitivity among Chinook Salmon populations are histories is difficult to predict. Upriver populations are potential sensitive to water temperature and/or low flows because of the increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populare likely better adapted to deal with thermal and energetic stree compared to lower Columbia River populations. For example, lo river populations (particularly ocean-type/fall run stocks) have le energy stores and may be just as vulnerable to temperature-ind increases in metabolic costs as are upriver populations. In terms timing, stream- and ocean-type life histories (i.e. spring and fall respectively) each have their own unique sensitivities to temper Stream-type fish rear longer in freshwater, and thus have greate cumulative exposure to potential water temperature-related str in tributary streams. However, ocean-type individuals migrate to a smaller size (typically age-zero fry) and may be more vulnerab energetic impacts of warmer temperatures in lower rivers and e As adults, stream-type fish migrate during the warmest part of the late summer and fall, but spawn immediately afterward and the spend much less time running negative energy budgets in fresh. Thus stream-type adults are relatively more vulnerable to heat s and energy demands during summer residence, whereas ocean-adults are more vulnerable to stress during migration itself. Asse how each life history has responded to contemporary variation i climate is challenging because of confounding factors: stream-typopulations are located higher in river systems and have been h affected by their increased cumulative exposure to dams. Flow regimes: Low flows during the summer and fall may be streemingrating adults. Mass mortality events in both fall and spring-run flows. Some salmon populations may also depend on high flows passage to upstream spawning areas. For example, spring-run (s						
d teer n n f t e e e e e e e e e e e e e e e e e e	cumulative exposure to potential water temperature-related in tributary streams. However, ocean-type individuals migrate a smaller size (typically age-zero fry) and may be more vulner energetic impacts of warmer temperatures in lower rivers an As adults, stream-type individuals migrate during the cooler r the year in spring and then reside upriver before spawning in whereas ocean-type fish migrate during the warmest part of late summer and fall, but spawn immediately afterward and t spend much less time running negative energy budgets in free Thus stream-type adults are relatively more vulnerable to hea and energy demands during summer residence, whereas ocea adults are more vulnerable to stress during migration itself. A how each life history has responded to contemporary variation climate is challenging because of confounding factors: stream populations are located higher in river systems and have been affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be s migrating adults. Mass mortality events in both fall and spring Chinook Salmon have been linked to high temperatures due to flows. Some salmon populations may also depend on high flo						

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
opecies	Vulnerability	Confidence	Rank	Rank	Exposure	· · · ·
		comucilee				type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington. Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean-this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Upper Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not

FISH						
Creation	Overall	Overall	Sensitivity	Exposure	Summary of	Current of Consistivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure nitude > Increased water temperatures	summary of Sensitivity predicted to negatively affect Steelhead. Steelhead may also exhibit some sensitivity to warming water temperatures. Direct measures of Steelhead thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, Steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of Steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids— Steelhead occur in Southern California, farther south than any Pacific salmon. Further, the resident life history form of steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology. Similar to Chinook Salmon, steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run steelhead during the
						across river networks. For example, higher temperatures will increase

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Walleye Pollock (South Puget Sound)	Moderate	High	Moderate	Moderate	> Increased ocean temperatures	Walleye Pollock are likely to be sensitive to increases in sea surface temperature, particularly since Puget Sound is the southern limit of their range. Cooler waters support higher levels of Walleye Pollock recruitment and larval survival because cooler waters promote increased production of primary prey species for pollock (e.g. copepods, euphausiids, other zooplankton). For Walleye Pollock in the Bering Sea, it was found that though warmer spring conditions during spawning season enhanced early survival of larvae, continued higher temperatures led to poor feeding conditions and reduced recruitment the following year. Thus, predicted warming could result in decreases in prey abundance and declines in recruitment, larval survival, and productivity and potential northward range shifts of Walleye Pollock.
Westslope Cutthroat Trout	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased spring flood events > Altered runoff timing and amount > Increased water temperatures > Lower summer flows 	 Westslope Cutthroat Trout spawn in the spring and are thus sensitive to the timing and magnitude of snowmelt and the accompanying flood pulse. Winter floods do not pose a risk to Westslope Cutthroat Trout embryos, but it is possible that increased severity of fall and winter floods could negatively affect overwintering juveniles (although quality data on this topic are lacking due to the challenge of monitoring survival in flood prone systems). Like many stream rearing salmonids, Westslope Cutthroat Trout can be vulnerable to sub-optimally warm temperatures during base flow periods in late summer and fall. During these low flow periods, terrestrial subsidies typically comprise the dominant food source for this species, and may be critical for enabling fish to offset the elevated metabolic costs caused by higher water temperatures. Factors that mediate the magnitude of terrestrial subsidies, such as land use practices in riparian areas, can in turn mediate the sensitivity of trout to altered thermal regimes. Recruitment of Westslope Cutthroat Trout in high elevation streams

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						may be constrained by cold, rather than warm, summer temperatures. Warming may have some positive effects by increasing the amount of high elevation habitat capable of rearing juveniles.
						The primary source of decline for Westslope Cutthroat Trout has been hybridization with Rainbow Trout. A key uncertainty is how climate conditions might facilitate hybridization. Genetically pure Westslope Cutthroat Trout often exist in cold tributary streams and show subtle signs of being better adapted to cold temperatures than Rainbow Trout when studied in the laboratory. This suggests warming temperatures could increase hybridization by allowing Rainbow Trout to invade cold headwater streams. However, in an analysis across a large watershed, environmental factors were not as important as demographic factors in determining levels of hybridization.
						Westslope Cutthroat Trout are unique among the cutthroat subspecies in that they exhibit an anadromous, coastal-roaming ecotype. Populations with this life history may be less sensitive to altered flow and thermal regimes in freshwater because there is less cumulative exposure to freshwater conditions and individuals at sea can survive ephemeral climate-related disturbance such as thermal stress events or periods of low flow.
White Sturgeon (Columbia River)	Moderate	Low	Moderate	Moderate	 > Increased water temperatures > Lower summer flows 	White Sturgeon likely exhibit physiological sensitivity to warmer water temperatures, and increasing temperatures may reduce spawning success and/or increase disease risk and mortality. White Sturgeon are also sensitive to declining spring and summer streamflows, which reduce spawning habitat and annual recruitment; loss of spawning habitat and reduced recruitment associated with lower streamflows is a particular concern for impounded portions of the Columbia River. Shifts in ocean conditions may also affect prey availability for young White Sturgeon in estuarine environments, and reduced prey availability has been linked with undermined White Sturgeon growth.
Yelloweye Rockfish (Puget	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures	The main sensitivity of Yelloweye Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. small fish, crabs, gastropods) for both

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Sound/Georgi a Basin DPS)					 > Sea level rise > Declines in pH > Decreased oxygen 	juveniles and adults, prompting decreases in adult fecundity and growth and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which is particularly preferred by Yelloweye Rockfish, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Yelloweye Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.

C.2.5 Invertebrate Vulnerability Rankings

INVERTEBRAT	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
A Caddisfly	High	Moderate	High	Moderate-	> Increased	Allomyia Acanthis is an uncommon species of caddisfly found in only a
(Allomyia				High	air and water	few locations in the Cascade regions of Washington and Oregon.
Acanthis)					temperatures	Although little is known about this species, caddisflies in the genus
					> Low	Allomyia are restricted to high-elevation coldwater streams in the larval
					summer	and pupae stages, where they build protective cases of silk and small
					flows	pieces of rock. Climate sensitivity for this species is likely tied primarily
					> Increased	to their specialized habitat, which is particularly vulnerable to warming
					sedimentatio	air and water temperatures, low summer flows, sedimentation from
					n and erosion	upstream erosion, and habitat fragmentation from nearby human
						activity (i.e. forestry practices and road construction). Caddisflies in
						general are often considered an indicator of high-quality streams,
						suggesting that they are particularly vulnerable to changes in their
						habitat.
A Caddisfly	High	High	High	Moderate-	> Increased	Goereilla Baumanni is a species of caddisfly found only in few sites and
(Goereilla				High	air and water	always in very low numbers in Washington, Idaho, and Montana. They

INVERTEBRATES		Original	C and althin dit	E	<u> </u>	
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Baumanni)					temperatures > Drought and/or changes in precipitation > Low summer flows > Increased sedimentatio n and erosion	are restricted to headwater springs and seepage in high-elevation forested areas during their larval and pupae stages, and within this habitat are associated with the surrounding muck comprised of decomposing organic materials. Sensitivity for this species is likely tied primarily to their specialized habitat, which is particularly vulnerable to warming air and water temperatures, low summer flows, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). The close association of <i>Goereilla Baumanni</i> to organic muck may make this species particularly sensitive to high temperatures, drought, and precipitation changes which may make these areas more likely to dry out. Caddisflies in general are often considered an indicator of high- quality streams, suggesting that they are particularly vulnerable to changes in their habitat.
A Caddisfly (Limnephilus Flavastellus)	Moderate- High	Low	Moderate	Moderate- High	 Increased air and water temperatures Drought and/or changes in precipitation Increased sedimentatio n and erosion 	Little information is available on the caddisfly species <i>Limnephilus</i> <i>Flavastellus</i> , which can be found in mountainous areas of Washington, Oregon, and British Columbia. Their habitat can include coldwater ponds in forested areas, where they live in the water throughout their larval and pupae stages. This species is likely less sensitive than caddisflies that are restricted only to coldwater streams, as they can tolerate the slightly larger range of conditions found in ponds. Sensitivity for this species is likely tied primarily to their specialized habitat, which is vulnerable to warming air and water temperatures, drought and changing precipitation patterns, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Psychoglypha Browni)	Moderate- High	Moderate	Moderate- High	Moderate- High	 > Increased air and water temperatures > Drought and/or changes in precipitation 	<i>Psychoglypha Browni</i> is an uncommon species of caddisfly found only in the Cascades region of Washington and Oregon. Little is known about this species, though the genus Psychoglypha is restricted to coldwater aquatic habitats such as streams, small rivers, and ponds in high- elevation forested areas. Sensitivity for this species is likely tied primarily to their specialized habitat, which is vulnerable to warming air and water temperatures, drought and changing precipitation patterns,

INVERTEBRATE	Overall	Overall	Concitivity	Exposure	Summary of	
Species	Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					 > Low summer flows > Increased sedimentatio n and erosion 	sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Rhyacophila Pichaca)	Moderate	Low	Moderate	Moderate	 > Changes in precipitation > Drought > Low summer flows 	<i>Rhyacophila Pichaca</i> is an uncommon species of caddisfly found in only a few locations in Washington and Oregon. Little is known about this species, but caddisflies in the genus <i>Rhyacophila</i> are fairly large and are free-living in their larval stage (i.e. they do not build cases until the pupae stage), making them particularly vulnerable to predation. All species in this genus are restricted to streams or rivers in the larval and pupae stages, though no information is available on whether this species is restricted to cold water or high-elevation areas. Given that they are dependent on running water, it is likely that drought, changes in precipitation patterns, and low summer flows contribute to this species' sensitivity. Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Rhyacophila Vetina)	High	Moderate	High	Moderate- High	 Increased air and water temperatures Low summer flows Increased sedimentatio n and erosion 	Little information is available on <i>Rhyacophila Vetina</i> , an uncommon species of caddisfly reported in only a few high-elevation locations in the High Cascades region. Little is known about this species, but caddisflies in the genus <i>Rhyacophila</i> are fairly large and are free-living in their larval stage (i.e. they do not build cases until the pupae stage), making them particularly vulnerable to predation. All species in this genus are restricted to streams or rivers in the larval and pupae stages, and given that <i>Rhyacophila Vetina</i> only occurs in high-elevation stream it is likely tied to coldwater conditions as well. Climate sensitivity for this species is likely tied primarily to this specialized habitat, which is particularly vulnerable to warming air and water temperatures, low summer flows, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are particularly vulnerable to changes in their habitat.

Constant Inc.	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
A Mayfly (Cinygmula Gartrelli)	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased water temperatures > Changes in precipitation and/or drought > Low summer flows 	Little is known about <i>Cinygmula Gartrelli</i> , a species of mayfly which has been located in California, Oregon, Washington, Montana, and British Columbia. All mayflies require aquatic habitats for nymph survival, and this species was located in a river in at least one of the records. Sensitivity likely is tied to this requirement, and the species could be affected by drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Paraleptophle bia Falcula)	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased water temperatures > Changes in precipitation and/or drought > Low summer flows 	Little is known about <i>Paraleptophle bia Falcula</i> , a species of mayfly which has been located in rivers in Washington, Oregon, and Idaho. All mayflies require aquatic habitats for nymph survival, so sensitivity likely is tied to this requirement. This species could be affected by changes in hydrology including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Paraleptophle bia Jenseni)	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased water temperatures > Changes in precipitation and/or drought > Low summer flows 	Little is known about <i>Paraleptophlebia Jenseni</i> , a species of mayfly which has been located in Washington and a single site in Idaho. All mayflies require aquatic habitats for nymph survival, so sensitivity likely is tied to this requirement. This species could be affected by changes in hydrology including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Siphlonurus Autumnalis)	Low	Low	Low	Low- Moderate	 > Increased water temperatures > Changes in precipitation 	Siphlonarus Autumnalis is found along medium and large rivers in the Pacific Northwest. It usually inhabits quiet edgewaters along the rivers, particularly in rocky areas. However, it has also been found along small spring brooks, floodplain ponds, and small lakes. Although, like all mayflies, S. Autumnalis requires aquatic habitats for nymph survival, th

INVERTEBRATES	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and/or drought > Low summer flows	wide range of habitats in which it can survive decreases the vulnerability of this species. Sensitivity is likely tied to changes in the hydrology of these aquatic habitats, including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Noctuid Moth (Copablepharo n Columbia)	Moderate	Low	Low- Moderate	Moderate- High	 Changes in precipitation and/or drought Increased invasive species 	There is limited information on the sensitivity of <i>Copablepharon</i> <i>Columbia</i> to climate change. This species occupies open (i.e., active) Columbia Basin sand dune habitats, but has been observed at only one dune site. This species is likely sensitive to sand dune stabilization, which typically leads to a loss of native vegetation and prevents formation of new dune areas. Sand dune stabilization is enhanced by high plant cover, which is facilitated during years of high precipitation and may also occur as a result of longer growing seasons due to climate change. Invasive species can also increase rates of dune stabilization. Drought may favor higher dune activity, which could enhance habitat quality and/or increase overall habitat for this moth, but could also impact its food plants (unknown at this time). For more information on habitat sensitivity, see Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
A Noctuid Moth (Copablepharo n Mutans)	Moderate	Low	Low- Moderate	Moderate- High	 Changes in precipitation and/or drought Increased invasive species 	There is limited information on the sensitivity of <i>Copablepharon Mutans</i> to climate change. Similar to <i>Copablepharon Columbia</i> , it is likely sensitive to sand dune stabilization which typically leads to a loss of native vegetation and prevents formation of new dune areas. Sand dune stabilization is enhanced by high plant cover, which is facilitated during years of high precipitation and may also occur as a result of longer growing seasons due to climate change. Invasive species can also increase rates of dune stabilization. Drought may favor higher dune activity, which could enhance habitat quality and/or increase overall habitat for this moth, but could also impact its food plants (unknown at this time). For more information on habitat sensitivity, see Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
A Noctuid Moth (Copablepharo n Viridisparsa	Moderate	Low	Low- Moderate	Moderate- High	 Changes in precipitation and/or drought 	There is limited information on the sensitivity of <i>Copablepharon</i> <i>Viridisparsa Hopfingeri</i> to climate change. Similar to <i>Copablepharon</i> <i>Columbia</i> , it is likely sensitive to sand dune stabilization which typically leads to a loss of native vegetation and prevents formation of new dune

INVERTEBRATES			6	-		
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Hopfingeri)					> Increased invasive species	areas. Sand dune stabilization is enhanced by high plant cover, which is facilitated during years of high precipitation and may also occur as a result of longer growing seasons due to climate change. Invasive species can also increase rates of dune stabilization. Drought may favor higher dune activity, which could enhance habitat quality and/or increase overall habitat for this moth, but could also impact its food plants (unknown at this time). For more information on habitat sensitivity, see Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
Ashy Pebblesnail	Moderate	Low	Low- Moderate	Moderate- High	 > Altered flow regimes > Reduced oxygen > Increased water temperatures 	There is limited information on the sensitivity of the Ashy Pebblesnail to climate change. This species displays very similar traits and habitat requirements to the Olympia Pebblesnail. The Ashy Pebblesnail's habitat range is believed to be restricted to the Columbia River Basin's rivers, streams, and creeks, although its historic range encompassed Washington, Oregon, and Idaho. The Ashy Pebblesnail requires clear, cold, highly oxygenated streams, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes. Changes in flow regimes that increase nutrient runoff may cause dense algae blooms that impair or prevent the Ashy Pebblesnail's access to important food resources (e.g., lithophytes). The invasive New Zealand Mudsnail (<i>Potamopyrgus Antipodarum</i>) may be a direct competitor for food and habitat.
Barren Juga	Moderate- High	Low	Moderate- High	Moderate- High	 > Altered flow regimes > Reduced oxygen > Increased water temperatures 	There is limited information on the sensitivity of this species to climate change. The Barren Juga's habitat range includes small- to medium-sized creeks and low elevation springs in the Columbia River Gorge area. This species requires cold, highly oxygenated water, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes.
Beller's Ground Beetle	Moderate- High	``	Moderate	Moderate- High	 > Changes in precipitation (snow and rain) > Increased amount 	Beller's Ground Beetle inhabits sphagnum bogs or sphagnum moss in other wet areas (e.g., near springs), preferring the wettest sites available. This species' sensitivity to climate change will largely be driven by shifts in habitat availability. Reduced water availability and quality (i.e., due to precipitation shifts, reduced snowpack, earlier snowmelt) can affect bog water levels, seasonal bog duration, and rates of

INVERTEBRAT	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and/or duration of flooding > Drought	succession to meadow or other adjacent vegetation, potentially reducing or degrading habitat for this beetle. This species is likely sensitive to both bog drying and prolonged inundation from flooding. Without flight capabilities, this species has limited ability to move in response to climate change (i.e., refugia would have to be contiguous and accessible by ground). Warmer temperatures may increase beetle activity; Beller's Ground Beetles have historically been found in highest numbers during hot periods.
Bluegray Taildropper	Low- Moderate	Low	Low- Moderate	Moderate	 > Increased temperatures > Reduced soil moisture and/or changes in precipitation > Altered fire regimes 	There is limited information regarding the sensitivity of Bluegray Taildroppers to climate change. Their main sensitivity is likely to be driven by changes in their preferred habitat – older, late successional, forests with moist ground and a mixture of hardwood and conifer trees. Increases in temperature and decreases in summer rainfall are likely to lead to increased risk of severe fires, which would destroy habitat for this species. Declines in habitat quality could also lead to fragmentation of populations, particularly since slugs are not very mobile, and eventual population declines. Additionally, decreased summer rainfall and increased droughts could lead to changes in soil moisture and availability of fungal populations that this species feeds on.
Brown Juga	Moderate- High	Low	Moderate- High	Moderate	 > Altered flow regimes > Reduced oxygen > Increased water temperatures 	There is limited information on the sensitivity of this species to climate change. The Brown Juga's habitat includes shallow, small streams and springs. This species requires cold, highly oxygenated water, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes.
California Floater	Moderate	Low	Low- Moderate	Moderate- High	 > Increased water temperatures > Altered flow regimes > Drought 	There is limited information regarding the sensitivity of California Floaters to climate change. This species, which has already experienced significant declines over the past few decades, is generally found in shallow pools of freshwater streams and reservoirs with good water quality and a sufficient abundance of small fish who serve as hosts for mussels during their transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance,

INVERTEBRATE	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available mussel habitat. Additionally, increases in water temperature could lead to altered abundance of host fish for larval stage mussels, thus leading to declines in abundance. This species may also be sensitive to summer droughts, which could lead to shallower water levels in the pools that serve as mussel habitat, and potential air exposure and mortality, particularly since mussels have limited mobility and thus limited ability to respond to changes in habitat.
Cascades Needlefly	Moderate- High	Low	Moderate- High	Moderate	 Increased water temperatures Changes in precipitation and/or drought Altered flow regimes 	The Cascades Needlefly is a rare species limited to very few sites in Washington, Oregon, Idaho, and Montana. The larvae are restricted to seeps, springs, and spring-fed streams, and the genus <i>Megaleuctra</i> is dependent on coldwater habitats that do not dry out, as well as high water quality. The sensitivity of this species is likely closely tied to their specialized habitat requirements. Changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Chelan Mountainsnail	Low- Moderate	Low	Low	Moderate- High	> Altered fire regimes	There is limited information on the sensitivity of this species to climate change. The Chelan Mountainsnail is typically found in schist talus habitat and in detritus or under shrubs with pinegrass or elk sedge understory at elevations ranging from 1197 to 2625 feet. This species may exhibit sensitivity to disturbances including wildfire, landslides, and habitat alterations that may shift the temperature and moisture regimes of preferred habitat types.
Chinquapin Hairstreak	Moderate- High	Low	Moderate	Moderate- High	 Increased temperatures Reduced soil moisture and/or changes in precipitation Altered fire regimes 	Climate sensitivity of this species is likely driven by temperature, moisture declines, and fire. Like most insects, butterfly emergence and activity is influenced by temperature, and warmer temperatures may enhance emergence timing and/or lengthen daily flight activity. This species may be sensitive to moisture declines, as it obtains salt from moist soil and recently dried puddles. Increasing fire frequency may affect distribution of golden chinquapin, the larval host plant for this species. Golden chinquapin is shade-intolerant and regenerates quickly after fire and other disturbance, and more frequent fires could

INVERTEBRAT	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						potentially increase chinquapin establishment opportunities and overall habitat for this butterfly. However, this butterfly requires established chinquapin canopy and exists only in a few locations in Washington, making it vulnerable to extirpation if fire occurs in its current habitat distribution during key adult and larval periods (June-September), kills its current host trees, or significantly reduces available forage (nectar plants).
Columbia	Moderate-	Low	Moderate-	Moderate-	> Increased	Although very little information is available, Columbia Clubtail sensitivity
Clubtail	High		High	High	air and water temperatures > Altered flow regimes (low summer flows and increased winter flooding)	is likely driven by water temperature, air temperature, and altered flow regimes (summer low flows and winter flooding). Eggs are laid in water, and after hatching, larvae burrow and overwinter in river mud. Water temperature influences emergence timing, while warmer air temperatures influence adult flight times, affecting foraging and energy demands. Reduced summer streamflow can exacerbate increasing water temperatures and effects on clubtail aquatic eggs and larvae. In addition, lower streamflows may strand eggs or larvae, causing mortality via desiccation. Increased winter flooding that enhances scour and/or that causes significant sedimentation may reduce larval survival.
Columbia	Moderate-	Low	Moderate-	Moderate-	> Increased	There is limited information on the sensitivity of the Columbia
Oregonian	High		High	High	temperatures > Reduced soil moisture and/or drought > Altered fire regimes	Oregonian to climate change. This species is found in low-elevation seeps and streams of the Columbia River Gorge as well as mid-elevation upland habitats (2565 to 3280 feet) in hemlock forests. In each of these locations, the species finds cover provided by herbaceous riparian vegetation in aquatic environments and large woody debris in forests. Loss of these refugia would likely alter the temperature and moisture regimes – low temperature and moderate to high humidity – upon which this species relies.
Columbia River Tiger Beetle	Moderate	Moderate	Moderate	Moderate	> Increased amount and/or duration of flooding	The Columbia River Tiger Beetle occupies stable river sandbars and riparian sand dunes. They are likely sensitive to flooding, soil moisture, and temperature. Soil moisture and temperature may affect larval development, as larvae grow and molt in sand/soil burrows that draw moisture from adjacent rivers/streams. Flooding or prolonged inundation can cause larval mortality by washing away larval burrows and/or causing suffocation via submersion, although they can survive up to 3 weeks of inundation. Sandbars occupied by this species are typically

Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	Vumerability	connuence	RallA	Ndlik		large enough (extend more than 300 feet away from river) to avoid complete inundation during spring floods. Backwater flooding resulting from dam construction is thought to have extirpated all Washington populations.
Crowned Tightcoil	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of the Crowned Tightcoil to climate change, and very limited information on this species' life history, although it is associated with riparian and old growth habitat. Its abundance is closely correlated with cool, moist conditions. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Dalles Hesperian	Moderate- High	Low	Moderate- High	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of the Dalles Hesperian to climate change. This terrestrial species seeks refugia in locations with high humidity and relatively constant temperature (e.g., rock talus, under moist vegetation, deep in cracks in mud). Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Dalles Juga	Moderate- High	Low	Moderate- High	Moderate	 > Altered flow regimes > Reduced oxygen > Increased water temperatures 	There is limited information on the sensitivity of the Dalles Juga to climate change and very limited information on this species' life history. The Dalles Juga is found at low-elevation springs and streams in cool, clean, highly oxygenated water. This species may therefore be sensitive to changes in flow regimes and water temperatures that negatively impact dissolved oxygen levels and chemical and biological processes
Dalles Sideband	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire 	There is limited information on the sensitivity of this species to climate change. This species is frequently found in cool, moist talus habitat and upland forest areas that are near riparian corridors. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.

INVERTEBRATE	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					regimes	
Dry Land Forestsnail	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of this species to climate change. Its habitat includes talus and rocky riparian areas. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Giant Palouse Earthworm	Low- Moderate	Low	Low	Moderate- High	 > Increased temperatures > Reduced soil moisture 	There is little information on the sensitivity of the Giant Palouse Earthworm (GPE) to climate change, largely due to the fact that very little is known about this species in general. The GPE likely exhibits sensitivity to temperature; it can experience mortality from high soil temperatures, and utilizes deep burrows to survive hot, dry summer periods. Increasing temperatures and increasingly xeric conditions may reinforce this behavior. The GPE may also be sensitive to precipitation shifts and fire, as these regimes affect vegetative cover and can modify microhabitat and soil conditions, but links between precipitation, disturbance, vegetation, and GPE abundance are not clear at this time.
Great Arctic	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is no information regarding the sensitivity of this species to climate change, and very little known regarding its life history. As an occupant of forest openings and meadow edges, it may benefit from more frequent fire which contributes to the creation of these habitat characteristics. However, larvae are thought to develop on grasses, and could be killed by fire. Small population sizes and limited distribution in Washington make it vulnerable to extirpation.
Hatch's Click Beetle	Moderate- High	Low	Moderate	Moderate- High	 Changes in precipitation (snow and rain) Increased amount and/or duration of flooding 	Hatch's Click Beetle occupies low elevation sphagnum bogs, and its climate sensitivity is likely driven by changes in habitat availability. Reduced water availability and quality (i.e., due to precipitation shifts, reduced snowpack, earlier snowmelt) can affect bog water levels and seasonal bog duration, potentially altering habitat extent. This species is likely sensitive to both bog drying and prolonged inundation from flooding. Adults feed primarily on flowering shrubs, although they may also prey upon invertebrates. Shifts in abundance and flower timing (i.e., phenology) of flowering shrubs in response to climate change may

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					 > Drought > Increased temperatures 	affect Hatch's Click Beetle foraging and fitness, particularly since adult beetles are only active for short periods in the early spring. Warmer temperatures may increase beetle activity; Hatch's Click Beetles have historically been most active on hot days.
Hoary Elfin	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is no information regarding the physiological sensitivity of this species to climate change, but it may be limited by temperature, as it currently appears only in lower elevation areas of Washington, even though its host plant exists at higher elevations. Hoary Elfin is likely sensitive to climate-driven changes in its larval host plant, kinnikinnick. Kinnikinnick is resilient to dry conditions. Fire maintains the open, high sunlight environments preferred by kinnikinnick and occupied by the Hoary Elfin (e.g., prairies, forest opening balds), but kinnikinnick may be sensitive to increasing fire frequencies and severities, as it appears to be adapted to low severity fire and to exhibit moderate survival and recovery post-fire.
Hoder's Mountainsnail	Low- Moderate	Low	Low	Moderate- High	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of this species to climate change. It is known to occur in grasslands and along timber edges including <i>Eriogonum</i> sp. and <i>Balsamorrhiza Sagitta</i> . Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Hoko Vertigo	Low- Moderate	Low	Low	Moderate	 > Increased disease outbreaks > Altered fire regimes 	There is limited information on the sensitivity of the Hoko Vertigo to climate change. This species is only found at two sites on the Hoko River in the northwestern Olympic Mountains, although its range may extend into British Columbia. These two known locations are low elevation, old growth riparian areas. Because this species is so rare, it may be acutely vulnerable to fire, disease, or other events causing mass mortality as they may not be able to quickly rebuild populations.
Idaho Vertigo	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture 	There is limited information on the sensitivity of this species to climate change. It is found in a mid-elevation grass and sedge meadow with springs, seeps, bogs and fens. Activities or events that alter conditions, such as moisture levels and temperature, may make this species

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and/or drought > Altered fire regimes	vulnerable.
Island Marble	Moderate- High	Low	Moderate- High	Moderate	 Increased temperatures Changes in precipitation Sea level rise and storm surges Altered fire regimes 	Island Marble sensitivity is likely driven by temperature, precipitation, sea level rise, storm surges, and fire. Cool, wet spring conditions appear to limit Island Marble flight periods and fecundity, and recovery during warm, dry years is not guaranteed due to other habitat stressors. Shifts in temperature and precipitation may also affect larval foraging and survival by causing a mismatch between host plant phenology and larval emergence. Sea level rise paired with storm surges and windy conditions can inundate or cause significant sediment alteration in coastal habitats of Island Marble (e.g., among dunes and backing lagoons). Storm events and sea level rise can cause larval and pupal mortality and contribute to temporary or permanent habitat loss due to inundation, burial of host and forage plants, and loss of anchoring substrate and woody debris required for vegetation establishment. Island Marble is associated with a variety of grassland species (e.g., native and non-native mustards) that excel at colonizing disturbed sites, so population recovery post-storm is possible if host plants are able to re-establish. Due to its association with disturbance-adapted host plants, increasing fire frequencies may expand habitat for island marble and/or help maintain existing habitat by preventing grassland succession to shrub or forest types. However, large, high intensity fires occurring in current habitat areas could extirpate local island marble populations.
Johnson's Hairstreak	Moderate- High	Low	Moderate- High	Moderate	 > Changes in precipitation > Altered fire regimes 	Johnson's Hairstreak likely exhibits some physiological sensitivity to temperature and precipitation, with inclement weather delaying emergence and reducing diurnal activity. This butterfly may also be sensitive to moisture declines, as it has been documented drinking from puddles. This species is also likely sensitive to climate-driven changes in its larval host plant, dwarf mistletoe, which is a parasitic plant in conifer forests (e.g., western larch), particularly old growth. Increasing fire frequency, intensity, and severity may reduce dwarf mistletoe abundance in the short term, reducing habitat availability for Johnson's

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	_					Hairstreak.
Juniper Hairstreak	Moderate	Low	Moderate	Moderate	> Altered fire regimes	Temperature and precipitation likely affect larval forage periods. The sensitivity of Juniper Hairstreak is likely largely driven by climate-driven shifts in its larval host plant, western juniper. Western juniper is shade-intolerant, and fire helps prevent succession to conifer forest types in juniper stands. However, western juniper is also fire-intolerant, typically experiencing high fire mortality but still able to recolonize post-fire. Increasing fire frequency and severity may help maintain Juniper Hairstreak habitat by preventing succession, but can also lead to short-term habitat loss if fire burns in current habitat areas. Warmer and more xeric conditions may favor the expansion of western juniper woodland habitats, potentially benefitting Juniper Hairstreak.
Leschi's Millipede	N/A	N/A	N/A	N/A	N/A	This species was only classified in 2004 in Washington. There is almost no information available about its life history characteristics and no information available regarding it sensitivity to climate change.
Limestone Point Mountainsnail	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of this species to climate change. It is closely associated with mid-elevations on limestone outcrops and talus. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Mad River Mountainsnail	Low- Moderate	Low	Low	Moderate- High	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of this species to climate change. It is found in talus under black cottonwood and bigleaf maple. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Makah Copper	Moderate- High	Low	Moderate- High	Moderate	 Changes in precipitation (snow and rain) 	There is no information on the physiological sensitivity of this species to climate change. However, Makah Copper is likely sensitive to climate- driven changes in its larval host plant, bog cranberry, which occupies very wet and moist fens and bogs. Bog cranberry is not widely

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					 Increased amount and/or duration of flooding Drought 	distributed, and drier conditions paired with increased winter flooding may affect the hydrology, formation and extent of bog habitat (see habitat sensitivity summary), potentially leading to habitat reductions for both bog cranberry and Makah Copper. Although bog habitats rarely burn, bog cranberry typically benefits from fire, increasing in abundance. It is unknown how Makah Copper responds to fire, however.
Mann's Mollusk- eating Ground Beetle	Moderate- High	Low	Moderate	Moderate- High	 Increased temperatures Drought Increased amount and/or duration of flooding 	Very limited sensitivity information is available for this species. This species is thought to occupy riparian sections of lowland river canyons, and to seek out shaded, moist areas during the daytime. Its micro- and macrohabitat preferences likely make it sensitive to flooding, increasingly xeric conditions, and temperature increases.
Mardon Skipper	Moderate- High	Low	High	Moderate	 > Increased temperatures > Changes in precipitation > Altered fire regimes 	Climate sensitivity of this species is likely influenced by temperature, precipitation, and fire. Population numbers vary annually in response to variable weather because Mardon Skippers exhibit physiological and indirect (i.e., habitat) sensitivity to temperature and precipitation. Temperature influences butterfly behavior (e.g., foraging time), adult life span, and larval development. Warming temperature may also affect phenological timing between Mardon Skipper and key plant species (host and nectar plants) and cause desiccation of larval forage, leading to larval and/or adult starvation. In higher elevation sites, warming temperatures leading to reduced snowpack/earlier snowmelt may also expose Mardon Skipper larvae to novel environmental conditions, which could increase mortality. Precipitation also affects adult behavior, and extreme precipitation can cause adult mortality (i.e., by preventing foraging) and/or drown larvae. Moist conditions can also contribute to fungal development. Mardon Skippers are also vulnerable to fire. Fire helps maintain open grassland habitat used by the Mardon Skipper by preventing conifer encroachment, but Mardon Skippers are not very mobile, and fire can cause direct mortality of all life stages. Increasing fire frequencies may expand overall habitat area available for Mardon

INVERTEBRATE		Owenell	Constitution	E	6	
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	vumerability	connuence	Ndlik	Nalik	Exposure	Skipper, but could contribute to population extirpation if fire occurs in
						current habitat areas.
Masked	Low-	Low	Low-	Moderate	> Altered	There is limited information on the sensitivity of the Masked Duskysnail
Duskysnail	Moderate		Moderate		flow regimes	to climate change. This species displays very similar traits, habitat
					leading to	requirements, and global distributions to the Washington Duskysnail.
					increased	The Masked Duskysnail's range is restricted to two large kettle lakes in
					nutrient	eastern Washington – Curlew Lake in Ferry County and Fish Lake in
					runoff	Wenatchee National Forest. This species is considered to be a mud
					> Reduced	specialist, living on soft bottom substrates in highly oxygenated, cool
					oxygen	lakes (preferring temperatures below 64°F); changes in water
					> Increased	temperature and flow regimes that affect dissolved oxygen levels and
					water	stratification may therefore negatively affect the Masked Duskysnail.
					temperatures	Changes in flow regimes that increase nutrient runoff may cause dense
					> Increased	filamentous algae blooms that impair or prevent access to important
					disease	food resources. This species occurs in low densities in isolated
					outbreaks	populations and therefore may be acutely vulnerable to diseases or
						other disturbance regimes causing mass mortality because they may not
						be able to quickly rebuild populations.
Meadow	Low-	Low	Low-	Moderate	> Increased	There is almost no information regarding the sensitivity of this species
Fritillary	Moderate		Moderate		temperatures	to climate change, particularly in Washington. Similar to other
					> Changes in precipitation	butterflies, it is likely physiologically sensitive to changes in precipitation and temperature, which may affect larval development and adult
					> Altered fire	behavior. Increasing fire frequency may help maintain and prevent
					regimes	succession of its meadow and forest opening habitat. Riparian habitat
					regimes	may be affected by increasing flood frequencies, as well as fire (see
						habitat summaries).
Mission Creek	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate
Oregonian				,		change.
Monarch	Moderate	Moderate	Moderate	Moderate	> Increased	Monarch climate sensitivity is likely influenced by temperature,
					temperatures	precipitation, and drought. Monarchs breed and migrate through
					> Changes in	Washington, and warmer temperatures may accelerate Monarch larval
					precipitation	development and enhance adult reproductive activity, potentially
					and/or	expanding suitable breeding ranges northward where they may have
					drought	historically been limited by cold temperatures. Warmer temperatures
						and shifts in winter precipitation at overwintering sites (e.g., California)

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						may also cause earlier flight times and arrival of migrants from southern overwintering grounds. Shifts in temperature and precipitation are also likely to influence milkweed abundance and distribution, which will impact Monarch distribution, migratory pathways and reproductive success. Drought reduces milkweed survival, germination, growth and seed production, and may make milkweed less palatable, affecting Monarch larval growth and survival.
Morrison's Bumble Bee	Moderate	Low	Moderate	Moderate	 Increased temperatures Changes in precipitation and/or soil moisture 	There is almost no information regarding the sensitivity of this species to climate change, particularly in Washington. It may be sensitive to climate-driven changes in dry scrub habitat (e.g., due to increasing fire, altered precipitation and soil moisture), particularly if disturbance events affect ground nests or foraging opportunities in spring and summer.
						In general, bumble bees are likely sensitive to climate-driven changes in nesting, foraging, and overwintering habitat, but detailed information is currently lacking. Shifts in temperature, precipitation, and snowpack may affect bumble bee distribution and life history, potentially forcing them into unfavorable habitats, to emerge at non-optimal times (i.e., mismatch with vegetation), and/or affecting energy demands during overwintering periods. These climate-driven changes may also affect habitat quality and availability. One of the primary concerns for bumble bee species is a shift in the abundance, distribution, and/or phenological synchrony of key forage flowering vegetation, as pollen and nectar availability influences reproduction and overwintering success of queens.
Nimapuna Tigersnail	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Northern Forestfly	High	High	High	Moderate- High	 Increased water temperatures Reduced glacier size and increased 	The Northern Forestfly is a species of stonefly with only one currently known location in the northern Cascades. It is associated with a high-elevation spring and stream which flows into an alpine lake, and in fact all three species in the <i>Lednia</i> genus are restricted to alpine or subalpine springs and glacial streams (the proposed name for the genus is "Meltwater Stoneflies"). This species is extremely sensitive to climate change because of its dependence on coldwater habitats, which are

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					glacier	likely to warm significantly along with disappearing glaciers.
					melting	
Olympia	High	High	High	Moderate-	> Declines in	Olympia Oysters are likely to be sensitive to a number of climate factors
Oyster				High	salinity	including declines in salinity, oxygen, and pH. Olympia Oysters are
					> Decreased	sensitive to low salinity levels, and potential increased precipitation
					oxygen and	(particularly during winter and spring) can lead to lower salinity levels
					рН	and potential juvenile mortality, as juveniles have a more sensitive salinity threshold. Additionally, increases in extent and time of hypoxic
						conditions could limit oyster growth. Predicted declines in ocean pH in
						Washington are also likely to lead to decreases in growth, weight, and
						metamorphic success of oyster larvae, which could also trigger
						increased mortality at later life stages. The effects of acidification on
						oyster larvae could be more severe if low pH conditions are coupled
						with decreases in phytoplankton food availability.
Olympia	Low-	Low	Low-	Moderate	> Altered	There is limited information on the sensitivity of the Olympia
Pebblesnail	Moderate		Moderate		flow regimes	Pebblesnail to climate change. This species displays very similar traits
					> Reduced	and habitat requirements to the Ashy Pebblesnail. The Olympia
					oxygen	Pebblesnail's habitat range is believed to include Columbia River Basin's
					> Increased water	rivers, streams, and creeks, as well as some sites in the Olympic Mountains and San Juan Islands and the Willamette River system in
					temperatures	Oregon. The Olympia Pebblesnail requires clear, cold, highly oxygenated
					temperatures	streams, and therefore may be sensitive to changes in flow regimes and
						increases in water temperature that negatively impact dissolved oxygen
						levels and chemical and biological processes. Changes in flow regimes
						that increase nutrient runoff may cause dense algae blooms that impair
						or prevent the Olympia Pebblesnail's access to important food
						resources (e.g., lithophytes). The invasive New Zealand Mudsnail
						(Potamopyrgus antipodarum) may be a direct competitor for food and
						habitat.
One-band	Moderate-	Low	Moderate-	Moderate	> Altered	There is limited information on the sensitivity of this species to climate
Juga	High		High		flow regimes > Reduced	change. Its habitat includes low- to mid-elevation streams and springs
					> Reduced oxygen	with cold, highly oxygenated water, and therefore may be sensitive to changes in flow regimes and increases in water temperature that
					> Increased	negatively impact dissolved oxygen levels and chemical and biological
					water	processes.

<u> </u>	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					temperatures	
Oregon Branded Skipper	Moderate	Low	Moderate	Moderate	 Increased temperatures Changes in precipitation Altered fire regimes 	There is no information on the physiological sensitivity of this species to climate change, however, similar to other butterflies, larval development and adult activity are likely affected by temperature and precipitation. Climate sensitivity of Oregon Branded Skipper is also likely affected by fire. Increasing fire frequency may help maintain glacier outwash prairie habitat by preventing conifer or shrub encroachment, as well as create bare ground patches utilized by this skipper. However, more frequent fire may facilitate invasive species establishment, which could degrade Oregon Branded Skipper habitat (e.g., by occupying bare ground zones).
Oregon Megomphix	Low- Moderate	Low	Low	Moderate	 > Altered fire regimes > Increased temperatures > Reduced soil moisture > Increased wind disturbance 	There is limited information on the sensitivity of the Oregon Megomphix to climate change. This rare species is found at low elevations (below 490 feet) on well-shaded slopes near streams in Washington. Its distribution is closely associated with the bigleaf maple—the more bigleaf canopy cover, the more likely Oregon Megomphix is present. Activities or events that disturb canopy cover and litter composition, such as wind and fire, may therefore negatively affect the temperature and moisture levels at which this species is best suited.
Oregon Silverspot	Moderate	Low	Moderate	Moderate	> Increased temperatures > Drought	Oregon Silverspot exhibits some physiological sensitivity to temperature and precipitation, as larval development, pupation, and adult emergence timing vary each year according to weather, and adults exhibit thermoregulatory behavior during cold, windy conditions (e.g., shelter in warmer adjacent forest edges). Warmer temperatures may increase adult activity (i.e., less basking time) and/or accelerate larval development. Oregon Silverspot is also sensitive to climate-driven changes in habitat availability and quality. Increasing fire frequencies may help maintain the low stature coastal grassland this species requires and help prevent succession to forest or shrub ecotypes. Increasing fire frequency will likely also facilitate reproduction and germination of early blue violet, the larval host plant for Oregon Silverspot. Early blue violet is a shade-intolerant species that reproduces and germinates best in early successional coastal grasslands with bare soil or low, sparse grass cover. Early blue violet is also tolerant of hot,

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						dry periods, which will help maintain long-term Oregon Silverspot habitat areas under a warmer, drier climatic regime. However, dry years may cause early senescence of early blue violets, which can cause larval mortality.
Pacific Clubtail	Moderate- High	Low	Moderate- High	Moderate- High	 Increased air and water temperatures Altered flow regimes (low summer flows and increased winter flooding) Altered fire regimes 	There is little information on the sensitivity of Pacific Clubtail to climate change. However, Pacific Clubtail sensitivity is likely influenced by air temperature, water temperature, and shifting flow regimes. Temperature is known to influence the phenology, development, behavior and other characteristics of dragonflies, and warming temperatures (both air and water) will likely impact this species during various life stages. Hydrological changes (e.g., reduced stream flows) and drought may degrade or reduce aquatic habitat available for this species and/or compound increases in water temperature. Pacific Clubtail is also likely sensitive to disturbance events (e.g., fire, floods) that reduce riparian vegetation, which eliminates stream shade and foraging and roosting sites for adults, and/or that increase siltation, which can kill larvae.
Pacific Needlefly	Moderate- High	Low	Moderate- High	Moderate	 Increased water temperatures Changes in precipitation and/or drought Altered flow regimes 	The Pacific Needlefly is an uncommon species found only in mountainous regions of Oregon, Washington, and northern California. Little is known about this species, whose larvae are found only in seeps, springs, and small spring-fed streams. The genus <i>Megaleuctra</i> is dependent on coldwater habitats that do not dry out, as well as high water quality. The sensitivity of this species is likely closely tied to their specialized habitat requirements. Changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Pacific Vertigo	Low- Moderate	Low	Low	Moderate	 Increased disease outbreaks > Altered fire regimes 	There is limited information on the sensitivity of the Pacific Vertigo to climate change. Typical Vertigo habitat includes moist riparian zones as well as dry forests; the Pacific Vertigo is closely associated with primarily deciduous and occasionally coniferous trees and bushes. This species is believed to be very rare in the region. Because this species is so rare, it may be acutely vulnerable to fire, disease, or other events causing mass mortality as they may not be able to quickly rebuild populations.

