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1. EXECUTIVE SUMMARY  

The following comments are being submitted on behalf of NiPERA Inc in response to the proposed 
updates to Aquatic Life Toxic Criteria (WAC 173-201A-240) Technical Support Document.  
 
As the science branch of the Nickel Institute, NiPERA Inc. recognizes that aquatic life criteria for 
nickel within both the state of Washington as well as within the greater United States at the federal 
level do not reflect recent significant ecotoxicological developments on nickel. NiPERA 
acknowledges the Washington Department of Ecology’s effort to utilize “new science” in the 
development of updated criteria. Within the current proposal, such new science is reflected as 
utilizing bioavailability models for copper and aluminum; however, this methodology does not 
extend to nickel, zinc, or lead, even though the same principles are applicable and have been well-
established within scientific literature. Furthermore, the proposed hardness-based approach is not 
consistent with best-available science nor the updated methodologies under development by 
USEPA Office of Water’s Cooperative Research and Development Agreement (CRADA, 
https://www.epa.gov/wqc/metals-crada-phase-1-report). Additionally, we have identified nearly 
one hundred peer-review manuscripts containing ecotoxicity data that were not considered within 
the criteria development. These citations are listed within this document, as well as references to 
publicly available databases containing the relevant ecotoxicity parameters. 
 
NiPERA Inc. is a signatory to the USEPA’s CRADA workplan. Additionally, we have engaged with other 
international jurisdictions including Canada, Europe, and Australia/New Zealand in the 
development and implementation of bioavailability-based criteriaWe would welcome the 
opportunity to share our extensive experience with the Washington Department of Ecology in a 
collaborative manner to assist in developing protective and scientifically robust criteria for metal 
substances in surface waters.   

2. INTRODUCTION 

NiPERA Inc. is the independently incorporated science branch of the Nickel Institute, specializing in 
environmental and human health issues surrounding nickel and nickel compounds. In the United 
States, the aquatic water quality criteria for nickel were last updated at the federal level in 1995 and 
in 1997 for the state of Washington. Since the end of the twentieth century, an abundance of 
ecotoxicity data has been generated for nickel and significant advancements have been made to 
develop more robust and accurate models for predicting toxicity in the environment.  
 
Due to these advances, NiPERA Inc. recognizes that aquatic life criteria for nickel within both the 
state of Washington as well as within the greater United States at the federal level do not reflect the 
state of the science for metals ecotoxicology. However, we believe the update proposed by 
Washington Department of Ecology can be substantially improved by incorporating the use of 
bioavailability models for nickel and considering a greater quantity of the scientific literature to result 
in a more appropriate and relevant evaluation of environmental risks. 

This document outlines our concerns surrounding the Proposed WAC 173-201A-240 Technical 
Support Document and provides justifications for alternative, or additional, methodology that is 
scientifically credible and is aligned with current criteria development processes around the world. 
Specific areas of discussion include: 

https://www.epa.gov/wqc/metals-crada-phase-1-report
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• The importance of considering bioavailability in criteria development 
• Bioavailability models available for nickel,  
• Data selection process and omitted references, and 
• Application of an acute-chronic ratio for nickel criteria.  
 

3. DISCUSSION 

3.1 Importance of considering bioavailability within regulatory frameworks 

Since the 1985 USEPA WQC derivation methods (Stephen et al., 1985) were published, extensive 
work has gone into establishing a better understanding of metal toxicity and its effects on the 
environment (Adams et al., 2020). These efforts have led to approaches in quantifying the 
relationship between multiple environmental physicochemical parameters (e.g., pH, hardness, 
dissolved organic carbon) and the toxic effects observed in the presence of a metal substance 
(Mebane et al., 2020). In order to use the concept of bioavailability to predict the toxicity of an 
environment, models such as the Biotic Ligand Models (BLMs) and Multiple Linear Regressions 
(MLRs) have been developed (Brix et al., 2020; Di Toro et al., 2001). The principle behind these 
models differs in that BLMs follow a mechanistic approach to describe ionic binding at a site 
associated with the biota while MLRs are mathematical distillations of empirical toxicity 
observations. Despite these differences, the models developed for nickel have been extensively 
validated for applicability to a wide-range of waters throughout the U.S. and globally (Besser et al., 
2021; Croteau et al., 2021; Stauber et al., 2021). Furthermore, the bioavailability models have been 
illustrated to perform markedly better than hardness-based equations that have been employed in 
the U.S. for nearly four decades (Smith et al., 2015).  

