Northwest Environmental Advocates

LOWER COLUMBIA COHO SALMON ESU (Oncorhynchus kisutch pop. 1)

Conservation Status and Concern

Washington coho salmon populations in this ESU are dominated by hatchery-origin spawners, are not demonstrably self-sustaining, and considered at very high extinction risk.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	None	Yes	G4T2Q	SNR	Low/unknown	Moderate-high

Biology and Life History

Coho salmon in this ESU exhibit 'early' (mid-August to September) and 'late' (late September to October) adult return timing, with peak spawning occurring in late October and in December to early January, for each type respectively. Spawning can extend through February. Historically, early-returning coho spawned in upper

Photo: WDFW

reaches of large rivers in lower Columbia sub-basin and in rivers upstream of Cascade Crest (approximately Bonneville Dam), and late-returning coho spawned in smaller rivers or lower reaches of large rivers, with timing adapted to annual flow regimes and elevation. Juveniles usually rear for over a year (e.g., 18 months) in freshwater and move throughout natal river as they grow; some may leave freshwater early and rear in estuarine areas. Most juveniles migrate seaward from March to June, predominately in April and May, during their second year. Sub-adults typically rear for about 18 months in the ocean, inhabiting coastal waters north and south of Columbia River mouth. Ocean rearing locality may be correlated with early and late return-timing types. Most adults are age three at spawning, and some return at age two after 5 to 7 months at sea.

Distribution and Abundance

This ESU includes coho salmon in Columbia River tributaries from its mouth up to and including Big White Salmon and Hood rivers and Clackamas River (Willamette sub-basin). Dams in several rivers significantly reduced or eliminated historical distribution. Of 24 historical populations, 17 are in Washington. Coho salmon from 12 Washington artificial propagation programs are included in the ESU. Data on abundance trends for Washington populations are generally only available from 2010 forward, and these show low abundance for wild-born coho overall.

Habitat

Adult coho salmon use mainstem and tributary habitats. They often hold in pools in lower river areas prior to rain events that allow access to smaller tributaries upstream. Spawners use stream reaches where gravel sizes are optimal for redd (nest) construction and egg survival. Coho fry use shallow, low velocity areas for rearing, such as stream edges and side channels. During their long-term freshwater rearing, juveniles may move to higher flow areas and disperse into areas inaccessible to adults. Juveniles most often occur in pool rather than riffle habitat. Intact riparian vegetation, in-stream large woody debris and natural floodplain structure are important for juvenile productivity and survival. Summer low-flow conditions may reduce rearing habitat in area and quality (elevated temperature). Optimal freshwater temperature range is 54 to 57° F and temperatures over 77° F may be lethal. Columbia River estuarine areas are used for feeding during seaward migration. Sub-adults rear in Pacific Ocean continental shelf areas predominately off of Washington and Oregon, and to lesser extent off British Columbia and California.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel. D. M. Van Doornik, and M. T. Maher. 2006. Historical population structure of Pacific Salmonids in the Willamette River and Lower Columbia River basins. NOAA Tech. Memo. NMFS-NWFSC-73, 311pp.

Lower Columbia Coho Salmon ESU: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, and estuarine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine habitats and processes.	Current insufficient	External
2	Agriculture and aquaculture side effects	uaculture side fish on spawning grounds hatchery operations to		Current Sufficient	WDFW
3	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, shoreline industrial uses.	Dam and barrier removal.	Current insufficient	External
4	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	Restore or maintain adequate passage and optimum flows for fish.	Current insufficient	External
5	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Fish passage facilities need to be added or improved in multiple localities.	Current insufficient	External
6	Overharvesting of biological resources	Annual fishery management processes are required.	Adequate harvest management planning and monitoring.	Current sufficient	Both

OZETTE SOCKEYE SALMON ESU (Oncorhynchus nerka pop. 2)

Conservation Status and Concern

Ozette sockeye salmon are at very low abundance compared to historic condition, and quantity and quality of adequate lake beach spawning habitat may be declining.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G5T2Q	SNR	Low/stable	Moderate

Biology and Life History

Adult sockeye salmon return to Ozette River from April to July, and hold in Ozette Lake between April and January. Spawning, either on lake's beaches or in river and tributary creeks, occurs from October to January. Following emergence in March and April, juveniles migrate to Ozette Lake, where nearly all rear for about a year and then emigrate to the sea the following March through June. During lake rearing they feed on planktonic crustaceans (e.g. *Daphnia* spp.), benthic invertebrates and insects.