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Pinto Abalone	Moderate- High	Moderate	Moderate- high	Moderate- High	 > Decreased pH > Increased ocean temperatures 	The main sensitivity of Pinto Abalone to climate change is likely to be from direct physiological responses to predicted decreases in pH. In laboratory experiments, elevated carbon dioxide levels led to decreased larval survival and increased shell abnormalities in Pinto Abalone. In other abalone species, simulated ocean acidification conditions have also resulted in decreased hatching rates and reduced larvae survival. Potential climate-related changes in preferred habitat of kelp beds with coralline algae could increase the sensitivity of this species, as these habitats may be sensitive to increasing sea surface temperature and could experience declines, thus limiting potential abalone habitat. Increases in sea surface temperature could also lead to decreased abalone reproduction and increased mortality. Given the current low population densities and recruitment levels of Pinto Abalone, any future threats from lower pH or increasing temperature could have an even greater impact on this species.
Poplar Oregonian	Low	Low	Low	N/A	N/A	There is limited information on the sensitivity of the Poplar Oregonian to climate change, and very limited information on this species' life history. Populations are found in moderately dry and cool, low elevation talus habitats in river basins. This species appears to be well adapted to drier habitats than other terrestrial snails, and therefore may be less susceptible to changes in moisture levels.
Propertius' Duskywing	Moderate	Low	Moderate	Moderate	> Increased temperatures	Propertius' Duskywing sensitivity is likely driven by temperature. This species exhibits some physiological sensitivity to warming temperatures, as well as indirect sensitivity to temperature via habitat changes. A study of Canadian populations found that adult flight phenology varied according to daily temperature, although larval development did not vary with temperature directly. A separate study found that warmer winter temperatures (+40°F higher than average) enhanced energetic drain on overwintering larvae and caused sublethal effects, and that increasing winter temperatures are likely to enhance desiccation stress for this species. Warming temperatures are also likely to affect the timing and distribution of key larval and adult food resources. As a specialist on certain oak species, phenology mismatches with host plants could affect adult and larval survival, but an extended growing season could enhance larval growth prior to overwintering. Further, a

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						lag between Propertius' Duskywing and oak polar migration in response to warming temperatures is predicted, which will likely limit this species dispersal potential in response to climate change.
Puget (Blackmore's) Blue	Alpine populations - High Low elevation populations - Low- Moderate	Moderate	Alpine population s - High Low elevation population s - Moderate	Olympics: Moderate- High South Puget Sound: Low- Moderate	 > Increased temperatures > Reduced snowpack > Altered fire regimes 	Sensitivity of this species is mainly driven by habitat. Populations associated with alpine meadows in the Olympic Mountains are likely very sensitive to climate-driven changes in habitat availability, as alpine habitats are projected to decline in extent due to warming temperatures, reduced snowpack, drought, and other drivers. Populations associated with lower elevation prairies are likely sensitive to fire. Lupine, the larval host plant of the Puget Blue as well as an adult nectar source, appears to thrive post-fire, and fire also helps prevent prairie succession to forest or shrub habitats. However, fire can also lead to direct mortality of Puget Blue adults and larvae, and/or facilitate the expansion of Scot's broom and other invasive plants, which can displace lupine. In addition, it is unknown how shifting fire regimes (e.g., seasonality, intensity) will impact this species and its host plant.
Puget Oregonian	Low- Moderate	Low	Low	Moderate	 > Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the Puget Oregonian to climate change. This species is found in cool, moist conifer forests at low to moderate elevations, especially under large woody debris and leaf litter. This shade provides refugia from moderate fluctuations in temperature and moisture; changes in canopy cover may therefore negatively impact this species.
Puget Sound Fritillary	Low- Moderate	Low	Low- Moderate	Moderate	> Altered fire regimes	There is limited information on the sensitivity of the Puget Sound Fritillary to climate change. Similar to other butterflies that occupy prairie and forest glade habitats, the Puget Sound Fritillary is likely sensitive to fire, which can help prevent grassland succession to shrub or forest habitat, but can likely cause direct butterfly mortality and/or facilitate invasion and spread of invasive species.
Rainier Roachfly	Moderate- High	High	Moderate- High	Moderate- High	 > Increased water temperatures > Reduced glacier size 	The Rainier Roachfly has only been documented within Mt. Rainier National Park (mostly on the west side). It is found in seeps, springs, and small spring-fed streams. Climate sensitivity for this species is tied to melting glaciers and an associated rise in stream temperatures. Relatively little is known about this species, but stoneflies as a whole are

INVERTEBRATES		0	C and althin dis		6	
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and increased glacier melting > Changes in precipitation and/or drought > Altered flow regimes	sensitive to drought or precipitation changes that may affect seep moisture, springs, and stream flow. Decreased water quality, habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Ranne's Mountainsnail	Low	Low	Low	N/A	N/A	There is limited information on the sensitivity of this species to climate change. It is known to occur on only one site in Chelan County in grassland including <i>Eriogonum</i> sp. and <i>Balsamorrhiza Sagitta</i> .
Salmon River Pebblesnail	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Sand Verbena Moth	Moderate- High	Moderate	Moderate- High	Moderate	 > Increased invasive species > Sea level rise > Increased coastal erosion > Drought 	The Sand Verbena Moth is primarily threatened by the loss of its host plant and open sandy coastal habitat as a result of encroaching vegetation, including invasive species. However, it may also exhibit sensitivity to a variety of climate and climate-driven changes, including enhanced coastal erosion, sea level rise and drought. Disturbance is the primary driver in maintaining open sandy habitat preferred by the Sand Verbena Moth's host plant, yellow sand verbena. Enhanced coastal erosion could create more open sandy habitat (i.e., through increased deposition of eroded cliff material) or decrease current moth habitat through loss of established host plants, which occur close to the shoreline. Substantial sea level rise could inundate Sand Verbena Moth habitat, but projected rates of rise through mid-century will likely not be enough to inundate current habitat areas. Drought could lead to early senescence of yellow sand verbena, which would decrease food availability for both adults and larvae and affect annual population numbers. Yellow sand verbena is adapted to dry conditions, however, and can likely survive drought periods, so overall habitat area is not likely to decrease in response to drought.
Sasquatch	Moderate	Low	Moderate	Moderate	> Increased	The Sasquatch Snowfly has been found in British Columbia and
Snowfly					water	Washington, and is associated with high elevation creeks and small to

Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of	Summary of Sensitivity
	vumerability	connuence	Ndlik	Kalik		Summary of Scholdrey
Shortface Lanx	Moderate	Low	Low- Moderate	Moderate- High	Exposure temperatures > Changes in precipitation and/or drought > Altered flow regimes > Altered flow regimes > Reduced oxygen > Increased water temperatures > Increased disease outbreaks	medium rivers. Little else is known about this species, which was recently separated from the nearly identical <i>Bolshecapnia Missiona</i> . Sensitivity for this species likely tied to habitat requirements. Like all other stoneflies, changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat. There is limited information on the sensitivity of this species to climate change. This species is found in cold, perennial, highly oxygenated rivers and streams, and may therefore be sensitive to changes in flow regimes and water temperatures that negatively impact dissolved oxygen levels and chemical and biological processes. This species occurs in low densities in isolated populations and therefore may be acutely vulnerable to diseases or other regimes causing mass mortality because they may not be able to quickly rebuild populations.
Silver- bordered Fritillary	Moderate- High	Moderate	Moderate- High	Moderate- High	 > Increased temperatures > Reduced snowpack > Altered flow regimes > Altered fire regimes 	Climate sensitivity of Silver-bordered Fritillary is likely driven by habitat changes resulting from drying, altered hydrology, and fire. Warmer temperatures and precipitation shifts that drive reduced snowpack and altered flow regimes can lead to drying of bog, marsh and riparian habitats used by this species. Forest succession can also degrade habitat by reducing abundance of violet, its larval host plant. Increasing fire frequency and increasing winter flood risk may help maintain early successional habitat and the high violet abundance required by the Silver-bordered Fritillary. However, fire may cause adult and/or larval mortality.
Siuslaw Sand Tiger Beetle	Moderate- High	Low	Moderate	Moderate- High	 > Reduced stream flow > Drought and/or reduced soil moisture > Altered fire 	Siuslaw Sand Tiger Beetle occupies sandy beaches at the interface of river mouths and the Pacific Ocean. This species is likely sensitive to drought, reduced streamflow, and increasingly xeric conditions, as larvae have narrow moisture requirements and burrows are located adjacent to surface water or in areas with persistent soil moisture.

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Skipper	Moderate		Moderate	Moderate	regimes	climate change. As an occupant of forest edges, prairies, meadows and other open sites, this species may exhibit sensitivity to fire, which can help maintain open habitat conditions. However, similar to other prairie butterflies, fire may cause adult and/or larval mortality. It likely exhibits some physiological sensitivity to climate conditions, as population numbers fluctuate yearly, but more information is needed.
Spotted Taildropper	Low- Moderate	Low	Low- Moderate	Moderate	 Increased temperatures Reduced soil moisture and/or changes in precipitation Altered fire regimes 	There is very limited information regarding the sensitivity of Spotted Taildropper to climate change and limited information available regarding its life history characteristics. Their main sensitivity is likely to be driven by changes in their preferred habitat – mature conifer forests with moist ground. Increases in temperature and decreases in summer rainfall are likely to lead to increased risk of severe fires, which would destroy habitat for this species. Declines in habitat quality could also lead to fragmentation of populations and eventual population declines, particularly because documented populations of this species are already very small.
Straits Acmon Blue	Moderate- High	Moderate	N/A	Moderate- High	 > Sea level rise > Increased storm frequency and intensity 	There is no information on the sensitivity of the Straits Acmon Blue to climate change. As an occupant of sand spits and beaches, it may be vulnerable to climate-driven shifts in habitat and host plant availability caused by sea level rise, increased storm frequency and intensity, and erosion, but no information is available. (See scrub and herb coastal vegetation habitat assessments for more information on potential habitat sensitivity to climate change.)
Subarctic Bluet	Moderate- High	Low	High	Moderate	 > Altered flow regimes > Drought > Increased air and water temperatures > Reduced snowpack and/or changes in precipitation 	The Subarctic Bluet is likely sensitive to drought, increasingly dry conditions (e.g., reduced snowpack, shifts from snow to rain), and altered hydrology (e.g., reduced flows and larger floods) that can lead to drying, habitat contraction and/or altered water quality in its fen and bog habitat. Subarctic Bluet larvae are aquatic and depend on aquatic vegetation for foraging, making them sensitive to climate-driven habitat drying that may facilitate shifts toward more xeric vegetation. There are only a few populations of this species in Washington, representing the southern end of this species' range, so any significant alteration in bog habitat as a result of climate change could lead to loss of this species in the state. Similar to other Odonates, Subarctic Bluet is likely also sensitive to increasing temperatures (air and water) in a variety of ways:

_	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						warmer temperatures may affect development, phenology, behavior,
					-	and other characteristics of this species.
Suckley	Moderate	Low	Moderate	Moderate	> Increased	There is no information regarding the sensitivity of this species to
Cuckoo					temperatures	climate change. In general, bumble bees are likely sensitive to climate-
Bumble Bee					> Changes in	driven changes in nesting, foraging, and overwintering habitat, but
					precipitation	detailed information is currently lacking. Shifts in temperature,
					and/or soil	precipitation, and snowpack may affect bumble bee distribution and life
					moisture	history, potentially forcing them into unfavorable habitats, to emerge at non-optimal times (i.e., mismatch with vegetation), and/or affecting
						energy demands during overwintering periods. These climate-driven
						changes may also affect habitat quality and availability. One of the
						primary concerns for bumble bee species is a shift in the abundance,
						distribution, and/or phenological synchrony of key forage flowering
						vegetation, as pollen and nectar availability influences reproduction and
						overwintering success of queens.
Talol Springfly	Moderate	Low	Moderate	Moderate	> Increased	The Talol Snowfly was described in 2004 from a single collection taken
					water	from Mt. Rainier National Park. The sample was found in a medium-
					temperatures	sized river, but nothing else is known about the ecology of this species.
					> Changes in	Like all other stoneflies, it is likely dependent on flowing water for
					precipitation	nymph survival, making it sensitive to changes in flow patterns due to
					and/or	drought or changing patterns of precipitation. Stoneflies are also
					drought	typically sensitive to changes in water temperature and water quality, as
					> Altered	well as habitat fragmentation and nearby development which may alter
					flow regimes	the quality and availability of suitable habitat.
Taylor's	Moderate-	Moderate	Moderate-	Moderate-	> Increased	Taylor's Checkerspot sensitivity is likely driven by temperature,
Checkerspot	High		High	High	temperatures	precipitation, and fire. Warming temperatures may accelerate larval
					> Drought	development, affect larval feeding period duration, increase activity
					> Extreme	periods by reducing basking requirements, and increase total habitat
					precipitation events	use at the microsite level. However, increasingly xeric conditions may
					> Altered fire	reduce the palatability of grassland larval host plants and/or cause earlier host plant senescence, contributing to larval starvation and
					regimes	mortality. Increasing drought frequency and severity may also require
					> Increased	Taylor's Checkerspot to obtain moisture from puddles during spring,
					invasive	creating previously unneeded microhabitat requirements. Taylor's
					weeds	Checkerspot is also sensitive to rain, and extreme downpours could

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						cause severe population declines by washing away eggs and larvae and limiting adult flight. Low severity fire helps maintain the native vegetation used by Taylor's Checkerspot, but fire can also kill all butterfly age stages, potentially extirpate local populations if fires are large enough. Thus, increasing fire frequencies and severities may affect butterfly survival and habitat availability for Taylor's Checkerspot.
Three-band Juga	Moderate- High	Low	Moderate- High	Moderate	 > Increased water temperatures > Reduced soil moisture and/or drought > Altered fire regimes 	There is limited information on the sensitivity of this species to climate change. This species is found in shallow, slow-flowing springs and seeps and is sometimes associated with talus. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Unnamed Oregonian (Cryptomastix mullani hemphilli)	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Valley Silverspot	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is limited information on Valley Silverspot sensitivity to climate change, but it is likely sensitive to fire. Valley Silverspot prefers open grassland habitat, and its host plant, early blue violet, thrives in early successional landscapes; fire likely helps maintain open grassland habitat by preventing forest succession. However, increasing fire frequency may facilitate the expansion of Scot's broom and other invasive plants, which can outcompete violets, reducing host plant availability.
Washington Duskysnail	Low- Moderate	Low	Low- Moderate	Moderate	 > Altered flow regimes > Reduced oxygen > Increased water temperatures 	There is limited information on the sensitivity of the Washington Duskysnail to climate change. This species displays very similar traits, habitat requirements, and global distributions to the Masked Duskysnail. The Washington Duskysnail occurs in Washington and Montana; in Washington, their habitat includes two large kettle lakes in eastern Washington – Curlew Lake in Ferry County and Fish Lake in Wenatchee National Forest. This species is considered to be a mud

INVERTEBRATES						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Increased disease outbreaks	specialist, living on soft bottom substrates in highly oxygenated lakes; changes in water temperature and flow regimes that affect dissolved oxygen levels and stratification may therefore negatively affect the Washington Duskysnail. Changes in flow regimes that increase nutrient runoff may cause dense filamentous algae blooms that impair or prevent access to important food resources. This species occurs in low densities in isolated populations and therefore may be acutely vulnerable to diseases or other regimes causing mass mortality because they may not be able to quickly rebuild populations.
Wenatchee Forestfly	Moderate- High	Low	Moderate	Moderate- High	 > Increased water temperatures > Changes in precipitation and/or drought > Altered flow regimes 	The Wenatchee Forestfly is a type of stonefly which has been found only in springs which flow into Lake Wenatchee, Washington. Little else is known about this species, but sensitivity probably is tied to specialized habitat requirements. Like all other stoneflies, changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Western Bumble Bee	Moderate- High	Low	Moderate- High	Moderate- High	 > Increased temperatures > Reduced snowpack > Earlier snowmelt > Altered fire regimes 	Climate sensitivity of the Western Bumble Bee is likely driven by temperature increases, reduced snowpack and earlier snowmelt, and fire. In Washington, this species occupies primarily higher elevations; temperature increases, reduced snowpack, and earlier snowmelt may be contributing to phenological mismatches between this species and key forage plants. Temperatures may also affect the distribution of this species, as it appears to prefer cooler environments. Increasing fire frequencies may help maintain bumble bee foraging habitat by preventing conifer encroachment on meadows with abundant flowers. In general, bumble bees are likely sensitive to climate-driven changes in nesting, foraging, and overwintering habitat, but detailed information is currently lacking. Shifts in temperature, precipitation, and snowpack may affect bumble bee distribution and life history, potentially forcing them into unfavorable habitats, to emerge at non-optimal times (i.e., mismatch with vegetation), and/or affecting energy demands during overwintering periods. These climate-driven changes may also affect

INVERTEBRATE						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						habitat quality and availability. One of the primary concerns for bumble bee species is a shift in the abundance, distribution, and/or phenological synchrony of key forage flowering vegetation, as pollen and nectar availability influences reproduction and overwintering success of queens.
Western Pearlshell	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Altered flow regimes	Western Pearlshell is a very long-lived species with a lifespan of up to 100 years and it has experienced significant declines over the past few decades. This species is generally found in shallow pools of freshwater streams and reservoirs with good water quality and a sufficient abundance of small fish who serve as hosts for Western Pearlshell during its transition from the larval to juvenile stage. Therefore, main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. For this species, high levels of river discharge have been found to result in decreased recruitment, and higher nutrient levels have been associated with decreased juvenile growth and increased mortality. Additionally, increases in water temperature and nutrient runoff could lead to altered abundance of host fish (e.g., juvenile salmon) for the larval stage, thus leading to declines in abundance. The long generation times of this species is likely to make response and recovery to adverse climate conditions more difficult.
Western Ridged Mussel	Moderate	Low	Low- Moderate	Moderate- High	 Increased water temperatures > Altered flow regimes 	There is limited information regarding the sensitivity of the Western Ridged Mussel to climate change. This species is generally found in shallow pools of freshwater creeks and streams and with good water quality and a sufficient abundance of small fish (e.g., sculpin and perch) who serve as hosts for Western Ridged Mussel during their transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. Additionally, increases in water temperature could lead to altered abundance of host fish for the larval stage, thus triggering declines in abundance, particularly since this

INVERTEBRATE	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						species appears to be a specialist in terms of preferred host fish species. Western Ridged Mussels may also be sensitive to increasing water temperature in streams and creeks; increased temperatures could lead to decreased recruitment and increased mortality of the larval stage.
White-belted Ringtail	Moderate- High	Low	Moderate- High	Moderate	 Increased air and water temperatures Altered flow regimes (low summer flows and increased winter flooding) Altered fire regimes 	There is little information on the sensitivity of this species to climate change, but similar to the Pacific Clubtail, it is likely influenced by air temperature, water temperature, and shifting flow regimes. Temperature is known to influence the phenology, development, behavior and other characteristics of dragonflies, and warming temperatures (both air and water) will likely impact this species during various life stages. Hydrological changes (e.g., reduced stream flows) and drought may degrade or reduce aquatic habitat available for this species and/or compound increases in water temperature. White-beltect Ringtail is also likely sensitive to disturbance events (e.g., fire, floods) that reduce riparian vegetation, which eliminates stream shade and foraging and roosting sites for adults, and/or that increase siltation, which can kill larvae.
Winged Floater	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures > Altered flow regimes	There is limited information regarding the sensitivity of Winged Floater to climate change. This species is generally found in lakes, reservoirs, and slow-moving streams with good water quality and a sufficient abundance of small fish (e.g., sculpin, perch, hardhead) who serve as hosts for the species during its transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate- induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. Additionally, increases in water temperature could lead to altered abundance of host fish for larval stage, thus leading to declines in abundance. Winged Floater may also be sensitive to increasing water temperature in streams and lakes; increased temperatures could lead to decreased recruitment and increased mortality of the larval stage.
Yosemite Springfly	High	Low	High	Moderate- High	> Increased water temperatures	The Yosemite Springfly is rare, found only in high elevation glacier-fed streams within Washington, Oregon, and California. Little else is known about this species, but sensitivity probably is tied to specialized habitat

INVERTEBRATE	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
openeo	Vulnerability	Confidence	Rank	Rank	Exposure	
					> Reduced	requirements, which will be affected by melting glaciers and an
					glacier size	associated rise in stream temperatures. Like all other stoneflies, changes
					and	in flow patterns due to drought or changing patterns of precipitation
					increased	and decreased water quality are also likely to increase the sensitivity of
					glacier	the species, as well as habitat fragmentation and nearby development
					melting	which may alter the quality and availability of suitable habitat.
					> Changes in	
					precipitation	
					and/or	
					drought	
					> Altered	
					flow regimes	
Yuma Skipper	Moderate	Moderate	Moderate	Moderate	> Altered	Yuma Skipper occupies reed beds around freshwater marshes, wetlands,
					flow regimes	streams, and other wet areas, and is likely sensitive to increasingly dry
					> Prolonged	conditions that may affect the distribution and persistence of its larval
					drought	host plant, the common reed. However common reed is fairly resilient,
						as it is able to persist for several years in dried-out wetlands; therefore,
						habitat for Yuma Skipper may be resilient to short-term drought, but
						could be vulnerable to long-term drought and/or significant shifts in
						surface water delivery to wetland areas. Further, the extremely limited
						distribution of Yuma Skipper in Washington makes it vulnerable to local
						extirpation.

C.3 References

SPECIES VULNERABILITY

References for species vulnerability can be found in Appendix F, under Climate Change Vulnerability.

CLIMATE IMPACTS OVERVIEW

The information in the climate impacts overview was compiled from various synthesis reports on climate change projections and impacts for the Pacific Northwest region. Specific citations for information not derived from these reports can be found in-text. Otherwise, primary literature sources can be found within the following synthesis reports:

- Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.
- Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach, and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. *Climate Change Impacts in the United States: The Third National Climate Assessment*, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 557-578. doi:10.7930/JORF5RZW.
- Gregg, R. M., K. M. Feifel, J.M. Kershner, and J.L. Hitt. 2012. The State of Climate Change Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.
- Gregg, R.M., L. J. Hansen, K.M. Feifel, J.L. Hitt, J.M. Kershner, A. Score, and J.R. Hoffman. 2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. EcoAdapt, Bainbridge Island, WA.
- Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi, and S. Reeder. 2014. Ch.
 21: Northwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J.
 M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 487513. doi:10.7930/J04Q7RWX.
- Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby, and I. Tohver. 2013. Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers. State of Knowledge Report prepared for the Washington State Department of Ecology. Climate Impacts Group, University of Washington, Seattle.
- State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate: Washington States Integrated Climate Response Strategy. Publication No. 12-01-004. Olympia, WA.
- Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats, and Species: A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems_Final-Report_NPLCC-NWF_online-size.pdf
- Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf
- Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.pwf.org/~/media/PDEs/Global-Warming/2014/Marine-Report/NPLCC_Marine_Climate-

http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine-Report/NPLCC_Marine_Climate-Effects_Final.pdf

Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington Connected Landscapes Project: Statewide Analysis. Washington Departments of Fish and Wildlife, and Transportation

Appendix D

Stakeholder Engagement and Outreach

Table of Contents

D.0	Introd	uction and Overview	.1
D.1	Devel	opment and Implementation of an Outreach Plan	.1
	D.1.1	Use of the WDFW website for outreach	. 2
	D.1.2	Developing an interested persons list	. 2
	D.1.3	Survey to determine how the SWAP could add value to conservation actions of other	
		organizations	. 2
	D.1.4	Presentations and briefings to key conservation partners	.4
	D.1.5	In-person workshops and webinars	.4
	D.1.6	Targeted Outreach	.4
D.2	Refere	ences Section	5
	D.2.1	Wildlife Diversity Advisory Council	.5
	D.2.2	Goals and Objectives of the SWAP Outreach Plan (adopted in August, 2014)	.5
	D.2.3	Survey Monkey	.6
	D.2.3	Survey Monkey	

Appendix D Stakeholder Engagement and Outreach

D.0 Introduction and Overview

The development process of the original Comprehensive Wildlife Conservation Strategy (CWCS) included significant outreach to the public and WDFW's stakeholders, all of which is detailed in the 2005 plan, available on the SWAP website – http://wdfw.wa.gov/conservation/cwcs/. The following chapter summarizes our approach to engage stakeholders in the review and revision of the CWCS and the development of the State Wildlife Action Plan (SWAP) Revision. In general, we aimed for a strategic and leveraged approach to engaging external partners. One of the guiding principles adopted early in the SWAP Revision process encouraged us to "be efficient – conduct the SWAP revision in a manner that matches the available resources for planning and implementation." With limited resources available for this revision, we focused on how to get the best value from stakeholder and public outreach efforts. An Outreach Plan, located near the end of this appendix, was developed to guide our efforts, and specific components of that plan are discussed in the next section.

Our overall approach was to provide several opportunities for feedback from our stakeholders and conservation partners throughout the SWAP Revision process, recognizing that input early in the process would be more effective at shaping the scope and content. We worked with the Wildlife Diversity Advisory Council (WDAC), a standing committee convened by WDFW and representing a range of interests as our primary stakeholder committee. During this period, the WDAC consisted of 18 members from across the state. We provided periodic updates to WDAC on the process for the SWAP Update and worked with a subcommittee early in the process for feedback on our content and focus areas, including feedback on the SGCN list and approach to identifying habitats of concern. Each member of the WDAC was encouraged to reach out to the people and organizations they interact with outside of WDFW to provide input during the revision.

Using the tools described below, we cast a wide net beyond the WDAC to identify and invite other individuals and organizations who might be interested in being involved in the development process, and then focused in on working with those who indicated interest. We made use of the WDFW website, email announcements, in person workshops, webinars and presentations, and briefings to small groups to announce the SWAP Update project and invite comments during the development process.

D.1 Development and Implementation of an Outreach Plan

We worked with members of the WDFW Cross Program Advisory Team¹ to develop an Outreach Plan which addressed both outreach to interested parties external to WDFW and also in-reach, activities to engage the expertise of staff within the agency. The Outreach Plan was then reviewed by members of the Wildlife Diversity Advisory Council, and after discussion, the plan was adopted (see References Section for the goals and objectives of the plan).

¹ The Cross Program Advisory Team included managers from across the agency and met monthly beginning in July 2013 to provide guidance and input on the development of the State Wildlife Action Plan Update.

A few of the key activities outlined in the plan are discussed below.

D.1.1 Use of the WDFW website for outreach

In early 2014, we updated the WDFW website to announce that the 2005 CWCS was being reviewed and revised as a State Wildlife Action Plan Update. We provided basic information about the update process and timeline and encouraged interested parties to contact the SWAP Coordinator for more information and to be on a list for future updates.

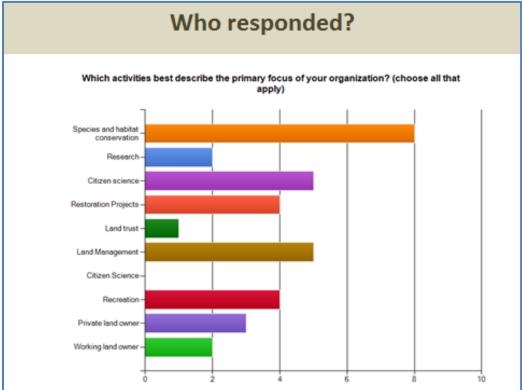
March 2015: SGCN list and supporting information

In early March we published our draft SGCN list on the website and provided information about the list, the criteria used, differences from 2005 and the implications of being included on the SGCN list. We also published fact sheets for each of the SGCN, including information on conservation status, conservation concern, distribution, population trends, habitat needs, key stressors and actions. Any visitor to the website was encouraged to review and submit comments on these documents, or the list itself.

July 2015: Full draft (content review only)

The full draft SWAP was posted on the website in late July for a general public review period. This draft was intended for content review only.

D.1.2 Developing an interested persons list


Early in the process we reviewed existing lists from within WDFW to identify individuals, tribes and organizations potentially interested in conservation issues or having specialized expertise or knowledge to contribute. An introductory email was sent to approximately 250 individuals and organizations, announcing the SWAP Update and our goal of developing a list of people interested in being involved in or kept informed of the process for updating the plan. We provided a brief overview of the purpose and intent of the SWAP Revision.

D.1.3 Survey to determine how the SWAP could add value to conservation actions of other organizations

We developed a survey, located near the end of this appendix, to find out generally how the State Wildlife Action Plan could add value to other organizations, and identify specific opportunities to contribute to shared conservation goals or strategies. The survey asked respondents to identify the top priority initiatives or objectives related to habitat or species conservation in a three to five year timeline, so that WDFW could assess how the agency, and specifically the SWAP, could contribute towards those objectives. We also provided a list of options for respondents to indicate how WDFW could assist in furthering shared goals related to species and habitat conservation. Finally, we included an open ended question specifically asking for ideas on how the SWAP itself could add value to their respective conservation efforts.

While the number of those who responded was relatively low (approximately 20), respondents represented a diverse group of interests and organizations, and the results were informative from that perspective. The following figures summarize the diversity of those who responded.

Figure D-1: Survey Respondents

Sample responses to "How the SWAP could add value to your work"

- Promote on the ground actions to conserve habitat, and access to habitat, especially given threat of climate change.
- Incentive for private landowners; facilitate private incentives for species recovery.
- Serve as a road map for private landowners to help them coordinate incentive based habitat plans with appropriate agencies and tribes.
- Be responsive to needs of agricultural community.
- Provide grant opportunities for land protection and public education projects.
- Promote citizen science at every age level (databases and field experts).
- Communicate to the public about species conservation and climate change
- Integrated/collaborative planning.
- Provide predictability about natural resources management issues; identify management actions that could become Army conservation projects.
- Incorporate priorities set by Pacific Coast Joint Venture Scientists.
- Help to set priorities for partners, and inform updates of national bird plans.

While the resources available for the SWAP Update and the focus of our revision did not allow us to address all the comments, the exercise provided good feedback to the agency and emphasized the importance of using a full conservation toolbox when considering appropriate actions to improve status of SGCN or Ecological Systems of Concern (ESOC), including technical assistance, transparent and clear communication, incentives for private landowners, increased education and others. These conservation tools can be as important in some cases as research or survey and monitoring activities.

The feedback from the survey as well as other comments received through the website and at SWAP presentations encouraged us to post information on SGCN early in our review to ensure that to the extent possible, experts had ample opportunity to add any appropriate information. In identifying stressors and actions (in SGCN and ESOC fact sheets), we also identified potential partners and included a full range of conservation tools.

D.1.4 Presentations and briefings to key conservation partners

Throughout the SWAP Revision process, the SWAP Coordinator provided briefings and updates to both small and large groups. The purpose was generally to outline the update process, share products as they were available, and gather feedback. We held briefings with each of the following organizations:

- WDNR Natural Heritage Program staff
- Pacific Coast Joint Ventures quarterly meeting
- USFWS staff from Region 1
- Audubon Washington & Black Hills Audubon
- USFWS Surrogate species program lead identifying possible synergies
- USFS Region 6 TRACs program (purpose to identify possible synergies)
- Cascadia Partner Forum
- North Pacific Landscape Conservation Cooperative Steering Committee and staff
- Northwest Climate Science Center staff

D.1.5 In-person workshops and webinars

We scheduled three in-person workshops around the state and one webinar, and advertised these on our website and by email to interested persons. We timed the workshops to coincide with the release of the draft SGCN list on our website, and the availability of fact sheets for most of the species. The one to two-page fact sheets describe habitat, conservation status and need, stressors and actions (see Appendix A for updated versions of these fact sheets). The focus of the workshops was to provide an overview of all the elements of the update, but to focus particularly on the availability of the SGCN data on the web and encourage review of these draft products.

D.1.6 Targeted Outreach

After the draft SWAP was released for public review, we targeted outreach to key stakeholders that we wanted to be sure had an opportunity to provide comment. We offered webinars and in-person briefings to introduce the SWAP and tools that might be of interest. We reached out specifically to working landowner associations and tribes during August of 2015 to ensure they were aware of the public review draft of the SWAP and specific content that might be of interest to them. We were in phone contact with tribal representatives and sent announcements to tribal biologists through the Bureau of Indian Affairs as well as our own direct email lists.

Comments and responses to the Public Review Draft

We received 21 comments via email from external reviewers. Most of these comments were advocating that additional species be included as SGCN. A handful of other comments addressed specific issues in the SWAP or recommended clarifications. WDFW prepared edits in the SWAP itself in response to many of the comments and will prepare a full summary of comments and responses to post on the SWAP website.

D.2 References Section

D.2.1 Wildlife Diversity Advisory Council

Wildlife Diversity is a term commonly used to describe wildlife species that are not traditionally managed for harvest. Also known as "nongame", these species make up the majority of wildlife. The Wildlife Diversity Advisory Council (WDAC) was created to advise the Department on both keeping common species common and recovering listed wildlife species. The council also recommends approaches on how to develop and maintain the social, political, and resource support necessary to achieve conservation of wildlife diversity species in Washington.

Mission Statement

The purpose of the Wildlife Diversity Advisory Council (WDAC) is to advise the Department of Fish and Wildlife on matters pertaining to Wildlife Diversity (nongame species and habitat). At the Department's request, WDAC may focus on present or emerging issues as they relate to wildlife diversity.

D.2.2 Goals and Objectives of the SWAP Outreach Plan (adopted in August, 2014)

Goal

The purpose of this plan is to outline a set of meaningful and cost-effective outreach activities regarding WDFW's efforts to revise the SWAP. Our goal is to design and conduct these activities in such a way as to provide sufficient opportunities for interested parties to contribute to the content of the plan and/or provide substantive comments on specific elements before submission to the USFWS in September, 2015.

SPECIFIC OBJECTIVES (benchmarks)

- 1. Identify appropriate audience
 - Develop address and contact lists.
- 2. Develop outreach materials as necessary, to include a web page, fact sheet, PowerPoint presentations, email alerts to interested parties and materials to support interactive workshops.
- 3. Conduct outreach activities necessary to accomplish goal, to include at least two in person workshops and one webinar during development of the plan, and at least two webinars to introduce the final draft plan.
 - In person one-on-one meetings and calls, and presentations at appropriate events and workshops will be conducted as resources allow.
- 4. Ensure that the SWAP Revision timeline allows ample time for interested parties to participate in the process.
 - Schedule outreach activities to gather meaningful feedback and input.
 - Provide appropriate time for public review and comment on draft SWAP.

TARGET DELIVERABLES

- 1. Outreach materials: webpage, one-pager
- 2. Targeted audience presentations: 2-4
- 3. Public workshops/webinars : 3-5

D.2.3 Survey Monkey

Used to collect feedback on how the SWAP could add value to conservation work by WDFW conservation partners and others

STATE WILDLIFE ACTION PLAN

The purpose of this survey is to assess how the State Wildlife Action Plan could most effectively contribute to regional conservation needs and align with the priorities of organizations working on behalf of species and habitat conservation in Washington. We will use responses to help shape and prioritize key elements of the Plan. The SWAP is updated every 10 years and designed to be a blueprint to inform conservation planning within WDFW and also the broader conservation community in the State. Click this link (http://wdfw.wa.gov/conservation/cwcs/) for a one page overview.

Thank you in advance for taking the time to respond to this survey.

1. What is the name of your organization?

-

2. Your name and your position title?

3. What description best fits your organization?

- What description best fits your organization? Indian Tribe
- Non-governmental organization
- Coalition
- Public-private partnership
- State agency
- Local agency

Federal	agency

Other (please specify)

4. Which activities best describe the primary focus of your organization? (choose all that apply)

Research

	Citizen science
	Restoration Projects
	Land trust
	Land Management
	Citizen Science
	Recreation
	Private land owner
	Working land owner
Othe	er (please specify)

5. Please describe how the State Wildlife Action Plan could be value added to your organization. What would it need to do to support or enhance the work of your organization in a positive way?

6. Please indicate one to three priority intiatives or objectives of your organization (related to species or habitat conservation) in the next 3-5 year timeframe. Please be brief but specific enough so that we can assess how WDFW and the State Wildlife Action Plan might contribute to those objectives.

7. Please indicate which of the following are ways your organization either works with WDFW currently, or might in the future. Click all that apply.

	Please indicate which of the following are ways your organization either works with WDFW currently, ight in the future. Click all that apply. Share information on priorities for species and habitat ervation
	Use information in the State Wildlife Action Plan to develop joint projects on common priorities
	Collaborate on citizen science projects
	Collaborate on preparing outreach and education materials
□ Tean	Provide public testimony or other support for State Wildlife Grants Program (e.g., attend the annual ning with Wildlife Fly-in Days)
	Contribute to landscape or regional conservation efforts (e.g. the Arid Lands Initiative)
	Provide specific expertise as needed to advance conservation objectives
	Other

8. What is your preferred way to comment or contribute to the development of the SWAP?

Track developments via web and comment when needed

- Periodic email updates
- 2-3 hour workshops to engage with staff and explore SWAP content
- Webinars to introduce elements of the SWAP and address questions
- WDFW presentations at events or meetings of my organizations

		l
		Ì
	$\overline{\mathbf{v}}$	I
Other (please specify)		

9. Is there anything else you'd like to tell us?

	<u> </u>
	-
Thank you for taking our survey!	

Appendix E Prioritization Matrix

Description of the WDFW Prioritization Tool

The prioritization tool uses 34 different criteria to rank an action for the purpose of informing planning discussions and decisions. This tool first attempts to identify actions that are either an absolute priority (the expectation is that it be done and justification is required if it will not occur), or non-priority (meaning there are sufficient reasons to not take an action and if an action is taken it should be justified). All actions can also be scored using both weighted and standard criteria that, if applicable to the action, add value to its relative priority. Finally, the status of the species or ecosystem (the Resource Score) may also be added to the equation to allow that value to influence the priority ranking.

Step by Step Instructions

The italicized instructions below are found on the "Instructions" tab on the Prioritization Tool and describe how to complete the Priority Scoring spreadsheet found on the "Scoring Tool" tab. Figures D-1 to D-5 provide screen shots of the various tabs for illustration purposes only.

The tool is intended to prioritize all types of actions (even those that are not similar; e.g. a planning activity vs. a habitat improvement project); however, it may be more useful when evaluating similar actions (e.g. one type of species survey vs. another species survey).

Scoring:

Step 1	Describe an Activity in Column A.
Step 2	Assign a Resource Score by determining Taxa or Ecological System Priority value (see
	Figure 5). If more than one applies, choose the highest ranking (lowest #).
Step 3	Record the value derived from Step 2 in Column AO of the ScoringTool tab
Step 4	Examine the ABSOLUTE PRIORITY, NON-PRIORITY, WEIGHTED PRIORITY, and STANDARD
	PRIORITY Columns in the ScoringTool tab; insert a "1" in all that apply. (See figures 1-4)

Interpreting the Results:

Step 1	Consider the overall Total Absolute Priority Score (Column H).
Step 2	Any action with a positive value in the Total Absolute Priority column should be treated
	as a high priority and justification should be developed if the activity will not be
	conducted or completed.
Step 3	Consider the Total Non-Priority Score (Column N).
Step 4	Any action with a positive value in the Total Non-Priority column should be treated as a
	very low priority and justification should be developed if the activity is to be conducted.
Step 5	Examine the Total Priority Score (AN) and the Combined Priority Score (AO).
Step 6	The Combined Priority Score is the Actions final priority score and should be compared to
	scores from other activities being evaluated.
Step 7	When making decisions, it may be useful to also compare just the Total Priority Scores to
	understand how the Resource Score embedded into the Combined Priority Score
	affected that score.

Classifying Actions and Activities

This prioritization tool provides one means by which actions and activities that WDFW undertakes may be prioritized by scoring actions using the criteria described in the categories below.

Absolute Priority

If an action is linked to one or more absolute priority values, the action is assumed to be of highest priority and is required to be accomplished or justification must be provided for why it will not be accomplished.

- Statutory Requirement
- Legal Mandate (e.g. court order)
- Financial or Contract obligations (including match commitments for grants)
- Governor Priorities and Requests (e.g. Results Washington)
- Fish and Wildlife Commission Requests
- WDFW Director or Assistant Director Priorities and Requests (e.g. Conservation Initiative)

		ABSOLUTI	E PRIORITY			TOTAL ABSOLUTE SCORE
Statutory Requirement	Legal mandate (e.g. court order)	Financial, or Contract Obligations (including Match commitments)	Governor Priorities and Requests (Results WA)	Requests	Director or Assistant Director Priorities and Requests (e.g. Conservation Initiative)	

Figure E-1: Illustration of the Absolute Priority Scoring Tool

Non-Priority

If an action or activity triggers one or more of these items it qualifies as a non-priority. In general, WDFW should not implement actions determined to be a non-priority without justification.

- Other entities will lead or are likely to conduct the actions with or without WDFW
- The cost of the project makes the action infeasible, including consideration of short- and long-term resource commitments
- The likelihood of success is so low that investing in the effort is not justifiable
- The action will result in significant risk to WDFW authorities or funding streams
- Action will result in higher priority conservation action not occurring

Figure E-2: Illustration of the Non-Priority Scoring Tool

Other entities (USFWS, NOAA, Federal LandThe cost of the project makes infeasible, includingThe likelihood of success is so low thatAction will result in significant risk to WDFW authorities or funding streamsAction will result in higher priority conservation action not occurringOther entities (USFWS, NOAA, Federal LandThe cost of the project makes infeasible, including effort is not justifiableAction will result in significant risk to WDFW authorities or funding streamsPartnerships, Citizen Science)The likelihood infeasible, including to term resourceAction will result in significant risk to WDFW funding streams		NC	DN-PRIORITY	(TOTAL NON- PRIORITY SCORE
perform the commitments commitments without WDFW	(USFWS, NOAA, Federal Land Managers, non- profits, land trusts, Partnerships, Citizen Science)will lead or are likely to perform the conservation actions with or	project makes the action infeasible, including consideration of short- and long- term resource	of success is so low that investing in the effort is not	result in significant risk to WDFW authorities or	in higher priority conservation action not occurring	

All actions, but in particular those that have not been found to be either an absolute or a non-priority, may then be scored to determine their relative priority by evaluating them against several weighted and standard criteria.

Weighted Priority

Weighted priority are criteria that are considered to be particularly important when determining an actions priority. (See Figure D-3)

- Achieves conservation outcome that contributes to species recovery
- Achieves conservation outcome that maintains or restores ecological integrity
- External interests could impact WDFWs regulatory authorities or funding if WDFW does not engage in the action
- Action is a state, regional, national or international priority that WDFW has committed to support (NABCI/AFWA/WAFWA priorities)
- Achieves conservation necessary to preclude the need for listing or support down-listing or delisting action at the Federal level, or mitigates the impacts of a listing (e.g. CCAA, SHA)
- Achieves conservation necessary to preclude the need for listing or support down-listing or delisting action at the state level
- WDFW participation is essential to address an urgent conservation need (imminent threat) that will result in unacceptable harm or loss to the species or habitat
- Action or project is likely to maintain or develop a funding source or mechanism for diversity species conservation
- WDFW participation would foster partnerships or help maintain project and/or social/political support for WDFW
- Action can be shown to have long-term values when evaluated in climate change projections

WEIGH	ITED PR	IORITY (CH APPLIC/ E IN COLU		L; IT WILL	BE MULTI	PLED BY	TOTAL WEIGHTED PRIORITY SCORE
conservat on outcome that contribute s to species	or restores	could damage WDFWs regulatory authorities or funding if WDFW does not	internatio nal priority that WDFW has committed to support (NABCI/AF WA/WAF WA	necessary to preclude the need for Federal listing or likely to result in the species being listed (or	preclude the need for State listing or likely to result in the species being listed (or	is essential to address a pressing conservation need (imminent threat) that will result in unacceptabl e harm or	to maintain or develop a long-term funding source or mechanism for diversity species conservation	would erode or prevent important partnerships or cause the collapse of a multi-partner or ongoing	term values when evaluated in climate change projections	

Standard Priority

Criteria that contribute to an action's priority but have not been weighted (see figure 4).