Within a regulatory context, the importance of considering bioavailability has been recognized since 
2007 by the USEPA and Canada (Canadian Council of Ministers of the Environment, 2007; USEPA, 
2007) and in Europe since 2008 (European Commission, 2008). The guidance and implementation 
methods surrounding the use of these tools has varied by jurisdictions in which Europe and Canada 
utilize BLMs and Australia has recently elected to move forward with MLR methodology for nickel. In 
2017, the USEPA initiated a Cooperative Research and Development Agreement (CRADA) with eight 
metals associations, including NiPERA Inc., as signatories. The objective of this ongoing agreement 
is to support the development of bioavailability-based aquatic life criteria (USEPA, 2023).  

Since 2018, and in support of criteria development under the CRADA, NiPERA has developed 
expanded nickel ecotoxicity databases and bioavailability models, generated model comparison 
documents, and produced several peer-reviewed publications supporting the continued use of 
bioavailability concepts in regulatory settings (Besser et al., 2021; Croteau et al., 2021; Peters et al., 
2023; Santore et al., 2021). These peer-reviewed resources should be considered for use in the 
derivation of statewide guidance.  

 
3.2 Bioavailability models for nickel 

3.2.1 Nickel Biotic Ligand Models (BLMs) 

Several manuscripts have been published in recent years detailing updates to the nickel ecotoxicity 
database as well as updated bioavailability models. In 2021, Santore et al. (2021) reviewed the water 
quality parameters that affected nickel toxicity in aquatic systems and concluded that, along with 
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hardness, the concentration of dissolved organic carbon (DOC) was also a significant factor in 
accurately quantifying nickel effects. The impact of pH on nickel toxicity has been observed to be 
inconsistent but, for most organisms, there was little pH effect or a reduction in nickel toxicity 
observed at low pHs. This manuscript used these observations to refine the previous nickel BLM and 
to validate the model in both synthetic and natural waters. In a step further, Besser et al. (2021) 
examined the performance of the updated nickel BLM in the waters of the U.S. Midwest. These 
waters are considered unique as compared to the majority of freshwaters, having combinations of 
low pH, low hardness, and high DOC (Minnesota) or high pH, high hardness, and low DOC (Illinois). 
The prediction performance of BLMs was evaluated to determine the reliability and ultimately the 
BLM framework successfully modeled variation in toxicity for nickel across the wide ranges of 
chemistries.  
 

Besser JM, Ivey CD, Steevens JA, Cleveland D, Soucek D, Dickinson A, Van Genderen EJ, Ryan 
AC, Schlekat CE, Garman E, Middleton E. Modeling the bioavailability of nickel and zinc to 
Ceriodaphnia dubia and Neocloeon triangulifer in toxicity tests with natural waters. 
Environmental Toxicology and Chemistry. 2021 Nov;40(11):3049-62. 

Santore RC, Croteau K, Ryan AC, Schlekat C, Middleton E, Garman E, Hoang T. A review of 
water quality factors that affect nickel bioavailability to aquatic organisms: Refinement of 
the biotic ligand model for nickel in acute and chronic exposures. Environmental Toxicology 
and Chemistry. 2021 Aug;40(8):2121-34. 
 

3.2.2 Nickel Multiple Linear Regression (MLR) Models 

Multiple linear regression models are developed using mathematical regressions to quantify 
relationships in observed toxicity data, thus making them an empirical counter-part to BLMs (Brix et 
al., 2020). MLRs are often calibrated by accounting for the interactions of only major toxicity 
modifying factors (TMFs) such as pH, hardness, and dissolved organic carbon rather than a ‘full 
suite’ of water chemistry parameters. In early 2023, the USEPA published the CRADA Phase 1 Report 
(USEPA, 2023) which provides a review of models available to predict the toxicity of metals to aquatic 
life by considering toxicity modifying factors. The conclusion of this report identified that:  

“Given the similarities in performance between the BLM and MLR approaches for several 
metals, EPA intends to use MLR models as the bioavailability-modelling approaching in 
AWQC development because of the robustness, relative simplicity, transparency, decreased 
number of input data needed, and ease of use of the MLR approach compared to the BLM 
approach.” 

(Note: Despite this endorsement by USEPA, updated nickel criteria following this approach has yet 
to be released from the Office of Water and certain regions/states may find the BLM usage more 
aligned with their specific needs.) 
 