Photo: WDFW

Ocean distribution and behavior of sub-adults are not well-known, but young fish may use nearshore ocean areas and move offshore as they growth. Ocean rearing may last from 1 to 3 years, but majority rear for about 2 years before returning to spawn. Adult total age ranges from 3 to 5 years, with most being 4 years of age.

Distribution and Abundance

This ESU consists of one sockeye salmon population in Ozette River basin on Washington's Pacific coast. Historical abundance was very large, based on peak harvest values, and minimum viable spawning abundance goal for recovery is 35,500. Lowest abundances likely occurred in the 1960's and 1970's. Abundance estimates have been highly variable and uncertain, but methodologies have improved and average annual abundance of returning adults for a recent ten-year period was over 2,500. Current abundance is very low compared to historical levels.

Habitat

Ozette Lake is primary habitat for adults and juveniles. Adults hold in lake and spawn on lakeshore beaches, particularly Allen's Beach and Olsen's Beach. Spawning substrates vary from cobble/large gravel to coarse sand and silt, and groundwater upwelling sites appear to be favored spawning sites. Spawners also use tributaries to the lake (e.g., Umbrella Creek, Big River, Crooked Creek) and spawn in gravel riffles and glides and less commonly in pools and side channels. Juvenile reside and feed in the lake throughout their freshwater rearing stage. Migration distances to and from ocean through Ozette River are relatively short. Ocean rearing areas are not well-known, but nearshore and offshore North Pacific waters are likely used.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Haggerty, M. J., A. C. Ritchie, J. G. Shellberg, M. J. Crewson, and J. Jalonen. 2009. Lake Ozette Sockeye Limiting Factors Analysis. Prepared for Makah Indian Tribe and NOAA Fisheries in cooperation with Lake Ozette Sockeye Steering Committee, Port Angeles, WA. 565pp.

Ozette Sockeye ESU: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	No cities or towns impacts, but land use or other factors may be affecting quantity and quality of spawning habitats, such as lake beaches.	Research, survey or monitoring - habitat.		External
2	Resource information collection needs	Continue adult and juvenile monitoring.	Research, survey or monitoring - fish and wildlife populations.		External
3	Agriculture and aquaculture side effects	Management and monitoring of hatchery restoration program needs to be maintained.	Hatcheries (restoration).		External

LOWER COLUMBIA STEELHEAD DPS (Oncorhynchus mykiss pop. 14)

Conservation Status and Concern

Most populations are rated at high or very high extinction risk, and dams block several large areas of historic range. Habitat degradation and hatchery-related impacts are other limiting factors.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G5T2Q	SNR	Low/stable	Moderate-high

Biology and Life History

Adults in this DPS exhibit winter and summer adult return timing. Winter-run steelhead in mature condition may begin entering natal rivers in early December; spawning occurs typically from early March to early June, with peak in late April/early May. Summer-run steelhead in immature condition begin entering natal rivers in early May and entry extends to October; they mature in freshwater and spawn in following calendar year from January to June, with peak in

Photo: NOAA

late February to early April. Adults usually survive spawning and migrate to sea. Some adults, especially females, spawn more than once. Juveniles rear in freshwater for 1 to 4 years, with most rearing for 2 years. Juveniles that migrate seaward do so predominately from April to June, with peak in May; some mature in freshwater without going to sea, more commonly in males than females. Ocean migration paths are not well-documented but sub-adults may rear in central North Pacific Ocean or Gulf of Alaska; rearing typically occurs for 1 to 3 years, with 2 years the most common. Total age at first return to spawn is usually 4 to 6 years.