- Fills an immediate or near-term critical information need
- Provides ecosystem, landscape level, or multiple SGCN species benefits
- Action will preclude the need for Critical Habitat designation on WDFW lands
- Action addresses a need in a Federal recovery plan
- Action addresses a need in a species-specific State management plan
- Action addresses a need in the SWAP
- Action maintains or develops a partnership or citizen science effort that will implement conservation actions and reduce future WDFW work load
- Yields expanded conservation capacity and/or significant reduction in conservation work load
- Action is likely to significantly inform the public on important species conservation and other diversity issues
- Facilitates special conservation agreements involving landowners (private or public)
- Contributes to conservation assessment and/or status review with a longer-term need
- Action will also meet other WDFW goals and objectives (e.g. recreation such as hunting, fishing, watchable wildlife; customer service; maintain workforce)

Figure E-4: Illustration of the Standard Priority Scoring Tool

STANDARD					I APPLICAI N COLUMN			BE	TOTAL STANDARD PRIORITY SCORE
mmediate ecosystem, or near-landscape term level, or critical multiple nformatio SGCN n need species benefits	the need	addresses a need in a Federal recovery plan	address a need in a	a need in the SWAP	Action maintains or develops a partnership or citizen science effort that will implement conservation actions and reduce future WDFW work load	likely to significantly inform the public on important species conservatio n and other diversity	n assessment and/or status review with a longer- term need or use horizon	also meet other WDFW goals and objectives (e.g. recreation such as hunting,	

Scoring Totals

All actions are evaluated against all Weighted and Standard criteria, which generates a combined priority score (Figure D-6). Each score may be further refined by including the Resource Score in the analysis. Resource Scores are determined by comparing the NatureServe State and Global Ranks for species or ecosystem (See Figure D-5).

axa Priority Assignment = red	digits (see TaxaRank\	/alues tab fo	or S and G va	lues)
\uparrow		NatureS	erve Global F	Rank	
NatureServe State Rank	G1	G2	G3	G4	G5
S1	1	1	1	2	2
S2	x	2	2	3	3
S3		×	4	5	5
S4			x	6	6
S5 & SNA				×	7
Washington due to geographic/political boundaries, or otherwise irregular in contril Habitat (Ecol. System) Priority	-	odiversity, it is	Priority = 8		
geographic/political boundaries,	-		Priority = 8 bal Category		
eographic/political boundaries, or otherwise irregular in contril	-			4	5
eographic/political boundaries, or otherwise irregular in contril Habitat (Ecol. System) Priority	= red digits	Glo	bal Category	<mark>4</mark> 2	5 2
eographic/political boundaries, or otherwise irregular in contril Habitat (Ecol. System) Priority State Category 1 2	= red digits	Glo 2	bal Category 3	2 3	2 3
geographic/political boundaries, pr otherwise irregular in contril Habitat (Ecol. System) Priority State Category 1 2 3	= red digits	Glo 2 1	bal Category 3 1	2 3 5	2 3 5
eographic/political boundaries, or otherwise irregular in contril Habitat (Ecol. System) Priority State Category 1 2 3 4	= red digits	Glo 2 1 2	bal Category 3 1 2	2 3	2 3 5 6
eographic/political boundaries, or otherwise irregular in contril Habitat (Ecol. System) Priority State Category 1 2 3	= red digits	Glo 2 1 2 ×	bal Category 3 1 2 4	2 3 5	2 3 5

Figure E-6: Combined Priority Score

TOTAL STANDARD PRIORITY SCORE		RESOURCE SCORE	=	COMBINED PRIORITY SCORE
1				
Subtotal	Subtotal	Subtotal	=	TOTAL

A¬¬¡^аŸ¥ F ‴B¥`¥£®s¬¤µ

Organization of References

References are organized first by chapter, and then alphabetically. The "CODE" column indicates the appropriate source category for the reference, as identified and required by RCW 34.05.271.

These codes are as follows:

- i. independent peer review; review is overseen by an independent third party
- ii. internal peer review; review by staff internal to WDFW
- iii. external peer review; review by persons that are external to and selected by WDFW
- iv. Open review; documented open public review process that is not limited to invited organizations or individuals
- v. Legal and policy document; documents related to the legal framework for WDFW, including but not limited to: (A) federal and state statutes, (B) court and hearings board decisions, (C) federal and state administrative rules and regulations; and (D) policy and regulatory documents adopted by local governments.
- vi. Data from pimary research, monitoring activities or other sources.
- vii. Records of best professional judgement of WDFW employees or other inidividuals
- viii. Other: sources of information that do not fit into one of the categories identified above.

REFERENCE	CHAPTER	CODE
 Bailey, R. G. 1995. Description of the ecoregions of the United States: second edition. United States Department of Agriculture Forest Service Miscellaneous Publications No. 1391, Washington DC USA. 108 pp plus map (1:7,500,000). 	Chapter 2	i
 Bailey, R. G. 1998. Ecoregions map of North America: explanatory note. Misc. Pub. No. 1548. Washington, DC: USDA Forest Service. 10 pp., with separate map at 1:15,000,000, in cooperation with The Nature Conservancy and the US Geological Survey. 	Chapter 2	i
 Chappell, C., R. Crawford, J. Kagan and P. J. Doran. 1997. A vegetation, land use and habitat classification system for the terrestrial and aquatic systems of Oregon and Washington. Prepared for: Wildlife Habitats and Species Associations in Oregon and Washington – Building a Common Understanding for Management. Progress Report #3. Olympia, WA. 	Chapter 2	i
Franklin, J. F. and C. T. Dyrness. 1988. Natural vegetation of Oregon and Washington. Oregon State University Press. Corvallis, Oregon.	Chapter 2	i
Glick P., L. Helbrecht, J. Lawler and M. Case, 2013. Safeguarding Washington's Fish and Wildlife in an Era of Climate Change; A case study of partnerships in action, National Wildlife Federation, Seattle, WA.	Chapter 2	i,ii
NatureServe. 2005. NatureServe Explorer: An online encyclopedia of life [web application]. Version 4.4. NatureServe, Arlington, VA. Available at: http://www.natureserve.org/explorer	Chapter 2	vi
Washington Biodiversity Council. 2007. Washington's Biodiversity Status and Threats. Washington Recreation and Conservation Office. Olympia, Washington	Chapter 2	i
Washington Department of Fish and Wildlife (WDFW). 2014. Game management plan: 2015-2021. Wildlife Program. Olympia, WA.	Chapter 2	ii,iii,iv

REFERENCE	CHAPTER	CODE
Washington Department of Fish and Wildlife (WDFW). 1988. Draft nongame strategic plan. Wildlife Division	Chapter 2	ii,iii
Washington Department of Natural Resources (WDNR). 1998. Our changing nature: Natural resource trends in Washington State. Olympia, WA.	Chapter 2	i
Washington Department of Natural Resources (WDNR). 2000. <i>Changing our water ways:</i> <i>Trends in Washington's water systems</i> . Olympia, WA.	Chapter 2	i
Washington State Blue Ribbon Panel on Ocean Acidification (2012): Ocean Acidification: From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Chapter 2	i
 Altman, B., M. Hayes, S. Janes and R. Forbes. 2001. Wildlife of westside grassland and chaparral habitats. Pages 261-291 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon. 	Chapter 4	i
Block, W. M. and L. A. Brennan. 1993. The habitat concept in ornithology: theory and applications. Current Ornithology 11:35-91.	Chapter 4	i
Caplow, F. and J. Miller. 2004. Southwestern Washington prairies: using GIS to find rare plant habitat in historic prairies. Washington Department of Natural Resources, Olympia, Washington.	Chapter 4	i
Chappell, C. B. 2006. Plant Associations of Balds and Bluffs of western Washington. Washington Natural Heritage Program, Department of Natural Resources, Olympia, WA. Online: http://www1.dnr.wa.gov/nhp/refdesk/communities/index.html	Chapter 4	vi
Chappell, C. B. and J. Kagan. 2001. Westside riparian-wetlands. Pages 94-96 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Chappell, C. B., E. A. Alverson and W. R. Erickson. 2004. Ecologic and geographic variation in species composition of prairies, herbaceous balds and oak woodlands of the Willamette Valley-Puget Trough-Georgia Basin Ecoregion. Abstract: Ecological Society of America, August 1 - 6, 2004, Portland Convention Center, Oregon.	Chapter 4	vi
Crawford, R. C. and H. Hall. 1997. In Dunn, P.V. and K. Ewing. Ecology and Conservation of the South Puget Sound Prairie Landscape. The Nature Conservancy, Seattle, WA.	Chapter 4	i
Dahl, T. E. 1990. Wetland losses in the United States 1780's to 1980's. U. S. Fish and Wildlife Service, Washington, DC, USA.	Chapter 4	i
Easterly, R. T., D. L. Salstrom and C. B. Chappell. 2005. Wet prairie swales of the South Puget Sound, Washington. Report prepared for The Nature Conservancy, South Sound Office, Olympia, Washington.	Chapter 4	vi
Edelman, A. J. 2003. Marmota olympus. Mammalian Species 736: 1-5.	Chapter 4	i
 Edge, W. D. 2001. Wildlife of Agriculture, Pastures and Mixed Environs. Pages 342-360 in D. H. Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon. 	Chapter 4	i
 Faber-Langendoen, D., J. Nichols, L. Master, K. Snow, A. Tomaino, R. Bittman, G. Hammerson, B. Heidel, L. Ramsay, A. Teucher and B. Young. 2012. NatureServe Conservation Status Assessments: Methodology for Assigning Ranks. NatureServe, Arlington VA. 	Chapter 4	i
Federal Geographic Data Committee. 2008. National Vegetation Classification Standard, Version 2. FGDC-STD-005-2008.	Chapter 4	i
Federal Geographic Data Committee. 2012. Coastal and Marine Ecological Classification Standard. FGDC-STD-018-2012.	Chapter 4	i
 Ferguson, H. L., K. Robinette, K. Stenberg. 2001. Wildlife of urban habitats. Pages 317-341 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon. 	Chapter 4	i

REFERENCE	CHAPTER	CODE
Fresh K., M. Dethier, C. Simenstad, M. Logsdon, H. Shipman, C. Tanner, T. Leschine, T. Mumford, G. Gelfenbaum, R. Shuman and J. Newton. 2011. Implications of Observed Anthropogenic Changes to the Nearshore Ecosystems in Puget Sound. Prepared for the Puget Sound Nearshore Ecosystem Restoration Project. Technical Report 2011-03.	Chapter 4	i
Hallock, L. A. and K. R. McAllister. 2009. American Bullfrog. Washington Herp Atlas. http://www1.dnr.wa.gov/nhp/refdesk/herp/	Chapter 4	vi
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation strategy for Washington State inland sand dunes. Natural Heritage Report 2007-05. Prepared for the Bureau of Land Management. Washington Department of Natural Resources. Olympia, Washington.	Chapter 4	i
Hultine, K. R., S. E. Bush and J. R. Ehleringer. 2010. Ecophysiology of riparian cottonwood and willow before, during and after two years of soil water removal. Ecological Applications 20:347-361.	Chapter 4	i
Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65-71.	Chapter 4	i
Kauffman, J. B., A. S. Thorpe and E. N. J. Brookshire. 2004. Livestock exclusion and belowground ecosystem responses in riparian meadows of Eastern Oregon. Ecological Applications 14: 1671-1679.	Chapter 4	i
 Kauffman, J. B., M. Mahrt, L. A. Mahrt and W. D. Edge. 2001. Wildlife of riparian habitats. Pages 361-388 in D. H. Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon. 	Chapter 4	i
Knutson, K. L. and V. L. Naef. 1997. Management recommendations for Washington's priority habitats: riparian. Washington Department of Fish and Wildlife, Olympia, Washington.	Chapter 4	ii,iii
Kovalchik, B. L. and R. R. Clausnitzer. 2004. Classification and management of aquatic, riparian and wetland sites on the national forests of eastern Washington: series description. USDA Forest Service General Technical Report PNW-GTR-593. Portland, Oregon.	Chapter 4	i
Linders, M. J., W. M. Vander Haegen, J. M. Azerrad, R. Dobson and T. Labbe. 2010. Management Recommendations for Washington's Priority Species: Western Gray Squirrel. Washington Department of Fish and Wildlife, Olympia, Washington.	Chapter 4	ii,iii
MacKenzie, W. H. and J. R. Moran. 2004. Wetlands of British Columbia: a guide to identification. Research Branch, B.C. Ministry of Forestry, Victoria, British Columbia.	Chapter 4	i
Marcoe, K. and S. Pilson. 2012. Land cover change in the Lower Columbia River Estuary, 1880 – 2011. Poster presented at The Columbia River Estuary Conference. May 15 to 17, 2012, Astoria, Oregon.	Chapter 4	vi
Master, L., D. Faber-Langendoen, R. Bittman, G. A. Hammerson, B. Heidel, J. Nichols, L. Ramsay and A. Tomaino (2009). NatureServe conservation status assessments: factors for assessing extinction risk. NatureServe, Arlington, Virginia.	Chapter 4	i
Mayor, S. J., D. C. Schneider, J.A. Schaefer and S.P. Mahoney. 2009. Habitat selection at multiple scales. Ecoscience 16:238-247.	Chapter 4	i
Perry, L. G., D. C. Andersen, L. V. Reynolds, S. M. Nelson and P. B. Shafroth. 2012. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology 18: 821-842.	Chapter 4	i
Poff, B. K., A. Karen, D. G. Neary and V. Henderson. 2011. Threats to Riparian Ecosystems in Western North America: An Analysis of Existing Literature. Journal of the American Water Resources Association 47:1241-1254.	Chapter 4	i
Pollock, M. M., T. J. Beechie and C. E. Jordan. 2007. Geomorphic changes upstream of beaver dams in Bridge Creek, an incised stream channel in the interior Columbia River basin, eastern Oregon. Earth Surface Processes and Landforms 32: 1174-1185.	Chapter 4	i

REFERENCE	CHAPTER	CODE
Rocchio, J. and R. Crawford. 2008. Draft Field Guide to Washington's Ecological Systems.	Chapter 4	vi
Washington Department of Natural Resources.		
Sarr, D. A. 2002. Riparian livestock exclosure research in the western United States: a critique	Chapter 4	i
and some recommendations. Environmental Management 30: 516-526.		
Schroeder, M. A. 2005. White-tailed ptarmigan. Page 68 in T. R. Wahl, B. Tweit and S. G.	Chapter 4	i
Mlodinow, editors. Birds of Washington. Oregon State University Press, Corvallis,	•	
Oregon.		
Schroeder, M. A. and W. M. Vander Haegen. 2011. Response of greater sage-grouse to the	Chapter 4	i
Conservation Reserve Program in Washington State. Studies in Avian Biology 38:517-	•	
529.		
Tisdale, E. W. 1986. Canyon grasslands and associated shrublands of west-central Idaho and	Chapter 4	i
adjacent areas. Bulletin No. 40. Forestry, Wildlife and Range Experiment Station,	•	
University of Idaho, Moscow.		
Trimble, S. W. and A. C. Mendel. 1995. The cow as a geomorphic agent: a critical review.	Chapter 4	i
Geomorphology 13: 233-253.	•	
Vander Haegen, W. M., M. A. Schroeder, W. Y. Chang and S. M. Knapp. 2015. Avian	Chapter 4	i
abundance and reproductive success in the intermountain west: Local-scale response to	• • • •	
the conservation reserve program. Wildlife Society Bulletin (In Press).		
Washington Department of Fish and Wildlife (WDFW). 2008. Priority Habitat and Species List.	Chapter 4	ii,iii
Olympia, Washington. 177 pp.	enapter :	,
Washington Department of Fish and Wildlife (WDFW). 2009. Wildlife in a developing	Chapter 4	ii,iii
landscape. Pages 1-1 to 1-3 in Landscape planning for Washington's wildlife: managing	enapter :	,
for biodiversity in developing areas. J. Azerrad, J. Carleton, J. Davis, T. Quinn, C. Sato, M.		
Tirhi, S. Tomassi and G. Wilhere, authors. Washington Department of Fish and Wildlife.		
Olympia, Washington.		
Washington Office of Financial Management (OFM). 2014. State of Washington forecast of	Chapter 4	i
the state population: November 2014 forecast.		•
Wissmar, R. C. 2004. Riparian corridors of eastern Oregon and Washington: functions and	Chapter 4	i
sustainability along lowland-arid to mountain gradients. Aquatic Sciences 66: 373-387		
Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M.	Chapter 5	i
McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science in the Earth	chapter 5	
System, Joint Institute for the Study of the Atmosphere and Oceans, University of		
Washington, Seattle, Washington.		
Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach	Chapter 5	i
and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. <i>Climate Change</i>	chapter 5	1
Impacts in the United States: The Third National Climate Assessment, J. M. Melillo,		
Terese (T.C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 557-		
578. doi:10.7930/JORF5RZW.		
Gregg, R. M., K. M. Feifel, J.M. Kershner and J.L. Hitt. 2012. The State of Climate Change	Chapter 5	i
Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.	chapter 5	1
Gregg, R. M., L. J. Hansen, K. M. Feifel, J. L. Hitt, J. M. Kershner, A. Score and J. R. Hoffman.	Chapter 5	i
2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of		1
Emerging Ideas. EcoAdapt, Bainbridge Island, WA.		
Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi and S.	Chapter 5	i
Reeder. 2014. Ch. 21: Northwest. Climate Change Impacts in the United States: The	Chapter 5	I
5		
Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond and G. W.		
Yohe, Eds., US Global Change Research Program, 487-513. doi:10.7930/J04Q7RWX.	Charter 5	
Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby and I. Tohver. 2013. Climate	Chapter 5	i
Change Impacts and Adaptation in Washington State: Technical Summaries for Decision		
Makers. State of Knowledge Report prepared for the Washington State Department of		
Ecology. Climate Impacts Group, University of Washington, Seattle.		

REFERENCE	CHAPTER	CODE
State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate: Washington States Integrated Climate Response Strategy. Publication No. 12-01-004. Olympia, WA.	Chapter 5	i
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats and Species: A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global- Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems_Final-Report_NPLCC- NWF_online-size.pdf	Chapter 5	vi
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global- Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf	Chapter 5	vi
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine- Report/NPLCC_Marine_Climate-Effects_Final.pdf	Chapter 5	vi
Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington Connected Landscapes Project: Statewide Analysis. Washington Departments of Fish and Wildlife and Transportation	Chapter 5	i,ii,iii
Akins, J. 2014. Cascades carnivore project: 2014 spring progress report. http://cascadescarnivoreproject.blogspot.com/	Appendix A - Mammals	vi
Allen, B. M. and R. P. Angliss. 2014. Alaska marine mammal stock assessments, 2013. NOAA Technical Memorandum NMFS-AFSC-277, Alaska Fisheries Science Center, Seattle, Washington.	Appendix A - Mammals	vi
 Anderson, E. M. and M. J. Lovallo. 2003. Bobcat and Lynx. Pages 758-786 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland. 	Appendix A - Mammals	i
Anderwald, P., P. G. H. Evans, R. Dyer, A. Dale, P. J. Wright and A. R. Hoelzel. 2012. Spatial scale and environmental determinants in minke whale habitat use and foraging. Marine Ecology Progress Series 450:259-274.	Appendix A - Mammals	i
Aubry, K. B. 1983. The Cascade red fox: distribution, morphology, zoogeography and ecology. Dissertation, University of Washington, Seattle, Washington.	Appendix A - Mammals	i
Aubry, K. B. and S. D. West. 1984. The status of native and introduced mammals on Destruction Island, Washington. Murrelet 65:80-83.	Appendix A - Mammals	i
Aubry, K. B., J. Rohrer, C. M. Raley and S. H. Fitkin. 2013. Wolverine distribution and ecology in the North Cascades Ecosystem, 2013 annual report. Pacific Northwest Research Station, US Forest Service. Olympia, Washington.	Appendix A - Mammals	ii,vi
Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the US west coast: 1991–2001. Administrative report LJ-03-03, Southwest Fisheries Science Center, La Jolla California.	Appendix A - Mammals	vi
 Barlow, J., J. Calambokidis, E. A. Falcone, C. S. Baker, A M. Burdin, P. J. Clapham, J. K. B. Ford, C. M. Gabriele, R. LeDuc, D. K. Mattila, T. J. Quinn II, L. Rojas-Bracho, J. M. Straley, B. L. Taylor, J. Urbán R., P. Wade, D. Weller, B. H. Witteveen and M. Yamaguchi. 2011. Humpback whale abundance in the North Pacific estimated by photographic capture-recapture with bias correction from simulation studies. Marine Mammal Science 27:793–818. 	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
 Becker, S. A., T. Roussin, G. Spence, E. Krausz, D. Martorello, S. Simek and K. Eaton. 2014. Washington gray wolf conservation and management 2013 annual report. Pages WAppendix A - Mammals to WAppendix A - Birds <i>in</i> US Fish and Wildlife Service Rocky Mountain Wolf Program 2013 Annual Report. US Fish and Wildlife Service, Helena, Montana. 	Appendix A - Mammals	ii,vi
Best, T. L. 1996. Lepus californicus. Mammalian Species 530:1-10.	Appendix A - Mammals	i
Bodkin, J. L. 2003. Sea otter. Pages 735-743 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Booth, E. S. 1947. Systematic review of the land mammals of Washington. Ph.D. Dissertation, State College of Washington, Pullman, Washington.	Appendix A - Mammals	i
Bruggeman, J. E. 2011. Factors affecting pika populations in the North Cascades National Park Service Complex. Final Report, to North Cascades National Park Service, 110 pp.	Appendix A - Mammals	vi
Calambokidis, J. 2013. Updated abundance estimates of blue and humpback whales off the US west coast incorporating photo-identifications from 2010 and 2011. Document PSRG-2013-13 presented to the Pacific Scientific Review Group, April 2013.	Appendix A - Mammals	vi
Calambokidis, J., E. Falcone, A. Douglas, L. Schlender and J. Huggins. 2009. Photographic identification of humpback and blue whales off the U.S. west coast: results and updated abundance estimates from 2008 field season. Final Report for Contract AB133F08SE2786 for the Southwest Fisheries Science Center, La Jolla, California.	Appendix A - Mammals	vi
Calambokidis, J., J. L. Laake and A. Klimek. 2012. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998-2010. Paper SC/M12/AWMP2-IWC Scientific Committee.	Appendix A - Mammals	vi
Carey, A. B. and J. E. Kershner. 1996. <i>Spilogale gracilis</i> in upland forests of western Washington and Oregon. Northwestern Naturalist 77:29–34.	Appendix A - Mammals	i
Carraway, L. N. and B. J. Verts. 1999. Records of reproduction in <i>Sorex preblei</i> . Northwestern Naturalist 80:115-116.	Appendix A - Mammals	i
 Carretta, J. V., E. Oleson, D. W. Weller, A. R. Lang, K. A. Forney, J. Baker, B. Hanson, K. Martien, M. M. Muto, A. J. Orr, H. Huber, M. S. Lowry, J. Barlow, D. Lynch, L. Carswell, R.L. Brownell Jr. and D. K. Mattila. 2014. U.S. Pacific Marine Mammal Stock Assessments: 2013. NOAA Technical Memorandum, NOAA-TMNMFS-SWFSC-532. 406 p. 	Appendix A - Mammals	vi
Chatwin, T. 2004. Keen's long-eared myotis. British Columbia Ministry of Water, Land & Air Protection, Surrey, B.C. <http: documents="" identified="" m_keensmyotis.pdf.<br="" mammals="" wlapwww.gov.bc.ca="" wld="">></http:>	Appendix A - Mammals	vi
Copeland, J. P. and J. S.Whitman. 2003. Wolverine (<i>Gulo gulo</i>). Pages 672-682 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Cornely, J. E., L. N. Carraway and B. J. Verts. 1992. Sorex preblei. Mammalian Species 416:1-3.	Appendix A - Mammals	i
COSEWIC. 2003. COSEWIC assessment and update status report on Keen's long-eared bat <i>Myotis keenii</i> in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, Ontario.	Appendix A - Mammals	vi
Dalquest, W. W. 1948. Mammals of Washington. University of Kansas Publications, Museum of Natural History 2:1-444.	Appendix A - Mammals	i
Edelman, A. J. 2003. Marmota olympus. Mammalian Species 736:1-5.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
Finger, R., G. J. Wiles, J. Tabor and E. Cummins. 2007. Washington ground squirrel surveys in	Appendix A -	ii
Adams, Douglas and Grant Counties, Washington, 2004. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Flinders, J. T. and J. A. Chapman. 2003. Black-tailed jackrabbit. Pp 126-146 in G. A. Feldhamer,	Appendix A -	i
B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America biology	Mammals	
management and conservation, 2 nd edition. Johns Hopkins University Press, Baltimore,		
Maryland.		
Frasier, T. R., S. M. Koroscil, B. N. White and J. D. Darling. 2011. Assessment of population	Appendix A -	i
substructure in relation to summer feeding ground use in the eastern North Pacific gray	Mammals	
whale. Endangered Species Research 14:39-48.		
Gitzen, R. A., J. E. Bradley, M. R. Kroeger and S. D. West. 2009. First record of Preble's Shrew	Appendix A -	i
(Sorex preblei) in the northern Columbia Basin, Washington. Northwestern Naturalist	Mammals	
90: 41-43.		
Gregory, S. C., W. M. Vander Haegen, W. Y. Chang and S. D. West. 2010. Nest site selection by	Appendix A -	i
western gray squirrels at their northern range terminus. Journal of Wildlife	Mammals	
Management 74:18-25.		
Griffin, S. C. 2007. Demography and ecology of a declining endemic: the Olympic Marmot.	Appendix A -	i
Ph.D. dissertation, University of Montana, Missoula.	Mammals	
Griffin, S. C., M. L. Taper, R. Hoffman and L. S. Mills. 2008. The case of the missing marmots:	Appendix A -	i
are metapopulation dynamics or range-wide declines responsible? Biological	Mammals	
Conservation 141:1293-1309.		
Gruver, J. C. and D. A. Keinath. 2006. Townsend's big-eared bat (Corynorhinus townsendii): a	Appendix A -	vi
technical conservation assessment. Rocky Mountain Region. USDA Forest Service,	Mammals	
Golden, Colorado.		
Hayes, G. and G. J. Wiles. 2013. Washington bat conservation plan. Washington Department	Appendix A -	ii,iii
of Fish and Wildlife, Olympia, Washington. 138+viii pp.	Mammals	
Hayes, G. E. and J. C. Lewis. 2006. Washington state recovery plan for the fisher. Washington	Appendix A -	ii,iii
Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Hope, A. G., K. A. Speer, J. R. Demboski, S. L. Talbot and J. A. Cook. 2012. A climate for	Appendix A -	i
speciation: rapid spatial diversification within the Sorex cinereus complex of shrews.	Mammals	
Molecular Phylogenetics and Evolution 64: 671–684.		
Johnson, M. L. and C. W. Clanton. 1954. Natural history of Sorex merriami in Washington	Appendix A -	i
state. Murrelet 35:1- 4.	Mammals	
Johnson, R. E. and K. M. Cassidy. 1997. Mammals of Washington state: location data and	Appendix A -	i
modeled distributions. Washington State GAP Analysis, Volume 3. Washington	Mammals	
Cooperative Fish and Wildlife Research Unit, Seattle, Washington.		
Jones, T. and L. L. Melton 2014. Petition to list the northern bog lemming (Synaptomys	Appendix A -	i
borealis) under the U. S. Endangered Species Act. Wild Earth Guardians, Denver,	Mammals	
Colorado.		
Klug, B. J., D. A. Goldsmith and R. M. R. Barclay. 2012. Roost selection by the solitary, foliage-	Appendix A -	i
roosting hoary bat (Lasiurus cinereus) during lactation. Canadian Journal of Zoology	Mammals	
90:239-336.		
Koehler, G. M., B. T. Maletzke, J. A. Von Kienast, K. B. Aubry, R. B. Wielgus and R. H. Naney.	Appendix A -	i
2008. Habitat fragmentation and the persistence of Lynx populations in Washington	Mammals	
State. Journal of Wildlife Management 72:1518-1524.		
Laidre, K. L., R. J. Jameson, E. Gurarie, S. J. Jeffries and H. Allen. 2009. Spatial habitat use	Appendix A -	i
patterns of sea otters in coastal Washington. Journal of Mammalogy 90:906-917.	Mammals	
Lance, M. M., S. A. Richardson and H. L. Allen. 2004. Washington state recovery plan for the	Appendix A -	ii,iii
sea otter. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Lim, B. K. 1987. Lepus townsendii. Mammalian Species 288:1-6.	Appendix A -	i
	Mammals	

REFERENCE	CHAPTER	CODE
Linders, M. J. and D. W. Stinson. 2007. Washington state recovery plan for the western gray	Appendix A -	ii,iii
squirrel. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Lindzey, F. G. 2003. Badger (Taxidea taxus). Pages 683-691 in G. A. Feldhamer, B. C.	Appendix A -	i
Thompson and J. A. Chapman, editors. Wild mammals of North America: biology,	Mammals	
management and conservation, 2 nd edition. Johns Hopkins University Press, Baltimore,		
Maryland.		
Lofroth, E. C., C. M. Raley, J. M. Higley, R. L. Truex, J. S. Yaeger, J. C. Lewis, et al. 2010.	Appendix A -	i
Conservation of fishers (<i>Martes pennanti</i>) in south-central British Columbia, western	Mammals	
Washington, western Oregon and California–Volume I: conservation assessment. USDI		
Bureau of Land Management, Denver, Colorado.	A	
Luce, R. J. and D. Keinath. 2007. Spotted bat (<i>Euderma maculatum</i>): a technical conservation	Appendix A - Mammals	i
assessment. USDA Forest Service, Rocky Mountain Region, Golden, Colorado.		
MacDonald, S. O., J. A. Cook, G. L. Kirkland, Jr and E. Yensen. 1998. <i>Microtus pennsylvanicus</i> (Ord 1815) meadow vole. Pp. 99-100 in D. J. Hafner, E. Yensen and G. L. Kirkland, Jr.	Appendix A - Mammals	i
(compilers and editors). North American rodents: status survey and conservation action	IVIdIIIIIdis	
plan. IUCN/SSC Rodent Specialist Group, IUCN, Gland, Switzerland and Cambridge,		
United Kingdom.		
Moore, J. E. and J. P. Barlow. 2014. Improved abundance and trend estimates for sperm	Appendix A -	i
whales in the eastern North Pacific from Bayesian hierarchical modeling. Endangered	Mammals	•
Species Research 25:141-150.		
Nagorsen, D. W. and R. M. Brigham. 1993. The bats of British Columbia. UBC Press,	Appendix A -	i
Vancouver, British Columbia.	Mammals	
National Marine Fisheries Service (NMFS). 2008. Recovery plan for southern resident killer	Appendix A -	i,ii
whales (Orcinus orca). Northwest Region, National Marine Fisheries Service, Seattle,	Mammals	,
Washington.		
National Marine Fisheries Service (NMFS). 2010. Recovery plan for the fin whale	Appendix A -	i
(Balaenoptera physalus). National Marine Fisheries Service, Silver Spring, Maryland.	Mammals	
National Marine Fisheries Service (NMFS). 2011. Final recovery plan for the sei whale	Appendix A -	i
(Balaenoptera borealis). National Marine Fisheries Service, Silver Spring, Maryland.	Mammals	
National Marine Fisheries Service (NMFS). 2013. Final recovery plan for the North Pacific right	Appendix A -	i
whale (Eubalaena japonica). National Marine Fisheries Service, Silver Spring, Maryland.	Mammals	
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected	Appendix A -	vi
Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/finwhale.htm	Mammals	
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected	Appendix A -	vi
Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/bluewhale.htm	Mammals	
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected	Appendix A -	vi
Resources.	Mammals	
http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/minkewhale.htm	Appandix A	.,:
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/seiwhale.htm	Appendix A - Mammals	vi
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected	Appendix A -	vi
Resources.	Mammals	VI
http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/spermwhale.htm	171011111015	
NatureServe. 2014. NatureServe Explorer: an online encyclopedia of life [web application].	Appendix A -	vi
Version 7.1. NatureServe, Arlington, Virginia. http://explorer.natureserve.org	Mammals	41
(accessed November 24, 2014).		
Orca Network. 2015.	Appendix A -	vi
http://www.orcanetwork.org/Main/index.php?categories_file=Births%20and%20Deaths	Mammals	

REFERENCE	CHAPTER	CODE
 Pierson, E. D., M. C. Wackenhut, J. S. Altenbach, P. Bradley, P. Call, D. L. Genter, C. E. Harris, B. L. Keller, B. Lengus, L. Lewis, B. Luce, K. W. Navo, J. M. Perkins, S. Smith and L. Welch. 1999. Species conservation assessment and strategy for Townsend's big-eared bat (<i>Corynorhinus townsendii townsendii and Corynorhinus townsendii pallascens</i>). Idaho Conservation Effort, Idaho Department of Fish and Game, Boise, Idaho. 	Appendix A - Mammals	i
Powell, R. A., S. W. Buskirk and W. J. Zielinski. 2003. Fisher and marten. Pp. 635-649 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Rahme, A. H., A. S. Harestad and F. L. Bunnell. 1995. Status of the badger in British Columbia. Wildlife Working Report WR-72, Ministry of Environment, Lands and Parks (Wildlife Branch), Victoria, British Columbia.	Appendix A - Mammals	vi
Reichel, J. D. and J. G. Corn. 1997. Northern bog lemmings: survey, population parameters and population analysis. Unpublished report to the Kootenai National Forest, Montana Natural Heritage Program, Helena, Montana.	Appendix A - Mammals	vi
Reilly, S.B., J. L. Bannister, P. B. Best and M. Brown. 2008. <i>Balaenoptera acutorostrata</i> . The IUCN Red List of Threatened Species. Version 2014.2. http://www.iucnredlist.org/details/full/2474/0	Appendix A - Mammals	vi
Romain-Bondi, K. A., R. B. Wielgus, L. Waits, W. F. Kasworm, M. Austin and W. Wakkinen. 2004. Density and population size estimates for North Cascade grizzly bears using DNA hair-sampling techniques. Biological Conservation 117:417428.	Appendix A - Mammals	i
Rosatte, R. and S. Lariviere. 2003. Skunks. Pp. 692-707 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Sacks, B. N., M. J., Statham, J. D. Perrine, S. M. Wisely and K. A. Aubry. 2010. North American montane red foxes: expansion, fragmentation and the origin of the Sacramento Valley red fox. Conservation Genetics 11:1523-1539.	Appendix A - Mammals	i
Sato, C. 2012. Appendix A.6 Habitat Connectivity for Washington Ground Squirrel (Urocitellus washingtoni) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group. 24 pp.	Appendix A - Mammals	i,ii,iii
Sato, C. L. 2012. Habitat connectivity for Townsend's ground squirrel (Urocitellus townsendii) in the Columbia Plateau Ecoregion. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	i,ii,iii
Scarff, J. 2013. Records of North Pacific right whales along the coasts of California, Baja, Oregon and Washington. http://www.sfcelticmusic.com/js/RTWHALES/WestCoast_sightings.htm	Appendix A - Mammals	vi
Smith, A. T. and M. L. Weston. 1990. Ochotona princeps. Mammalian Species 352:1-8.	Appendix A - Mammals	i
Stinson, D. W. 2001. Washington state recovery plan for the Lynx. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Stinson, D. W. 2013. Draft Mazama pocket gopher status update and Washington state recovery plan. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Straley, J. M., G. S. Schorr, A. M. Thode, J. Calambokidis, C. R. Lunsford, E. M. Chinoweth, V. M. O'Connell and R. D. Andrews. 2014. Depredating sperm whales in the Gulf of Alaska: local habitat use and long distance movements across putative population boundaries. Endangered Species Research 24:125-135.	Appendix A - Mammals	i
Thomas, P. 2014. 'Astonishing' North Pacific right whale sighting only in second in 62 years off British Columbia. http://www.grindtv.com/outdoor/nature/post/astonishing-north- pacific-right-whale-sighting-is-only-the-second-in-62-years-off-british-columbia/	Appendix A - Mammals	viii
US Fish and Wildlife Service (USFWS). 1994. Recovery plan for woodland caribou in the Selkirk Mountains. US Fish and Wildlife Service, Portland, Oregon.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2011. Species assessment and listing priority assignment form: <i>Urocitellus washingtoni</i> , Washington ground squirrel. US Fish and	Appendix A - Mammals	i
Wildlife Service, Portland, Oregon. US Fish and Wildlife Service (USFWS). 2012. Recovery plan for the Columbia Basin distinct population segment of the pygmy rabbit (<i>Brachylagus idahoensis</i>). US Fish and Wildlife Service, Portland, Oregon.	Appendix A - Mammals	i
US Fish and Wildlife Service (USFWS). 2013. Columbia River distinct population segment of the Columbian white-tailed deer (<i>Odocoileus virginianus leucurus</i>). Five-year review: summary and evaluation. US Fish and Wildlife Service, Lacey, Washington.	Appendix A - Mammals	i
US Fish and Wildlife Service (USFWS). 2014. Final environmental assessment: proposed translocation of Columbian white-tailed deer from Puget Island to Ridgefield National Wildlife Refuge and Julia Butler Hansen Refuge. US Fish and Wildlife Service, Cathlamet, Washington.	Appendix A - Mammals	i
US Fish and Wildlife Service (USFWS). 2015. http://www.fws.gov/refuge/julia_butler_hansen/conservation/columbian_white_tailed deer	Appendix A - Mammals	vi
Vander Haegen, W. M., G. R. Orth and M. J. Linders. 2013. Survival and causes of mortality in a northern population of western gray squirrel. Journal of Wildlife Management 77:1249–1257.	Appendix A - Mammals	i
Varner, J. and M. D. Dearing. 2014. Dietary plasticity in pikas as a strategy for atypical resource landscapes. Journal of Mammalogy 95:72-81.	Appendix A - Mammals	i
Verts, B. J. and L. N. Carraway. 1987. <i>Microtus canicaudus</i> . Mammalian Species 267:1-4.	Appendix A - Mammals	i
Verts, B. J. and L. N. Carraway. 1998. Land mammals of Oregon. University of California Press, Berkeley, California.	Appendix A - Mammals	i
Verts, B. J., L. N. Carraway and A. Kinlaw. 2001. <i>Spilogale gracilis</i> . Mammalian Species 674: 1- 10.	Appendix A - Mammals	i
Wakkinen, W. L. 2004. Demographics and population trends of grizzly bears in the Cabinet– Yaak and Selkirk Ecosystems of British Columbia, Idaho, Montana and Washington. Ursus 15:65-75.	Appendix A - Mammals	i
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and endangered wildlife in Washington: 2012 annual report. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2014. Game management plan, July 2015-June 2021. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii,iv
Wiles, G. J. 2004. Washington state status report for the killer whale. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii,iv
Wiles, G. J., H. L. Allen and G. E. Hayes. 2011. Wolf conservation and management plan for Washington. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii,iv
Willis, C. K. R. and R. M. Brigham. 2005. Physiological and ecological aspects of roost selection by reproductive female hoary bats (<i>Lasiurus cinereus</i>). Journal of Mammalogy 8:85-94.	Appendix A - Mammals	i
Witczuk, J., S. Pagacz and L. S. Mills. 2013. Disproportionate predation on endemic marmots by invasive Coyotes. Journal of Mammalogy 94:702-713.	Appendix A - Mammals	i
Yensen, E. and G. L. Kirkland. 1998. <i>Synaptomys borealis</i> (Richardson 1828): northern bog lemming. In D. J. Hafner, E. Yensen and G. L. Kirkland, editors. North American rodents: status survey and conservation action plan. International Union for the Conservation of Nature, Gland, Switzerland.	Appendix A - Mammals	i
Zielinski, W. J., K. M. Slauson, C. R. Carroll, C. J. Kent and D. G. Kudrna. 2001. Status of American martens in coastal forests of the Pacific States. Journal of Mammalogy 82:478-490.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
Altman, B. 2011. Historical and current distribution and populations of bird species in Prairie- Oak habitats in the Pacific Northwest. Northwest Science 85:194-222.	Appendix A - Birds	i
 Anderson, C. M. and S. G. Herman. 2005. Peregrine Falcon (<i>Falco peregrinus</i>). Pp 126-127 in Wahl, T.R., B. Tweit and S. G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp. 	Appendix A - Birds	i
 Andres, B. A., P. A. Smith, R. I. G. Morrison, C. L. Gratto-Trevor, S. C. Brown and C. A. Friis. 2012. Population estimates of North American shorebirds, 2012. Wader Study Group Bull. 119: 178-194. 	Appendix A - Birds	i
Bechard, M. J. and J. K. Schmutz. 1995. Ferruginous Hawk (<i>Buteo regalis</i>). Birds of North America. 172: 1-20.	Appendix A - Birds	i
Boag, D. A. and M. A. Schroeder. 1987. Population fluctuations in spruce grouse: what determines their numbers in spring? Canadian Journal of Zoology 65:2430-2435.	Appendix A - Birds	i
Boag, D. A. and M. A. Schroeder. 1991. Spruce grouse (Falcipennis canadensis). Birds of North America 5: 1-28.	Appendix A - Birds	i
Booms, T. L., G. L. Holroyd, M. A. Gahbauer, H.E. Trefry, D. A. Wiggins, D. W. Holt, J. A. Johnson, S. B. Lewis, M.D. Larson, K. L. Keyes and S. Swengel. 2014. Assessing the status and conservation priorities of the short-eared owl in North America. Journal of Wildlife Management 78: 772-778.	Appendix A - Birds	i
Bosakowski, T. 2005. Golden eagle (<i>Aquila chrysaetos</i>). Pp 121 – 122 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Braun, C. E., K. Martin and L. A. Robb. 1993. White-tailed Ptarmigan (<i>Lagopus leucurus</i>). Birds of North America 68: 1-24.	Appendix A - Birds	i
Brown, C. R. 1997 Purple Martin (<i>Progne subis</i>). The Birds of North America 287: 1-32.	Appendix A - Birds	i
 Buchanan, J. B. 2005. Spotted Owl (<i>Strix occidentalis</i>). Pp 217-218 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp. 	Appendix A - Birds	i
Buchanan, J. B. 2005. Flammulated Owl (<i>Otus flammeolus</i>). Pp 211-212 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
 Buchanan, J. B. 2005. Marbled Godwit (<i>Limosa fedoa</i>). Page 149 <i>in</i> T. R.Wahl, B. Tweit and S. G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp. 	Appendix A - Birds	i
Buchanan, J. B. 2005. Western Bluebird (<i>Sialia mexicana</i>). Pp 290 - 291 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Buchanan, J. B. 2005. Western Screech Owl (<i>Otus kennicottii</i>). Pp 212-213 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Bull, E. L. and J. R. Duncan. 1993. Great Gray Owl (<i>Strix nebulosa</i>). The Birds of North America 41:1-16.	Appendix A - Birds	i
Campbell R. W., N. K. Dawe, I. McTaggart-Cowan, J.M. Cooper, G. Kaiser, A.C. Stewart and M.C.E. McNall. 1990. Birds of British Columbia, Vol. 1. University of British Columbia Press, Vancouver, British Columbia.	Appendix A - Birds	i
Cannings, R. J. and T. Angell. 2001. Western Screech Owl (<i>Otus kennicottii</i>). The Birds of North America 597:1-20.	Appendix A - Birds	i
Chappell, C. B. 2005. Red Knot (<i>Calidris canutus</i>). Pp 152-153 in Wahl, T.R., B. Tweit and S.G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i

REFERENCE	CHAPTER	CODE
Chappell, C. B. 2005. White-breasted nuthatch (<i>Sitta carolinensis</i>). Pp 280 - 281 <i>in</i> T. R. Wahl,	Appendix A -	i
B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Birds	
Elliott, K. 2006. Declining numbers of Western Screech-owl in the lower mainland of British Columbia. British Columbia Birds 14: 2-11.	Appendix A - Birds	i
Evans, R. M. and F. L. Knopf. 1993. American white pelican (Pelecanus erythrorhynchos). Birds of North America 57: 1-24.	Appendix A - Birds	i
Evers, D. C., J. D. Paruk, J. W. Mcintyre and J. F. Barr. 2010. Common loon (<i>Gavia immer</i>). Birds of North America 313: 1-32.	Appendix A - Birds	i
Galbraith, H., D. W. DesRochers, S. Brown, J. M. Reed. 2014. Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9(9):e108899. Doi:10.1371/journal.pone.0108899	Appendix A - Birds	i
Gammonley, J. H. 2012. Cinnamon Teal (<i>Anas cyanoptera</i>), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/209	Appendix A - Birds	i
Garrett, K. L., M. G. Raphael and R. D. Dixon. 1996. White-headed Woodpecker (<i>Picoides albolarvatus</i>). Birds of North America 252:1-24.	Appendix A - Birds	i
Gratto-Trevor, C. L. 2000. Marbled Godwit (<i>Limosa fedoa</i>). The Birds of North America 492: 1- 24.	Appendix A - Birds	i
Gutiérrez, R. J., A. B. Franklin and W. S. LaHaye. 1995. Spotted Owl (<i>Strix occidentalis</i>). The Birds of North America 179:1-28.	Appendix A - Birds	i
Hafner, D. J., E. Yensen and G. L. Kirkland, Jr. (compilers and editors). 1998. North American rodents: status survey and conservation action plan. IUCN/SSC Rodent Specialist Group, IUCN, Gland, Switzerland and Cambridge, United Kingdom.	Appendix A - Birds	i
Hagar, J. C. and M. A. Stern. 2001. Avifauna in oak woodlands of the Willamette Valley, Oregon. Northwestern Naturalist 82:12-25.	Appendix A - Birds	i
Hanson, T. and G. J. Wiles. 2015. Washington state status report for the Tufted Puffin. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii,iv
Harrington, B. A. 2001. Red Knot (<i>Calidris canutus</i>). The Birds of North America 563:1-32.	Appendix A - Birds	i
Haug, E. A., B. A. Millsap and M. S. Martell. 1993. Burrowing owl (<i>Speotyto cunicularia</i>). Birds of North America 61: 1-20.	Appendix A - Birds	i
Houston, C. S. and D. E. Bowen, Jr. 2001. Upland Sandpiper (<i>Bartramia longicauda</i>). The Birds of North America 580:1-32.	Appendix A - Birds	i
Jewett S. G., W. P. Taylor, W. T. Shaw and J. W. Aldrich. 1953. Pp 67-68 in Birds of Washington. University of Washington Press, Seattle, Washington. 767 pp.	Appendix A - Birds	i
Kochert, M. N., K. Steenhof, C. L. McIntyre and E. H. Craig. 2002. Golden eagle (<i>Aquila chrysaetos</i>). Birds of North America 684: 1-44.	Appendix A - Birds	i
Kostka, S. and K. McAllister. 2005. Purple Martin (<i>Progne subis</i>). Pp 269-270 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Leach, R. H. 2005. Pygmy Nuthatch (<i>Sitta pygmaea</i>). Pp 281-282 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Leach, R.H. 2005. White-headed Woodpecker (<i>Picoides albolarvatus</i>). Pp 239-240 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Lewis, J. C., M. Whalen and E. A. Rodrick. 2002. Lewis' Woodpecker. Priority Habitats and Species, Vol. IV: Birds. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii

REFERENCE	CHAPTER	CODE
Littlefield, C. D. and G. L. Ivey. 2002. Washington State Recovery Plan for the Sandhill Crane. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii
Martin, J. W. and B. A. Carlson. 1998. Sage Sparrow (<i>Amphispiza belli</i>). Birds of North America 326: 1-20.	Appendix A - Birds	i
McCallum, D. A. 1994. Flammulated Owl (<i>Otus flammeolus</i>). The Birds of North America 93:1-24.	Appendix A - Birds	i
Mlodinow, S. G. 2005. Upland Sandpiper (<i>Bartramia longicauda</i>). Page 145 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Mlodinow, S. G. 2005. Vesper Sparrow <i>Pooecetes gramineus.</i> Pp 326-327 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Pacific Flyway Council 2010. Pacific Flyway management plan for the Pacific Coast population of band-tailed pigeons. Pacific Coast Band-tailed Pigeon Subcommittee, Pacific Flyway Study Committee [c/o USFWS], Portland, Oregon.	Appendix A - Birds	i
Pacific Flyway Council. 2014. Draft Pacific Flyway management plan for the dusky Canada goose. Dusky Canada Goose Subcommittee, Pacific Flyway Study Comm. [c/o USFWS], Portland, Oregon. Unpublished report.	Appendix A - Birds	i
Pacific Flyway Council. 2014. Draft Pacific Flyway Management Plan for Pacific Brant. USFWS, Portland, Oregon.	Appendix A - Birds	i
Pacific Harlequin Duck Management: Recommendations for Rocky Mountain-Northwest Coast Segment. July 23, 2004. Pacific Flyway Study Comm. [c/o USFWS], Portland, Oregon.	Appendix A - Birds	i
Pearson, S. F., C. Sundstrom, B. Hoenes and W. Ritchie. 2014. Washington State Snowy Plover Population Monitoring, Research and Management: 2013 Nesting Season Research Progress Report. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	11,111
Peter, D. and C. Harrington. 2002. Site and tree factors in Oregon white oak acorn production in western Washington and Oregon. Northwest Science 76:189-201.	Appendix A - Birds	i
Piatt, J. F. and A. S. Kitaysky. 2002. Tufted Puffin (<i>Fratercula cirrhata</i>). Birds of North America 708: 1-31.	Appendix A - Birds	i
Pravosudov, V. V. and T. C. Grubb, Jr. 1993. White-breasted nuthatch (<i>Sitta carolinensis</i>). Birds of North America 54: 1-16.	Appendix A - Birds	i
Ralph, C. J., G. L. Hunt, M. G. Raphael and J. F. Piatt (technical editors). 1995. Ecology and conservation of the Marbled Murrelet. General Technical Report PSW-GTR-152. Albany, California.	Appendix A - Birds	i
Raphael, M. G., A. Shirk, G. A. Falxa and S. F. Pearson. 2014. Habitat associations of marbled murrelets during the nesting season in nearshore waters along the Washington to California coast. Journal of Marine Systems. DOI: 10.1016/j.jmarsys.2014.06.010	Appendix A - Birds	i
Reynolds, T. D., T. D. Rich and D. A. Stephens. 1999. Sage Thrasher (Oreoscoptes montanus). Birds of North America 463: 1-24.	Appendix A - Birds	i
Richardson, S. A., A. E. Potter, K. L. Lehmkuhl, R. Mazaika, M. E. McFadzen and R. Estes. 2001. Prey of ferruginous hawks breeding in Washington. Northwestern Naturalist 82:58–64.	Appendix A - Birds	i
Ruthrauff, D. R. 2014. On the frozen edge: environmental and physiological constraints in the life history of a northerly-wintering shorebird. PhD Thesis, University of Groningen, Groningen, The Netherlands.	Appendix A - Birds	i
Sea Duck Joint Venture Species Fact Sheet – Surf Scoter: http://seaduckjv.org/meetseaduck/ss.html	Appendix A - Birds	vi
Sea Duck Joint Venture Species Fact Sheet – Barrow's Goldeneye: http://seaduckjv.org/meetseaduck/bge.html	Appendix A - Birds	vi

REFERENCE	CHAPTER	CODE
Sea Duck Joint Venture Species Fact Sheet – Black Scoter:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/bs.html	Birds	
Sea Duck Joint Venture Species Fact Sheet – Long-tailed Duck:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/ltd.html	Birds	
Sea Duck Joint Venture Species Fact Sheet – White-winged Scoter:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/wws.html	Birds	-
Seavey, J. R. 2005. Bald Eagle (<i>Haliaeetus leucocephalus</i>). Pp 111-112 <i>in</i> T.R. Wahl, B. Tweit	Appendix A -	i
and S.G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Birds	
University Press, Corvallis, Oregon. 436 pp.	A	•
Shields, M. 2002. Brown Pelican (<i>Pelecanus occidentalis</i>). Birds of North America 609: 1-36.	Appendix A - Birds	i
Slater, G. L. and B. Altman. 2011. Avian restoration in the Prairie-Oak Ecosystem: a	Appendix A -	i
reintroduction case study of Western Bluebirds to San Juan Island, Washington.	Birds	
Northwest Science 85:223-232.		
Smith, M. R., P. W. Mattocks, Jr. and K. M. Cassidy. 1997. Breeding birds of Washington state:	Appendix A -	vi
location data and predicted distribution. In Cassidy, K. M., C. E. Grue, M. R. Smith and K.	Birds	
M. Dvornich (eds.). Washington state GAP analysis- final report. Vol. 4 Seattle Audubon		
Society Publications in Zoology No. 1, Seattle, Washington.		
Stinson, D. W. 2015. Periodic status review for the Brown Pelican. Washington Department of	Appendix A -	ii,iii,iv
Fish and Wildlife, Olympia, Washington.	Birds	
Stinson, D. W. 2015. Periodic status review for the Streaked Horned Lark in Washington.	Appendix A -	ii,iii,iv
Washington Department of Fish and Wildlife, Olympia, Washington.	Birds	
Stinson, D. W. and M. A. Schroeder. 2012. Washington state recovery plan for the Columbian	Appendix A -	ii,iii
sharp-tailed grouse. Washington Department of Fish and Wildlife, Olympia, Washington.	Birds	
Stinson, D. W., D. W. Hays and M. A. Schroeder. 2004. Washington State recovery plan for the greater sage-grouse. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii
Stinson, D. W., J. W. Watson and K. R. McAllister. 2007. Washington State Status Report for	Appendix A -	ii,iii,iv
the Bald Eagle. Washington Department of Fish and Wildlife, Olympia. 86 + viii pp.	Birds	, ,
Storer, R. W. and G. L. Nuechterlein. 1992. Western and Clark's Grebes. Birds of North	Appendix A -	i
Ámerica 26: 1-24.	Birds	
Stout, B. E. and G. L Nuechterlein. 1999. Red-necked Grebe (<i>Podiceps grisegena</i>). Birds of	Appendix A -	i
North America 465: 1-32.	Birds	
Tacha, T. C., S. A. Nesbitt and P. A. Vohs. 1992. Sandhill crane (Grus canadensis tabida). Birds	Appendix A -	i
of North America 31: 1-24.	Birds	
Tobalske, B. W. 1997. Lewis' Woodpecker. Birds of North America 284: 1-28.	Appendix A -	i
	Birds	
Tweit, B. 2005. Yellow-billed cuckoo (Coccyzus americanus). Page 210 in T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
US Fish and Wildlife Service (USFWS). 2001. 12-month finding for a petition to list the	Appendix A -	i
Washington population of western sage grouse (<i>Centrocercus urophasianus phaios</i>). Federal Register 66:22984-22994.	Birds	
US Fish and Wildlife Service (USFWS). 2007. Recovery plan for the Pacific coast population of	Appendix A -	i
the western snowy plover(Charadrius alexandrinus nivosus). USFWS, Sacramento, California.	Birds	
US Fish and Wildlife Service (USFWS). 2008. Short-tailed Albatross recovery plan. Region 7,	Appendix A -	i
Anchorage, Alaska.	Birds	

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2009. Removal of the Brown Pelican (Pelecanus	Appendix A -	i
<i>occidentalis</i>) from the federal list of endangered and threatened wildlife: Final Rule. Federal Register 74:59444-59472.	Birds	
US Fish and Wildlife Service (USFWS). 2012. Endangered and threatened wildlife and plants;	Appendix A -	i
90-day finding on a petition to list the southern white-tailed ptarmigan and the Mt.	Birds	
Rainier white-tailed ptarmigan as threatened with critical habitat. Federal Register		
77:33143–33155.		
US Fish and Wildlife Service (USFWS). 2013. Endangered and threatened wildlife and plants;	Appendix A -	i
determination of endangered status for Taylor's Checkerspot butterfly and threatened	Birds	
status for the streaked horned lark; final rule. Federal Register 78 (192):61451-61503.		
US Fish and Wildlife Service (USFWS). 2013. Endangered and threatened wildlife and plants;	Appendix A -	i
proposed threatened status for the western distinct population segment of the yellow-	Birds	
billed cuckoo (Coccyzus americanus). Federal Register 78:61622-61666.		
US Fish and Wildlife Service (USFWS). 2014. Short-tailed Albatross 5-year review: summary	Appendix A -	i
and evaluation. Region 7, Anchorage, Alaska.	Birds	
Vander Haegen, W. M. 2005. Sage Sparrow (Amphispiza belli). Pp 328 – 329 in T. R. Wahl, B.	Appendix A -	i
Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon	Birds	
State University Press, Corvallis, Oregon, USA. 436 pp.		
Vander Hagen, W. M. 2005. Sage Thrasher (O <i>reoscoptes montanus</i>). Pp 299 - 300 in T. R.	Appendix A -	i
Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution.	Birds	
Oregon State University Press, Corvallis, Oregon, USA. 436 pp.		
Vischis, L. I., C. K. Johnson, J. R. Evenson, S. F. Pearson, K. L. Barry, P. D. Davidson, M. G.	Appendix A -	i
Raphael and J. K. Gaydos. 2014. Assessing ecological correlates of marine bird declines	Birds	
to inform marine conservation. Conservation Biology: doi: 10.1111/cobi.12378.		
Viste-Sparkman, K. 2006. White-breasted Nuthatch density and nesting ecology in oak	Appendix A -	i
woodlands of the Willamette Valley, Oregon. Master's thesis, Oregon State University,	Birds	
Corvallis, Oregon.		
Wahl , T. R. and S. Richardson. 2005. Common Loon (<i>Gavia immer</i>). Pp 76 – 77 in T. R. Wahl,	Appendix A -	i
B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution.	Birds	
OregonState University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Clark's Grebe. Page 83 In T.R. Wahl, B. Tweit and S.G. Mlodinow (eds.). Birds	Appendix A -	i
of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon.	Birds	
Wahl, T. R. 2005. Loggerhead Shrike (<i>Lanius ludovicianus</i>). Pp 254-255 <i>in</i> T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Red-necked grebe (<i>Podiceps grisegena</i>). Pp 79 – 80 in T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.	Appandix A	•
Wahl, T. R. 2005. Short-eared Owl (<i>Asio flammeus</i>). Pp 221-222 <i>in</i> T. R. Wahl, B. Tweit and S.	Appendix A -	i
G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp. Wahl, T. R. 2005. Western Grebe (<i>Aechmophorus occidentalis</i>). Pp 81-82 <i>in</i> T.R. Wahl, B. Tweit	Appondix A	i
and S.G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Appendix A - Birds	1
	DITUS	
University Press, Corvallis, Oregon. 436 pp. Washington Department of Fish and Wildlife (WDFW) Sea Duck Management Strategies:	Annendiy A	
http://wdfw.wa.gov/publications/pub.php?id=01007	Appendix A - Birds	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and Endangered Wildlife in Washington: 2012 Annual Report. Washington Department of Fish and	Appendix A - Birds	ii,iii
Wildlife, Olympia, Washington.	DIIUS	
Washington Department of Fish and Wildlife (WDFW). 1995. Washington State recovery plan	Appendix A -	ii,iii
for the Snowy Plover. Olympia, Washington.	Birds	11,111

REFERENCE	CHAPTER	CODE
Washington Department of Fish and Wildlife (WDFW). 2014. 2014 Game status and trend report. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii,iv
Washington Department of Fish and Wildlife (WDFW). 2015. Game Management Plan July 2015 - June 2021. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii,iv
Watson, J. W. 2003. Migration and winter ranges of ferruginous hawks from Washington. Final Report. WDFW, Olympia, Washington, USA. http://wdfw.wa.gov/publications/00131/	Appendix A - Birds	11,111
White, C. M., N. J. Clum, T. J. Cade and G. Hunt. 2002. Peregrine Falcon (<i>Falco peregrinus</i>). The Birds of North America 660: 1-48.	Appendix A - Birds	i
Yosef, R. 1996. Loggerhead Shrike (<i>Lanius ludovicianus</i>). The Birds of North America 231:1-28.	Appendix A - Birds	i
Zhu, X., D. S. Srivastava, J. N. M. Smith and K. Martin. 2012. Habitat selection and reproductive success of Lewis' woodpecker (<i>Melanerpes lewis</i>) at its northern limit. PloS ONE 7(9): e44346. DOI: 10.1371/journal.pone.0044346	Appendix A - Birds	i
Alberta Northern Leopard Frog Recovery Team. 2005. Alberta Northern Leopard Frog Recovery Plan, 2005-2010. Alberta Sustainable Resource Development, Fish and Wildlife Division, Alberta Species at Risk Recovery Plan no. 7. Edmonton, Alberta 26 pp.	Appendix A - Reptiles and Amphibians	vi
Benson, S. R., T. Eguchi, D. G. Foley, K. A. Forney, H. Bailey, C. Hitipeuw, B. P. Samber, R. F. Tapilatu, V. Rei, P. Ramohia, J. Pita and P. H. Dutton. 2011. Large-scale movements and high-use areas of western Pacific leatherback turtles, <i>Dermochelys coriacea</i> . Ecosphere 2(7):art84. doi:10.1890/ES11-00053.1.	Appendix A - Reptiles and Amphibians	i
Bull, E. L. and M. P. Hayes. 2001. Post-breeding season movements of Columbia spotted frogs (<i>Rana luteiventris</i>) in northeastern Oregon. Western North American Naturalist 61:119- 123.	Appendix A - Reptiles and Amphibians	i
Dunham, J. B., A. E. Rosenberger, C. H. Luce and B. E. Rieman. 2007. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10(2):335-346	Appendix A - Reptiles and Amphibians	i
Germaine, S. and D. Hays. 2007. Distribution and post-breeding environmental relationships of northern leopard frogs (Rana pipiens) in Grant County, Washington. Final Report. Washington Department of Fish and Wildlife, Wildlife Program, Olympia.	Appendix A - Reptiles and Amphibians	ii,iii
Green, G. A., K. B. Livezey and R. L. Morgan. 2001. Habitat selection by Northern Sagebrush Lizards (Sceloporus graciosus graciosus) in the Columbia Basin, Oregon. Northwestern Naturalist 82(3): 111-115.	Appendix A - Reptiles and Amphibians	i
Hallock, L. 2006. Summary Report on the Striped Whipsnake (<i>Masticophis taeniatus</i>) in Washington. Natural Heritage Report 2006-05. Prepared for the Bureau of Land Management, Wenatchee.	Appendix A - Reptiles and Amphibians	i
Hallock, L. 2009. Conservation Assessment for the Sharp-tailed Snake (Contia tenuis) In Washington and Oregon. Unpublished Report. Washington Natural Heritage Program, Department of Natural Resources, Olympia. Submitted to the Interagency Special Status/Sensitive Species Program, Washington and Oregon. USDA Forest Service and Bureau of Land Management.	Appendix A - Reptiles and Amphibians	vi
Hallock, L. A. 2013. Draft State of Washington Oregon Spotted Frog Recovery Plan. Washington Department of Fish and Wildlife, Olympia. 93 pp.	Appendix A - Reptiles and Amphibians	11,111
Hallock, L. A. and K. R. McAllister. 2005. California Mountain Kingsnake. Washington Herp Atlas. http://www.1dnr.wa.gov/nhp/refdesk/herp/	Appendix A - Reptiles and Amphibians	vi
Hallock, L. A. and K. R. McAllister. 2005. Cascade Torrent Salamander. Washington Herp Atlas. http://www1.dnr.wa.gov/nhp/refdesk/herp/	Appendix A - Reptiles and Amphibians	vi

REFERENCE	CHAPTER	CODE
Hallock, L. A. and K. R. McAllister. 2005. Columbia Spotted Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Dunn's Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Larch Mountain Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	•
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Night Snake. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp	Reptiles and	VI
http://wwwi.ulii.wa.gov/inp/reldesk/ileip	Amphibians	
Hollock L. A. and K. D. McAllister, 2005. Northern Leanard Frag. Washington Harn Atlas		
Hallock, L. A. and K. R. McAllister. 2005. Northern Leopard Frog. Washington Herp Atlas.	Appendix A -	vi
http://www.1dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Oregon Spotted Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Pygmy Short-horned Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Ring-necked Snake. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Rocky Mountain Tailed Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Sagebrush Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Side-blotched Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	•
http://wwwi.uni.wu.gov/inp/refuesk/iterp/	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Tiger Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	VI
http://wwwi.ulli.wa.gov/http/feldesk/herp/	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Van Dyke's Salamander. Washington Herp Atlas.		vi
	Appendix A -	VI
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Western Pond Turtle. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Western Toad. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/speciesmain.html	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Woodhouse's Toad. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2009. Cope's Giant Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
-	Amphibians	

REFERENCE	CHAPTER	CODE
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State	Appendix A -	i
Inland Sand Dunes. Washington Natural Heritage Program Report 2007-05.	Reptiles and	
	Amphibians	
Hayes, M. and T. Quinn. 2014. Columbia Torrent Salamander (Rhyacotriton kezeri).	Appendix A -	vi
AmphibiaWeb: Information on amphibian biology and conservation. [web application].	Reptiles and	
Berkeley, California: AmphibiaWeb. Available: http://amphibiaweb.org/. (Accessed: Nov 12, 2014).	Amphibians	
Jones, L. L. C, W. P. Leonard and D. H. Olson (Eds.). 2005. Amphibians of the Pacific	Appendix A -	i
Northwest. Seattle Audubon Society. 227 pp.	Reptiles and	
,	Amphibians	
Lahti, M. 2005. Ecology of the Pygmy Short Horned Lizard (Phrynosoma douglasii) in	Appendix A -	i
Washington. Master's Thesis. Central Washington University, Ellensburg, Washington.	Reptiles and	•
73 pp.	Amphibians	
Lahti, M. and D. Beck. 2007. Ecology and ontogenetic variation of diet in the pygmy short-	Appendix A -	i
horned lizard (<i>Phyrnosoma douglasii</i>). American Midland Naturalist 159:327-339.	Reptiles and	1
nomed lizard (<i>Frymosofild douglusii</i>). American Midiand Naturalist 155.527-555.	Amphibians	
Labti M and D. Dady 2010. Ecology of the Dygmy short harned lizerd (Dhymasoma		i
Lahti, M. and D. Beck. 2010. Ecology of the Pygmy short-horned lizard (<i>Phyrnosoma douglasii</i>). Northwestern Naturalist. 91(2):134-144.	Appendix A - Reptiles and	I
adugiasii). Northwestern Naturalist. 91(2):134-144.	•	
	Amphibians	
Nussbaum, R. A., E. D. Brodie, Jr. and R.M. Storm. 1983. Amphibians and Reptiles of the	Appendix A -	i
Pacific Northwest. University of Idaho Press, Moscow, Idaho. 332 pp.	Reptiles and	
	Amphibians	
O'Donnell, R., C. Richart. 2012. Diet of the Columbia Torrent Salamander, <i>Rhyacotriton kezeri</i>	Appendix A -	i
(Caudata: Rhyacotritonidae): Linkages between Aquatic and Terrestrial Ecosystems In	Reptiles and	
Forested Headwaters. Northwestern Naturalist 93(1):17-22. 2012	Amphibians	
Ovaska, K. E. and C. Engelstoft. 2008. Conservation of the Sharp-tailed Snake (Contia tenuis)	Appendix A -	i
in urban areas in the Gulf Islands, British Columbia, Canada. In Mitchell, J., R. Jung	Reptiles and	
Brown and B. Bartholomew Editors. 2008. Urban Herpetology. Herpetological	Amphibians	
Conservation 3:557-564. Society for the Study of Amphibians and Reptiles. Salt Lake		
City.		
Parker, W. S and W. S. Brown. 1972. Telemetric study of movements and oviposition of two	Appendix A -	i
female Masticophis t. taeniatus. Copeia 1972 (4): 892-895.	Reptiles and	
	Amphibians	
Petranka, J. W. 1998. Salamanders of the United States and Canada. Smithsonian	Appendix A -	i
Institutional Press, Washington. 587 pp.	Reptiles and	
	Amphibians	
Pramuk, J. F. Koontz, M. Tirhi, S. Zeigler, K. Schwartz and P. Miller (eds.) 2013. The Western	Appendix A -	i,ii
Pond Turtle in Washington: A Population and Habitat Viability Assessment. IUCN/SSC	Reptiles and	.,
Conservation Breeding Specialist Group, Apple Valley, M. N.Schmidt, T and M. Tirhi.	Amphibians	
2014.	7 inpinoidito	
Russell, K. and A. Gonyaw, J. Strom, K. Diemer and K. Murk. 2002. Three new nests of the	Appendix A -	i
Columbia Torrent Salamander, <i>Rhyacotriton kezeri</i> , in Oregon with observations of	Reptiles and	•
nesting behavior. Northwestern Naturalist 83:19-22.	Amphibians	
Washington Department of Fish & Wildlife (WDFW). 2014. WDFW Wildlife Survey and	Appendix A -	ii,vi
	Reptiles and	11, VI
Management Database.		1
	Amphibians	
Weaver, R. E. 2008. Distribution, abundance and habitat associations of the Night Snake	Appendix A -	i
(Hypsiglena torquata) in Washington State. Northwestern Naturalist 89: 164-170.	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Wilkinson, K. and L. Todd, unpublished data.	Appendix A - Reptiles and Amphibians	vii
Anthony, J. A., D. D. Robya and K. R. Turcob. 2000. Lipid content and energy density of forage fishes from the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 248: 53-78.	Appendix A - Fish	i
Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le and L. Flostrand. 2008. Use of microsatellites to determine population structure and migration of Pacific herring in British Columbia and adjacent regions. Transactions of the American Fisheries Society 137: 1795-1811.	Appendix A - Fish	i
Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison. 1,052pp.	Appendix A - Fish	i
Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6. 275 pp.	Appendix A - Fish	i
Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 1997. Status of Burbot in Washington State. Washington Department of Fish and Wildlife Research Report. 51pp.	Appendix A - Fish	ii
Bumgarner, J. D. and J. T. Dedloff. 2011. Lyons Ferry complex hatchery evaluation: summer steelhead annual report 2008 and 2009 run year. Washington Department of Fish and Wildlife, Olympia, WA.	Appendix A - Fish	ii
Butler, J. L., M. S. Love and T. E. Laidig. 2012. A guide to the rockfishes, thornyheads and scorpionfishes of the northeast Pacific. University of California Press. Berkeley and Los Angeles, CA. 185pp.	Appendix A - Fish	i
Chittaro, P. M., R. W. Zabel, W. Palsson and C. Grandin. 2013. Population interconnectivity and implications for recovery of a species of concern, the Pacific hake of Georgia Basin. Marine Biology 160: 1157-1170.	Appendix A - Fish	i
Columbia Basin White Sturgeon Planning Framework. 2013. Prepared by CRITFC, WDFW and ODFW for the Northwest Power and Conservation Council. R. Beamesderfer and P. Anders (eds). 285pp.	Appendix A - Fish	i
Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson and E. E. Holmes. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). Seattle, WA: NOAA Fisheries. 234pp	Appendix A - Fish	i
Ebert, D. A. 2003. The sharks, rays and chimaeras of California. University of California Press, San Francisco.	Appendix A - Fish	i
Emmett, R. L., S. A. Hinton, S. L. Stone and M. E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries Volume II: species life history summaries. National Oceanic and Atmospheric Administration. 334pp.	Appendix A - Fish	i
Eschmeyer, P. H. and R. M. Bailey. 1955. The pygmy whitefish, <i>Coregonus coulteri</i> , in Lake Superior. Transactions of the American Fisheries Society 84:161-199.	Appendix A - Fish	i
Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. US Department Commerce, NOAA Technical Memo. NMFS-NWFSC-113, 281pp.	Appendix A - Fish	i
Fradkin, S. C. 2001. Rialto Beach Surf Smelt Habitat Monitoring: Quillayute River Navigation Project. Olympic National Park. 16pp.	Appendix A - Fish	vi
Glasgow, J. and M. Hallock. 2009. Olympic mudminnow (<i>Novumbra hubbsi</i>) in the Green Cove Watershed, Thurston County, Washington: Distribution and recommendations for protection. Washington Department of Fish and Wildlife, Olympia. 18pp.	Appendix A - Fish	11,111
Gustafson, R. G., J. Drake, M. J. Ford, J. M. Meyers and E. E. Holmes. 2006. Status review of Cherry Point Pacific herring (<i>Clupea pallasii</i>) and updated status review of the Georgia Basin Pacific herring distinct population segment under the Endangered Species Act. Seattle, WA: US Department of Commerce. 182pp.	Appendix A - Fish	i

REFERENCE	CHAPTER	CODE
Gustafson, R. G., M. J. Ford, D. Teel and J. S. Drake. 2010. Status review of eulachon (<i>Thaleichthys pacificus</i>) in Washington, Oregon and California. US Department	Appendix A - Fish	i
Commerce, NOAA Technical Memorandum. NMFS-NWFSC-105, 360pp. Gustafson, R. G., W. H. Lenarz, B. B. McCain, C. C. Schmitt, W. S Grant, T. L. Builder, R. D. Methot. 2000. Status review of Pacific hake, Pacific cod and walleye pollock from Puget Sound, Washington. US Department Commerce, NOAA Technical Memorandum. NMFS- NWFSC-44, 275pp.	Appendix A - Fish	i
Hagen, D. W., G. E. E. Moodie and P. F. Moodie. 1972. Territoriality and courtship in the Olympic mudminnow (<i>Novumbra hubbsi</i>). Canadian Journal of Zoology 50:1111-1115.	Appendix A - Fish	i
Haggerty, M. J., A. C. Ritchie, J. G. Shellberg, M. J. Crewson and J. Jalonen. 2009. Lake Ozette Sockeye Limiting Factors Analysis. Prepared for Makah Indian Tribe and NOAA Fisheries in cooperation with Lake Ozette Sockeye Steering Committee, Port Angeles, WA. 565pp.	Appendix A - Fish	vi
Hallock, M. and P. E. Mongillo. 1998. Washington status report for the Pygmy Whitefish. Washington Department of Fish and Wildlife, Olympia. 20pp.	Appendix A - Fish	ii,iii,iv
Hallock. M. 2000. Personal communication. Washington Department of Wildlife, Olympia.	Appendix A - Fish	vii
Hannah, R. W. and P. S. Rankin. 2011. Site fidelity and movement of eight species of Pacific rockfish at a high-relief rocky reef on the Oregon Coast. North American Journal of Fisheries Management 31: 483-494.	Appendix A - Fish	i
Hass, G.R. 1999. Personal communication. University of British Columbia, Vancouver. Cited in Wydoski and Whitney 2003.	Appendix A - Fish	vii
 Hayes, M. C., R. Hays, S. P. Rubin, D. M. Chase, M. Hallock, C. Cook-Tabor, C. W. Luzier and M. L. Moser. 2013. Distribution of Pacific lamprey <i>Entosphenus tridentatus</i> in watersheds of Puget Sound based on smolt monitoring data. Northwest Science 87(2): 95-105. 	Appendix A - Fish	i
Heard, W. R. and W. L. Hartman. 1966. Pygmy whitefish, <i>Prosopium coulteri</i> in Naknek River system of southwest Alaska. US Fish and Wildlife Service, Fishery Bulletin 65:555-579.	Appendix A - Fish	i
Hughes, G. W. and A. E. Peden. 1989. Status of the Umatilla Dace, <i>Rhinichthys umatilla</i> , in Canada. Canadian Field-Naturalist 103:193-200.	Appendix A - Fish	i
Israel, J. A. and B. May. 2010. Indirect genetic estimates of breeding population size in the polyploidy green sturgeon, <i>Acipenser medirostris</i> . Molecular Ecology 19:1058-1070.	Appendix A - Fish	i
Kendall, A. W., Jr. and A. J. Mearns. 1996. Egg and larval development in relation to systematic of <i>Novumbra hubbsi</i> , the Olympic mudminnow. Copeia 3:449-464.	Appendix A - Fish	i
Kramer, D. E. and V. M. O'Connell. 1995. Guide to northeast Pacific rockfishes: genera Sebastes and Sebastolobus. Alaska Sea Grant College Program, University of Alaska.	Appendix A - Fish	i
Lamb, A. and P. Edgell. 2010. Coastal fishes of the Pacific Northwest. Harbour Publishing Co. Ltd. Madeira Park, BC. 335pp.	Appendix A - Fish	i
Langness, M., P. Dionne, E. Dilworth and D. Lowry. 2014. Summary of coastal intertidal forage fish spawning surveys: October 2012-September 2013. Washington Department of Fish and Wildlife, Olympia, WA. FPA 14-01 FPA 14-01. 51pp.	Appendix A - Fish	ii
arson, S., J. Christiansen, D. Griffing, J. Ashe, D. Lowry and K. Andrews. 2010. Relatedness and polyandry of sixgill sharks, Hexanchus griseus, in an urban estuary. Conservation Genetics. 10.1007/s10592-010-0174-9	Appendix A - Fish	i
Lee, D. S., C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and J. R. Stauffer, Jr. 1980. Atlas of North American freshwater fishes. North Carolina Biological Survey Publication #1980-12, 867pp.	Appendix A - Fish	i
Lonzarich, M. R. 1993. Habitat selection and character analysis of <i>Cottus marginatus</i> , the margined sculpin. Master's thesis, University of Washington, Seattle, WA. 88pp.	Appendix A - Fish	i
Love, M. S. 2011. Certainly more than you want to know about the fishes of the Pacific coast. Really Big Press. Santa Barbara, CA. 649pp.	Appendix A - Fish	i

REFERENCE	CHAPTER	CODE
Love, M. S., M. Yoklavich and L. Thorsteinson. 2002. The rockfishes of the northeast Pacific. University of California Press. Berkeley and Los Angeles, CA. 404pp.	Appendix A - Fish	i
MacKay, W. C. 2000. Status of the pygmy whitefish (<i>Prosopium coulteri</i>) in Alberta. Alberta Environment, Fisheries and Wildlife Management Division and Alberta Conservation Association, Wildlife Status Report 27 Edmonton, AB. 16pp.	Appendix A - Fish	i
Matthews, K. R. 1990. "An experimental study of the habitat preferences and movement patterns of copper, quillback and brown rockfishes (Sebastes spp.)." <i>Environmental Biology of Fishes</i> 29.3 (1990): 161-178.	Appendix A - Fish	i
Matthews, K. R. 1990. A comparative study of habitat use by young-of-the-year, subadult and adult rockfish on four habitat types in Central Puget Sound. Fishery Bulletin 88: 223-239.	Appendix A - Fish	i
May, B. E., B. J. Writer and S. Albeke. 2012. Redband Status Update Summary. Prepared by Wild Trout Enterprises, LLC, Bozeman, MT.	Appendix A - Fish	vi
McFarlane, G. A. and R. J. Beamish. 1985. Biology and fishery of Pacific whiting, <i>Merluccius productus</i> , in the Strait of Georgia. Marine Fisheries Review 47: 23-34.	Appendix A - Fish	i
McIntyre, J. D. and B. E. Rieman. 1995. Westslope cutthroat trout. Pages 1-15 in Young, M.K., editor. Conservation assessment for inland cutthroat trout. USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station General Technical Report RM-256, Fort Collins, CO.	Appendix A - Fish	i
McPhail, J. D. 1987. Status of the Salish sucker, <i>Catostomus</i> sp., in Canada. Canadian Field- Naturalist 101:231-236.	Appendix A - Fish	i
Mongillo, P. E. and M. Hallock. 1999. Field study plan for priority native species, 1999-2003. Washington Department of Fish and Wildlife, Olympia. 15pp.	Appendix A - Fish	ii
Mongillo, P. E. and M. Hallock. 1999. Washington state status report for the Olympic mudminnow. Washington Department of Fish and Wildlife, Olympia, Washington. 36pp.	Appendix A - Fish	ii,iii,iv
Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley, CA. 405pp.	Appendix A - Fish	i
Moyle, P. B., J. E. Williams, J. E. and E. D. Wikramanayake. 1989. Fish species of special concern of California. Final report submitted to CDFG, Inland Fisheries Division. Rancho Cordova, California.	Appendix A - Fish	vi
Muhlfeld, C. C., D. H. Bennett and B. Marotz. 2001. Fall and winter habitat use by Columbia River redband trout in a small stream in Montana. North American Journal of Fisheries Management 21:170-177.	Appendix A - Fish	i
Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel. D. M. Van Doornik and M. T. Maher. 2006. Historical population structure of Pacific Salmonids in the Willamette River and Lower Columbia River basins. NOAA Technical Memorandum. NMFS-NWFSC-73, 311pp.	Appendix A - Fish	i
National Marine Fisheries Service (NMFS), Southwest Region. 2010. Federal Recovery Outline - North American Green Sturgeon, Southern Distinct Population Segment. http://www.westcoast.fisheries.noaa.gov/publications/protected_species/other/green_ sturgeon/green_sturgeon_sdps_recovery_outline2010.pdf	Appendix A - Fish	i
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for the Puget Sound/Georgia Basin Distinct Population Segments of yelloweye and canary rockfish and endangered status for the Puget Sound/Georgia Basin Distinct Population Segment of bocaccio rockfish. Federal Register. pp. 22276-22290.	Appendix A - Fish	i
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for the Puget Sound/Georgia Basin Distinct Population Segments of yelloweye and canary rockfish and endangered status for the Puget Sound/Georgia Basin Distinct Population Segment of bocaccio rockfish. Federal Register. pp. 22276-22290.	Appendix A - Fish	i

REFERENCE	CHAPTER	CODE
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and	Appendix A -	i
plants: threatened status for Southern Distinct Population Segment of eulachon. Federal Register, 50 CFR Part 223. pp. 13012-13024.	Fish	
National Marine Fisheries Service (NMFS). 2013. Federal Recovery Outline Pacific Eulachon	Appendix A -	i
Southern Distinct Population Segment. 24pp.	Fish	
National Oceanic and Atmospheric Administration (NOAA). 2009. Pacific hake (Merluccius	Appendix A -	vi
productus) Georgia Basin DPS fact sheet.	Fish	
http://www.nmfs.noaa.gov/pr/pdfs/species/pacifichake_detailed.pdf		
NatureServe Explorer, http://explorer.natureserve.org	Appendix A - Fish	vi
Oregon Department of Fish and Wildlife (ODFW) and Washington Department of Fish and	Appendix A -	i,ii
Wildlife (WDFW). 2014. Studies of Eulachon Smelt in Oregon and Washington. C.	Fish	
Mallette, editor. Oregon Department of Fish and Wildlife and Washington Department		
of Fish and Wildlife project completion report to NOAA Fisheries. 159pp.		
Pacunski R. E., W. Palsson and H. G. Greene. 2013. Estimating fish abundance and community	Appendix A -	ii
composition on rocky habitats in the San Juan Islands using a small remotely operated vehicle. Olympia, WA: Washington Department of Fish and Wildlife. FPT 13-02 FPT 13-02. 57 p.	Fish	
Page, L. M. and B. M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin Co.,	Appendix A -	i
Boston, MA. 432 pp.	Fish	
Page, L. M. and B. M. Burr. 2011. Field guide to the freshwater fishes of North America north	Appendix A -	i
of Mexico. Peterson Field Guide series. Houghton Mifflin Harcourt, Boston, MA.	Fish	
Page, L. M. and B. M. Burr. 2011. Peterson field guide to freshwater fishes, Second Edition.	Appendix A -	i
Houghton Mifflin Harcourt, Boston, MA. 688 pp.	Fish	
Palsson, W. A., T. S. Tsou, G. G. Bargmann, R. M. Buckley, J. E. West, M. L. Mills, Y. W. Cheng	Appendix A -	ii
and R. E. Pacunski. 2009. The biology and assessment of rockfishes in Puget Sound.	Fish	
Washington Department of Fish and Wildlife.		
Palsson, W.A. 1990. Pacific cod (Gadus macrocephalus) in Puget Sound and adjacent waters:	Appendix A -	ii
Biology and stock assessment. Washington Department Fish. Technical Report No. 112.	Fish	
137pp.		
Peden, A. E. and G. W. Hughes. 1988. Sympatry in four species of <i>Rhinichthys</i> (Pisces),	Appendix A -	i
including the first documented occurrences of <i>R. umatilla</i> in the Canadian drainages of	Fish	
the Columbia River. Canadian Journal of Zoology 66:1846-1856.		
Pedersen, M. 1985. Puget Sound Pacific whiting, <i>Merluccius productus</i> , resource and industry:	Appendix A -	i
an overview. Marine Fisheries Review 47: 35-38.	Fish	
Penttila, D. 2000. Documented spawning seasons of populations of the surf smelt,	Appendix A -	ii
Hypomesus, in the Puget Sound basin. Washington Department of Fish and Wildlife,	Fish	
Olympia, WA. 36pp.		
Penttila, D. 2005. WDFW Priority Habitat and Species Management Recommendations:	Appendix A -	ii,iii
Forage fish spawning habitat. Washington Department of Fish and Wildlife. 19pp.	Fish	
Point No Point Treaty Tribes and Washington Department of Fish and Wildlife. 2014. Summer	Appendix A -	i,ii
Chum Salmon Conservation Initiative (SCSCI) Five-year Review: Supplemental Report No.	Fish	
8 of SCSCI - An Implementation Plan to Recover Summer Chum in the Hood Canal and		
Strait of Juan de Fuca Region. Washington Department of Fish and Wildlife, Olympia,		
WA. 237pp.		
Quinnell, S. and C. Schmitt. 1991. Abundance of Puget Sound demersal fishes: 1987 research	Appendix A -	ii
trawl survey results. Washington Department of Fisheries Prog. Rep. No. 286, 267pp.	Fish	
Repsys, A. 1973. Personal communication. University of Washington, College of Fisheries.	Appendix A -	vii
Seattle.	Fish	

REFERENCE	CHAPTER	CODE
Robards, M. D., M. F. Willson, R. H. Armstrong and J. F. Piatt, eds. 1999. Sand lance: a review of biology and predator relations and annotated bibliography. In: US Department of Agriculture FS, Pacific Northwest Research Station, editor. Portland, Oregon: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 327pp.	Appendix A - Fish	i
Ruckelshaus, M. H., K. P. Currens, W. H. Graeber, R. R. Fuerstenberg, K. Rawson, N. J. Sands and J. B. Scott. 2006. Independent populations of Chinook salmon in Puget Sound. US Department Commerce, NOAA Technical Memorandum. NMFS-NWFSC-78, 125pp.	Appendix A - Fish	i
Scholz, A. T. and H. J. McLellan. 2009. Field Guide to the Fishes of Eastern Washington. Eagle Printing, Cheney, Washington. 310pp.	Appendix A - Fish	i
Scott, W. G. and E. J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada, Bulletin 184. 966pp.	Appendix A - Fish	i
Seeb, L. W. 1998. Gene flow and introgression within and among three species of rockfishes, Sebastes auriculatus, S. caurinus and S. maliger. Journal of Heredity 89:393-403.	Appendix A - Fish	i
Setter, A. L. 2000. Personal communication. Oregon Department of Fish and Wildlife, Enterprise, Oregon.	Appendix A - Fish	vii
Sigler, W. F. and J. W. Sigler. 1987. Fishes of the Great Basin: A natural history. University of Nevada Press, Reno, NV. 425pp.	Appendix A - Fish	i
Small, M. P., J. L. Loxterman, A. E. Frye, J. F. Von Bargen and C. Bowman. 2005. Temporal and spatial genetic structure among some Pacific herring populations in Puget Sound and the southern Strait of Georgia. Transactions of the American Fisheries Society 134: 1329 – 1341.	Appendix A - Fish	i
Smith G. R. 1966. Distribution and evolution of the North American catostomid fishes of the subgenus <i>Pantosteus</i> , genus Catostomus. University of Michigan, Museum of Zoology, Miscellaneous Publication 129. 133pp.	Appendix A - Fish	i
Staley, K and J. Mueller. 2000. Rainbow trout (<i>Oncorhynchus mykiss</i> . Fish and Wildlife Habitat Management Leaflet. Number 13.	Appendix A - Fish	vi
Stick, K. C., A. Lindquist and D. Lowry. 2014. 2012 Washington State herring stock status report. Olympia, WA: Washington Department of Fish and Wildlife. FPA 09-05 FPA 09- 05. 97pp.	Appendix A - Fish	ii
Trotter, P. C., B. McMillan and D. Kappes. 2000. Occurrence of Olympic mudminnow in the east side of Puget Trough. Northwestern Naturalist 81:59-63.	Appendix A - Fish	i
US Fish and Wildlife Service (USFWS). 2012. Conservation Agreement for Pacific Lamprey (<i>Entosphenus tridentatus</i>) in the States of Alaska, Washington, Oregon, Idaho and California. 57pp.	Appendix A - Fish	i
US Fish and Wildlife Service (USFWS). 2012. Species Fact Sheet, Bull Trout, <i>Salvelinus confluentus</i> . 4pp.	Appendix A - Fish	vi
US Fish and Wildlife Service (USFWS). 2014. Revised draft recovery plan for the coterminous United States population of bull trout (<i>Salvelinus confluentus</i>). Portland, Oregon. xiii + 151pp.	Appendix A - Fish	i
Waples, R. S., R. P. Jones, B.R. Beckman and G.A. Swan. 1991 Status Review for Snake River Fall Chinook Salmon. NOAA Technical Memorandum NMFS F/NWC-201, 80pp.	Appendix A - Fish	i
Washington Department of Fish and Wildlife (WDFW), unpublished data.	Appendix A - Fish	ii
Washington Department of Fish and Wildlife (WDFW). http://wdfw.wa.gov/publications/01219/wdfw01219.pdf	Appendix A - Fish	ii,vi
Washington Department of Fish and Wildlife (WDFW). 2004. Washington State Salmonid Stock Inventory. Bull Trout/Dolly Varden. Washington Department of Fish and Wildlife, Olympia, WA. 449pp.	Appendix A - Fish	ii