The most recent development of multiple linear regression models has been published by Croteau 
et al. (2021) pertaining to U.S./North American freshwaters and, by Stauber et al. (2021) applicable 
to Australian freshwaters. Specifically, Croteau et al. (2021) calibrated eight acute models 
considering invertebrate and fish species, and eleven chronic models covering invertebrate, fish, 
algae and plant species.  This manuscript also compared the performance of the MLR models to the 
BLM that was developed in Santore et al. (2021) and concluded that the performance of the two 
models were largely equal, though more apparent differences were noted when examining specific 
subsections of data.  
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Croteau K, Ryan AC, Santore R, DeForest D, Schlekat C, Middleton E, Garman E. Comparison 
of multiple linear regression and biotic ligand models to predict the toxicity of nickel to 
aquatic freshwater organisms. Environmental Toxicology and Chemistry. 2021 
Aug;40(8):2189-205. 
 

3.3 Data selection 

In reviewing the proposed nickel criteria, it is evident that a substantial number of pertinent 
manuscripts were not considered in the update. Specific citations that have been identified as being 
omitted are listed in appendices following this document. Detailed databases of nickel ecotoxicity 
information have been made publicly available in the supplemental material for Croteau et al. (2021) 
and Peters et al. (2023). Additionally, NiPERA maintains an internal database of catalogued 
ecotoxicity data from peer-reviewed manuscripts and we would be happy to work with the 
Department of Ecology to share the applicable data and references in an effort to streamline a 
revision to this proposal.  

For some cases in which a study was reviewed, it was accompanied by a “note” justifying its 
omission from being included in the criteria derivation. We appreciate and commend the 
transparency of this process. In reviewing the omitted studies, we note that four references (Klemish 
et al., 2018; Niyogi et al., 2014; Nys et al., 2016; Nys et al., 2017) accompanied the note: “static-
renewal test design, according to EPA 1985 guidance chronic studies should be flow-through”.  
However, the “Final Chronic Value” section VI-B of the 1985 guidance prescribes:  

“Chronic values should be based on results of flow-through (except renewal is acceptable 
for daphnids) chronic tests in which the concentrations of test material in the test solutions 
were properly measured at appropriate times during the test.” (Stephan et al., 1985) 

With this exception noted in the guidance, chronic toxicity tests in which daphnids were exposed to 
nickel in static-renewal exposures should be acceptable for consideration in criteria development.    

3.4 Application of an Acute-Chronic Ratio (ACR) 

The concept of Acute-Chronic Ratios (ACRs) was developed to support guideline derivations in 
instances where insufficient data was available, as was generally the case of chronic studies in the 
20th century. Today, however, a substantial amount of high-quality ecotoxicity data is available for 
both acute and chronic endpoints across a wide variety of species, genus, and families. This data 
has been generated over the past two decades largely to support the development of bioavailability 
models and hazard regulations within the European jurisdictions (e.g., REACH) but, importantly, 
toxicity evaluations generally follow standard methodologies and use model organisms, making 
them applicable on a global level. Furthermore, similar to nickel toxicity, ACRs have been observed 
to vary depending on the different water chemistry parameters of the exposure. For instance, an ACR 
determined at high pH, low hardness waters will not be the same ACR observed in low pH, high 
hardness waters.   

Due to the abundance of available data surrounding nickel ecotoxicity for both acute and chronic 
exposures, and the inherent variability in accurate ACRs, we advocate for the Washington 
Department of Ecology to consider bioavailability-based criteria for both short-term and long-term 
exposures, rather than applying an ACR.   
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4. CONCLUSIONS 

This document has identified several areas under which the acute and chronic criteria proposed for 
nickel by the Washington Department of Ecology should be reevaluated and updated to consider 
more appropriate science-based methodologies. The lines of evidence presented herein include 
the importance of applying bioavailability concepts and models, as well as a reconsideration of the 
data selection, and methodologies, associated with determining the acute and chronic criteria.  
 
5. ABOUT NiPERA & THE NICKEL INSTITUTE 

With offices in North America, Europe and Asia, the Nickel Institute is the center of excellence for 
information on nickel and nickel-containing materials. The NI promotes sound science, risk 
management, and socio-economic benefit as the basis for public policy and regulation.  NiPERA Inc. 
is the independently incorporated science division of the Nickel Institute in which we undertake 
leading-edge scientific research relevant to human health and the environment.    
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