Distribution and Abundance

This DPS includes steelhead in Washington and Oregon Columbia River tributaries from Cowlitz River up to Hood River. In Washington, there are 14 historical winter-run and five historical summer-run populations. Steelhead from four Washington hatchery propagation programs are included in DPS, but hatchery steelhead from non-native and non-local stocks are not. Dams in several rivers have significantly reduced or eliminated historical distribution. Other man-made barriers and habitat alterations further reduce distribution. Current abundance is low compared to historic. Recent analyses indicated that in Washington, only the Wind River summer-run population was considered viable, and most others were at very high or high risk levels.

Habitat

Adults use wide variety of freshwater habitats, spawning or holding in river mainstems and large and small tributaries. They migrate relatively far upstream in natal rivers compared to other salmonids and access is aided by flow conditions during migration timing. Redds (nests) are constructed in riffles and downstream margins of pools in streambeds where gravel sizes are optimal. Instream woody debris, boulders and stream bank structure provide important cover. Newly emerged juveniles use shallow gravel bed areas in riffles, among boulders, or near stream banks. As juveniles grow they move to higher water velocity areas and maintain individual territories for feeding. During long-term rearing, juveniles may move throughout watershed, using differing habitats in response to seasonal flow and temperature conditions. Instream cover is important for overwintering juveniles, and intact riparian

vegetation is essential for contributing woody debris, supporting invertebrate prey, and shading. Freshwater temperatures over 77° F are expected to be stressful or lethal. Columbia River mainstem is migration corridor. Central North Pacific Ocean and Gulf of Alaska may be marine rearing habitats.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel. D. M. Van Doornik, and M. T. Maher. 2006. Historical population structure of Pacific Salmonids in the Willamette River and Lower Columbia River basins. NOAA Tech. Memo. NMFS-NWFSC-73, 311pp.

Lower Columbia Steelhead DPS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, and estuarine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine habitats and processes.	Current insufficient	External
2	Agriculture and aquaculture side effects	Percent of hatchery-origin fish on spawning grounds is often unknown, and thus it is uncertain if management goals are being met. Threat is loss of natural productivity and diversity.	Manage and modify hatchery operations to achieve goals for percent hatchery fish on spawning grounds.	Current sufficient	WDFW
3	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, shoreline industrial uses.	Dam and barrier removal.	Current insufficient	External
4	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	Restore or maintain adequate passage and optimum flows for fish.	Current insufficient	External
5	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Fish passage facilities need to be added or improved in multiple localities.	Current insufficient	External

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
6	Resource information collection needs	Monitoring needed that will ascertain proportion of hatchery-origin spawners in annual spawning escapements.	Research, survey or monitoring - fish and wildlife populations.	Current insufficient	WDFW

MIDDLE COLUMBIA STEELHEAD DPS (Oncorhynchus mykiss pop. 17)

Conservation Status and Concern

Many populations are rated at high extinction risk. Dams impede passage and reduce or modify access to large areas of historic range, and other habitat degradation limits distribution and productivity.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G5T2Q	SNR	Intermediate/stable	Moderate

Biology and Life History

Most adults exhibit summer return timing, but winter return timing occurs in several populations. Summer-run steelhead in immature condition begin entering freshwater in late spring, and travel to and enter natal tributaries through summer and fall; they mature in freshwater and spawn in following calendar year usually from early March to early June. Winter-run steelhead enter freshwater in mature condition and may enter natal rivers by early December; their spawn timing may

Photo: NOAA

coincide with that of summer-run steelhead. Adults usually survive spawning and migrate to sea afterwards. Some adults, especially females, spawn more than once. Juveniles rear in freshwater for 1 to 5 years, with most rearing for 2 years. Juveniles that migrate seaward do so predominately from March to June; some mature in freshwater without going to sea, more commonly in males than females. Ocean migration paths are not well-documented but sub-adults may rear in North Pacific Ocean or Gulf of Alaska, typically for 1 to 3 years, with 2 the most common. Age at first return to spawn usually ranges from 3 to 6 years.