REFERENCE	CHAPTER	CODE
Weisel, G.F., D.A. Hansel and R.I. Newell. 1973. The pygmy whitefish, <i>Prosopium coulteri</i> , in western Montana. US Department of Commerce, National Marine Fisheries Service, Fishery Bulletin 71(2):587-596.	Appendix A - Fish	i
 Williams, G. D. andrews, K. S., Katz, S. L., Moser, M. L., Tolimieri, N., Farrer, D. A. and Levin, P. S. (2012), Scale and pattern of broadnose sevengill shark <i>Notorynchus cepedianus</i> movement in estuarine embayments. Journal of Fish Biology, 80: 1380–1400. doi: 10.1111/j.1095-8649.2011.03179.x 	Appendix A - Fish	i
Williams, K. R. 1999. Washington westslope cutthroat status report. Washington Department of Fish and Wildlife, Olympia, WA. 14pp. plus Appendices.	Appendix A - Fish	ii,iii,iv
Wydoski, R. S. and R. R. Whitney 2003. Inland Fishes of Washington, second edition. University of Washington Press, Seattle, WA. 322 pp.	Appendix A - Fish	i
Anderson, D. WDFW, pers.comm.	Appendix A - Invertebrates	vii
Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultural Experiment Station Technical Bulletin, 134:1-152.	Appendix A - Invertebrates	i
 Applegarth, J. S. 1999. Management Recommendations for <i>Cryptomastix hendersoni</i>, the Columbia Oregonian (land snail) v.20, Section 2, in T. E. Burke, J. S. Applegarth and T. R. Weasma. Management Recommendations for Survey and Manage Terrestrial Mollusks (v. 2). USFS and BLM. 	Appendix A - Invertebrates	i
Applegarth, J. S. 2000. Management recommendations for terrestrial mollusk species <i>Megomphix hemphilli</i> the Oregon Megomphix. Version 2.0. Unpublished report to the Oregon Bureau of Land Management. 39 pp.	Appendix A - Invertebrates	i
Ballmer, G. and G. Pratt. 1991. Quantification of ant attendance (Myrmecophily) of lycaenid larvae. Journal of Research on the Lepidoptera. 30(1-2): 95-112.	Appendix A - Invertebrates	i
Bartels, P. 1995. Columbia River tiger beetle 1995 survey: Columbia and Snake River, Region Two. Washington Department of Fish and Wildlife, Ephrata.	Appendix A - Invertebrates	ii
Baumann, R. W. and B. C. Kondratieff 2010. The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia, 6(25):315-327. (Available online: http://www2.pms- lj.si/illiesia/papers/Illiesia06-25.pdf)	Appendix A - Invertebrates	i
Baumann, R. W. and D. S. Potter 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162. Available online: http://www2.pms-lj.si/illiesia/Illiesia03-15.pdf	Appendix A - Invertebrates	i
Baumann, R. W. and. B. P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae) in North America. Illiesia, 9(06):65-93. Available online: http://www2.pms- lj.si/illiesia/papers/Illiesia09-06.pdf	Appendix A - Invertebrates	i
Bergdahl, J. 1997. Endemic Sphagnum-bog beetles from the Puget Sound Region: Kings Lake and Snoqualmie Bogs, King County, Washington. Northwest Biodiversity Center, Seattle, Washington.	Appendix A - Invertebrates	vi
Beyer, L. and C. Schultz. 2010. Oviposition selection by a rare grass skipper <i>Polites mardon</i> in montane habitats: Advancing ecological understanding to develop conservation strategies. Biological Conservation 143:862-872.	Appendix A - Invertebrates	i
 Blackburn, M. 2012. Surveys to determine the status of rare Beller's ground beetle (Agonum belleri) and Hatch's click beetle (Eanus hatchii) in suitable bog habitats on FS lands in the Mt. Baker-Snoqualmie and Okanogan-Wenatchee National Forests of Washington. Project completion report to the Interagency Special Status/Sensitive Species Program (ISSSP), BLM and US Forest Service. 26pp. 	Appendix A - Invertebrates	i
Blake, B. and A. Bradbury. 2012. Plan for Rebuilding Olympia Oyster (<i>Ostrea lurida</i>) Populations in Puget Sound with a Historical and Contemporary Overview. Washington Department of Fish and Wildlife, Olympia.	Appendix A - Invertebrates	ii

REFERENCE	CHAPTER	CODE
Boggs, C. 2003. Environmental variation, life histories and allocation in Butterflies: Ecology	Appendix A -	i
and Evolution Taking Flight. Boggs, C., W. Watt and P. Ehrlich, eds. The University of Chicago Press. 737pp.	Invertebrates	
Bumble Bee Watch. 2014. Available: http://bumblebeewatch.org/ Accessed November 3, 2014.	Appendix A - Invertebrates	vi
Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, Oregon. 344pp.	Appendix A - Invertebrates	i
Burke, T., J. Applegarth, T. Weasma and N. Duncan. 1999. Management recommendations for Survey and Manage terrestrial mollusks, ver. 2.0. USDA Forest Service, USDI Bureau of Land Management. Available online at http://www.or.blm.gov/surveyandmanage/MR/TM23Species/m2000-003.htm	Appendix A - Invertebrates	i
Cameron, S., J. Lozier, J. Strange, J. Koch, N. Cordes, L. Solter and T. Griswold. 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108:662–667.	Appendix A - Invertebrates	i
Center for Biological Diversity, Center for Food Safety, The Xerces Society and L. Brower. 2014. Petition to protect the monarch butterfly (<i>Danaus plexippus</i> plexippus) under the Endangered Species Act. Submitted 26 August. 159pp.	Appendix A - Invertebrates	i
Clemson University Department of Entomology (J.C. Morse, ed.). 2002. Last Updated 5 September 2006. Trichoptera World Checklist. Online. Available: http://entweb.clemson.edu/database/trichopt/index.htm.	Appendix A - Invertebrates	vi
COSEWIC, 2003. COSEWIC Assessment and Status Report on the Sand Verbena Moth Copablepharon fuscum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 39pp.	Appendix A - Invertebrates	vi
COSEWIC. 2006. COSEWIC assessment and update status report on the blue-grey taildropper slug <i>Prophysaon coeruleum</i> in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, Canada. 27 pp.	Appendix A - Invertebrates	vi
COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Forestsnail Allogona townsendiana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 87 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).	Appendix A - Invertebrates	vi
Crawford, R. and H. Hall. 1997. Changes in the south Puget Sound prairie landscape. Pp 11-15 <i>in</i> P. Dunn and K. Ewing (eds.) Ecology and Conservation of the south Puget Sound Prairie Landscape. The Nature Conservancy, Seattle, Washington. 289pp.	Appendix A - Invertebrates	i
 Davis, R. and K. Weaver. 2010. Johnson's Hairstreak surveys in Oregon and Washington (2010). US Forest Service, Interagency Monitoring Program. Roseburg, Oregon. 10 pp. + appendices 	Appendix A - Invertebrates	i
Denning, D. G. 1956. Several new species of western Trichoptera. Pan-Pacific Entomologist 32(2):73-80.	Appendix A - Invertebrates	i
Dornfeld, E. J. 1980. Butterflies of Oregon. Timber Press, Forest Grove, Oregon. 276 pp.	Appendix A - Invertebrates	i
Duncan, N. 2005. Conservation Assessment for <i>Lyogyrus</i> n. sp. 2 Masked Duskysnail. Originally issued as Management Recommendations, December 1998 by R. Monthey. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 10 pp.	Appendix A - Invertebrates	vi
Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband. Originally issued as Management Recommendations by T. R. Weasma, 1998. Revised by N. Duncan. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington, 14 pp.	Appendix A - Invertebrates	vi
Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail. Originally issued as: Burke, T.E. Management Recommendations, February 1999. Revised October 2005. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. 22 pp.,	Appendix A - Invertebrates	vi

REFERENCE	CHAPTER	CODE
Duncan, N. 2005. Conservation assessment for Prophysaon coeruleum, Blue-Gray	Appendix A -	vi
Taildropper. Originally issued as Burke, T., N. Duncan and P. Jeske. 1999. Management	Invertebrates	
Recommendations. USDA Forest Service Region 6 and USDI Bureau of Land		
Management, Oregon and Washington.		
Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko Vertigo. Originally issued	Appendix A -	vi
as Management Recommendations by John S. Applegarth, February 1999. Revised by	Invertebrates	
Nancy Duncan, October 2005. USDA Forest Service Region 6 and USDI Bureau of Land		
Management, Oregon and Washington, 16 pp.		
Duncan, N. 2009. Vespericola columbianus depressa. Species Fact Sheet. Interagency Special	Appendix A -	vi
Status/Sensitive Species Program, Forest Service, Bureau of Land Management.	Invertebrates	
Edmunds, G.F. and R.D. Waltz. 1996. Ephemeroptera. Pages 126-163 in R.W. Merritt and	Appendix A -	i
K.W. Cummins (editors). An introduction to the aquatic insects of North America. 3 rd	Invertebrates	
Edition. Kendall/Hunt Publishers, Dubuque, Iowa.		
Edmunds, G.F., S.L. Jensen and L. Berner. 1976. The mayflies of North and Central America.	Appendix A -	i
University of Minnesota Press, Minneapolis, 330 pages.	Invertebrates	
Edworthy, A., K. Steensma, H. Zandberg and P. Lilley. 2012. Dispersal, home range size and	Appendix A -	i
habitat use of an endangered land snail, the Oregon Forestsnail (Allogona	Invertebrates	
townsendiana). Canadian Journal of Zoology 90(7):875–884.		
Erwin, T. 2011. eAgra entry: Scaphinotus mannii. Available at	Appendix A -	vi
http://canopy.lifedesks.org/pages/705 (Accessed 3 October, 2014).	Invertebrates	
Fleckenstein, J. 2015. Washington Department of Natural Resources. pers.comm.	Appendix A -	vii
	Invertebrates	
Fleckenstein, J. 2009. Makah Copper survey project. Final report to the US Fish and Wildlife	Appendix A -	i
Service. Natural Heritage Program, Washington Department of Natural Resources.	Invertebrates	
Olympia. 17 pp.		
Fleckenstein, J. 2014. Rare alpine butterflies in the Olympic Mountains. Final report to the US	Appendix A -	i
Forest Service and Bureau of Land Management. Natural Heritage Program, Washington	Invertebrates	
Department of Natural Resources. Olympia. 14 pp.		
Fleckenstein, J. and A. Potter. 1999. 1997, 1998 Project summary Puget prairie butterfly	Appendix A -	ii,iii
surveys. Washington Department of Natural Resources and Washington Department of	Invertebrates	
Fish and Wildlife, Olympia, WA.		
Foighil, D. O., T. Lee, D. C. Campbell and S. A. Clark. 2009. All voucher specimens are not	Appendix A -	i
created equal: A cautionary tale involving North American pleurocerid gastropods.	Invertebrates	
Journal of Molluscan Studies 75:305-306.		
Freshwater Mollusk Conservation Society (FMCS). 2013. Website	Appendix A -	vi
(http://molluskconservation.org/Snails_Ftpage.html.)	Invertebrates	
Frest, T. J and E. J. Johannes. 1997. Land snail survey of the lower Salmon River drainage,	Appendix A -	vi
Idaho. Report prepared for USDI BLM, Idaho, Deixis Consultants, Seattle. 367 pp.	Invertebrates	
Frest, T. J. 1999. A Review of the land and freshwater Mollusks of Idaho. Final report to the	Appendix A -	i
Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South	Invertebrates	
Walnut, P.O. Box 25, Boise, Idaho 83707. 281 pp. plus appendices.		
Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special	Appendix A -	i
concern. Final report to the Interior Columbia Basin Ecosystem Management Project,	Invertebrates	
Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.		
Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin Mollusk Species of Special	Appendix A -	i
Concern. Final Report, Deixis Consultants, Seattle. Prepared for Interior Columbia Basin	Invertebrates	
Ecosystem Management Project, Walla Walla, Washington. 362 pp.		
Gaines, W. L., A. L. Lyons, K. Weaver and A. Sprague. 2011. Monitoring the short-term effects	Appendix A -	i
of prescribed fire on an endemic mollusk in the dry forests of the eastern Cascades,	Invertebrates	
Washington, USA. Forest Ecology and Management 261:1460-1465.		

REFERENCE	CHAPTER	CODE
 Gibble, W. and J. Fleckenstein. 2013. Copablepharon fuscum (sand-verbena moth) and Abronia latifolia (yellow sand-verbena) Washington State surveys. Report prepared for US Fish and Wildlife Service. University of Washington Botanic Gardens, Seattle and Washington Department of Natural Resources, Olympia. Natural Heritage Report 2013- 02. 	Appendix A - Invertebrates	i
Grosboll, D. N. 2011. Taylor's Checkerspot (<i>Euphydryas editha taylori</i>) oviposition habitat selection and larval hostplant use in Washington State. Master's Thesis, The Evergreen State College, Olympia. 77 pp.	Appendix A - Invertebrates	i
Guppy, C. and J. Shepard. 2001. Butterflies of British Columbia: including Western Alberta, Southern Yukon, The Alaska Panhandle, Washington, Northern Oregon, Northern Idaho and Northwestern Montana. University of British Columbia Press, Vancouver, B.C.	Appendix A - Invertebrates	i
Hallock, L., R. Haugo and R. Crawford. 2007. Conservation strategy for Washington inland sand dunes. Washington Department of Natural Resources, Olympia. Natural Heritage Report 2007-05.	Appendix A - Invertebrates	11,111
Hassall, C. and D. J. Thompson. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odontology 11:131-153.	Appendix A - Invertebrates	i
Hatfield, R., S. Colla, S. Jepsen, L. Richardson and R. Thorp. 2014. IUCN assessments for North American <i>Bombus</i> spp. for the North American IUCN bumble bee specialist group. The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
Hays, D., A. Potter, C. Thompson and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.	Appendix A - Invertebrates	ii,vi
Hendricks, P., B. A. Maxell and S. Lenard. 2006. Land Mollusk Surveys on USFS Northern Region Lands. A report to the USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana. 11 pp. plus appendices.	Appendix A - Invertebrates	vi
Henry, E. and C. Shultz. 2012. A first step towards successful conservation: understanding local oviposition site selection of an imperiled butterfly, mardon skipper. Journal of Insect Conservation. DOI 10.1007/s10841-012-9496-x.	Appendix A - Invertebrates	i
Hershler, R. and H. P. Liu. 2012. Molecular phylogeny of the western North American pebblesnails, genus Fluminicola (Rissooidea: Lithoglyphidae), with description of new species. Journal of Molluscan Studies 78:321-329.	Appendix A - Invertebrates	i
Hershler, R. and T. J. Frest. 1996. A review of the North American freshwater snail genus <i>Fluminicola</i> (Hydrobiidae). Smithsonian Contributions to Zoology 583: 1-41.	Appendix A - Invertebrates	i
Jacobus L. M. and W. P. McCafferty. 2002. Analysis of some historically unfamiliar Canadian mayflies (Ephemeroptera). The Canadian Entomologist. 134(02): 141-155.	Appendix A - Invertebrates	i
James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. OregonState University Press, Corvallis. 447 pp.	Appendix A - Invertebrates	i
Jensen, S. L. 1966. The mayflies of Idaho (Ephemeroptera). Master's thesis. University of Utah.	Appendix A - Invertebrates	i
Jepsen, S., A. Carleton and S. F. Jordan. 2012. Spring 2012 Blue Mountains terrestrial mollusk surveys. Final report to the Interagency Special Species Status/Sensitive Species Program. The Xerces Society for Invertebrate Conservation. 88pp.	Appendix A - Invertebrates	vi
Jepsen, S., C. LaBar and J. Zarnoch. 2011. Profile: California floater (Anodonta californiensis) / Winged floater (Anodonta nuttalliana). The Xerces Society. 31 pp. (Available at http://www.xerces.org/california-and-winged-floaters/).	Appendix A - Invertebrates	vi
Jepsen, S., C. LaBar and J. Zarnoch. 2011. Profile: Western ridged mussel (<i>Gonidea angulata</i>) The Xerces Society. 19 pp. (Available at <i>http://www.xerces.org/western-ridged-mussel/</i>).	Appendix A - Invertebrates	vi
Jepsen, S., C. LaBar and J. Zarnoch. 2012. Profile: Western pearlshell (<i>Margaritifera falcata</i>). The Xerces Society. 24 pp. (Available at <i>http://www.xerces.org/western-pearlshell/</i>).	Appendix A - Invertebrates	vi

REFERENCE	CHAPTER	CODE
Jordan, S. 2013. <i>Vertigo andrusiana</i> (Pilsbry 1899) Pacific Vertigo. Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest	Appendix A - Invertebrates	vi
Service, Bureau of Land Management.	invertebrates	
Jordan, S. F. 2013. Soliperla fender (Jewett 1955). Species Fact Sheet. The Xerces Society.	Appendix A -	vi
Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.	Invertebrates	
Jordan, S. F. 2013a. Olympia Pebblesnail (<i>Fluminicola virens</i>). Species Fact Sheet. Xerces	Appendix A -	vi
Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest	Invertebrates	VI
Society. Frepared for the interagency special status/sensitive species Frogram, Forest Service, Bureau of Land Management.9 pp.	linvertebrates	
Jordan, S. F. 2013b. Ashy Pebblesnail/Columbia Pebblesnail (Fluminicola fuscus). Species Fact	Appendix A -	vi
Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species	Invertebrates	
Program, Forest Service, Bureau of Land Management. 19pp.		
Kelley, R., S. Dowlan, N. Duncan and T. Burke. 1999. Field guide to survey and manage	Appendix A -	vi
terrestrial mollusk species from the northwest forest plan. Unpublished report of the	Invertebrates	
Bureau of Land Management, Oregon State Office. 114pp.		
Kondratieff, B. Colorado State University, pers.comm.	Appendix A -	vii
, , , , , , , , , , , , , , , , , , ,	Invertebrates	
Kondratieff, B.C. and R.A. Lechleitner. 2002. Stoneflies (Plecoptera) of Mt. Rainer National	Appendix A -	i
Park, Washington. Western North American Naturalist 62(4): 385–404.	Invertebrates	•
LaBar, C. C. 2009. Investigating the use of herbicides to control invasive grasses in prairie	Appendix A -	i
habitats: effects of non-target butterflies. Master's Thesis, Washington State University,	Invertebrates	
Vancouver. 37 pp.		
Labonte, J., D. Scott, J. McIver and J. Hayes. 2001. Threatened, endangered and sensitive	Appendix A -	i
insects in eastern Oregon and Washington forests and adjacent lands. Northwest	Invertebrates	
Science, Vol. 75, Special Issue.		
Lafontaine, J. D, L. G. Crabo and G. A. Fauske. 2004 Genus Copablepharon. pp.146–180 in:	Appendix A -	i
Lafontaine (2004), Noctuoidea: Noctuidae (part) – Agrotini. In: Hodges RW (Ed) The	Invertebrates	•
Moths of North America. Fascicle 27.1. The Wedge Entomological Research Foundation,		
Washington, 394 pp.		
Lambert, A. M. 2011. Natural history and population ecology of a rare pierid butterfly,	Appendix A -	i
Euchloe ausonides insulanus Guppy and Shepard (Pieridae). PhD Thesis, University of	Invertebrates	
Washington, 199 pp.		
Lane, M. 1938. A new species of the genus Eanus (Coleoptera Elatridae). Pan-Pacific	Appendix A -	i
Entomologist. 14(4): 188-191.	Invertebrates	
Lane, M. 1971. Key to the genus Eanus. in M. Hatch, Beetles of the Pacific Northwest.	Appendix A -	i
University of Washington Publications in Biology. 16: 28-29.	Invertebrates	
Lee, T., J. J. Kim, H. C. Hong, J. B. Burch and D. O'Foighil. 2006. Crossing the Continental	Appendix A -	i
Divide: the Columbia drainage species Juga hemphilli (Henderson, 1935) is a cryptic	Invertebrates	
member of the eastern North American genus Elimia (Cerithioidea: Pleuroceridae).		
Journal of Molluscan Studies 72:314-317.		
Leonard, W. WSDOT, pers.comm.	Appendix A -	vii
	Invertebrates	
Martin, R. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchii). Relicense	Appendix A -	vi
Study T-4. Final report to Puget Sound Energy for FERC Project No. 2150. Hamer	Invertebrates	
Environmental, Mt. Vernon, Washington.		
Maynard-Johnson, J. University of Idaho, pers.comm.	Appendix A -	vii
· · · · ·	Invertebrates	
Mazzacano, C. 2014. Limpets: giant Columbia River limpet (Fisherola nuttalli), (Gastropoda:	Appendix A -	vi
Lymnaeidae). The Xerces Society for Invertebrate Conservation. (Online:	Invertebrates	
http://www.xerces.org/giant-columbia-river-limpet/)		

REFERENCE	CHAPTER	CODI
Mazzacano, C., S. Jepsen and S. Hoffman-Black. 2010. Surveys to determine the status of two	Appendix A -	vi
rare insect species on the Oregon coast: the Siuslaw hairy-necked tiger beetle	Invertebrates	
(Coleoptera: Cicindelidae: Cicindela hirticollis siuslawensis Graves, Krejci and Graves,		
1988) and the Oregon plant bug (Hemiptera: Miridae: Lygus oregonae Knight, 1944).		
Project completion report submitted to the Interagency Special Status/Sensitive Species		
Program (ISSSP), BLM and US Forest Service. 26pp.		
McAllister, K. 2015. Washington State Department of Transportation, pers.comm.	Appendix A - Invertebrates	vii
McCafferty, W. P. and B. C. Kondratieff. 1999. New species of PARALEPTOPHLEBIA	Appendix A -	i
(Ephemeroptera: Leptophlebiida) from Idaho and Washington. Entomological News 110(4): 217-220.	Invertebrates	
McCafferty, W. P. and R. L. Newell. 2007. Insecta, Ephemeroptera: range extension and new	Appendix A -	i
state records from far western Montana, U.S.A. Check List, 3(3): 260-261.	Invertebrates	
McGraw, R., N. Duncan and E. Cazares, 2002. Fungi and other items consumed by the Blue-	Appendix A -	i
gray Taildropper slug (<i>Prophysaon coeruleum</i>) and the Papillose Taildropper slug	Invertebrates	
(Prophysaon dubium). The Veliger, Vol. 45, No. 3, P. 261-264.		
Meyer, M. D. and W. P. McCafferty. 2008. Mayflies (Ephemeroptera) of the far western	Appendix A -	i
United States. Part 3: California. Transactions of the American Entomological Society	Invertebrates	
134(3-4):337-430.		
Meyer, M.D. and W.P. McCafferty. 2007. Mayflies (Ephemeroptera) of the far western United	Appendix A -	i
States. Part I: Washington. Transactions of the American Entomological Society, 133(1-	Invertebrates	
2): 21-63.		
Monroe, M., D. Frey and S. Stevens. 2014. Western monarch Thanksgiving count data 1997-	Appendix A -	vi
2013. Available from: http://www.xerces.org/butterfly-conservation/western-monarch-	Invertebrates	••
thanksgiving-count/ Accessed 20 October 2014.		
NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application].	Appendix A -	vi
Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.	Invertebrates	••
Nedeau, E. J., A. K. Smith, J. Stione and S. Jepsen. 2009. Freshwater Mussels of the Pacific	Appendix A -	i
Northwest. 2nd edition. The Xerces Society. 51 pp.	Invertebrates	-
Neitzel, D. A. and Frest, T. J. 1992. Survey of Columbia River Basin streams for Columbia	Appendix A -	vi
pebblesnail <i>Fluminicola columbiana</i> and shortface lanx <i>Fisherola nuttalli</i> . Technical	Invertebrates	••
Report PNL-8229, Battelle Pacific Northwest Laboratory, Richland, WA. 83 pp.		
Neitzel, D. A. and T. J. Frest. 1989. Survey of Columbia River Basin streams for giant Columbia	Appendix A -	vi
River spire snail <i>Fluminicola columbiana</i> and great Columbia River limpet <i>Fisherola</i>	Invertebrates	••
nuttalli. Tech. Rep. #PNL7103, Battelle Pacific Northwest Labs. 59 pp.	intertebrates	
Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis	Appendix A -	i
(Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American	Invertebrates	•
Naturalist 69(4):551-555.	intertebrates	
Oberhauser, K. and M. Solensky, eds. 2004. The Monarch Butterfly: Biology and Conservation.	Appendix A -	i
Cornell University Press.	Invertebrates	
Pacific Northwest Moths. 2014. Western Washington University, Bellingham, Washington.	Appendix A -	vi
Available at: http://pnwmoths.biol.wwu.edu/ Viewed January 10, 2014.	Invertebrates	
Page, N., P. Lilley, J. Heron and N. Kroeker. 2009. Distribution and habitat characteristics of	Appendix A -	vi
Taylor's Checkerspot on Denman Island and adjacent areas of Vancouver island (2008).	Invertebrates	- '
Report prepared for British Columbia Ministry of Environment and Parks Canada.	mencondico	
Raincoast Applied Ecology, Vancouver. 32 pp.		
Paulson, D. 2009. Dragonflies and Damselflies of the West. Princeton Univ. Press, Princeton,	Appendix A -	i
NJ. 535pp.	Invertebrates	
Paulson, D. R. 2014. Washington Odonata. Slater Museum of Natural History, University of	Appendix A -	vi
Puget Sound, Tacoma. Sept 2014. http://www.pugetsound.edu/academics/academic-	Invertebrates	VI
resources/slater-museum/biodiversity-resources/dragonflies/washington-odonata/	invertebrates	

REFERENCE	CHAPTER	CODE
Pilsbry, H. A. 1948. Land Mollusca of North America (north of Mexico). Monograph of the Academy of Natural Sciences of Philadelphia, 2(2): 521-1113.	Appendix A - Invertebrates	i
Potter, A., T. Hanson and S. Vernon. 2011. Surveys for the island marble butterfly (<i>Euchloe</i>	Appendix A -	ii
<i>ausonides</i> insulanus) in San Juan County, Washington, 2010. Washington Department of Fish and Wildlife, Olympia, Washington.	Invertebrates	
Pyle, R. 1989. Washington butterfly conservation status plan. Washington Department of Fish and wildlife. Olympia, Washington. 216pp.	Appendix A - Invertebrates	ii,iii
Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA.	Appendix A - Invertebrates	i
Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp.	Appendix A - Invertebrates	i
Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200.	Appendix A - Invertebrates	i
Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187.	Appendix A - Invertebrates	i
Ruiter, D. 2015. University of Texas, pers.comm.	Appendix A - Invertebrates	vii
 Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington and British Columbia. Northwest Science 85: 361–388. 	Appendix A - Invertebrates	i
Schweitzer, D., N. Capuano, B. Young and S. Colla. 2012. Conservation and management of North American bumble bees. NatureServe, Arlington, Virginia and USDA Forest Service, Washington, D.C.	Appendix A - Invertebrates	i
Severns, P. M. and A. D. Warren. 2008. Selectively eliminating and conserving exotic plants to save an endangered species from local extinction. Animal Conservation 11:476-483.	Appendix A - Invertebrates	i
Severns. P. M and D. Grosboll. 2010. Patterns of reproduction in four Washington State populations of Taylor's checkerspot (<i>Euphydryas editha</i> taylori) during the spring 2010. Report submitted to the Nature Conservancy. 81pp.	Appendix A - Invertebrates	vi
 Shear, W. A. and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to North America: Leschius mcallisteri, n. gen., n. sp. (Diplopoda: Chordeumatida: Anthroleucosomatoidea). Zootaxa. 609:1-7. http://www.mapress.com/zootaxa/2004f/z00609f.pdf 	Appendix A - Invertebrates	i
Shook, G. 1981. The status of Columbia River tiger beetle (Cicindela columbica Hatch) in Idaho (Coleoptera: Cicindelidae). Pan-Pacific Entomologist 57(2):359-363.	Appendix A - Invertebrates	i
Stagliano, D. M., G. M. Stephens and W. R. Bosworth. 2007. Aquatic invertebrate species of concern on USFS Northern Region lands. Report prepared for USDA Forest Service, Northern Region, Missoula, Montana.	Appendix A - Invertebrates	i
Stark, B. P. and B. C. Kondratieff. 2004. Pictetiella lechleitneri (Plecoptera: Perlodidae), a new species from Mt. Rainier National Park, Washington, U.S.A. Proceedings of the Entomological Society of Washington 106(4): 747-750.	Appendix A - Invertebrates	i
Stark, B. P. and D. L. Gustafson. 2004. New species and records of Soliperla Ricker, 1952 from western North America (Insecta, Plecoptera, Peltoperlidae). Spixiana 27(2):97-105.	Appendix A - Invertebrates	i
Steensma, K. M. M., L. P. Lilley and H. M. Zandberg. 2009. Life history and habitat requirements of the Oregon forestsnail, <i>Allogona townsendiana</i> (Mollusca, Gastropoda, Pulmonata, Polygyridae), in a British Columbia population. Invertebrate Biology 128:232–242.	Appendix A - Invertebrates	i

REFERENCE	CHAPTER	CODE
Stinson, D. W. 2005. Washington State status report for the Mazama pocket gopher, streaked	Appendix A -	ii,iii,iv
horned lark and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129 pp.	Invertebrates	
Stone, T., 2009. Crowned Tightcoil (Pristiloma pilsbryi). Species Fact Sheet. Interagency	Appendix A -	vi
Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.	Invertebrates	
Takaoka, S. and F. Swanson. 2008. Change in extent of meadows and shrub fields in the	Appendix A -	i
central western Cascade Range, Oregon. The Professional Geographer 60:4. http://www.tandfonline.com/doi/abs/10.1080/00330120802212099	Invertebrates	
The Nature Conservancy. 1990. Population dynamics and habitat selection of the Oregon	Appendix A -	vi
silverspot butterfly (<i>Speyeria zerene hippolyta</i>): a comparative study at four primary sites in Oregon. Report to the Siuslaw National Forest. Portland, Oregon.	Invertebrates	
Thompson, J. 2007. Mountain meadows—here today, gone tomorrow? Meadow science and	Appendix A -	i
restoration. Science Findings Issue 94. PNW Research Station, Portland, Oregon. http://www.fs.fed.us/pnw/sciencef/scifi 94.pdf	Invertebrates	
Thorp, R., D. Horning, Jr. and L. Dunning. 1983. Bumble bees and cuckoo bumble bees of	Appendix A -	i
California (Hymenoptera: Apidae). Bulletin of the California Insect Survey: Vol. 23. University of CA Press. Berkley and Los Angeles.	Invertebrates	
Troubridge, J. and L. Crabo. 1995. A new species of Copablepharon (Lepidoptera: Noctuidae)	Appendix A -	i
from British Columbia and Washington. Journal of Entomology Society British Columbia. 92: December. Pp. 87-90.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2001. Oregon silverspot butterfly (Speyeria zerene	Appendix A -	i
hippolyta) revised recovery plan. US Fish and Wildlife Service, Portland, Oregon. 13 pp.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants:	Appendix A -	i
90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and threatened wildlife and plants;	Appendix A -	i
12-month finding on a petition to list the Bearmouth mountainsnail, Byrne Resort	Invertebrates	
mountainsnail and meltwater lednian stonefly as endangered or threatened. Federal Register 76(65): 18684-18701.		
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
12-Month Finding on a Petition to List the Giant Palouse Earthworm (Driloleirus americanus) as Threatened or Endangered. Federal Register 76(143):44547-44564.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
90-Day Finding on a Petition to List the Sand Verbena Moth as Endangered or Threatened. Federal Register Vol. 76, No. 33: 9309-9318.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2014. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
90-Day Finding on a Petition to List the Island Marble Butterfly as an Endangered Species. Federal Register Vol. 79, No. 160: 49045-49047.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2005. Species fact sheet:	Appendix A -	vi
Columbia River tiger beetle. Prepared by G. Brenner. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2007. Species fact sheet:	Appendix A -	vi
Siuslaw Sand tiger beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2008a. Species fact sheet:	Appendix A -	vi
Columbia Clubtail (Gomphus lynnae). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2008b. Species fact sheet:	Appendix A -	vi
Pacific Clubtail (Gomphus kurilis). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Invertebrates	

REFERENCE	CHAPTER	CODE
US Forest Service and Bureau of Land Management (USFS-BLM). 2008c. Species fact sheet: White-belted Ringtail (Erpetogomphus compositus). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet: Beller's ground beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet: Hatch's Click Beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet: Valley Silverspot. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2010. Species fact sheet: Silver-bordered fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2011. Species fact sheet: Subarctic Bluet. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
US Forest Service and Bureau of Land Management (USFS-BLM). 2012. Species fact sheet: Meadow Fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
Vadopalas, B. and J. Watson. 2014. Recovery Plan for Pinto Abalone (<i>Haliotis kamtschatkana</i>) in Washington state. Puget Sound Restoration Fund. 50pp.	Appendix A - Invertebrates	vi
Wainwright, M. 2008. Chinquapin (Golden) Hairstreak butterfly survey report. US Forest Service, Gifford Pinchot National Forest. 6pp.	Appendix A - Invertebrates	vi
WildEarth Guardians. 2010. Petition to list the Sand Verbena Moth (<i>Copablepharon fuscum</i>) under the US Endangered Species Act. Submitted to the US Secretary of Interior February 4, 2010.	Appendix A - Invertebrates	vi
Wilke, T. and N. Duncan 2004. Phylogeographical patterns in the American Pacific Northwest: lessons from the arionid slug <i>Prophysaon coeruleum</i> , Molecular Ecology (2004) 13: 2303-2315.	Appendix A - Invertebrates	i
Williams, P. H., S. R. Colla and Z. Xie. 2009. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology 23(4):931-940.	Appendix A - Invertebrates	i
Wilson, J., L. Wilson, L. Loftis and T. Griswold. 2010. The montane bee fauna of north central Washington, USA, with floral associations. Western North American Naturalist 70(2):198-207.	Appendix A - Invertebrates	i
Xerces–The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, <i>Euchloe ausonides</i> insulanus (Guppy and Shepard, 2001) as an endangered species under the US endangered species act. Portland, Oregon. Submitted August 22, 2012.	Appendix A - Invertebrates	vi
Beer, W. and J. Anderson. 2011. Sensitivity of juvenile salmonid growth to future climate trends. River Research and Applications, 27(5), 663-669.	Appendix C	i
Bumbaco, K. A. and P. W. Mote. 2010. Three recent flavors of drought in the Pacific Northwest. Journal of Applied Meteorology and Climatology, 49(9), 2058-2068.	Appendix C	i
 Cai, WJ., X. Hu, WJ. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, WC. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai and GC. Gong. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11), 766-770. 	Appendix C	i

REFERENCE	CHAPTER	CODE
Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.	Appendix C	i
Connolly, T., B. Hickey, S. Geier and W. Cochlan. 2010. Processes influencing seasonal hypoxia in the northern California Current System. Journal of Geophysical Research: Oceans (1978–2012), 115(C3).	Appendix C	i
Diaz, R. J. and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929.	Appendix C	i
 Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. <i>Climate Change</i> <i>Impacts in the United States: The Third National Climate Assessment</i>, J. M. Melillo, Terese (T.C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 557- 578. doi:10.7930/J0RF5RZW. 	Appendix C	i
Eby, L. A., O. Helmy, L. M. Holsinger and M. K. Young. 2014. Evidence of climate-induced range contractions in Bull Trout <i>Salvelinus confluentus</i> in a Rocky Mountain watershed, USA. PloS one, 9(6), e98812.	Appendix C	i
Feely, R. A., S. C. Doney and S. R. Cooley. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography, 22(4), 37-47.	Appendix C	i
Feely, R. A., S. R. Alin, J. Newton, C. L. Sabine, M. Warner, A. Devol, C. Krembs and C. Maloy. 2010. The combined effects of ocean acidification, mixing and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88(4), 442-449.	Appendix C	i
Gregg, R. M., K. M. Feifel, J.M. Kershner and J.L. Hitt. 2012. The State of Climate Change Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.	Appendix C	i
 Gregg, R. M., L. J. Hansen, K. M. Feifel, J. L. Hitt, J. M. Kershner, A. Score and J. R. Hoffman. 2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. EcoAdapt, Bainbridge Island, WA. 	Appendix C	i
Hamlet, A. F. and D. P. Lettenmaier. 2007. Effects of 20th century warming and climate variability on flood risk in the western US. Water Resources Research, 43(6).	Appendix C	i
Huppert, D. D., A. Moore and K. Dyson. 2009. Impacts of climate change on the coasts of Washington State. Washington Climate Change Impacts Assessment: Evaluating Washington's Future in a Changing Climate, 285-309.	Appendix C	i
Isaak, D. J., S. Wollrab, D. Horan and G. Chandler. 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Climatic Change, 113(2), 499-524.	Appendix C	i
Mantua, N., I. Tohver and A. Hamlet. 2009. Impacts of climate change on key aspects of freshwater salmon habitat in Washington State. Washington Climate Change Impacts Assessment: Evaluating Washington's future in a changing climate. Climate Impacts Group, University of Washington. Seattle, Washington.	Appendix C	i
Mantua, N., I. Tohver and A. Hamlet. 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change, 102(1-2), 187-223.	Appendix C	i
Monleon, V. J. and H. E. Lintz. 2015. Evidence of tree species' range shifts in a complex landscape. PloS One, 10(1), e0118069.	Appendix C	i
Moore, S. K., N. J. Mantua, B. M. Hickey and V. L. Trainer. 2009. Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate and capacity for prediction of toxic events. Harmful Algae, 8(3), 463-477.	Appendix C	i
Moore, S. K., V. L. Trainer, N. J. Mantua, M. S. Parker, E. A. Laws, L. C. Backer and L. E. Fleming. 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environmental Health, 7(2), S4.	Appendix C	i

REFERENCE	CHAPTER	CODE
Morgan, E. and D. Siemann. 2010. Climate Change Effects on Marine and Coastal Habitats in Washington State Prepared for the Ecosystems, Species and Habitats Topic Advisory Group. Available at: http://dfwwbolyhq01.dfw.wa.gov/conservation/climate_change/publications/marine_c oastal_climate_science_summary.pdf	Appendix C	vi
Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi and S. Reeder. 2014. Ch. 21: Northwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 487-513. doi:10.7930/J04Q7RWX.	Appendix C	i
Peterson, J. O., C. A. Morgan, W. T. Peterson and E. D. Lorenzo. 2013. Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998–2012. Limnology and Oceanography, 58(6), 2279-2292.	Appendix C	i
Raupach, M. R., G. Marland, P. Ciais, C. Le Quéré, J. G. Canadell, G. Klepper and C. B. Field. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences, 104(24), 10288-10293.	Appendix C	i
Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby and I. Tohver. 2013. Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers. State of Knowledge Report prepared for the Washington State Department of Ecology. Climate Impacts Group, University of Washington, Seattle.	Appendix C	i
State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate: Washington States Integrated Climate Response Strategy. Publication No. 12-01-004. Olympia, WA.	Appendix C	i
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global- Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf	Appendix C	vi
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine- Report/NPLCC_Marine_Climate-Effects_Final.pdf	Appendix C	vi
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats and Species: A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global- Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems_Final-Report_NPLCC- NWF online-size.pdf	Appendix C	vi
Washington Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans. University of Washington. Seattle, Washington.	Appendix C	i
Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington Connected Landscapes Project: Statewide Analysis. Washington Department of Fish and Wildlife and Washington Statement Department of Transportation.	Appendix C	i,ii,iii
Akins, J. 2012. Conservation Status of the Cascade Red Fox. Mount Rainier National Park Science Brief. National Park Service, US Department of the Interior. 2 pp.	Climate Change Vulnerability – Mammals	vi
Anderwald, P., P. G. H. Evans, R. Dyer, A. Dale, P. J. Wright and A. R. Hoelzel. 2012. Spatial scale and environmental determinants in minke whale habitat use and foraging. Marine Ecology Progress Series 450, 259–274.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Armitage, K.B. 2013. Climate change and the conservation of marmots. Natural Science 5: 36-43.	Climate Change Vulnerability –	i
	Mammals	
Aubry, K. B. and S. D. West. 1984. The status of native and introduced mammals on	Climate Change	i
Destruction Island, Washington. The Murrelet, 65(3): 80-83.	Vulnerability –	
	Mammals	
Azerrad, J. M. 2004. Merriam's Shrew in Volume V: Mammals. Washington Department of	Climate Change	ii,iii
Fish and Wildlife. 4 pgs. http://wdfw.wa.gov/publications/00027/mesh.pdf	Vulnerability –	·
	, Mammals	
Baumgartner, M. F., N. S. J. Lysiak, H. C. Esch, A. N. Zerbini, C. L. Berchok and P. J. Clapham.	Climate Change	i
2013. Associations between North Pacific right whales and their zooplanktonic prey in	Vulnerability –	
the southeastern Bering sea. Marine Ecology Progress Series 490, 267–284.	Mammals	
Beever, E. A., P. E. Brussard and J. Berger. 2003. Patterns of apparent extirpation among	Climate Change	i
isolated populations of pikas (Ochotona princeps) in the Great Basin. Journal of	Vulnerability –	
Mammalogy 84:37-54.	Mammals	
Burek, K. A., F. M. D. Gulland and T. M. O'Hara. 2008. Effects of Climate Change on Arctic	Climate Change	i
Marine Mammal Health. Ecological Applications 18, S126–S134.	Vulnerability –	
	Mammals	
Burtenshaw, J. C., E. M. Oleson, J. A. Hildebrand, M. A. McDonald, R. K. Andrew, B. M. Howe	Climate Change	i
and J. A. Mercer. 2004. Acoustic and satellite remote sensing of blue whale seasonality	Vulnerability –	
and habitat in the Northeast Pacific. Deep. Res. Part II Topographic Studies	Mammals	
Oceanography 51, 967–986.		
Clapham, P., K. Shelden and P. Wade. 2005. Review of Information Relating to Possible	Climate Change	vi
Critical Habitat for Eastern North Pacific Right Whale. National Marine Mammal Lab.	Vulnerability –	••
Accessible via	Mammals	
http://alaskafisheries.noaa.gov/protectedresources/whales/nright/rule/rwcrithabinfo08		
05.pdf. Accessed 5/3/2015.		
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/taxidea-	Climate Change	vi
taxus, accessed 6/4/2015	Vulnerability –	
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/ochotona-	Climate Change	vi
princeps, accessed 5/31/2015	Vulnerability –	
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/85	Climate Change	vi
	Vulnerability –	
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lepus-	Climate Change	vi
californicus, accessed 5/31/2015	Vulnerability –	••
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/vulpes-	Climate Change	vi
vulpes-cascadensis, accessed 6/4/2015.	Vulnerability –	••
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/martes-	Climate Change	vi
pennanti, accessed 6/3/2015.	Vulnerability –	
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/canis-lupus-	Climate Change	vi
0, accessed 6/5/2015.	Vulnerability –	**
	Mammals	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/canis-lupus,	Climate Change	vi
accessed 6/5/2015.	Vulnerability –	VI
	Mammals	
	IVIAIIIIIIdIS	1

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/68, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lasiurus- cinereus, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/525, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/orcinus- orca, accessed 5/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/microtus- pennsylvanicus, accessed 6/1/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/67, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/thomomys- mazama-yelmensis, accessed 6/1/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sorex- merriami	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/synaptomys-borealis, accessed 5/2/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/502, accessed 6/2/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/507, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sorex- preblei.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/brachylagus-idahoensis-0, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lasionycteris-noctivagans, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/euderma- maculatum, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/corynorhinus-townsendii, accessed 5/312015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/57, accessed 6/2/2015.	Climate Change Vulnerability – Mammals	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/spilogale- gracilis, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lepus- townsendii, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gulo-gulo, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/rangifer- tarandus-caribou	Climate Change Vulnerability – Mammals	vi
Croll, D. A., B. Marinovic, S. Benson, F. P. Chavez, N. Black, R. Ternullo and B. R. Tershy, 2005. From wind to whales: Trophic links in a coastal upwelling system. Marine Ecology Progress Series 289, 117–130.	Climate Change Vulnerability – Mammals	i
Dalla Rosa, L., J. K. B. Ford and A. W. Trites. 2012. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Continental Shelf Research. 36, 89–104.	Climate Change Vulnerability – Mammals	i
Delach, A. and N. Mattson. 2014. No Refuge from Warming: Climate Change Vulnerability of the Mammals of the Arctic National Wildlife Refuge. Defenders of Wildlife, Washington, D.C. 57 pp.	Climate Change Vulnerability – Mammals	vi
Department of the Interior (USDOI). 2014. Endangered and Threatened Wildlife and Plants; Threatened Species Status for the Olympia Pocket Gopher, Roy Prairie Pocket Gopher, Tenino Pocket Gopher and Yelm Pocket Gopher, with Special Rule; Final Rule. Federal Register, Vol. 79, No. 68.	Climate Change Vulnerability – Mammals	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Mammals	i
Elliott, M. L. and J. Jahncke. 2014. Ocean Climate Indicators Status Report – 2013. Unpublished Report. Point Blue Conservation Science, Petaluma, California. Point Blue contribution number 1982.	Climate Change Vulnerability – Mammals	vi
Feldhamer, G. A., B.C. Thompson and J. A. Chapman (Eds.). 2003. Wild mammals of North America: Biology, Management and Conservation. JHU Press. 1216 pages.	Climate Change Vulnerability – Mammals	i
Ferguson, H. L. and M. Atamian. 2012. Appendix A.3 Habitat Connectivity for Black-tailed Jackrabbit (Lepus californicus) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group. 41 pp.	Climate Change Vulnerability – Mammals	i,ii,iii
Ferguson, H. L., K. A. Divens and M. Atamian. 2010. Appendix A. Focal Species Modeling Background: White-tailed Jackrabbit (Lepus townsendii) in Washington Connected Landscapes Project: Statewide Analysis. Washington Department of Fish and Wildlife and Washington Department of Transportation, Olympia, WA. 7 pp.	Climate Change Vulnerability – Mammals	1,11,111
Ford, J. K. B., G. M. Ellis and P. F. Olesiuk. 2005. Linking prey and population dynamics: did food limitation cause recent declines of 'resident' killer whales (Orcinus orca) in British Columbia? Canadian Science Advisory Secretariat, Research Document 2005/042. Fisheries & Oceans, Canada, Pacific Biological Station.	Climate Change Vulnerability – Mammals	i
George, S. B. 1989. Sorex trowbridgii. Mammalian Species, 337: 1-5.	Climate Change Vulnerability – Mammals	i
Gitzen, R. A., J. E. Bradley, J. E., M. R. Kroeger and S. D. West. 2009. First Record of Preble's Shrew (Sorex preblei) in the Northern Columbia Basin, Washington. Northwestern Naturalist, 90(1), 41-43.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Griffin, S. C. 2008. Demography and ecology of a declining endemic: The Olympic marmot. Theses, Dissertations, Professional Papers. Paper 299.	Climate Change Vulnerability –	i
	Mammals	
Griffin, S. C., M. L. Taper, R. Hoffman and L. S. Mills. 2008. The case of the missing marmots:	Climate Change	i
Are metapopulation dynamics or range-wide declines responsible? Biological	Vulnerability –	
Conservation 141: 1293-1309.	Mammals	
Gunther, K. A., R. R. Shoemaker, K. L. Frey, M. A. Haroldson, S. L. Cain, F. T. van Manen and J.	Climate Change	i
K. Fortin. 2014. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem.	Vulnerability –	
Ursus 25: 60-72.	Mammals	
Hanson, M. B., R. W. Baird, J. K. B. Ford, J. Hempelmann-Halos, D. M. Van Doornik, J. R. Candy,	Climate Change	i
C. K. Emmons, G. S. Schorr, B. Gisborne, K. L. Ayres, S. K. Wasser, K. C. Balcomb, K.	Vulnerability –	
Balcomb-Bartok, J. G. Sneva and M. J. Ford. 2010. Species and stock identification of	Mammals	
prey consumed by endangered southern resident killer whales in their summer range.		
Endangered Species Research 11, 69–82.		
Haug, T., U. Lindstrom and K. T. Nilssen. 2002. Variations in Minke Whale (Balaenoptera	Climate Change	i
acutorostrata) Diet and Body Condition in Response to Ecosystem Changes in the	Vulnerability –	
Barents Sea. Sarsia North Atlantic Marine Science 87, 409–422.	Mammals	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: Pacific Fisher. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Vulnerability –	
	Mammals	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: American Marten. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Vulnerability –	
	Mammals	
Hayes, G. and G. J. Wiles. 2013. Washington bat conservation plan. Washington Department	Climate Change	ii,iii,iv
of Fish and Wildlife, Olympia, Washington. 138+viii pp.	Vulnerability –	
	Mammals	
Howard, J. L. 1995. Lepus californicus. In: Fire Effects Information System, [Online]. US	Climate Change	vi
Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire	Vulnerability –	
Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2015,	Mammals	
May 31].		
Jaquet, N. and D. Gendron. 2002. Distribution and relative abundance of sperm whales in	Climate Change	i
relation to key environmental features, squid landings and the distribution of other	Vulnerability –	
cetacean species in the Gulf of California, Mexico. Marine Biology 141, 591–601.	Mammals	
Johnston, K. M., K. A. Freund and O. J. Schmitz. 2012. Projected range shifting by montane	Climate Change	i
mammals under climate change: implications for Cascadia's National Parks. Ecosphere 3.	Vulnerability –	
Article 97.	Mammals	
Laidre, K. L., M. P. Heide-Jørgensen, P. Heagerty, A. Cossio, B. Bergström and M. Simon. 2010.	Climate Change	i
Spatial associations between large baleen whales and their prey in West Greenland.	Vulnerability –	
Marine Ecology Progress Series 402, 269–284.	Mammals	
Laidre, K. L., R. J. Jameson, E. Gurarie, S. J. Jeffries and H. Allen. 2009. Spatial habitat use	Climate Change	i
patterns of Sea Otters in Coastal Washington. Journal of Mammalogy, 90 (4): 906-917.	Vulnerability –	
	Mammals	
Learmonth, J. A, C. D. Macleod, M. B. Santos, G. J. Pierce, H. Q. P. Crick and R. A. Robinson,	Climate Change	i
2006. Potential effects of climate change on marine mammals. Oceanography and	Vulnerability –	
Marine Biology: An Annual Review. 44, 431–464.	Mammals	
Linders, M. J. and D. W. Stinson. 2007. Washington State Recovery Plan for the Western Gray	Climate Change	ii,iii
Squirrel. Washington Department of Fish and Wildlife, Olympia, WA. 128 pp.	Vulnerability –	
	Mammals	
		۰.
MacLeod, C. D. 2009. Global climate change, range changes and potential implications for the	Climate Change	i
MacLeod, C. D. 2009. Global climate change, range changes and potential implications for the conservation of marine cetaceans: A review and synthesis. Endangered Species	Climate Change Vulnerability –	I

REFERENCE	CHAPTER	CODE
Marcy, A. E., S. Fendorf, J. L. Patton and E. A. Hadly. 2013. Morphological adaptations for digging and climate-impacted soil properties define pocket gopher (Thomomys spp.)	Climate Change Vulnerability –	i
distributions. PLoS One 8: e64935. McCluskey, S. M. 2006. Space Use Patterns and Population Trends of Southern Resident Killer	Mammals Climate Change	i
Whales (Orcinus orca) in Relation to Distribution and Abundance of Pacific salmon (Oncorhynchus spp.) in the Inland Marine Waters of Washington State and British Columbia. Master's thesis, University of Washington, School of Aquatic and Fisheries Science.	Vulnerability – Mammals	
McKelvey, K. S., J. P. Copeland, M. K. Schwartz, J. S. Littell, K. B. Aubry, J. R. Squires, S. A. Parks, M. M. Elsner and G.S. Mauger. 2011. Climate change predicted to shift wolverine distributions, connectivity and dispersal corridors. Ecological Applications 21: 2882- 2897.	Climate Change Vulnerability – Mammals	i
Meaney, C. and G. P. Beauvais. 2004. Species Assessment for Gray Wolf (Canis lupus) in Wyoming. Prepared for US Department of the Interior Bureau of Land Management. http://www.blm.gov/style/medialib/blm/wy/wildlife/animal- assessmnts.Par.50140.File.dat/GrayWolf.pdf	Climate Change Vulnerability – Mammals	vi
Moore, J. E. and J. P. Barlow. 2014. Improved abundance and trend estimates for sperm whales in the eastern North Pacific from Bayesian hierarchical modeling. Endangered Species Research 25, 141–150.	Climate Change Vulnerability – Mammals	i
Mountain Caribou Science Team. 2005. Mountain Caribou in British Columbia: A Situation Analysis. 19 May 2005. http://www.env.gov.bc.ca/wld/speciesconservation/mc/files/Mountain_Caribou_Situati on_Analysis.pdf	Climate Change Vulnerability – Mammals	vi
National Marine Fisheries Service (NMFS). 2010. Final recovery plan for the fin whale (Balaenoptera physalus). National Marine Fisheries Service, Silver Spring, Maryland. 121 pp.	Climate Change Vulnerability – Mammals	i
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Ovis+canadensis	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Odocoileus+virginia nus+leucurus	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Sorex+merriami	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Rangifer+tarandus+ caribou	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer. http://explorer.natureserve.org/servlet/NatureServe?searchName=Sorex+preblei.	Climate Change Vulnerability – Mammals	vi
Olsen, E., W. P. Budgell, E. Head, L. Kleivane, L. Nøttestad, R. Prieto, M. A. Silva, H. Skov, G. A. Víkingsson, G. Waring and N. Øien. 2009. First satellite-tracked long-distance movement of a sei whale (Balaenoptera borealis) in the North Atlantic. Aquatic Mammals 35, 313–318.	Climate Change Vulnerability – Mammals	i
Pierce, G. J., M. B. Santos, C. Smeenk, A. Saveliev and A. F. Zuur. 2007. Historical trends in the incidence of strandings of sperm whales (Physeter macrocephalus) on North Sea coasts: An association with positive temperature anomalies. Fisheries Research 87, 219–228.	Climate Change Vulnerability – Mammals	i
Roberts, D. R., S. E. Nielson and G. B. Stenhouse. 2014. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes. Ecological Applications 24: 1144-1154.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Sasaki, H., H. Murase, H. Kiwada, K. Matsuoka, Y. Mitani and S. I. Saitoh. 2013. Habitat differentiation between sei (Balaenoptera borealis) and Bryde's whales (B. brydei) in the	Climate Change Vulnerability –	i
western North Pacific. Fisheries Oceanography 22, 496–508. Sato, C. 2012. Appendix A.5 Habitat Connectivity for Townsend's Ground Squirrel (Urocitellus townsendii) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group, 24 pp	Mammals Climate Change Vulnerability – Mammals	i,ii,iii
Working Group. 24 pp. Sato, C. 2012. Appendix A.6 Habitat Connectivity for Washington Ground Squirrel (Urocitellus washingtoni) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group. 24 pp.	Climate Change Vulnerability – Mammals	i,ii,iii
Scheffer, V. B. and W. W. Dalquest. 1942. A new shrew from Destruction Island, Washington. Journal of Mammalogy, 23(3). 333-335.	Climate Change Vulnerability – Mammals	i
Servheen, C. and M. Cross. 2010. Climate change impacts on grizzly bears and wolverines in the Northern U.S. and Transboundary Rockies: Strategies for Conservation. Report on a workshop held Sept. 13-15, 2010 in Fernie, British Columbia. 23 pp.	Climate Change Vulnerability – Mammals	vi
Shelden, K. E. W., S. E. Moore, J. M. Waite, P. R. Wade and D. J. Rugh. 2005. Historic and current habitat use by North Pacific right whales Eubalaena japonica in the Bering Sea and Gulf of Alaska. Mammal Review 35, 129–155.	Climate Change Vulnerability – Mammals	i
Sherwin, H. A., W. I. Montgomery and M. G. Lundy. 2012. The impact and implications of climate change for bats. Mammal Review. doi: 10.1111/j.1365-2907.2012.00214.x	Climate Change Vulnerability – Mammals	i
Simmonds, M. P. and S. J. Isaac. 2007. The impacts of climate change on marine mammals: early signs of significant problems. Oryx 41, 19.	Climate Change Vulnerability – Mammals	i
Skaug, H. J., H. Gjosæter, T. Haug, K. T. Nilssen and U. Lindstrøm. 1997. Do minke whales (Balaenoptera acutorostrata) exhibit particular prey preferences? Journal of Northwest Atlantic Fishery Science 22, 91–104.	Climate Change Vulnerability – Mammals	i
Smithsonian National Museum of Natural History: North American Mammals - White-tailed jackrabbit (June, 2011) http://www.mnh.si.edu/mna/image_info.cfm?species_id=133.	Climate Change Vulnerability – Mammals	i
Steel, Z. L., M. Wilkerson, P. Grof-Tisza and K. Sulzner. 2011. Assessing species and area vulnerability to climate change for the Oregon Conservation Strategy: Willamette Valley Ecoregion. Conservation Management Program. University of California, Davis.	Climate Change Vulnerability – Mammals	i
Stinson, D. W. 2013. Draft Mazama Pocket Gopher Status Update and Washington State Recovery Plan. Washington Department of Fish and Wildlife, Olympia, WA. 91 pp.	Climate Change Vulnerability – Mammals	ii,iii,iv
Symes, S. A. 2013. Winter ecology of the North American badger (Taxidea taxus jeffersonii) in the Cariboo Region of British Columbia. Thesis, Thompson Rivers University, Kamloops, B.C. 125 pp.	Climate Change Vulnerability – Mammals	i
US Fish and Wildlife Service (USFWS). 2013. Columbia River Distinct Population Segment of the Columbian White-tailed Deer (Odocoileus virginianus leucurus) - 5-Year Review: Summary and Evaluation. Lacey, WA. 53 pp. http://www.fws.gov/uploadedFiles/Region_1/NWRS/Zone_2/Willapa_Complex/Julia_B utler_Hansen/Documents/CWTD%205%20%20year%20Review.pdf	Climate Change Vulnerability – Mammals	i
US Fish and Wildlife Service (USFWS). 2003. Endangered and Threatened Wildlife and Plants; Status Review and 12-Month Finding for a Petition to List the Washington Population of the Western Gray Squirrel. Federal Register, Vol. 68, No. 111: 34628-34640.	Climate Change Vulnerability – Mammals	i
US Fish and Wildlife Service (USFWS). 2010. Species Assessment and Listing Priority Assignment Form (Urocitellus washingtoni). US Fish and Wildlife Service. 33 pp.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Van Horne, B., G. S. Olson, R. L. Schooley, J. G. Corn and K. P. Burnham. 1997. Effects of	Climate Change	i
drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats. Ecological Monographs 67: 295-315.	Vulnerability – Mammals	
Vander Haegen, W. M., G. R. Orth and M. J. Linders. 2013. Survival and causes of mortality in	Climate Change	i
a northern population of western gray squirrels. Journal of Wildlife Management 77: 1249-1257.	Vulnerability – Mammals	
Walker, K. A., J. W. Davis and D. A. Duffield. 2008. Activity budgets and prey consumption of	Climate Change	i
sea otters (Enhydra lutris kenyoni) in Washington. Aquatic Mammals 34, 393–401.	Vulnerability – Mammals	
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Columbian	Climate Change	ii,iii
white-tailed deer in 2012 Annual Report. pp. 40-43.	Vulnerability –	
http://wdfw.wa.gov/conservation/endangered/species/columbian_white- tailed_deer.pdf	Mammals	
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species - Woodland	Climate Change	ii,iii
Caribou in 2012 Annual Report. pp. 44-47.	Vulnerability –	
http://wdfw.wa.gov/conservation/endangered/species/woodland_caribou.pdf	Mammals	
Washington Department of Fish and Wildlife (WDFW). 1995. Washington state recovery plan	Climate Change	ii,iii
for the pygmy rabbit. Wildlife Management Program, Washington Department Fish and Wildlife, Olympia. 73 pp.	Vulnerability – Mammals	
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and Endangered	Climate Change	ii,iii
Wildlife in Washington: 2012 Annual Report. Listing and Recovery Section, Wildlife	Vulnerability –	,
Program, Washington Department of Fish and Wildlife, Olympia, WA. 251 pp.	Mammals	
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From	Climate Change	i
Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L.	Vulnerability –	
Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Mammals	
WildEarth Guardians. 2014. Petition to list the Northern Bog Lemming (Synaptomys borealis)	Climate Change	vi
under the US Endangered Species Act. WildEarth Guardians, Denver, CO. 43 pp.	Vulnerability – Mammals	
Yensen, E., D. L. Quinney, K. Johnson, K. Timmerman and K. Steenhof. 1992. Fire, Vegetation	Climate Change	i
Changes and Population Fluctuations of Townsend's Ground Squirrels. American Midland Naturalist 128: 299-312.	Vulnerability – Mammals	
Achs, J., C. Hughes and G. Nuechterlein. 2007. Evolution of coloniality in birds: A test of	Climate Change	i
hypotheses with the Red-necked Grebe (Podiceps grisegena). The Auk 124, 628–642.	Vulnerability – Birds	
Adams, J. S., R. L. Knight, L. C. McEwen and T. L. George. 1994. Survival and growth of	Climate Change	i
nestling Vesper Sparrows exposed to experimental food reductions. The Condor 96: 739-748.	Vulnerability – Birds	
Aiello-Lammens, M. E., M. L. Chu-Agor, M. Convertino, R. A. Fischer, I. Linkov and H. Resit	Climate Change	i
Akçakaya. 2011. The impact of sea-level rise on Snowy Plovers in Florida: Integrating geomorphological, habitat and metapopulation models. Global Change Biology 17, 3644–3654.	Vulnerability – Birds	
Ainley, D. G. and D. K. Hyrenbach. 2010. Top-down and bottom-up factors affecting seabird	Climate Change	i
population trends in the California current system (1985-2006). Progress in	Vulnerability –	
Oceanography 84, 242–254.	Birds	
Aldridge, C. L., S. E. Nielsen, H. L. Beyer, M. S. Boyce, J. W. Connelly, S. T. Knick and M. A.	Climate Change	i
Schroeder. 2008. Range-wide patterns of greater sage-grouse persistence. Diversity and Distributions 14: 983-994.	Vulnerability – Birds	
Altman, B. and J. D. Alexander. 2012. Habitat Conservation for Landbirds in the Coniferous	Climate Change	vi
Forests of Western Oregon and Washington. Version 2.0. Oregon-Washington Partners	Vulnerability –	
in Flight and American Bird Conservancy and Klamath Bird Observatory. 88 pp.	Birds	

REFERENCE	CHAPTER	CODE
Anders, A.D. and E. Post. 2006. Distribution-wide effects of climate on population densities of a declining migratory landbird. Journal of Animal Ecology 75: 221-227.	Climate Change Vulnerability – Birds	i
Audubon, The Climate Report, http://climate.audubon.org/birds/burowl/burrowing-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/grgowl/great-gray-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/sagthr/sage-thrasher, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/sheowl/short-eared-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Bagne, K. E. and D. M. Finch. 2013. Vulnerability of species to climate change in the Southwest: threatened, endangered and at-risk species at Fort Huachuca, Arizona. General Technical Report RMRS-GTR-302. Fort Collins, CO. 183 pp.	Climate Change Vulnerability – Birds	i
Becker, B. H., M. Z. Perry and S. R. Beissinger. 2007. Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Marine Ecology Progress Series 329, 267–279.	Climate Change Vulnerability – Birds	i
BirdLife International 2012. Megascops kennicottii. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 08 May 2015.</www.iucnredlist.org>	Climate Change Vulnerability – Birds	vi
Buchanan, J. B. 1999. Recent changes in the winter distribution and abundance of Rock Sandpipers in North America. Western Birds 30, 193–199.	Climate Change Vulnerability – Birds	i
 Buchanan, J. B., J. E. Lyons, L. J. Salzer, R. Carmona, N. Arce, G. J. Wiles, K. Brady, G. E. Hayes, S. M. Desimone, G. Schirato and W. Michaelis. 2012. Among-year site fidelity of red knots during migration in Washington. Journal of Field Ornithology 83, 282–289. 	Climate Change Vulnerability – Birds	i
Buchanan, J. B., L. J. Salzer, G. J. Wiles, K. Brady, S. M. Desimone and W. Michaelis. 2011. An investigation of Red Knot Calidris canutus spring migration at Grays Harbor and Willapa Bay, Washington. Wader Study Grant Bulletin 118, 97–104.	Climate Change Vulnerability – Birds	i,ii
Bunnell, R. L., R. W. Wells, B. Harrison and A. Breault. 2013. One size does not fit all: differential responses of waterfowl species to impacts of climate change in central British Columbia. Waterfowl and Climate Change 23: 27-38.	Climate Change Vulnerability – Birds	i
Burthe, S. J., S. Wanless, M.A. Newell, A. Butler and F. Daunt. 2014. Assessing the vulnerability of the marine bird community in the western North Sea to climate change and other anthropogenic impacts. Marine Ecology Progress Series 507: 277-295.	Climate Change Vulnerability – Birds	i
California Audubon, http://ca.audubon.org/surf-scoter-0, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Cannings, R. J. and T. Angell. 2001. Western Screech-Owl (Otus kennicottii). In The Birds of North America, No. 597 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA. http://www.allaboutbirds.org/guide/Western_Screech-Owl/lifehistory, accessed 5/8/15.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
 Carroll, A. L., S. W. Taylor, J. Régnière and L. Safranyik. 2003. Effects of climate change on range expansion by the mountain pine beetle in British Columbia. Pages 223-232 in T. L. Shore, J. E. Brooks and J. E. Stone (editors). Mountain pine beetle symposium: challenges and solutions. October 30-31, 2003, Kelowna, British Columbia. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, Victoria, British Columbia. 	Climate Change Vulnerability – Birds	vi
Center for Biological Diversity. 2010. Petition to list the white-tailed ptarmigan as a threatened species under the Endangered Species Act. http://www.biologicaldiversity.org/species/birds/white-tailed_ptarmigan/pdfs/WTP_Petition.pdf	Climate Change Vulnerability – Birds	vi
Chamberlain, D. and J. Pearce-Higgins. 2013. Impacts of climate change on upland birds: complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155: 451-455.	Climate Change Vulnerability – Birds	i
Chesser, R. T., R. C. Banks, F. K. Barker, C. Cicero, J. L. Dunn, A. W. Kratter, I. J. Lovette, P. C. Rasmussen, J. V. Remsen Jr., J. D. Rising, D. F. Stotz and K. Winker. 2013. Fifty-fourth supplement to the American Ornithologists' Union check-list of North American birds. The Auk, 130(3), 558-572.	Climate Change Vulnerability – Birds	i
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/587, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/581, accessed 4-24-/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/falcipennis- canadensis, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lagopus- leucura, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/87, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/asio- flammeus accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/562, accessed 4-29-15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/580, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/553, accessed 4/28/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gavia- pacifica, accessed 4-27-15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/141, accessed 4/23/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/556, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/586, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/589, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sialia- mexicana, accessed 5/7/15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/559, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/haliaeetus- leucocephalus-0, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/592, Accessed 4-24-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/576, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/583, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/aquila- chrysaetos, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/aechmophorus-clarkii, accessed 4-24-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/strix- nebulosa, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/577, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/570, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/551, accessed 4-25-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/579, accessed 4/28/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sitta- pygmaea, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/tympanuchus-phasianellus, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/melanitta- fusca, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/branta- bernicla-0, accessed on 4/23/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/565, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/522, accessed 4/23/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/centrocercus-urophasianus, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/538, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/578, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/bucephala- islandica, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/melanitta- perspicillata, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database. http://climatechangesensitivity.org/species/charadrius- alexandrinus-nivosus Accessed 4/24/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Databse, http://climatechangesensitivity.org/node/568, accessed 5/8/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Senstivity Database, http://climatechangesensitivity.org/species/lanius- ludovicianus, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Impacts Group, 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell and L Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.	Climate Change Vulnerability – Birds	i
Coe, S. J., D. M. Finch and M. M. Friggens. 2012. An assessment of climate change and the vulnerability of wildlife in the Sky Islands of the Southwest. General Technical Report RMRS-GTR-273. Fort Collins, CO. 208 pp.	Climate Change Vulnerability – Birds	i
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Horned_Lark/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Loggerhead_Shrike/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Purple_Martin/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Pygmy_Nuthatch/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Sagebrush_Sparrow/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Sage_Thrasher/lifehistory, accessed 5/5/15.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Vesper_Sparrow/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/western_bluebird/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/White- breasted_Nuthatch/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Drever, M. C., R. G. Clar, C. Derksen, S. M. Slattery, P. Toose and T. D. Nudds. 2012. Population vulnerability to climate change linked to timing of breeding in boreal ducks. Global Change Biology 18: 480-492.	Climate Change Vulnerability – Birds	i
Dudley, J. and V. Saab. 2003. A field protocol to monitor cavity-nesting birds. Research Paper, RMRS-RP-44.	Climate Change Vulnerability – Birds	vi
Eberhart-Phillips, L. J. and M. A. Colwell. 2014. Conservation challenges of a sink: the viability of an isolated population of the Snowy Plover. Bird Conservation International 24, 327–341.	Climate Change Vulnerability – Birds	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Birds	i
Encylopedia of Puget Sound, http://www.eopugetsound.org/articles/slender-billed-white- breasted-nuthatch-sitta-carolinensis-aculeata, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Feely, R. A., T. Klinger, J. A. Newton and M. Chadsey. 2012. Scientific Summary of Ocean Acidification in Washington State Marine Waters. NOAA OAR Special Report. 3. US Fish and Wildlife Service. 2014. Endangered and Threatened Wildlife and Plants; Threatened Species Status for the Rufa Red Knot; Final Rule. Department of the Interior. Federal Register 50 CFR Part 17, Vol. 79, No. 238.	Climate Change Vulnerability – Birds	i
Fisher, R. and E. Bayne. 2013. Protecting rare grassland birds from extreme weather events. Prepared for the Biodiversity Management and Climate Change Adaptation project. Alberta Biodiversity Monitoring Institute, Edmonton, AB. 17pp.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Fraser, K. C., B. J. Stutchbury, C. Silverio, P. M. Kramer, J. Barrow, D. Newstead, N. Mickle, B. F. Cousens, J. Charlene Lee, D. M. Morrison, T. Shaheen, P. Mammenga, K. Applegate and J. Tautin. 2012. Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proceedings of the Royal Society of London B 282(1807): Biological Sciences, rspb20122207.	Climate Change Vulnerability – Birds	i
Fraser, K. C., C. Silverio, P. Kramer, N. Mickle, R. Aeppli and B. J. Stutchbury. 2013. A trans- hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites. PloS One, 8(5), e64587.	Climate Change Vulnerability – Birds	i
Friggens, M. M., D. M. Finch, K. E. Bagne, S. J. Coe and D. L. Hawksworth. 2013. Vulnerability of species to climate change in the Southwest: terrestrial species of the Middle Rio Grande. General Technical Report RMRS-GTR-306. Fort Collins, CO. 191 pp.	Climate Change Vulnerability – Birds	i
Galbraith, H., D. W. Desrochers, S. Brown and J. M. Reed. 2014. Predicting Vulnerabilities of North American Shorebirds to Climate Change. PLoS One 9, DOI: 10.1371/journal.pone.0108899.	Climate Change Vulnerability – Birds	i
Galbraith, H., R. Jones, R. Park, J. Clough, S. Herrod-Julius, B. Harrington and G. Page. 2002. Global Climate Change and Sea Level Rise: Potential Losses of Intertidal Habitat for Shorebirds. Waterbirds 25, 173.	Climate Change Vulnerability – Birds	i
Gjerdrum, C., A. M. J. Valle, C. Cassady, S. Clair, D. F. Bertram, J. L. Ryder and G. S. Blackburn. 2003. Tufted puffin reproduction reveals ocean climate variability. Proceedings of the National Academy of Sciences. U. S. A. 100, 9377–9382.	Climate Change Vulnerability – Birds	i
Hansen, K. W. 2014. Causes of annual reproductive variation and anthropogenic disturbance in harlequin ducks breeding in Glacier National Park, Montana. Doctoral Dissertation. University of Montana.	Climate Change Vulnerability – Birds	i
Hanson, T. and G. J. Wiles. 2015. Washington state status report for the Tufted Puffin. Washington Department of Fish and Wildlife, Olympia, Washington. 66 pp.	Climate Change Vulnerability – Birds	ii,iii,iv
Harvey, C. J., P. E. Moriarty and E. P. Salathe Jr. 2012. Modeling climate change impacts on overwintering bald eagles. Ecology and Evolution 2: 501-514.	Climate Change Vulnerability – Birds	i
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability Assessment Briefing: Mountain Quail. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Birds	i
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability Assessment Briefing: Greater Sage-Grouse. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Birds	i
Haynes, T. B., S. K. Nelson, F. Poulsen and V. M. Padula. 2008. At-sea habitat use and patterns in spatial distribution of Marbled Murrelets in Port Snettisham, SE Alaska. Unpublished report prepared for the Alaska Department of Fish and Game by Wildlife Trust, New York, NY and Oregon State University, Corvallis, Oregon. 57 pp.	Climate Change Vulnerability – Birds	vi
Hollenbeck, J., V. A. Saab and R. W. Frenzel. 2011. Habitat suitability and nest survival of white-headed woodpeckers in unburned forests of Oregon. Journal of Wildlife Management 75: 1061-1071.	Climate Change Vulnerability – Birds	i
Holopainen, S. 2015. Duck habitat use and reproduction in boreal wetlands: importance of habitat quality and population density. Doctoral Dissertation. University of Helsinki.	Climate Change Vulnerability – Birds	i
 Holt, D. W. and S. M. Leasure. 1993. Short-eared Owl (Asio flammeus). In The Birds of North America, No. 62 (A. Poole and F. Gill, Eds.). Philadelphia: The Academy of Natural Sciences; Washington, D.C.: The American Ornithologists' Union. http://www.allaboutbirds.org/guide/Short-eared_Owl/lifehistory, accessed 5/8/15. 	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Ivey, G. L. 2007. Factors Influencing Nest Success of Greater Sandhill Cranes at Malheur National Wildlife Refuge, Oregon. Master of Science. Oregon State University.	Climate Change Vulnerability – Birds	i
Kereki, C. J. 1999. Optimal Migration Routes of Dusky Canada Geese: Can They Indicate Estuaries in British Columbia for Conservation? Master of Science. Simon Fraser University.	Climate Change Vulnerability – Birds	i
King, D. T. and T. C. Michot. 2002. Distribution, Abundance and Habitat Use of American White Pelicans in the Delta Region of Mississippi and Along the Western Gulf of Mexico Coast. Waterbirds 25, 410–416.	Climate Change Vulnerability – Birds	i
 Kuhn, A., J. Copeland, J. Cooley, H. Vogel, K. Taylor, D. Nacci and P. August. 2011. Modeling Habitat Associations for the Common Loon (Gavia immer) at Multiple Scales in Northeastern North America. Avian Conservation Ecology 6. 	Climate Change Vulnerability – Birds	i
Kuletz, K. J., M. Renner, E. A. Labunski and G. L. Hunt. 2014. Changes in the distribution and abundance of eastern Bering Sea albatrosses: 1975–2010. Deep Sea Research II 109, 1–11.	Climate Change Vulnerability – Birds	i
Kurzl, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata and L. Safranyik. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987-990.	Climate Change Vulnerability – Birds	i
La Porte, N., N. Koper and L. Leston. 2014. Assessing the breeding success of the Western Grebe (Aechmophorus occidentalis) after 40 years of environmental changes at Delta Marsh, Manitoba. Waterbirds 37, 30–42.	Climate Change Vulnerability – Birds	i
Lawler J. J. and M. Mathias. 2007. Climate Change and the Future of Biodiversity in Washington. Report prepared for the Washington Biodiversity Council.	Climate Change Vulnerability – Birds	vi
Liebezeit, J., E. Rowland, M. Cross and S. Zack. 2012. Assessing Climate Change Vulnerability of Breeding Birds in Arctic Alaska. A report prepared for the Arctic Landscape Conservation Cooperative. Wildlife Conservation Society, North America Program. 167 pp.	Climate Change Vulnerability – Birds	vi
Littlefield, C. D. and G. L. Ivey. 2002. Washington State Recovery Plan for the Sandhill Crane. Washington Department of Fish and Wildlife, Olympia, WA. 71pp.	Climate Change Vulnerability – Birds	ii,iii
Marra, P. P., L. A. Culp, A. L. Scarpignato and E.B. Cohen. 2014. Full Annual Cycle Climate Change Vulnerability Assessment for Migratory Birds of the Upper Midwest and Great Lakes Region (final report to the Upper Midwest and Great Lakes Landscape Conservation Cooperative). The Smithsonian Conservation Biology Institute, Migratory Bird Center, Washington, D.C. [online] URL: www. migratoryconnectivityproject.org/climate-change-vulnerability.	Climate Change Vulnerability – Birds	i
Mawdsley, J. and R. Lamb. 2013. Climate Change Vulnerability Assessment for Priority Wildlife Species. Prepared for the Navajo Nation Department of Fish and Wildlife. Heinz Center for Science, Economics and the Environment. 49pp.	Climate Change Vulnerability – Birds	vi
 McCallum, D. A. 1994. Chapter 4. Review of technical knowledge: Flammulated owls. In: Hayward, G. D. and J. Verner, tech. editors. Flammulated, boreal and great gray owls in the United States: A technical conservation assessment. General Technical Report RM- 253. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. p. 14-46. 	Climate Change Vulnerability – Birds	vi
Melcher, C. P., A. Farmer and G. Fernández. 2010. Version 1.2. Conservation Plan for the Marbled Godwit (Limosa fedoa). Manomet Center for Conservation Science, Manomet, Massachusetts.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Michalak, J. L., J. C. Withey, J. J. Lawler, S. Hall and T. Nogeire. 2014. Climate Vulnerability and Adaptation in the Columbia Plateau, WA. Report to the Great Northern Landscape Conservation Cooperative. http://www.researchgate.net/profile/John_Withey/publication/267750432_Climate_Vu	Climate Change Vulnerability – Birds	i
Inerability_and_Adaptation_in_the_Columbia_Plateau_Washington/links/545918280cf2 cf516483ca31.pdf.		
Miller, S. L., C. B. Meyer and C. J. Ralph. 2002. Land and Seascape Patterns Associated with Marbled Murrelet Abundance Offshore. Waterbirds 25, 100–108.	Climate Change Vulnerability – Birds	i
Miller, S. L., M. G. Raphael, G. A. Falxa, C. Strong, J. Baldwin, T. Bloxton, B. M. Galleher, M. Lance, D. Lynch, S. F. Pearson, C. J. Ralph and R. D. Young. 2012. Recent Population Decline of the Marbled Murrelet in the Pacific Northwest. The Condor 114, 771–781.	Climate Change Vulnerability – Birds	i
Miller, V., E. Nol, L. P. Nguyen and D. Turner. 2013. Nest success and habitat selection of Upland Sandpipers (Bartramia longicauda) in Ivvavik National Park, Yukon Territory, Canada. Canadian Field Naturalist 128, 341–349.	Climate Change Vulnerability – Birds	i
Murphy-Klassen, H. M., T. J. Underwood, S. G. Sealy and A. Ashleigh. 2005. Long-Term Trends in Spring Arrival Dates of Migrant Birds at Delta Marsh , Manitoba , in Relation to Climate Change. The Auk 122, 1130–1148.	Climate Change Vulnerability – Birds	i
National Wildlife Federation. 2013. Shifting Skies: Migratory Birds in a Warming World. National Wildlife Federation. 48pp.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Lanius+Iudovicianus, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=pooecetes+gramine us+affinis, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=progne+subis, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=sialia+mexicana, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Eremophila+alpestri s+strigata, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchSpeciesUid=ELEMENT_GLO BAL.2.101963, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Northwest Power and Conservation Council (NPCC). 2014. Volume III, Chapter 14 Sandhill Crane. http://www.nwcouncil.org/media/21139/ VolIII_Ch14Sandhill_Cranes.pdf.	Climate Change Vulnerability – Birds	vi
Pearson, S. F. and B. Altman. 2005. Range-wide Streaked Horned Lark (Eremophila alpestris strigata) Assessment and Preliminary Conservation Strategy. Washington Department of Fish and Wildlife, Olympia, WA. 25pp.	Climate Change Vulnerability – Birds	ii,iii
Peery, M. Z., R. J. Gutierrez, R. Kirby, O. E. Ledee and W. Lahaye. 2011. Climate change and spotted owls: potentially contrasting responses in the Southwestern United States. Global Change Biology 18: 865-880.	Climate Change Vulnerability – Birds	i
Peery, M. Z., S. R. Beissinger, S. H. Newman, E. B. Burkett and T. D. Williams. 2004. Applying the declining population paradigm: Diagnosing causes of poor reproduction in the Marbled Murrelet. Conservation Biology 18, 1088–1098.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
 Piatt, J. F., J. Wetzel, K. Bell, A. R. DeGange, G. R. Balogh, G. S. Drew, T. Geernaert, C. Ladd and G. V. Byrd. 2006. Predictable hotspots and foraging habitat of the endangered short-tailed albatross (Phoebastria albatrus) in the North Pacific: Implications for conservation. Deep. Research Part II Topical Studies in Oceanography 53, 387–398. 	Climate Change Vulnerability – Birds	i
Raymond, C. L., D. L. Peterson and R. M. Rochefort, eds. 2014. Climate change vulnerability and adaptation in the North Cascades region, Washington. General Technical Report PNW-GTR-892. Portland, Oregon. 279 pp.	Climate Change Vulnerability – Birds	i
Robb, L. and M. A. Schroeder. 2012. Appendix A.1 Washington Connected Landscape Project: Analysis of the Columbia Plateau Ecoregion.	Climate Change Vulnerability – Birds	ii,iii
Robison, K. M., D. W. Anderson and R. E. Robison. 2015. Brood Size and Nesting Phenology in Western Grebe (Aechmophorus occidentalis) and Clark's Grebe (Aechmophorus clarkii) in Northern California. Waterbirds 38, 99–105.	Climate Change Vulnerability – Birds	i
Ruthrauff, D. R., R. E. Gill and T. L. Tibbitts. 2013. Coping with the cold: An ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska. Arctic 66, 269–278.	Climate Change Vulnerability – Birds	i
Saab, V. A., J. Dudley and W. L. Thompson. 2004. Factors influencing occupancy of nest cavities in recently burned forests. The Condor 106: 20-36.	Climate Change Vulnerability – Birds	i
San Francisco Bay Joint Venture. 2008. Wetland Restoration and Projected Impacts from Climate Change: Recommendations for and by partners of the San Francisco Bay Joint Venture. San Francisco Bay Joint Venture. 25 pp.	Climate Change Vulnerability – Birds	vi
Sea Duck Joint Venture. 2015. Species Status Summary and Information Needs. http://seaduckjv.org/wp-content/uploads/2014/08/WWSC-status-summary- MarChapter 2015-FINAL.pdf.	Climate Change Vulnerability – Birds	vi
Seattle Audubon Society, http://www.seattleaudubon.org/birdweb/bird/western_bluebird, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Shank, C. C. and E. M. Bayne. 2015. Ferruginous hawk climate change adaptation plan for Alberta. Prepared for the Biodiversity Management and Climate Change Adaptation project. Alberta Biodiversity Monitoring Institute, Edmonton, AB. 32pp.	Climate Change Vulnerability – Birds	i
Shaughnessy, F. J., W. Gilkerson, J. M. Black, D. H. Ward and M. Petrie. 2012. Predicted eelgrass response to sea level rise and its availability to foraging Black Brant in Pacific Coast estuaries. Ecological Applications 22: 1743-1761.	Climate Change Vulnerability – Birds	i
Siegel, R. B., P. Pyle, J. H. Thorne, A. J. Holguin, C. A. Howell, S. Stock and M. Tingley. 2014. Vulnerability of birds to climate change in California's Sierra Nevada. Avian Conservation and Ecology 9: 7.	Climate Change Vulnerability – Birds	i
Slater, G. L. and B. Altman. 2011. Avian restoration in the prairie-oak ecosystem: A reintroduction case study of western bluebirds to San Juan Island, Washington. Northwest Science, 85(2), 223-232.	Climate Change Vulnerability – Birds	i
Slater, G. L., B. Altman and Pacific Coast Joint Venture. 2006. Feasibility assessment for reintroducing the slender-billed white-breasted nuthatch to south Puget Sound, Washington. Unpublished report on file at Ecostudies Institute, Mount Vernon, WA.	Climate Change Vulnerability – Birds	vi
Stinson, D. W. and M. A. Schroeder. 2012. Washington State Recovery Plan for the Columbian Sharp-tailed Grouse. Washington Department of Fish and Wildlife. Olympia, WA. 159 pp.	Climate Change Vulnerability – Birds	ii,iii
Swanson, D. L. and J. S. Palmer. 2009. Spring migration phenology of birds in the Northern Prairie region is correlated with local climate change. Journal of Field Ornithology 80, 351–363.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Thogmartin, W. E., M. G. Knutson, M.G. and J. R. Sauer. 2006. Predicting Regional Abundance of Rare Grassland. The Condor 108, 25–46.	Climate Change Vulnerability – Birds	i
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats and Species. A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. 462 pp.	Climate Change Vulnerability – Birds	vi
US Fish and Wildlife Service (USFWS). 2008. Final Recovery Plan for the Northern Spotted Owl, Strix occidentalis caurina. US Fish and Wildlife Service, Portland, Oregon. 142 pp.	Climate Change Vulnerability – Birds	i
US Fish and Wildlife Service (USFWS). 2014. Determination of Threatened Status for the Western Distinct Population Segment of the Yellow-billed Cuckoo. Federal Register 79: 192.	Climate Change Vulnerability – Birds	i
US Fish and Wildlife Service (USFWS). 2014. Short-tailed Albatross 5-year review: summary and evaluation. Region 7, Anchorage, Alaska.	Climate Change Vulnerability – Birds	i
Viste-Sparkman, K. 2006. White-breasted nuthatch density and nesting ecology in oak woodlands of the Willamette Valley, Oregon. Master's thesis, Oregon State University, Corvallis, Oregon.	Climate Change Vulnerability – Birds	i
Wagner, B. M. A. and L. A. Hansson. 1998. Food competition and niche separation between fish and the red-necked Grebe Podiceps grisegena (Boddaert, 1783). Hydrobiologia 368:75-81.	Climate Change Vulnerability – Birds	i
Ward, D. H., A. Reed, J. S. Sedinger, J. M. Blacks, D. V. Derksen and P. M. Castell. 2005. North American Brant: effects of changes in habitat and climate on population dynamics. Global Change Biology 11: 869-880.	Climate Change Vulnerability – Birds	i
Washington Department of Fish and Wildlife (WDFW). 1995 . Washington state recovery plan for the upland sandpiper. Washington Department of Fish and Wildlife. Olympia. 50pp.	Climate Change Vulnerability – Birds	ii,iii
Waterbury, B., S. Ehlers and J. Runco. 2009. Flammulated Owls (Otus flammeolus) Occurrence in East-Central Idaho 2007-2008. Salmon, Idaho.	Climate Change Vulnerability – Birds	vi
 Williamson, S. J., D. Keppie, R. Davison, D. Budeau, S. Carriere, D. Rabe and M. Schroeder. 2008. Spruce Grouse Continental Conservation Plan. Association of Fish & Wildlife Agencies. Washington, DC. 60pp. 	Climate Change Vulnerability – Birds	i,ii
Wilson, S., E. M. Anderson, A. S. G. Wilson, D. F. Bertram and P. Arcese. 2013. Citizen Science Reveals an Extensive Shift in the Winter Distribution of Migratory Western Grebes. PLoS One 8. doi:10.1371/journal.pone.0065408.	Climate Change Vulnerability – Birds	i
Wright, S. K., D. D. Roby and R. G. Anthony. 2007. Responses of California Brown Pelicans to Disturbances at a Large Oregon Roost. Waterbirds 30, 479–487.	Climate Change Vulnerability – Birds	i
Yosef, R. 1996. Loggerhead Shrike (Lanius Iudovicianus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/231.	Climate Change Vulnerability – Birds	i
Zuckerberg, B., A. M. Woods and W. F. Porter. 2009. Poleward shifts in breeding bird distributions in New York State. Global Change Biology 15, 1866–1883.	Climate Change Vulnerability – Birds	i
Adams, M. J. and B. Bury. 2002. The endemic headwater stream amphibians of the American Northwest: associations with environmental gradients in a large forested preserve. Global Ecology and Biogeography 11: 169-178.	Climate Change Vulnerability – Reptiles and Amphibians	i

REFERENCE	CHAPTER	CODE
Adams, S. B. and C. A. Frissell. 2001. Thermal habitat use and evidence of seasonal migration by Rocky Mountain Tailed Frogs, Ascaphus montanus, in Montana. Canadian Field Naturalist 115, 251–256.	Climate Change Vulnerability – Reptiles and Amphibians	i
Bagne, K. E. and D. M. Finch. 2013. Vulnerability of species to climate change in the Southwest: threatened, endangered and at-risk species at Fort Huachuca, Arizona. General Technical Report RMRS-GTR-302. Fort Collins, CO. 183 p.	Climate Change Vulnerability – Reptiles and Amphibians	i
Blouin, M. S., I. C. Phillipsen and K. J. Monsen. 2010. Population structure and conservation genetics of the Oregon spotted frog, Rana pretiosa. Conservation Genetics 11, 2179– 2194. doi:10.1007/s10592-010-0104-x.	Climate Change Vulnerability – Reptiles and Amphibians	i
Bos, D. H. and J. W. Sites. 2001. Phylogeography and conservation genetics of the Columbia spotted frog (Rana luteiventris; Amphibia, Ranidae). Molecular Ecology 10, 1499–1513. doi:10.1046/j.1365-294X.2001.01295.x.	Climate Change Vulnerability – Reptiles and Amphibians	i
Center for Biological Diversity. 2012. Petition to List 53 Amphibians and Reptiles in the United States as Threatened or Endangered Species Under the Endangered Species Act. Center for Biological Diversity. 453 pp.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Chaloupka, M., N. Kamezaki and C. Limpus. 2008. Is climate change affecting the population dynamics of the endangered Pacific loggerhead sea turtle? Journal of Experimental Marine Biology and Ecology 356, 136–143.	Climate Change Vulnerability – Reptiles and Amphibians	i
Chapter 2: Impacts of Climate Change on Fish, Wildlife and Plants in The National Fish, Wildlife and Plants Climate Adaptation Strategy. 2012. National Fish, Wildlife and Plants Climate Adaptation Partnership.	Climate Change Vulnerability – Reptiles and Amphibians	i
Clarke, D. N. and P. A. Zani. 2012. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. Journal of Experimental Biology. 215: 1117-1127.	Climate Change Vulnerability – Reptiles and Amphibians	i
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/rhyacotriton-cascadae, accessed 5/26/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/rhyacotriton-kezeri-0, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/plethodon- larselli-0, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lithobates- pipiens, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/533, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/539, accessed 5/28/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/anaxyrus- boreas, accessed 5/25/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/bufo- woodhousii, accessed 5/25/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gadus- macrocephalus, accessed 5/8/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Sensitivity Database. http://climatechangesensitivity.org/species/rana- luteiventris-1, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Climate Change Vulnerability Assessment of Conservation Priority Species in Nevada Wildlife Action Plan, Identification of Species of Conservation Priority. 2013. Nevada Department of Wildlife.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Coe, S. J., D. M. Finch and M. M. Friggens. 2012. An assessment of climate change and the vulnerability of wildlife in the Sky Islands of the Southwest. General Technical Report RMRS-GTR-273. Fort Collins, CO. 208 p. 4.	Climate Change Vulnerability – Reptiles and Amphibians	i
Corn, P. S. and J. C. Fogleman, J.C. 1984. Extinction of Montane Populations of the Northern Leopard Frog (Rana pipiens) in Colorado Extinction of Montane Populations of the Northern Leopard Frog (Rana pipiens) in Colorado. Journal of Herpetology 18, 147–152.	Climate Change Vulnerability – Reptiles and Amphibians	i
Crisafulli, C. M., D. R. Clayton and D. H. Olson. 2008. Conservation Assessment for the Larch Mountain Salamander (Plethodon larselli). Version 1.0. USDA Forest Service Region 6 and USDI Bureau of Land Management. 36 pp.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Dunham, J. B., A. E. Rosenberger, C. H. Luce and B. E. Rieman. 2007. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians. Ecosystems 10, 335–346. doi:10.1007/s10021-007-9029-8.	Climate Change Vulnerability – Reptiles and Amphibians	i
Dupuis, L. and P. Friele. 2006. The distribution of the Rocky Mountain tailed frog (Ascaphus montanus) in relation to the fluvial system: Implications for management and conservation. Ecological Research 21, 489–502. doi:10.1007/s11284-006-0147-0.	Climate Change Vulnerability – Reptiles and Amphibians	i

REFERENCE	CHAPTER	CODE
Foster, A. D. and D. H. Olson. 2014. Conservation Assessment for the Cope's Giant Salamander (Dicamptodon copei). Version 1.0. USDA Forest Service Region 6 and USDI Bureau of Land Management. 57 pp.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Foster, A. D., D. H. Olson and L. L. C. Jones. 2014. A Review of the Biology and Conservation of the Cope's Giant Salamander, Dicamptodon copei Nussbaum, 1970 (Amphibia: Caudata: Dicamptodontidae) in the Pacific Northwestern Region of the USA. Life: The Excitement of Biology 2: 210-246.	Climate Change Vulnerability – Reptiles and Amphibians	i
Friggens, M. M., D. M. Finch, K. E. Bagne, S. J. Coe and D. L. Hawksworth. 2013. Vulnerability of species to climate change in the Southwest: terrestrial species of the Middle Rio Grande. General Technical Report RMRS-GTR-306. Fort Collins, CO. 191 pp.	Climate Change Vulnerability – Reptiles and Amphibians	i
 Funk, W. C., C. A. Pearl, H. M. Draheim, M. J. Adams, T. D. Mullins and S. M. Haig. 2008. Range-wide phylogeographic analysis of the spotted frog complex (Rana luteiventris and Rana pretiosa) in northwestern North America. Molecular Phylogenetics and Evolution 49, 198–210. doi:DOI 10.1016/j.ympev.2008.05.037 	Climate Change Vulnerability – Reptiles and Amphibians	i
Funk, W. C., M. S. Blouin, P.S. Corn, B. A. Maxel, D. S. Pilliod, S. Amish and F. W. Allendorf. 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology 14, 483–496. doi:10.1111/j.1365- 294X.2005.02426.x.	Climate Change Vulnerability – Reptiles and Amphibians	i
Germaine, S. and D. Hays. 2009. Distribution and Postbreeding Environmental Relationships of Northern Leopard Frogs (Rana [Lithobates] Pipiens) in Washington. Western North American Naturalist 69, 537–547. doi:10.3398/064.069.0413.	Climate Change Vulnerability – Reptiles and Amphibians	i
Goller, M., F. Goller and S. S. French. 2014. A heterogeneous thermal environment enables remarkable behavioral thermoregulation in Uta stansburiana. Ecology and Evolution 4: 3319-3329.	Climate Change Vulnerability – Reptiles and Amphibians	i
 Gori, D., M. S. Cooper, E. S. Soles, M. Stone, R. Morrison, T. F. Turner, D. L. Propst, G. Garfin, M. Switanek, H. Chang, S. Bassett, J. Haney, D. Lyons, M. Horner, C. N. Dahm, J. K. Frey, K. Kindscher, H. A. Walker and M. T. Bogan. 2014. Gila River Flow Needs Assessment. A report by The Nature Conservancy. 	Climate Change Vulnerability – Reptiles and Amphibians	vi
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State Inland Sand Dunes. Washington Natural Heritage Program Report 2007-05.	Climate Change Vulnerability – Reptiles and Amphibians	i
Halofsky, J. E., D. L. Peterson, K. A. O'Halloran and C. Hawkins Hoffman, eds. 2011. Adapting to climate change at Olympic National Forest and Olympic National Park. General Technical Report PNW-GTR-844. Portland, Oregon. 130p.	Climate Change Vulnerability – Reptiles and Amphibians	i
Hawkes, L. A., A. C. Broderick, M. H. Godfrey and B. J. Godley. 2009. Climate change and marine turtles. Endangered Species Research 7, 137–154.	Climate Change Vulnerability – Reptiles and Amphibians	i
Howell, B. L. and N. M. Maggiulli. 2011. Conservation Assessment for the Cascade Torrent Salamander (Rhyacotriton cascadae). USDA Forest Service Region 6 and USDI Bureau of Land Management Interagency Special Status and Sensitive Species Program. 50 pp.	Climate Change Vulnerability – Reptiles and Amphibians	vi

REFERENCE	CHAPTER	CODE
Kaye, T. N., I. Pfingsten, T. Taylor and E. Steel. 2013. Climate Change Vulnerability Assessment for West Eugene Wetland Species. Institute for Applied Ecology, Corvallis, Oregon and City of Eugene, Eugene, Oregon.	Climate Change Vulnerability – Reptiles and Amphibians	vi
McCaffery, R. M. and B. A. Maxwell. 2010. Decreased winter severity increases viability of a montane frog population. Proceedings of the National Academy of Sciences U. S. A. 107, 8644–8649 doi:10.1073/pnas.0912945107.	Climate Change Vulnerability – Reptiles and Amphibians	i
McIntyre, A. P., R. A. Schmitz and C. M. Crisafulli. 2006. Associations of the Van Dyke's Salamander (Plethodon vandykei) with Geomorphic Conditions in Headwall Seeps of the Cascade Range, Washington State. Journal of Herpetology 40: 309-322.	Climate Change Vulnerability – Reptiles and Amphibians	i
McMahon, C. R. and G. C. Hays. 2006. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Global Change Biology 12, 1330–1338.	Climate Change Vulnerability – Reptiles and Amphibians	i
McMenamin, S. K., E. A. Hadly and C. K. Wright. 2008. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the National Academy of Sciences 105: 16988-16993.	Climate Change Vulnerability – Reptiles and Amphibians	i
Mushet, D. M., N. H. Euliss Jr. and C. A. Stockwell. 2012. Mapping Anuran Habitat Suitability to Estimate Effects of Grassland and Wetland Conservation Programs. USGS Northern Prairie Wildlife Research Center. Paper 279.	Climate Change Vulnerability – Reptiles and Amphibians	vi
NatureServe. 2014. Larch Mountain Salamander. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Pike, D. A. 2013. Climate influences the global distribution of sea turtle nesting. Global Ecology and Biogeography 22, 555–566.	Climate Change Vulnerability – Reptiles and Amphibians	i
Pilliod, D. S., C. R. Peterson and P. I. Ritson. 2002. Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain basin. Canadian Journal of Zoology 80, 1849–1862. doi:10.1139/z02-175.	Climate Change Vulnerability – Reptiles and Amphibians	i
Pollett, K. L., J. G. MacCracken and J. A. MacMahon. 2010. Stream buffers ameliorate the effects of timber harvest on amphibians in the Cascade Range of Southern Washington, USA. Forest Ecology and Management 260:1083-1087.	Climate Change Vulnerability – Reptiles and Amphibians	i
Poloczanska, E. S., C. J. Limpus, C. J. and G. C. Hays. 2009. Vulnerability of Marine Turtles to Climate Change. In D. W. Sims, editor: Advances in Marine Biology, Vol. 56, Burlington: Academic Press, 2009, pp. 151-211.	Climate Change Vulnerability – Reptiles and Amphibians	i
Raymond, C. L., D. L. Peterson and R. M. Rochefort, eds. 2014. Climate change vulnerability and adaptation in the North Cascades region, Washington. General Technical Report PNW-GTR-892. Portland, Oregon. 279 pp.	Climate Change Vulnerability – Reptiles and Amphibians	i

REFERENCE	CHAPTER	CODE
Reptiles in Nevada Wildlife Action Plan. 2013. Nevada Department of Wildlife.	Climate Change Vulnerability – Reptiles and Amphibians	vi
 Rosenberg, D., J. Gervais, D. Vesely, S. Barnes, L. Holts, R. Horn, R. Swift, L. Todd and C. Yee. 2009. Conservation Assessment of the Western Pond Turtle in Oregon. Version 1.0. USDI Bureau of Land Management and Fish and Wildlife Service, USDA Forest Service Region 6, Oregon Department of Fish and Wildlife and City of Portland. 	Climate Change Vulnerability – Reptiles and Amphibians	vi
Russell, K. R., T. J. Mabee, M. B. Cole and M. J. Rochelle. 2005. Evaluating biotic and abiotic influences on torrent salamanders in managed forests of western Oregon. Wildlife Society Bulletin 33: 1413-1424.	Climate Change Vulnerability – Reptiles and Amphibians	i
Ryan, M. E., W. J. Palen, M. J. Adams and R.M. Rochefort. 2014. Amphibians in the climate vice: loss and restoration of resilience of montane wetland ecosystems in the western US. Frontiers in Ecology and the Environment 12: 232-240.	Climate Change Vulnerability – Reptiles and Amphibians	i
Spear, S. F. and A. Storfer. 2010. Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biological Conservation 143, 778–786. doi:10.1016/j.biocon.2009.12.021.	Climate Change Vulnerability – Reptiles and Amphibians	i
Species at Risk Committee. 2014. Species Status Report for Western Toad (Anaxyrus boreas) in the Northwest Territories. Species at Risk Committee, Yellowknife, NT.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Status summary of Dunn's salamander (Plethodon dunni). 2009. California Amphibian and Reptile Species of Special Concern. http://arssc.ucdavis.edu/reports/Plethodon_dunni.html, accessed 5/27/2015.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Steel, Z. L., M. Wilkerson, P. Grof-Tisza and K. Sulzner. 2011. Assessing species and area vulnerability to climate change for the Oregon Conservation Strategy: Willamette Valley Ecoregion. Conservation Management Program. University of California, Davis.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Trumbo, D. R., S. F. Spear, J. Baumsteiger and A. Storfer. 2013. Rangewide landscape genetics of an endemic Pacific northwestern salamander. Molecular Ecology doi: 10.1111/mec.12168. 16 p.	Climate Change Vulnerability – Reptiles and Amphibians	i
Van Houtan, K. S. and O. L. Bass. 2007. Stormy oceans are associated with declines in sea turtle hatching. Current Biology 17, 590–591.	Climate Change Vulnerability – Reptiles and Amphibians	i
Walpole, A. A., J. Bowman, D. C. Tozer and D. Badznski. 2012. Community-Level Response to Climate Change: Shifts in Anuran Calling Phenology. Herpetological Conservation Biology 7, 249–257. doi:10.1146/annurev.energy.30.050504.144308.	Climate Change Vulnerability – Reptiles and Amphibians	i
Walton, K., T. Gotthardt and T. Fields. 2013. Alaska Species Ranking System Summary Report - Western toad. Alaska Natural Heritage Program. Anchorage, AK.	Climate Change Vulnerability – Reptiles and Amphibians	vi

REFERENCE	CHAPTER	CODE
Washington Department of Wildlife (WDFW). 1993. Status of the Larch Mountain salamander (Plethodon larselli) in Washington. Unpublished Report. Washington Department of Fish and Wildlife. Olympia, Washington.	Climate Change Vulnerability – Reptiles and Amphibians	ii,iii
Watson, J. W., K. R. McAllister, K.R. and D. J. Pierce. 2003. Home Ranges, Movements and Habitat Selection of Oregon Spotted Frogs (Rana pretiosa). Journal of Herpetology 37, 292–300. doi:10.1670/0022-1511(2003)037[0292:HRMAHS]2.0.CO;2.	Climate Change Vulnerability – Reptiles and Amphibians	i
Weishampel, J. F., D. A. Bagley, L. M. Ehrhart and A. C. Weishampel. 2010. Nesting phenologies of two sympatric sea turtle species related to sea surface temperatures. Endangered Species Research 12, 41–47.	Climate Change Vulnerability – Reptiles and Amphibians	i
Wildlife in British Columbia At Risk: Sharp-tailed Snake. 2004. Biodiversity Branch, Ministry of Water, Land and Air Protection, British Columbia, Canada.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Wilkins, R. N. and N. P. Peterson. 2000. Factors related to amphibian occurrence and abundance in headwater streams draining second-growth Douglas-fir forests in southwestern Washington. Forest Ecology and Management 139: 79-91.	Climate Change Vulnerability – Reptiles and Amphibians	i
Zani, P. A., J. T. Irwin, M. E. Rollyson, J. L. Counihan, S. D. Healas, E. K. Lloyd, L. C. Kojanis, B. Fried and J. Sherma. 2012. Glycogen, not dehydration or lipids, limits winter survival of side-blotched lizards (Uta stansburiana). Journal of Experimental Biology 215: 3126- 3134.	Climate Change Vulnerability – Reptiles and Amphibians	i
Agostini, V. N., A. N. Hendrix, A. B. Hollowed, C. D. Wilson, S. D. Pierce and R. C. Francis. 2008. Climate-ocean variability and Pacific hake: A geostatistical modeling approach. Journal of Marine Systems 71, 237–248.	Climate Change Vulnerability – Fish	i
Agostini, V. N., R. C. Francis, A. B. Hollowed, S. D. Pierce, C. Wilson and A. N. Hendrix. 2006. Distribution and poleward subsurface flow in the California Current System. Canadian Journal of Fisheries and Aquatic Sciences 63, 2648–2659.	Climate Change Vulnerability – Fish	i
Alberta Sustainable Resource Development and Alberta Conservation Association. 2011. Status of the Pygmy Whitefish (Prosopium coulterii) in Alberta: Update 2011. Alberta Sustainable Resource Development. Alberta Wildlife Status Report No. 27 (Update 2011). Edmonton, AB. 46 pp.	Climate Change Vulnerability – Fish	i
Andrews, K. S., G. D. Williams and P. S. Levin. 2010. Seasonal and ontogenetic changes in movement patterns of sixgill sharks. PLoS One 5, 1–12. doi:10.1371/journal.pone.0012549.	Climate Change Vulnerability – Fish	i
Bailey, K. M., 2000. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Marine Ecology Progress Series 198, 215–224.	Climate Change Vulnerability – Fish	i
Bartholow, J. M. and J. A. Henriksen. 2006. Assessment of Factors Limiting Klamath River Fall Chinook Salmon Production Potential Using Historical Flows and Temperatures. (Open File Report 2006–1249). Reston, VA: USDI, USGS.	Climate Change Vulnerability – Fish	vi
Beamesderfer, R. C., M. L. Simpson and G. J. Kopp. 2007. Use of life history information in a population model for Sacramento green sturgeon. Environmental Biology of Fishes, 79(3-4), 315-337.	Climate Change Vulnerability – Fish	i
Beamish, R. J. 1980. Adult biology of the river lamprey (Lampetra ayresi) and the Pacific lamprey (Lampetra tridentata) from the Pacific coast of Canada. Canadian Journal of Fisheries and Aquatic Sciences, 37(11), 1906-1923.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Beamish, R. J., Editor. 2008. Impacts of Climate and Climate Change on the Key Species in the	Climate Change	i
Fisheries in the North Pacific. PICES Working Group on Climate Change, Shifts in Fish	Vulnerability –	
Production and Fisheries Management. PICES Scientific Report No. 35.	Fish	
Beauchamp, D. A., E. R. Byron and W. A. Wurtsbaugh. 1994. Summer habitat use by littoral-	Climate Change	i
zone fishes in Lake Tahoe and the effects of shoreline structures. North American	Vulnerability –	
Journal of Fisheries Management 14(2), 385-394.	Fish	
Belica, L. T. and N. P. Nibbelink. 2006. Mountain Sucker (Catostomus platyrhynchus): a	Climate Change	vi
technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain	Vulnerability –	
Region. http://www.fs.fed.us/r2/projects/scp/assessments/mountainsucker.pdf.	Fish	
Bennett, W. A., K. Roinestad, L. Rogers-Bennett, L. Kaufman, D. Wilson-Vandenberg and B.	Climate Change	i
Heneman. 2004. Inverse regional responses to climate change and fishing intensity by	Vulnerability –	
the recreational rockfish (Sebastes spp.) fishery in California. Canadian Journal of	Fish	
Fisheries and Aquatic Sciences 61, 2499–2510.		
Benson, A. J., G. A. McFarlane, S. E. Allen and J. F. Dower. 2002. Changes in Pacific Hake	Climate Change	i
(Merluccius productus) Migration Patterns and Juvenile Growth Related To the 1989	Vulnerability –	
Regime Shift. Canadian Journal of Fisheries and Aquatic Sciences 59, 1969–1979.	Fish	
Black, B. A., G. W. Boehlert and M. M. Yoklavich. 2008. Establishing climate-growth	Climate Change	i
relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using	Vulnerability –	
a dendrochronological approach. Fisheries Oceanography 17, 368–379.	Fish	
Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 2000. Biology, distribution and	Climate Change	i
management of burbot (Lota lota) in Washington State. Northwest Science, 74(2), 87-	Vulnerability –	
96.	Fish	_
Carlin, J. L., M. Consoer, C. Hagan, M. Johnson, B. Mahoney, J. McDermet and J. Schwartz.	Climate Change	i
2012. Population and Habitat Characteristics of Margined Sculpin, Cottus marginatus, in	Vulnerability –	
the Walla Walla Watershed (Oregon, Washington, USA). Northwest Science, 86(3), 153-	Fish	
		•
Ciannelli, L., K. M. Bailey, K. Chan, A. Belgrano and N. C. Stenseth. 2005. Climate change	Climate Change	i
causing phase transitions of walleye pollock (Theragra chalcogramma) recruitment	Vulnerability –	
dynamics. Proceedings of the Royal Society B: Biological Sciences 272, 1735–1743.	Fish	:
Clemens, B. J., S. Van De Wetering, J. Kaufman, R. A. Holt and C. B. Schreck. 2009. Do summer	Climate Change	i
temperatures trigger spring maturation in Pacific lamprey, Entosphenus tridentatus?	Vulnerability – Fish	
Ecology of Freshwater Fish, 18(3), 418-426.	Climate Change	:
Coleman, M.A. and K. D. Fausch. 2007. Cold Summer Temperature Limits Recruitment of Age-0 Cutthroat Trout in High-Elevation Colorado Streams. Transactions of the	Vulnerability –	i
American Fisheries Society 136: 1231-1244.	Fish	
Columbia River Inter-Tribal Fish Commission. (2011). Tribal Pacific Lamprey Restoration Plan	Climate Change	vi
for the Columbia River Basin. 195 pp.	Vulnerability –	VI
for the columbia liver basin. 155 pp.	Fish	
Cooke, S. J., C. M. Bunt, S. J. Hamilton, C. A. Jennings, M. P. Pearson, M. S. Cooperman and D.	Climate Change	i
F. Markle. 2005. Threats, conservation strategies and prognosis for suckers	Vulnerability –	
(Catostomidae) in North America: insights from regional case studies of a diverse family	Fish	
of non-game fishes. Biological Conservation, 121(3), 317-331.		
COSEWIC. 2010. COSEWIC assessment and status report on the Umatilla Dace, Rhinichthys	Climate Change	vi
umatilla, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa.	Vulnerability –	••
xii + 37 pp. (www.sararegistry.gc.ca/status/status_e.cfm).	Fish	
Coyle, K. O., L. B. Eisner and F. J. Mueter. 2011. Climate change in the southeastern Bering	Climate Change	i
Sea : impacts on pollock stocks and implications for the oscillating control hypothesis.	Vulnerability –	
Fisheries Oceanography 20, 139–156.	Fish	
Crozier, L. G., R. W. Zabel, E. E. Hockersmith and S. Achord. 2010. Interacting effects of	Climate Change	i
density and temperature on body size in multiple populations of Chinook salmon.	Vulnerability –	
Journal of Animal Ecology, 79(2), 342-349. doi: 10.1111/j.1365-2656.2009.01641.x.	Fish	

REFERENCE	CHAPTER	CODE
DeHaan, P. W., B. A. Adams, R. A. Tabor, D. K. Hawkins and B. Thompson. 2014. Historical and contemporary forces shape genetic variation in the Olympic mudminnow (Novumbra hubbsi), an endemic fish from Washington State, USA. Conservation Genetics, 15(6), 1417-1431.	Climate Change Vulnerability – Fish	i
Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson and E. E. Holmes. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). Seattle, WA: NOAA Fisheries. 234pp.	Climate Change Vulnerability – Fish	i
 Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson, E. E. Holmes, P. S. Levin, N. Tolimieri, R. S. Waples, S. M. Sogard and G. D. Williams. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). US Department of Commerce, NOAA Technical Memo NMFS-NWFSC-108, 234 p. 	Climate Change Vulnerability – Fish	I
 Dunham, J., B. Rieman, B. and G. Chandler. 2003. Influences of Temperature and Environmental Variables on the Distribution of Bull Trout within Streams at the Southern Margin of Its Range. North American Journal of Fisheries Management, 23(3), 894-904. doi: 10.1577/M02-028. 	Climate Change Vulnerability – Fish	i
Eby, L. A., O. Helmy, L. M. Holsinger and M.K. Young. 2014. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, USA. PLoS ONE doi: 10.1371/journal.pone.0098812.	Climate Change Vulnerability – Fish	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Fish	i
 Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch and A. P. Farrell. 2011. Differences in Thermal Tolerance Among Sockeye Salmon Populations. Science, 332(6025), 109-113. doi: 10.1126/science.1199158. 	Climate Change Vulnerability – Fish	i
Ficke, A. D., C. A. Myrick and L. J. Hansen. 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581-613.	Climate Change Vulnerability – Fish	i
FishBase, http://www.fishbase.org/summary/2757/	Climate Change Vulnerability – Fish	vi
Gamperl, A. K., K. J. Rodnick, H. A. Faust, E. C. Venn, M. T. Bennett, L. I. Crawshaw, E. R. Keeley, M. S. Powell and H. W. Li. 2002. Metabolism, swimming performance and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): Evidence for phenotypic differences in physiological function. Physiological and Biochemical Zoology 75: 413-431.	Climate Change Vulnerability – Fish	i
Gee, J. H. 1961. Ecology of the leopard dace Rhinichthys falcatus and its ecological relationships with the longnose dace Rhinichthys cataractae. Master of Science Thesis. University of British Columbia.	Climate Change Vulnerability – Fish	i
Greene, C. M., D. W. Jensen, G. R. Pess, E. A. Steel and E. Beamer. 2005. Effects of environmental conditions during stream, estuary and ocean residency on Chinook salmon return rates in the Skagit River, Washington. Transactions of the American Fisheries Society, 135, 1562-1581.	Climate Change Vulnerability – Fish	i
Griffiths, J. R. and D. E. Schindler. 2012. Consequences of changing climate and geomorphology for bioenergetics of juvenile sockeye salmon in a shallow Alaskan lake. Ecology of Freshwater Fish 21: 349-362.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Hallock, M. and P. E. Mongillo. 1998. Washington State status report for the pygmy whitefish. Washington Department of Fish and Wildlife. Olympia, WA. 20 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Hanson, P. C. 1997. Fish Bioenergetics 3.0 Modeling Software (Vol. WISCU-T-97-001): Board of Regents, University of Wisconsin System Sea Grant Institute, Center for Limnology.	Climate Change Vulnerability – Fish	vi
Haynes, T. B. and C. L. K. Robinson. 2011. Re-use of shallow sediment patches by Pacific sand lance (Ammodytes hexapterus) in Barkley Sound, British Columbia, Canada. Environmental Biology of Fishes 92:1–12.	Climate Change Vulnerability – Fish	i
Haynes, T. B., C. K. L. Robinson and P. Dearden. 2008. Modelling nearshore intertidal habitat use of young-of-the-year Pacific sand lance (Ammodytes hexapterus) in Barkley Sound, British Columbia, Canada. Environmental Biology of Fishes 83:473-484.	Climate Change Vulnerability – Fish	i
Hillman, T. W., M. D. Miller and B. A. Nishitani. 1999. Evaluation of seasonal cold-water temperature criteria. Report prepared for Idaho Division of Environmental Quality. BioAnalysts, Inc. 50 pp.	Climate Change Vulnerability – Fish	vi
Hitt, N. P., C. A. Frissell, C. C. Muhlfeld and F. W. Allendorf. 2003. Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi and nonnative rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences 60: 1440-1451.	Climate Change Vulnerability – Fish	i
Isaak, D. J., W. A. Hubert and C. R. Berry. 2003. Conservation Assessment for Lake Chub (Couesius plumbeus), Mountain Sucker (Catostomus platyrhynchus) and Finescale Dace (Phoxinus neogaeus) in the Black Hills National Forest of South Dakota and Wyoming. 102 pp.	Climate Change Vulnerability – Fish	vi
IUCN Red List of Threatened Species, http://www.iucnredlist.org/details/full/202363/0.	Climate Change Vulnerability – Fish	vi
Keefer, M. L., C. A. Peery, T. C. Bjornn and M. A. Jepson. 2004. Hydrosystem, dam and reservoir passage rates of adult Chinook salmon and steelhead in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 133: 1413-1439.	Climate Change Vulnerability – Fish	i
Keefer, M. L., M. L. Moser, C. T. Boggs, W. R. Daigle and C. A. Peery. 2009. Variability in migration timing of adult Pacific lamprey (Lampetra tridentata) in the Columbia River, USA. Environmental biology of Fishes, 85(3), 253-264.	Climate Change Vulnerability – Fish	i
Krueger, K., K. Pierce, T. Quinn and D. E. Penttila. 2010. Anticipated Effects of Sea Level Rise in Puget Sound on Two Beach-Spawning Fishes. Puget Sound Shorelines and the Impacts of Armoring – Proceedings of a State of the Science Workshop. Accessible via http://pubs.usgs.gov/sir/2010/5254/pdf/sir20105254_chap17.pdf, accessed 5/7/2015.	Climate Change Vulnerability – Fish	li,
Larson, S. J., Christiansen, D. Griffing, J. Ashe and D. Lowry. 2011. Relatedness, diversity and polyandry within Puget Sound sixgill sharks, Hexanchus griseus. Conservation Genetics, 12: 679-690.	Climate Change Vulnerability – Fish	i
Laurel, B. J. and P. Thomas, P. 2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae (Gadus macrocephalus). Journal of Plankton Research 30, 1051–1060.	Climate Change Vulnerability – Fish	i
Levin, P. S., P. Horne, K. S. Andrews and G. Williams. 2012. An empirical movement model for sixgill sharks in Puget Sound: Combining observed and unobserved behavior. Current Zoology. 58, 103–115.	Climate Change Vulnerability – Fish	i
Lindley, S. T., M. L. Moser, D. L. Erickson, M. Belchik, D. W. Welch, E. L. Rechisky, J. T. Kelly, J. Heublein and A. P. Klimley. 2008. Marine migration of North American green sturgeon. Transactions of the American Fisheries Society, 137(1), 182-194.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Luzier, C. W., H. A. Schaller, J. K. Brostrom, C. Cook-Tabor, D. H. Goodman, R. D. Nelle, K. Ostrand and B. Streif. 2011. Pacific Lamprey (Entosphenus tridentatus) Assessment and Template for Conservation Measures. US Fish and Wildlife Service, Portland, Oregon. 282 pp.	Climate Change Vulnerability – Fish	vi
Mayfield, R. B. and J. J. Cech Jr. 2004. Temperature effects on green sturgeon bioenergetics. Transactions of the American Fisheries Society, 133(4), 961-970.	Climate Change Vulnerability – Fish	i
McFarlane, G.A., J. R. King and R. J. Beamish. 2000. Have there been recent changes in climate? Ask the fish. Progress in Oceanography 47, 147–169.	Climate Change Vulnerability – Fish	i
Meeuwig, M. H., J. M. Bayer and J. G. Seelye. 2005. Effects of temperature on survival and development of early life stage Pacific and western brook lampreys. Transactions of the American Fisheries Society, 134(1), 19-27.	Climate Change Vulnerability – Fish	i
 Mesa, M. G., L. K. Welland, H. E. Christiansen, S. T. Sauter and D. A. Beauchamp. 2013. Development and evaluation of a bioenergetics model for bull trout. Transactions of the American Fisheries Society 142: 41-49. 	Climate Change Vulnerability – Fish	i
Miller, A. K. and W. J. Sydeman. 2004. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Marine Ecology Progress Series 281, 207–216.	Climate Change Vulnerability – Fish	i
Mongillo, P. E. and M. Hallock. 1998. Washington State status report for the margined sculpin. Washington Department of Fish and Wildlife, Fish Management Program. Olympia, WA. 15 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Mongillo, P.E. and M. Hallock. 1999. Washington state status report for the Olympic Mudminnow. Washington Department of Fish and Wildlife. Olympia, WA. 36 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Moser, M. L. and S. T. Lindley. 2007. Use of Washington estuaries by subadult and adult green sturgeon. Environmental Biology of Fishes, 79(3-4), 243-253.	Climate Change Vulnerability – Fish	i
Mueter, F. J., N. A. Bond, J. N. Ianelli and A. B. Hollowed. 2011. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science 10.1093/icesjms/fsr022.	Climate Change Vulnerability – Fish	i
Mueter, F. J., R. M. Peterman and B. J. Pyper. 2002. Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Canadian Journal of Fisheries and Aquatic Sciences 59: 456-463.	Climate Change Vulnerability – Fish	i
Muhlfeld, C. C., S. E. Albeke, S. L. Gunckel, B. J. Writer, B. B. Shepard and B. E. May. 2014. Status and conservation of interior redband trout in the Western United States. North American Journal of Fisheries Management 35: 31-53.	Climate Change Vulnerability – Fish	i
Nakano, S. and M. Murakami, M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences, 98, 166-170.	Climate Change Vulnerability – Fish	i
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for southern distinct population segment of eulachon. Federal Register 5: 130129– 13124.	Climate Change Vulnerability – Fish	i
National Marine Fisheries Service (NMFS). 2013. ESA Recovery Plan for Lower Columbia River Coho Salmon, Lower Columbia River Chinook Salmon, Columbia River Chum Salmon and Lower Columbia River Steelhead. National Marine Fisheries Service, Northwest Region, Seattle, WA.	Climate Change Vulnerability – Fish	i
National Oceanic and Atmospheric Administration (NOAA). 2003. Endangered and threatened wildlife and plants: 12-month finding of a petition to list North American Green Sturgeon as a threatened or endangered species. Federal Register 68: 4433-4441.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Siphateles+bicolor.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Thaleichthys+pacific us.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Rhinichthys+falcatus	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Catostomus+platyrh ynchus.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Novumbra+hubbsi.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Prosopium+coulteri.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Catostomus+sp.+4.	Vulnerability – Fish	
NatureServe Explorer,	Climate Change	vi
http://explorer.natureserve.org/servlet/NatureServe?searchName=Rhinichthys+umatill a.	Vulnerability – Fish	
O'Brien, S. M., V. F. Gallucci and L. Hauser. 2013. Effects of species biology on the historical	Climate Change	i
demography of sharks and their implications for likely consequences of contemporary climate change. Conservation Genetics 14, 125–144.	Vulnerability – Fish	
Palsson, W. A., T. Tsou, G. G. Bargmann, R. M. Buckley, J. E. West, M. L. Mills, Y. W. Cheng and	Climate Change	ii
R. E. Pacunski. 2009. The biology and assessment of rockfishes in Puget Sound. Fish Management Division, Fish Program. Washington Department of Fish and Wildlife.	Vulnerability – Fish	
Parsley, M. J. and L. G. Beckman. 1994. White sturgeon spawning and rearing habitat in the	Climate Change	i
lower Columbia River. North American Journal of Fisheries Management, 14(4), 812- 827.	Vulnerability – Fish	
Pearson, M. P. 2000. The biology and management of Salish sucker and Nooksack dace. The	Climate Change	vi
biology and management of species and habitats at risk. BC Ministry of Environment, Lands and Parks, Victoria and University College of the Cariboo, Kamloops, Kamloops, BC, 619-624.	Vulnerability – Fish	
Pearson, M. P. and M. C. Healey. 2003. Life-history characteristics of the endangered Salish	Climate Change	i
sucker (Catostomus sp.) and their implications for management. Copeia, 2003(4), 759- 768.	Vulnerability – Fish	1
Petersen, J. H. and J. F. Kitchell. 2001. Climate regimes and water temperature changes in the	Climate Change	i
Columbia River: bioenergetic implications for predators of juvenile salmon. Canadian	Vulnerability –	1
Journal of Fisheries and Aquatic Sciences, 58(9), 1831-1841. doi: 10.1139/f01-111.	Fish	
Plangue, B. and T. Frédou. 1999. Temperature and the recruitment of Atlantic cod (Gadus	Climate Change	i
morhua). Canadian Journal of Fisheries and Aquatic Sciences 56(11): 2069-2077, 10.1139/f99-114.	Vulnerability – Fish	•
Planque, B., JM. Fromentin, P. Cury, K. F. Drinkwater, S. Jennings, R. I. Perry and S. Kifani.	Climate Change	i
2010. How does fishing alter marine populations and ecosystems sensitivity to climate?	Vulnerability – Fish	-

REFERENCE	CHAPTER	CODE
Polacek, M. C., C. M. Baldwin and K. Knuttgen. 2006. Status, distribution, diet and growth of burbot in Lake Roosevelt, Washington. Northwest Science, 80(3), 153-164.	Climate Change Vulnerability – Fish	i
Quinn, T. 1999. Habitat Characteristics of an intertidal Aggregation of Pacific Sand Lance (Ammodytes hexapterus) at a North Puget Sound Beach in Washington. Northwest Science 73, 44–49.	Climate Change Vulnerability – Fish	i
Quinn, T. P. 2005. The Behavior and Ecology of Pacific Salmon and Trout (1st ed. Vol. Bethesda, MD): American Fisheries Society.	Climate Change Vulnerability – Fish	i
Quinn, T., K. Krueger, D. Penttila, K. Perry, T. Hicks and D. Lowry. 2012. Patterns of Surf Smelt, Hyopmesus pretiosus, Intertidal Spawning Habitat Use in Puget Sound, Washington State. Coastal and Estuarine Research 35, 1214–1228.	Climate Change Vulnerability – Fish	i
Raymond, A. W. and E. Sobel. 1990. The use of Tui Chub as food by Indians of the western Great Basin. Journal of California and Great Basin Anthropology, 2-18.	Climate Change Vulnerability – Fish	i
Reum, J. C. P., T. E. Essington, C. M. Greene, C. A. Rice and K. L. Fresh. 2011. Multiscale influence of climate on estuarine populations of forage fish: the role of coastal upwelling , freshwater flow and temperature. Marine Ecology Progress Series 425, 203–215.	Climate Change Vulnerability – Fish	i
Rodnick, K. J., A. K. Gamperi, K. R. Lizars, M. T. Bennett, R. N. Raush and E. R. Keeley. 2004. Thermal tolerance and metabolic physiology among redband trout populations in southeastern Oregon. Journal of Fish Biology, 64(2), 310-335. doi: 10.1111/j.0022- 1112.2004.00292.x	Climate Change Vulnerability – Fish	i
Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers and M. S. Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature, 455, 609-612.	Climate Change Vulnerability – Fish	i
Schlaff, A. M., M. R. Heupel and C. A. Simpfendorfer. 2014. Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology and Fisheries 1089–1103.	Climate Change Vulnerability – Fish	i
Selong, J. H., T. E. McMahon, A. V. Zale and F. T. Barrows. 2001. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society 130: 1026-1037.	Climate Change Vulnerability – Fish	i
Shiri Harzevili, A., I. Dooremont, I. Vught, J. Auwerx, P. Quataert and D. De Charleroy. 2004. First feeding of burbot, Lota lota (Gadidae, Teleostei) larvae under different temperature and light conditions. Aquaculture Research, 35(1), 49-55.	Climate Change Vulnerability – Fish	i
 Stabeno, P. J., N. B. Kachel, S. E. Moore, J. M. Napp, M. Sigler, A. Yamaguchi and A. N. Zerbini. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography 65-70, 31–45. 	Climate Change Vulnerability – Fish	i
Stapanian, M. A., V. L. Paragamian, C. P. Madenjian, J. R. Jackson, J. Lappalainen, M. J. Evenson and M. D. Neufeld. 2010. Worldwide status of burbot and conservation measures. Fish and Fisheries, 11(1), 34-56.	Climate Change Vulnerability – Fish	i
Stasiak, R. 2006. Lake Chub (Couesius plumbeus): a technical conservation assessment. [online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/ lakechub.pdf.	Climate Change Vulnerability – Fish	vi
Therriault, T. W., D. E. Hay and J. F. Schweigert. 2009. Biological overview and trends in pelagic forage fish abundance in the Salish Sea (Strait of Georgia, British Columbia). Marine Ornithology 8, 3–8.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Thurow, R. F. and B. E. Rieman. 2007. Distribution and status of redband trout in the Interior Columbia River Basin and portions of the Klamath River and Great Basins. Redband Trout: Resilience and Challenge in a Changing Landscape, Oregon Chapter, American Fisheries Society: 28-46.	Climate Change Vulnerability – Fish	i
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region. A Compilation of the Scientific Literature. Final Report. National Wildlife Federation. 264 pp.	Climate Change Vulnerability – Fish	vi
Torgersen, C. E., D. P. Hockman-Wert, D. S. Bateman and R. E. Gresswell. 2007. Longitudinal patterns of fish assemblages, aquatic habitat and water temperature in the Lower Crooked River, Oregon. US Geological Survey Open-File Report 2007-1125. 36 pp.	Climate Change Vulnerability – Fish	vi
US Fish and Wildlife Service (USFWS). 2012. Olympic Mudminnow Workshop - October 17, 2012. http://www.fws.gov/wafwo/Olymudminnow_wkshp.html.	Climate Change Vulnerability – Fish	vi
US Fish and Wildlife Service (USFWS). Species Factsheet: River lamprey. http://www.fws.gov/wafwo/species/Fact%20sheets/Riverlampreyfinal.pdf	Climate Change Vulnerability – Fish	vi
Vaz, P. G., E. Kebreab, S. S. Hung, J. G. Fade., S. Lee and N. A. Fangue. 2015. Impact of Nutrition and Salinity Changes on Biological Performances of Green and White Sturgeon. PloS One, 10(4).	Climate Change Vulnerability – Fish	i
 Wade, A. A., T. J. Beechie, E. Fleishman, N. J. Mantua, H. Wu, J. S. Kimball, D. M. Stoms and J. A. Stanford. 2013. Steelhead vulnerability to climate change in the Pacific Northwest. Journal of Applied Ecology 50: 1093-1104. 	Climate Change Vulnerability – Fish	i
Washington Department of Fish and Wildlife (WDFW). 2012. Sensitive Species: Olympic Mudminnow in 2012 Annual Report. pp. 157-159. http://wdfw.wa.gov/conservation/endangered/species/olympic_mudminnow.pdf.	Climate Change Vulnerability – Fish	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2012. Threatened Species: Margined Sculpin in 2012 Annual Report. pp. 160-161. http://wdfw.wa.gov/conservation/endangered/species/margined_sculpin.pdf.	Climate Change Vulnerability – Fish	ii,iii
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Climate Change Vulnerability – Fish	i
Watson, L. R., A. Milani and R. P. Hedrick. 1998. Effects of water temperature on experimentally-induced infections of juvenile white sturgeon (Acipenser transmontanus) with the white sturgeon iridovirus (WSIV). Aquaculture, 166(3), 213-228.	Climate Change Vulnerability – Fish	i
 Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet and J. E. Williams. 2011. Flow regime, biotic interactions and temperature determine winners and losers among trout species under climate change. Proceedings of the National Academy of Sciences, 108, 14175-14180. 	Climate Change Vulnerability – Fish	i
Westley, P. A. H., R. Hilborn, T. P. Quinn, G. T. Ruggerone and D.E. Schindler. 2008. Long-term changes in rearing habitat and downstream movement by juvenile sockeye salmon (Oncorhynchus nerka) in an interconnected Alaska lake system. Ecology of Freshwater Fish 17: 443-454.	Climate Change Vulnerability – Fish	i
Williams, G. D., K. S. Andrews, D. A. Farrer, G. G. Bargman and P. S. Levin. 2011. Occurrence and biological characteristics of broadnose sevengill sharks (Notorynchus cepedianus) in Pacific Northwest coastal estuaries. Environmental Biology of Fishes 91, 379–388.	Climate Change Vulnerability – Fish	i
 Wipfli, M. S. and C. V. Baxter. 2011. Linking Ecosystems, Food Webs and Fish Production: Subsidies in Salmonid Watersheds. Fisheries, 35(8), 373-387. doi: 10.1577/1548-8446- 35.8.373. 	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Yau, M. M. and E. B. Taylor. 2013. Environmental and anthropogenic correlates of hybridization between westslope cutthroat trout (Oncorhynchus clarkia lewisi) and	Climate Change Vulnerability –	i
introduced rainbow trout (O. mykiss). Conservation Genetics. 14: 885-900.	Fish	
Zabel, R. W., P. S. Levin, N. Tolimieri and N. J. Mantua. 2011. Interactions between climate and population density in the episodic recruitment of bocaccio, Sebastes paucispinis, a	Climate Change Vulnerability –	i
Pacific rockfish. Fisheries Oceanography 20, 294–304.	Fish	
Anderson, M. K. 2009. The Ozette Prairies of Olympic National Park: Their Former Indigenous	Climate Change	vi
Uses and Management. Final Report to the Olympic National Forest. Port Angeles,	Vulnerability –	••
Washington. 167 pp.	Invertebrates	
Andrews, H. 2010. Species fact sheet: Columbia clubtail. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Andrews, H. 2010. Species fact sheet: Silver-bordered fritillary. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Aney, W. W. 2005. Menucha Ecosystem Management. Appendix A: Species of the Menucha	Climate Change	vi
Ecosystem	Vulnerability –	
http://www.menucha.org/wp-content/uploads/2010/01/The_Aney_Report_Appendix_A.pdf	Invertebrates	
Arizona Game and Fish Department (AGFD). 2015. Heritage Data Management System.	Climate Change	vi
http://www.gf.state.az.us/w_c/edits/documents/Anodcali.fo.pdf, accessed 6-25-2015.	Vulnerability –	
	Invertebrates	
Baumann, R. W. and B. C. Kondratieff. 2015. The stonefly genus Lednia in North America	Climate Change	i
(Plecoptera: Nemouridae). Illiesia 6(25): 315-327. Available from http://www2.pms-	Vulnerability –	
lj.si/illiesia/papers/Illiesia06-25.pdf (accessed July 7, 2015).	Invertebrates	:
Baumann, R. W. and B. P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae) in North America. Illiesia, 9(06):65-93. Available from http://www2.pms-	Climate Change Vulnerability –	i
lj.si/illiesia/papers/Illiesia09-06.pdf (accessed July 7, 2015).	Invertebrates	
Baumann, R. W. and D. S. Potter. 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new	Climate Change	i
species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162.	Vulnerability –	
Available from http://www2.pms-lj.si/illiesia/Illiesia/3-15.pdf (accessed July 8, 2015).	Invertebrates	
Bennett, V. J., M. G. Betts and W. P. Smith. 2014. Influence of thermal conditions on habitat	Climate Change	i
use by a rare spring-emerging butterfly Euphydryas editha taylori. Journal of Applied	Vulnerability –	
Entomology, 138(8), 623-634.	Invertebrates	
Black, S., Lauvray, L. and S. Jepsen. 2007. Species Fact Sheet: Siuslaw Sand Tiger Beetle.	Climate Change	vi
Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp-	Vulnerability –	
content/uploads/2008/09/cicindela_hirticollis_siuslawensis.pdf	Invertebrates	
Brenner, G. 2005. Species Fact Sheet: Allomyia scottia, Scott's apatanian caddisfly. USDA	Climate Change	vi
Forest Service. Available from	Vulnerability –	
http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/20050906-fact-sheet-	Invertebrates	
allomyia-scottia.doc (accessed July 7, 2015).		
British Columbia Invertebrates Recovery Team. 2008. Recovery strategy for Sand-verbena	Climate Change	vi
Moth (Copablepharon fuscum) in British Columbia. Prepared for the B.C. Ministry of	Vulnerability –	
Environment, Victoria, BC. 18 pp. Brown, M. J. and R. J. Paxton. 2009. The conservation of bees: a global perspective.	Invertebrates Climate Change	i
Apidologie, 40(3), 410-416.	Vulnerability –	1
, MIGOLOBIC, TO(3), TTO TTO.	Invertebrates	
Burke, T. 1999. Conservation Assessment for Prophysaon coeruleum, Blue-Gray Taildropper.	Climate Change	vi
USDA Bureau of Land Management. Available at	Vulnerability –	
http://www.blm.gov/or/plans/surveyandmanage/files/ca-ig-prophysaon-coeruleum-	Invertebrates	
2005-11-01.pdf.		

REFERENCE	CHAPTER	CODE
Butterflies and Moths of North America,	Climate Change	vi
http://www.butterfliesandmoths.org/species/Oeneis-nevadensis	Vulnerability –	
	Invertebrates	
Butterflies and Moths of North America,	Climate Change	vi
http://www.butterfliesandmoths.org/species/Erynnis-propertius	Vulnerability –	
	Invertebrates	
Cameron, S. A., J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter and T. L. Griswold.	Climate Change	i
2011. Patterns of widespread decline in North American bumble bees. Proceedings of	Vulnerability –	
the National Academy of Sciences, 108(2), 662-667.	Invertebrates	
Cameron, S., S. Jepsen, E. Spevak, J. Strange, M. Vaughan, J. Engler and O. Byers (eds.). 2011.	Climate Change	vi
North American Bumblebee Species Conservation Planning Workshop Final Report.	Vulnerability –	
IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN.	Invertebrates	
Cheng, B. S., J. M. Bible, A. L. Chang, M. Ferner, K. Wasson, C. Zabin, M. Latta, A.K. Deck, A.	Climate Change	i
Todgham and E. D. Grosholz. 2015. Local and global stressor impacts on a coastal	Vulnerability –	
foundation species: using an ecologically realistic framework. Global Change.	Invertebrates	
Clarke, L. R. 2010. Population Density and Growth of the Freshwater Mussel Anodonta	Climate Change	i
californiensis in a Flow-Fragmented Stream. Journal of Freshwater Ecology 25, 179–192.	Vulnerability –	
doi:10.1080/02705060.2010.9665067.	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/content/forest-	Climate Change	vi
columbia-plateau-western-juniper-woodland-and-savanna	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/polites-	Climate Change	vi
mardon	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/184, accessed	Climate Change	vi
6/10/2015.	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/207, accessed	Climate Change	vi
6/10/2015.	Vulnerability –	
	Invertebrates	
COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Branded Skipper	Climate Change	vi
Hesperia colorado oregonia in Canada. Committee on the Status of Endangered Wildlife	Vulnerability –	
in Canada. Ottawa. ix + 51 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).	Invertebrates	
Crane, M. F. 1991. Arctostaphylos uva-ursi. In: Fire Effects Information System, [Online]. U.S.	Climate Change	vi
Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire	Vulnerability –	
Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2015,	Invertebrates	
June 17].		
Crim, R. N., J. M. Sunday and C. D. G. Harley. 2011. Elevated seawater CO2 concentrations	Climate Change	i
impair larval development and reduce larval survival in endangered northern abalone	Vulnerability –	
(Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology 400,	Invertebrates	
272–277.		
Davis, R. J. 2010. Johnson's Hairstreak Surveys in Oregon and Washington. 34 pp.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Dingle, H., M. P. Zalucki, W. A. Rochester and T. Armijo-Prewitt. 2005. Distribution of the	Climate Change	i
monarch butterfly, Danaus plexippus (L.)(Lepidoptera: Nymphalidae), in western North	Vulnerability –	
America. Biological Journal of the Linnean Society, 85(4), 491-500.	Invertebrates	
Duncan, N. 2005. Conservation Assessment for Cryptomastix hendersoni, Columbia	Climate Change	vi
Oregonian. USDA Forest Service Region 6 and USDI Bureau of Land Management,	Vulnerability –	
Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-	Invertebrates	
docs/20050900-moll-columbia-oregonian.doc		

REFERENCE	CHAPTER	CODE
Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-	Climate Change Vulnerability – Invertebrates	vi
docs/20050817-moll-dalles-sideband.doc		
Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning- docs/20051018-orxx1-final.doc	Climate Change Vulnerability – Invertebrates	vi
Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko vertigo. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/20051111-vexx- final.doc	Climate Change Vulnerability – Invertebrates	vi
Duncan, N. 2009. Species Fact Sheet: Dalles hesperian. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-vespericola- columbiana-depressa-2009-02.doc	Climate Change Vulnerability – Invertebrates	vi
Dunn, P. and J. Fleckenstein, J. 1997. Butterflies of the South Puget Sound prairie landscape. Ecology and Conservation of the South Puget Sound Prairie Landscape. The Nature Conservancy of Washington, Seattle, WA, 75-84.	Climate Change Vulnerability – Invertebrates	vi
Encyclopedia of Life, http://eol.org/pages/13603718/details	Climate Change Vulnerability – Invertebrates	vi
Ferry, E. E., G. R. Hopkins, A. N. Stokes, S. Mohammadi, E. D. Brodie and B. G. Gall. 2013. Do All Portable Cases Constructed by Caddisfly Larvae Function in Defense? Journal of Insect Science, 13:5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735051/ (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	i
Fleckenstein, J. 2006. Species fact sheet: Lycaena mariposa charlottensis. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Fleckenstein, J. 2006. Species fact sheet: Polites sonora siris. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Foltz Jordan, S. 2012. Species Fact Sheet: Pacific vertigo. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-ig-vertigo-andrusiana-2013- 11.doc	Climate Change Vulnerability – Invertebrates	vi
 Foltz Jordan, S. 2013. Species Fact Sheet: Oregon Megomphix. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-ig-megomphix-hemphilli-2014-11.doc 	Climate Change Vulnerability – Invertebrates	vi
Foltz Jordan, S. and C. Mazzacano. 2014. Species Fact Sheet: Fisherola nuttalli. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-ig-fisherola- nuttalli-2014-11.doc	Climate Change Vulnerability – Invertebrates	vi
Foltz, S. 2009. Species Fact Sheet: Agonum belleri. Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp-content/uploads/2009/09/sfs-iico-agonum- belleri.pdf	Climate Change Vulnerability – Invertebrates	vi
Foltz, S. 2009. Species Fact Sheet: Eanus hatchii. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
Forister, M. L. and A. M. Shapiro. 2003. Climatic trends and advancing spring flight of butterflies in lowland California. Global Change Biology, 9(7), 1130-1135.	Climate Change Vulnerability –	i
	Invertebrates	
Foster, A. D. and Ziegltrum, J. 2013. Riparian-Associated Gastropods in Western Washington:	Climate Change	i
Community Composition and the Effects of Forest Management. Northwest Science 87,	Vulnerability –	
243–256. doi:10.3955/046.087.0306.	Invertebrates	
Gall, B. G. and E. D. Brodie, Jr. 2011. Survival and growth of the caddisfly Limnephilus	Climate Change	i
flavastellus after predation on toxic eggs of the Rough-skinned Newt (Taricha granulosa). Canadian Journal of Zoology, 89:483-489. Available from http://faculty.virginia.edu/brodie/files/publications/cjz2011.pdf (accessed July 7, 2015).	Vulnerability – Invertebrates	
Garry Oaks Ecosystem Recovery Team. 2003. Erynnis propertius in Species at Risk in Garry	Climate Change	vi
Oak and Associated Ecosystems in British Columbia.	Vulnerability –	
http://www.goert.ca/documents/SAR_manual/SARFS_erynprop.pdf	Invertebrates	
Government of Canada, Species at Risk Public Registry,	Climate Change	vi
http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=789.	Vulnerability – Invertebrates	
 Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State Inland Sand Dunes. Washington Natural Heritage Program, Washington Department of Natural Resources, Olympia, WA. Natural Heritage Report 2007-05. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/cs-blm-wa-state- inland-sand-dunes-2007-06.pdf 	Climate Change Vulnerability – Invertebrates	i
Hamer Environmental. 2003. Analysis Species Assessment: Beller's Ground Beetle (Agonum	Climate Change	vi
belleri). Final Report prepared for Puget Sound Energy. FERC Project No. 2150. 4 pp.	Vulnerability – Invertebrates	
Hamer Environmental. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchi).	Climate Change	vi
Final Report prepared for Puget Sound Energy. FERC Project No. 2150. 4 pp.	Vulnerability – Invertebrates	
Hassall, C. and D. J. Thompson, D. J. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odonatology, 11(2), 131-153.	Climate Change Vulnerability – Invertebrates	i
Hettinger, A., E. Sanford, T. M. Hill, A. D. Russell, K. N. S. Sato, J. Hoey, M. Forsch, H. N. Page	Climate Change	i
and B. Gaylord. 2012. Persistent carry-over effects of planktonic exposure to ocean	Vulnerability –	•
acidification in the Olympia oyster. Ecology 93, 2758–2768.	Invertebrates	
Hettinger, A., E. Sanford, T. M. Hill, J. D. Hosfelt, A. D. Russell and B. Gaylord. 2013. The influence of food supply on the response of Olympia oyster larvae to ocean acidification.	Climate Change Vulnerability –	i
Biogeosciences 10, 6629–6638.	Invertebrates	
Howard, J. K . and K. M. Cuffey. 2006. Factors controlling the age structure of Margaritifera falcata in 2 northern California streams. Journal of the North American Benthological	Climate Change Vulnerability –	i
Society 25, 677–690. doi:10.1899/0887-3593(2006)25[677:FCTASO]2.0.CO;2.	Invertebrates	
Howard, J. K. and K. M. Cuffey. 2003. Freshwater mussels in a California North Coast Range river: occurrence, distribution and controls. Journal of the North American	Climate Change Vulnerability –	i
Benthological Society 22, 63–77. doi:10.2307/1467978. IUCN Redlist, http://www.iucnredlist.org/details/164494/0	Invertebrates Climate Change Vulnerability – Invertebrates	vi
IUCN Redlist, http://www.iucnredlist.org/details/42686/0.	Climate Change Vulnerability – Invertebrates	vi
IUCN Redlist, http://www.iucnredlist.org/details/44937666/0	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
IUCN Redlist, http://www.iucnredlist.org/details/6828/0.	Climate Change Vulnerability –	vi
Jepsen, S. 2013. Species Fact Sheet: Bombus occidentalis. USDA Forest Service.	Invertebrates Climate Change	vi
	Vulnerability – Invertebrates	
Jespen, S., C. LaBar and J. Zarnoch. 2015. Species Profile: Gonidea angulata (Lea, 1838) Western ridged mussel Bivalvia: Unionidae. The Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp-content/uploads/2010/12/xerces-status- review-gonidea-angulata1.pdf, accessed 6-29-2015.	Climate Change Vulnerability – Invertebrates	vi
Jordan, S. F. 2011. Species Fact Sheet: Coenagrion interrogatum. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Jordan, S. F. 2011. Species Fact Sheet: Rhyacophila chandleri, a caddisfly. USDA Forest Service. Available from http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-iitr- rhyacophila-chandleri-2012-01.doc (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	vi
Jordan, S. F. 2012. Species fact sheet: Plebejus icarioides blackmorei. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Jordan, S. F. 2013. Species Fact Sheet: Fluminicola virens. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP) http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-ig-fluminicola-virens-2013- 11.doc	Climate Change Vulnerability – Invertebrates	vi
Jordan, S. F. 2013. Species Fact Sheet: Soliperla fender, Rainier roachfly. USDA Forest Service. Available from http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-iipl-soliperla- fenderi-2014-02.doc (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	vi
Kogut, T. and N. Duncan. 2005. Conservation Assessment for Cryptomastix devia, Puget Oregonian. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning- docs/20050900-moll-puget-oregonian.doc	Climate Change Vulnerability – Invertebrates	vi
LaBonte, J. R. 1995. Possible threatened or endangered terrestrial predaceous Coleoptera of the Columbia River Basin. Report prepared for the Bureau of Land Management/US Forest Service, Eastside Ecosystem Management Project.	Climate Change Vulnerability – Invertebrates	vi
LaBonte, J. R., D. W. Scott, J. D. McIver and J. L. Hayes. 2001. Threatened, endangered and sensitive insects in eastern Oregon and Washington forests and adjacent lands. Northwest Science, 5: 185-198.	Climate Change Vulnerability – Invertebrates	i
Mazzacano, C. Species Fact Sheet: Cicindela columbica (Hatch, 1938). Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp- content/uploads/2008/09/cicindella_columbica.pdf	Climate Change Vulnerability – Invertebrates	vi
Miller, J. and C. Voight. 2011. Species fact sheet: Boloria bellona. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Miller, J. and C. Voight. 2011. Species fact sheet: Callophrys gryneus nr. Chalcosiva. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Miller, J. and Voight, C. 2011. Species fact sheet: Habrodais grunus. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
 Monthey, R. 1998. revised by Duncan, N. 2005. Conservation Assessment for Lyogyrus n. sp. 2 Masked Duskysnail. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. 10 pp. http://www.blm.gov/or/plans/surveyandmanage/files/ca-ig-lyogyrus-nsp2-2005-10-29.pdf 	Climate Change Vulnerability – Invertebrates	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Bombus+suckleyi	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available from http://explorer.natureserve.org (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available from http://explorer.natureserve.org (accessed July 8, 2015).	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed June 22, 2015).	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed June 10, 2015).	Climate Change Vulnerability – Invertebrates	vi
Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis (Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American Naturalist 69(4): 551–555. Available from https://ojs.lib.byu.edu/spc/index.php/wnan/article/view/27460/25923 (accessed July 8, 2015).	Climate Change Vulnerability – Invertebrates	i
Newton, T. J., D. A. Woolnough and D. L. Strayer. 2008. Using landscape ecology to understand and manage freshwater mussel populations. Journal of the North American Benthological Society 27, 424–439. doi:10.1899/07-076.1.	Climate Change Vulnerability – Invertebrates	i
 Niwa, C. G., R. E. Sandquist, R. Crawford, T. L. Frest, T. L. Griswold, P. Hammond, E. Ingham, S. James, E. J. Johannes, J. Johnson, W. P. Kemp, J. LaBonte, J. D. Lattin, J. McIver, J. McMillin, A. Modenke, J. Moser, D. Ross, T. Schowalter, V. J. Tepedino and M. R. Wagner. 2001. Invertebrates of the Columbia River basin assessment area. Gen. Tech. Rep. PNW-GTR-512. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 74 p. (Quigley, Thomas M., ed.; Interior Columbia Basin Ecosystem Management Project: scientific assessment) 	Climate Change Vulnerability – Invertebrates	i
O'Brien, C., D. Nez, D. Wolf and J. B. Box. 2013. Reproductive Biology of Anodonta californiensis, Gonidea angulata and Margaritifera falcata (Bivalvia: Unionoida) in the Middle Fork John Day River, Oregon Reproductive Biology of Anodonta californiensis, Gonidea angulata and Margaritifera falcata. Northwest Science 87, 59–72. doi:10.3955/046.087.0105.	Climate Change Vulnerability – Invertebrates	i
Ovaska, K., W. P. Leonard, L. Chichester, T. E. Burke, L. Sopuck and J. Baugh. 2004. Prophysaon coeruleum Cockerell, 1890, blue-gray taildropper (Gastropoda: Arionidae): new distributional records and reproductive anatomy. Western North American Naturalist 64, 538–543.	Climate Change Vulnerability – Invertebrates	i
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family- noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon- columbia/	Climate Change Vulnerability – Invertebrates	vi
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family- noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon-mutans/	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family-	Climate Change	vi
noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon-	Vulnerability –	
viridisparsa/	Invertebrates	
Pelini, S. L., J. A. Keppel, A. E. Kelley and J. Hellmann. 2010. Adaptation to host plants may	Climate Change	i
prevent rapid insect responses to climate change. Global Change Biology, 16(11), 2923-	Vulnerability –	
2929.	Invertebrates	
Pelini, S. L., J. D. Dzurisin, K. M. Prior, C. M. Williams, T. D. Marsico, B. J. Sinclair and J. J.	Climate Change	i
Hellman. 2009. Translocation experiments with butterflies reveal limits to	Vulnerability –	
enhancement of poleward populations under climate change. Proceedings of the	Invertebrates	
National Academy of Sciences, 106(27), 11160-11165.		
Potter, A. and R. Gilbert. 2014. A Region Specific Guide to Butterflies of South Puget Sound,	Climate Change	ii,iii
Washington. http://cascadiaprairieoak.org/wp-content/uploads/2014/04/Guide-to-	Vulnerability –	
Butterflies-of-South-Puget-Sound-2014_updated.pdf	Invertebrates	
Potter, A., J. Fleckenstein, S. Richardson and D. Hays. 1999. Washington state status report	Climate Change	ii,iii,iv
for the mardon skipper. Washington Department of Fish and Wildlife. Olympia,	Vulnerability – Invertebrates	
Washington. 39pp. Prior, K. M., J. D. Dzurisin, S. L. Pelini and J. J. Hellmann. 2009. Biology of larvae and adults of	Climate Change	i
Erynnis propertius at the northern edge of its range. The Canadian Entomologist,	Vulnerability –	1
141(02), 161-171.	Invertebrates	
Rogers-Bennett, L., 2007. Is climate change contributing to range reductions and localized	Climate Change	i
extinctions in northern (Haliotis kamtschatkana) and flat (Haliotis walallensis) abalones?	Vulnerability –	•
Bulletin of Marine Science 81, 283–296.	Invertebrates	
Rogers-Bennett, L., B. L. Allen and D. P. Rothaus. 2011. Status and habitat associations of the	Climate Change	i
threatened northern abalone: Importance of kelp and coralline algae. Aquatic	Vulnerability –	•
Conservation: Marine and Freshwater Ecosystems 21, 573–581.	Invertebrates	
Rothaus, D. P., B. Vadapalas and C. S. Friedman. 2008. Precipitous declines in pinto abalone	Climate Change	i
(Haliotis kamtschatkana kamtschatkana) abundance in the San Juan Archipelago,	Vulnerability –	
Washington, USA, despite statewide fishery closure. Canadian Journal of Fisheries and	Invertebrates	
Aquatic Sciences 65, 2703–2711.		
Schmid, F. 1998. Genera of the Trichoptera of Canada and Adjoining or Adjacent United	Climate Change	i
States The Insects and Arachnids of Canada Series, Part 7. NRC Research Press. 320 pp.	Vulnerability –	
	Invertebrates	
Schöne, B. R., N. A. Page, D. L. Rodland, J. Fiebig, S. Baier, S. O. Helama and W. Oschmann.	Climate Change	i
2007. ENSO-coupled precipitation records (1959-2004) based on shells of freshwater	Vulnerability –	
bivalve mollusks (Margaritifera falcata) from British Columbia. International Journal of	Invertebrates	
Earth Sciences 96, 525–540. doi:10.1007/s00531-006-0109-3.		
Schultz, C. B., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C.	Climate Change	i
Fimbel, S. Black, H. E. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D.	Vulnerability –	
Wilderman, R. Davenport, E. Steel, N. Page, P. L. Lilley, J. Heron, N. Kroeker, C. Webb	Invertebrates	
and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington and		
British Columbia. Northwest Science, 85(2), 361-388.		
Schweitzer, D. F., N. A. Capuano, B. E. Young and S. R. Colla. 2012. Conservation and	Climate Change	vi
management of North American bumble bees. NatureServe, Arlington, Virginia and	Vulnerability –	
USDA Forest Service, Washington, D.C.	Invertebrates	vi
Severns, P. M. and D. Grossball. 2011. Patterns of reproduction in four Washington State	Climate Change	vi
populations of Taylor's checkerspot (Euphydryas editha taylori) during the spring of 2010. Report to the Nature Conservancy. 82 pp.	Vulnerability – Invertebrates	
Shear, W. A and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to	Climate Change	i
North America: Leschius mcallisteri, new genus, new species. (Diplopoda:	Vulnerability –	1
	· vunciability –	1

REFERENCE	CHAPTER	CODE
Shepard, J. and C. Guppy. 2011. Butterflies of British Columbia: including western Alberta, southern Yukon, the Alaska panhandle, Washington, northern Oregon, northern Idaho and northwestern Montana. UBC Press. 414 pp.	Climate Change Vulnerability – Invertebrates	i
South Puget Sound Prairies, http://www.southsoundprairies.org/rare-wildlife-of-the-prairies/	Climate Change Vulnerability – Invertebrates	vi
Stagliano, D. M., G. M. Stephens and W. R. Bosworth. 2007. Aquatic Invertebrate Species of Concern on USFS Northern Region Lands. Report to USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana and Idaho Conservation Data Center, Boise, Idaho. 95 pp. plus appendices. Available from http://fishandgame.idaho.gov/ifwis/idnhp/cdc_pdf/2007_R1_aq_invert.pdf (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	i
Stark, B. P. and B. C. Kondratieff. 2004. Pictetiella lechleitneri (Plecoptera: Perlodidae), a new species from Mount Rainier National Park, Washington, U.S.A. Proceedings of the Entomological Society of Washington 106(4): 747-750.	Climate Change Vulnerability – Invertebrates	i
Stelzenmüller, V. M. and P. Martin. 2009. Patterns of species and functional diversity around a coastal marine reserve : a fisheries perspective. Aquatic Conservation: Marine and Freshwater Ecosystems 19, 554–565. doi:10.1002/aqc.	Climate Change Vulnerability – Invertebrates	i
Stevens, S. R. and D. F. Frey. 2010. Host plant pattern and variation in climate predict the location of natal grounds for migratory monarch butterflies in western North America. Journal of Insect Conservation, 14(6), 731-744.	Climate Change Vulnerability – Invertebrates	i
Stinson, D. W. 2005. Washington State Status Report for the Mazama Pocket Gopher, Streaked Horned Lark and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129+ xii pp.	Climate Change Vulnerability – Invertebrates	ii,iii,iv
Stone, J., S. Barndt and M. Gangloff. 2004. Spatial Distribution and Habitat Use of the Western Pearlshell Mussel (Margaritifera falcata) in a Western Washington Stream. Journal of Freshwater Ecology 19, 341–352. doi:10.1080/02705060.2004.9664907.	Climate Change Vulnerability – Invertebrates	i
Stone, T. 2009. Species Fact Sheet: Barren juga. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP) http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-juga-hemphilli- hemphilli-2010-05.doc	Climate Change Vulnerability – Invertebrates	vi
Stone, T. 2009. Species Fact Sheet: Crowned tightcoil. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-pristiloma- pilsbryi-2010-05.doc	Climate Change Vulnerability – Invertebrates	vi
Stone, T. 2009. Species Fact Sheet: Dalles juga. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-juga-hemphilli- dallesensis-2011-03.doc	Climate Change Vulnerability – Invertebrates	vi
Stone, T. 2009. Species Fact Sheet: Poplar Oregonian. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-cryptomastix- populi-2010-11.doc	Climate Change Vulnerability – Invertebrates	vi
The Evergreen State College, http://academic.evergreen.edu/projects/ants/TESCBiota/kingdom/animalia/phylum/art hropoda/class/insecta/order/lepidoptera/family/lycaenidae/genera/icaricia/species/bla ckmorei/blackmorei.html	Climate Change Vulnerability – Invertebrates	vi
The Nature Conservancy of Washington. 2014. Integrated Prairie-Oak Conservation Report for Oregon and Washington. 46 pp. http://cascadiaprairieoak.org/wp- content/uploads/2014/01/Integrated-Prairie-Conservation-Report-for-OR-and-WA.pdf	Climate Change Vulnerability – Invertebrates	i

REFERENCE	CHAPTER	CODE
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/mardon-skipper/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/columbia-river- tiger-beetle/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/eanus-hatchi/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/johnsons- hairstreak/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/oregon-silverspot/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/yuma-skipper/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/gomphus-kurilis/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/dragonflies-white- belted-ringtail/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/sand-verbena- moth/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, Euchloe ausonides insulanus (Guppy & Shepard, 2001) as an endangered species under the Endangered Species Act.	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invertebrate Coservation, http://www.xerces.org/western-bumble- bee/	Climate Change Vulnerability – Invertebrates	vi
The Xerces Society for Invetebrate Conservation, http://www.xerces.org/speyeria-zerene- bremnerii/	Climate Change Vulnerability – Invertebrates	vi
Thomson, J. D. 2010. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1555), 3187-3199.	Climate Change Vulnerability – Invertebrates	i
US Fish and Wildlife Service (USFWS). 2001. Oregon silverspot butterfly (Speyeria zerene hippolyta) revised recovery plan. U.S. Fish and Wildlife Service, Portland, Oregon. 113 pp.	Climate Change Vulnerability – Invertebrates	i
US Fish and Wildlife Service (USFWS). 2006. Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition to List the Island Marble Butterfly (Euchloe ausonides insulanus) as Threatened or Endangered. Federal Register, 71(219): 66292-66298.	Climate Change Vulnerability – Invertebrates	i
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List the Giant Palouse Earthworm (Drilolerius americanus) as Threatened or Endangered. Federal Register, 76(143): 44547- 44564.	Climate Change Vulnerability – Invertebrates	i

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Climate Change	i
90-Day Finding on a Petition To List the Sand Verbena Moth as Endangered or Threatened. Federal Register, 76(33): 9309-9318.	Vulnerability – Invertebrates	
US Fish and Wildlife Service (USFWS). 2014. Endangered and Threatened Wildlife and Plants;	Climate Change	i
90-Day Finding on a Petition To List the Island Marble Butterfly as an Endangered	Vulnerability –	
Species . Federal Register, 79(160): 49045-49047.	Invertebrates	
USDA Forest Service (USFS). 2015. Species Fact Sheet: Spotted Taildropper.	Climate Change	vi
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA &url=http%3A%2F%2Fwww.fs.fed.us%2Fr6%2Fsfpnw%2Fissssp%2Fdocuments%2Fplann ing-docs%2Fsfs-ig-prophysaon-vanattae-pardalis-2010- 01.doc&ei=xGKSVeDCA4SAU_L8gPgK&usg=AFQjCNH088OZHJhAYqmro3uVjiFLebAf_g&si	Vulnerability – Invertebrates	
g2=rkPDF3QpSstqGC9DsQ2_LQ&bvm=bv.96783405,d.d24&cad=rja, accessed 6-20-3015.		
USDA Forest Service (USFS). Hoary Elfin, http://www.fs.fed.us/wildflowers/pollinators/pollinator-of-the- month/hoary_elfin.shtml	Climate Change Vulnerability – Invertebrates	vi
USDA Forest Service (USFS).	Climate Change	vi
http://www.fs.fed.us/database/feis/plants/shrub/vacoxy/all.html	Vulnerability – Invertebrates	
USDA Forest Service (USFS). http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_026318.pdf	Climate Change Vulnerability – Invertebrates	vi
USDA Forest Service (USFS). http://www.na.fs.fed.us/pubs/silvics_manual/Volume_1/juniperus/occidentalis.htm	Climate Change Vulnerability – Invertebrates	vi
Washington Department of Fish and Wildlife (WDFW). 1995. Management Recommendations for Washington's Priority Species - Volume I: Invertebrates. Larsen, E. M., Rodrick, E. & Milner, R. (Tech. Eds.) Olympia, WA. 87 pp.	Climate Change Vulnerability – Invertebrates	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Mardon Skipper in 2012 Annual Report. pp. 96-99.	Climate Change Vulnerability – Invertebrates	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Oregon Silverspot Butterfly in 2012 Annual Report. pp. 88-89.	Climate Change Vulnerability – Invertebrates	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Taylor's Checkerspot in 2012 Annual Report. pp. 90-95.	Climate Change Vulnerability – Invertebrates	ii,iii
Washington Department of Natural Resources (WDNR) 2005. Covered Species Technical Paper. Aquatic Resources Program Endangered Species Act Compliance Project. Prepared by Entrix and Battelle. Washington Department of Natural Resources. Olympia, Washington.	Climate Change Vulnerability – Invertebrates	i
Washington Department of Natural Resources (WDNR). 2005. Covered Species Technical Paper. Aquatic Resources Program Endangered Species Act Compliance Project. Prepared by Entrix and Battelle. Washington Department of Natural Resources, Olympia, Washington.	Climate Change Vulnerability – Invertebrates	i
Washington Department of Wildlife (WDFW). 1993. Status of the Oregon silverspot butterfly (Speyeria zerene hippolyta) in Washington. Unpublished report. Washington Departmenet of Fish and Wildlife. Olympia, WA.	Climate Change Vulnerability – Invertebrates	ii,iii,iv
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology. Olympia, Washington. Publication no. 12-01-015.	Climate Change Vulnerability – Invertebrates	i

REFERENCE	CHAPTER	CODE
White, J., J. L. Ruesink, A. C. Trimble, J. White, J. L. Ruesink and A. C. Trimble. 2009. The Nearly Forgotten Oyster : Ostrea lurida Carpenter 1864 (Olympia Oyster) History and Management in Washington State 28, 43–49.	Climate Change Vulnerability – Invertebrates	i
Williams, C. M., J. Hellman and B. J. Sinclair. 2012. Lepidopteran species differ in susceptibility to winter warming. Climate Research, 53(2), 119.	Climate Change Vulnerability – Invertebrates	i
Williams, J. D., M. L. Warren Jr., K. S. Cummings, J. L. Harris and R. J. Neves. 1993. Conservation Status of Freshwater Mussels of the United States and Canada. Fisheries 18, 6–22. doi:10.1577/1548-8446(1993)018<0006:CSOFMO>2.0.CO;2.	Climate Change Vulnerability – Invertebrates	i
Williams, P., S. Colla and Z. Xie. 2009. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology, 23(4), 931-940.	Climate Change Vulnerability – Invertebrates	i
World Wildlife Fund, https://www.worldwildlife.org/species/monarch-butterfly	Climate Change Vulnerability – Invertebrates	vi

2015 STATE WILDLIFE ACTION PLAN Summary of responses to comments received during the public comment period (August 11-September 11, 2015)

COMMENTS RECEIVED

We received 21 comments by email from external reviewers. Eleven were in support of adding Great Blue Heron, eight recommended a number of other species be added to Species of Greatest Conservation Need (SGCN); listed below), and the remainder raised a small number of other issues. For questions, more information, or the full text of comments received, please contact Penny Becker at penny.becker@dfw.wa.gov.

RESPONSE

Each of the comments and Washington Department of Fish and Wildlife (WDFW) responses are briefly summarized below. Comments are organized by the chapter they most closely correspond to. Where appropriate, we have referenced the page number where specific edits to the public review draft can be found.

Chapter 2 – State Overview

COMMENT	RESPONSE
Acknowledge recent	Information on recent habitat acquisitions and descriptions of two additional
habitat acquisitions	collaborative projects (Puget Sound Nearshore Ecosystem Restoration Project
Include additional	and the I-90 Snoqualmie Pass Project) were added to Chapter 2 (See pages 2-16,
collaborative projects	2-24, and 2-26).

Chapter 3 – Species of Greatest Conservation Need

COMMENT	RESPONSE
Add a generic "local native	We added text in the SGCN chapter (page 3-40) to emphasize the importance of
pollinator complex" to	this group of species and we outlined challenges to their conservation. We also
cover the conservation	edited the methodology and criteria section in Chapter 3 to clarify that we need
needs of Washington	data to be able to confirm that the species is in need of conservation – lack of
State's approximately 600	information alone does not qualify a species as an SGCN. While State Wildlife
species of native bees and	Grants may not be utilized to fund the work requested by the commenter,
other declining native pollinators.	WDFW will continue to work with our partners and to utilize other funds (such as Watchable Wildlife License Plate funds) as possible to bring attention to our
polimators.	state's important pollinators.
Combine Priority Habitats	We evaluated the option of combining these lists early in the SWAP development
and Species (PHS) and	process and determined that each program serves unique purposes, and is
SGCN lists.	oriented towards different audiences. Combining the lists would dilute the
	effectiveness of each and ultimately cause more confusion. WDFW will work to
	better clarify the purpose and functions of these lists for internal and external
	users.
Terminology confusing	WDEW will evaluate the herefits of retaining this term as we may a forward with
Terminology confusing – eliminate "species of	WDFW will evaluate the benefits of retaining this term as we move forward with implementation of the SWAP.
concern".	

Chapter 3 – Species of Greatest Conservation Need: recommendations for adding specific species to the list. While we greatly appreciate the comments and data provided by all emails received, we have not changed the SGCN list as published in the SWAP Public Review Draft at this time. We reviewed the current status and data available for each of the species noted below and determined that in each case there was no compelling indication of region-wide decline. Please see Chapter 3 of the final SWAP for the criteria used to assess which species should be on the SGCN list. We also note for reviewers that federal guidance allows WDFW to add a species to the SGCN list within the next ten years, if new data or evidence of declines becomes available. We will periodically assess the status of species and recommended new additions if necessary. Please note that the comments have been summarized in the table below.

Acorn Woodpecker	This species was not included on the SGCN list because it is at the periphery of its
Although newer to WA, it is still in need of conservation because of the overall decline in oak woodland habitat and its slow reproduction rate.	range, and has recently expanded its range north into Washington. We do not have information as to why the species has expanded into Washington.
Black-backed Woodpecker This species is highly dependent on conservation restrictions essentially unknown away from recent burned forests, it exists only where burned snags are projected from salvage logging.	It seems likely that this species exhibits both functional and numerical responses to forest fires. As a result, the population likely changes in space and time at multiple spatial scales. The most productive areas are recent burned forests and when those areas are no longer suitable the species again responds (we assume) both functionally and numerically. When recently burned forests are no longer present in a particular landscape or are insufficiently large at least some of these woodpeckers move back to the closed-canopy forest. We are fully aware of research indicating that the species uses recently burned forests and that salvage harvest modifies habitat. We are unaware, however, of any data indicating that the species is experiencing a long-term population decline. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Ten native bumblebees White-shouldered bumble bee, Bombus appositus High country bumble bee, California bumble bee, Bombus californicus (fervidus) Yellow bumble Bee, Bombus fervidus Obscure bumble bee, Bombus calignosus Fernald cuckoo bumble bee, Bombus fernaldae Frigid bumble bee, Bombus frigidus Indiscriminate cuckoo bumble bee, Bombus insularis	There <i>are</i> many native bee species, and unfortunately, like many insects, we know little regarding their distribution and abundance, or trends of either. Our SGCN assessment process consisted of evaluating NatureServe designated G1, G2, S1 and S2 species, and state and federally listed taxa, which included only one or two bees. We also used additional resources as available for SGCN assessments. For our assessments of bees, we relied heavily on data that did exist; the recent <i>IUCN Assessments for North American Bombus spp. (Bombus</i> genus includes all bumble bees), and phone discussion with the lead author of the document, Rich Hatfield, with The Xerces Society for Invertebrate Conservation. All <i>Bombus</i> occurring in WA categorized by IUCN as Vulnerable or at a higher level of endangerment were added to SGCN list, unless there were significant questions regarding status presented in the analysis or justification notes. IUCN assessments categorized the three bumble bee SGCN as Vulnerable (Western and Morrison's Bumble Bees) and Critically Endangered (Suckley Cuckoo Bumble Bee). Two species recommended by this commenter were also categorized Vulnerable (California and Obscure Bumble Bees), but had significant questions

Species	Rationale for not adding this species to the SGCN list at this time.
Bombus sylvicola Half-black bumble bee, Bombus vagans Van Dyke's bumble bee, Bombus vandykei	Of the other eight species recommended for SGCN status by this comment, seven were categorized by IUCN as Least Concern, and one as Data Deficient.
Cascades Frog Should be added because the USFWS has issued a 90- day finding that determined consideration for listing under the ESA was warranted.	We know of no data indicating region wide, long-term population declines of Cascades Frogs. Cascades Frog depend on high elevation wetlands for breeding, and are potentially at risk from climate change - population status should be assessed over time.
Cassin's Auklet Data not sufficient to remove.	We have no information to indicate this species has experienced a population decline. Many seabirds are susceptible to changes in their food supply in response to changes in oceanic conditions. This can result in dynamic changes in species abundance. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Common Murre Data not sufficient to remove.	We have no information to indicate this species has experienced a population decline. Many seabirds are susceptible to changes in their food supply in response to changes in oceanic conditions. This can result in dynamic changes in species abundance. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Great Blue Heron <i>WDFW does not separately</i> <i>list the disappearing Pacific</i> <i>Great Blue Heron, the</i> <i>fannini subspecies found</i> <i>only in the Salish Sea, from</i> <i>the herodias subspecies</i> <i>found throughout our</i> <i>state. In 1976 there were</i> <i>ten nesting colonies of</i> <i>fannini in Thurston County.</i> <i>At last counting, in 2009,</i> <i>there were only five.</i>	The subspecies <i>fannini</i> is found throughout the "coastal" areas of western Washington (not just in the Salish Sea) and extends to Alaska. We are not aware of evidence that any populations within western Washington have declined. The 9,000 individuals in the Greater Puget Sound area in 2006 (as mentioned in one comment letter) does not appear to us to be a small number. Without a newer estimate showing a decline, this doesn't represent a significant concern. Some colonies do exist close to populated areas and seem to do well as long as human disturbance doesn't become excessive. Also, we note that the SWAP SGCN list focused on statewide or region-wide population status and trends, not county by county. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Harbor Porpoise The harbor porpoise should be included in protective management until it is certain that its population is stable or increasing.	Two sources indicate that harbor porpoises have been on the increase in the Washington portion of the Salish Sea over the last 15 to 20 years and that the species may now be at historically high population levels. These sources include one WDFW biologist that annually surveys the Salish Sea (Evenson) and Cascadia Research Cooperative (Calambokidis). Both data sets seem to show a very noticeable increasing trend in harbor porpoises since the 1990s. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.

Species	Rationale for not adding this species to the SGCN list at this time.
Pileated Woodpecker	Breeding Bird Survey data indicate slight increases in Washington for both time
At risk because it requires	periods reported (1966-2013 and 2003-2013). Confidence intervals for both
large, decayed snags for	time periods indicate that trends were not distinguishable from stability. Trends
nesting and roosting.	for the Northern Pacific Rainforest (BCR 5) were slightly down for both periods,
	and again the confidence intervals were not distinguishable from stability. This is
	currently a PHS species, and therefore WDFW has developed management
	recommendations for local governments, conservation groups and others to
	utilize for its continued conservation.
Vaux's Swift	Breeding Bird Survey data indicate slight declines in Washington, British
Specifically regarding	Columbia and the Northern Pacific Rainforest (BCR 5); however, all trends had
Vaux's swift, there is	confidence intervals indicating that trends were not distinguishable from
widespread evidence from	stability. The trend for Oregon was a slight increase. We are aware of no
numerous sources (e.g.,	monitoring data that rigorously demonstrates a population decline in this species
BBS data; Bull 2003) that	in Washington. The trend in habitat loss in Washington since European
this species has been in	settlement is acknowledged; most of that loss occurred prior to the beginning of
decline in the northwest for	the Breeding Bird Survey period, and trend in habitat loss is now much less.
some time.	Although this was not a reason for not including Vaux's Swift as a SGCN, it is
	noteworthy that forests in lower and mid-elevation areas in Washington (e.g.
	nonfederal lands in the Puget Lowlands and southwestern Washington) will
	almost certainly improve as habitat for this species in the decades ahead, as
	forest buffers along fish-bearing streams mature and trees in those buffers attain the size and age where the structural conditions needed by swifts for roosting
	and nesting are present.
	This is currently a PHS species, and therefore WDFW has developed
	management recommendations for local governments, conservation groups and
	others to utilize for its continued conservation.
	others to duitze for its continued conservation.
Western Yellow-bellied	This species is considered extirpated in Washington and we have chosen not to
Racer	include these species as SGCN.

Chapter 4 – Habitats of Greatest Conservation Need

COMMENT	RESPONSE
High alpine lakes are unique and should not be lumped into the Open Water	We recognize that one of the weaknesses of the National Vegetation Classification is the lack of detail regarding aquatic systems. We are working to strengthen the aquatic components of the national vegetation classification,
formation.	particular in terms of defining ecological systems and will incorporate these refinements as we work to implement the SWAP.
Listing habitat features next to each SGCN in that ecological system would make plan more useful to implementers. Consider using sources such as Johnson and O'Neill (2001) and expert department staff to bring more specificity to this section.	We added language in Chapter 4 (page 4-3) to indicate the habitat features based on the work of Johnson and O'Neill that were referenced throughout the plan in developing conservation actions for species.

COMMENT	RESPONSE
Terminology is confusing. Explain differences between PHS, HGCN, ESOC.	Additional clarification of the term Habitats of Greatest Conservation is provided in Chapters 2 and 4. This new language clarifies that for the purposes of the SWAP, Habitats of Greatest Conservation Need includes ecological systems of concern (those identified as imperiled) as well as those ecological systems considered especially important to SGCN. We have also clarified the differences between HGCN and PHS – namely that the lists of habitats contained within each were developed for difference purposes and different audiences.

Chapter 5 – Climate Change

COMMENT	RESPONSE
Eliminate	The Department recognizes that in some cases stocking lakes in high alpine areas can have
stocking of high	deleterious effects on native amphibian populations. The Department has several ways to
alpine lakes as a	minimize this potential negative effect.
climate	1. The Department minimizes lakes where fish stocking occurs. There are thousands of
adaptation	high elevation lakes in Washington, of which less than 2,000 contain fish. Most high
strategy.	lakes, tarns, and ponds are fishless and no fish stocking occurs. In addition, many of the
Ciala in	high lakes that are stocked are not good amphibian habitat. Amphibians prefer shallow,
Fish in	warm, productive high lakes and ponds, which in turn do not support fish stocking well.
naturally- fishless systems	Fish stocking occurs in lakes that are steep sided and deep. Finally, the Department does not stock "new" high lakes; stocking occurs only at lakes that have historically
reduce the	been stocked.
abundance of	been stocked.
larval	2. The Department has also put in place measures to reduce the deleterious effects of
amphibian	stocking where fish stocking does occur sympatric with native amphibian populations.
populations.	The Department has a high lakes stocking objective to stock lakes on a rotational basis,
	only stock lakes where reproduction cannot occur (or if reproduction can occur then to
	use triploid fish), mostly stock fish native to the range except in a few places, and stock
	at low densities with single age classes. This ensures that forage does not become
	limited to trout that could shift to consuming amphibians and that on a rotational basis
	most stocked lakes are fishless or at exceptionally low fish densities over time. Most
	lakes are stocked on a 3 to 10 year rotation based on fishing pressure. This approach is
	based on best science and outlined in the National Park Service fish stocking
	Environmental Impact Statement.
	3. Finally, the Department is partnering with USFS and other land management entities to
	ensure that fish stocking is done in a way that does not preclude movement by
	amphibians through high elevation waters. WDFW is in the initial planning stages of
	ensuring aquatic connectivity of fishless waters throughout public lands in the
	Cascades. The Department is also working on identifying lakes where fish communities
	are likely to lead to elevated predation on amphibians. The Department estimates there
	are likely only 300 or so lakes (of the 7,000) where this is an issue, and we are looking
	for innovative ways to deal with these lakes.

Chapter 6 – Monitoring and Adaptive Management

COMMENT	RESPONSE
Ecosystem monitoring, multi-species monitoring	Both of these suggestions will be considered during the
and monitoring little known species are rarely	implementation of the SWAP.

COMMENT	RESPONSE
funded – suggest small dedicated fund for these.	
WDFW should do an annual TRACS summary for the public.	

Appendix B – Potential Range and Habitat Distribution Maps

COMMENT	RESPONSE
WDFW should do a report to assess the accuracy of the maps over time.	The Potential Range and Habitat Distribution Maps are considered a work in progress and we intend to refine and update them over time as new information becomes available regarding species occurrence data.
Add an index that lists SGCN distribution by county, similar to PHS.	While we appreciate the suggestion to make the maps as useful as possible, we want to clarify that these maps are not intended to be used as a substitute for the PHS maps currently published by the Department.

Appendix E – Prioritization Matrix

COMMENT	RESPONSE
Scoring tool should be provided on line.	WDFW will consider these options during the implementation phase of the SWAP.
Provide a real world example of using the criteria.	