Distribution and Abundance

Steelhead in this DPS occur in Washington and Oregon Columbia River tributaries upstream and exclusive of Wind River (Washington) and Hood River (Oregon), and downstream of Priest Rapids Dam, but excluding Snake River basin. In Washington, extant populations occur in Yakima, Touchet, Walla Walla, and Klickitat rivers and Rock Creek; a remnant White Salmon River population may recover due to dam removal. Dams in several rivers have significantly reduced or eliminated historical distribution. Distribution also is reduced by other man-made passage barriers and habitat alterations from agriculture and other development. Abundance has increased in some areas (Yakima Basin and Walla Walla River) but is low in others. Recent analyses rated a few populations as viable, but the DPS was rated as not viable overall.

Habitat

Adults use wide variety of freshwater habitats, spawning or holding in river mainstems and large and small tributaries. They migrate relatively far upstream in natal rivers compared to other salmonids and access is aided by flow conditions during migration timing. Redds (nests) are constructed in riffles and downstream margins of pools in streambeds where gravel sizes are optimal. Instream woody debris, boulders and stream bank structure provide important cover. Newly emerged juveniles use shallow gravel bed areas in riffles, among boulders, or near stream banks. As juveniles grow they move to higher water velocity areas and maintain individual territories for feeding. During long-term rearing, juveniles may move throughout watershed, using differing habitats in response to seasonal flow and

temperature conditions. Instream cover is important for overwintering juveniles, and intact riparian vegetation is essential for contributing woody debris, supporting invertebrate prey, and shading. Freshwater temperatures over 77° F are expected to be stressful or lethal. Columbia River mainstem is migration corridor and is greatly modified by dams and reservoirs. North Pacific Ocean and Gulf of Alaska may be marine rearing habitats.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Middle Columbia Steelhead DPS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, and estuarine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine (lower Columbia River) habitats and processes.	Current insufficient	External
2	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, other water extraction.	Dam and barrier removal.	Current insufficient	External
3	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	Restore or maintain adequate passage and optimum flows for fish.	Current insufficient	External
4	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Fish passage facilities need to be added or improved in multiple localities.	Current insufficient	External

Conservation Status and Concern

In 2011, most populations showed declining growth rates and extinction risks were relatively high overall, especially for central/south Puget Sound populations. Habitat degradation and poor early marine survival may be impeding productivity.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	None	Yes	G5T2Q	SNR	Low/declining	Moderate-high

Biology and Life History

Adults exhibit winter and summer return timing. Winter-run are most common. Winter-run adults in mature condition may begin entering rivers in late November; spawning may occur from February to June with peak spawning in April or May. Summer-run adults return to rivers from May to October and mature in freshwater, with spawning occurring in following calendar year from January to May. Some populations contain adults of both return- types, and which

Photo: NOAA

likely overlap in spawn-timing. Other exclusively summer-run populations occur upstream of falls or cascades that exclude fish returning in winter due to flows. Adults usually survive spawning and migrate to sea afterwards. Some adults, especially females, spawn more than once. Juveniles rear in freshwater for 1 to 3 years, with most rearing for 2 years. Juveniles that migrate seaward do so predominately in April and May; some mature in freshwater without going to sea, more commonly in males than females. Juvenile mortality in Puget Sound may be relatively high. Ocean migration paths are not well-documented but sub-adults may rear in central North Pacific Ocean or Gulf of Alaska, typically for 1 to 3 years, with 2 years the most common.

Distribution and Abundance

This DPS includes steelhead in Washington watersheds draining to Puget Sound, Hood Canal, and the Strait of Juan de Fuca west to and including Elwha River. It includes 32 historical populations. Steelhead in several hatchery programs based on local wild broodstock are included in the DPS, but hatchery steelhead from non-native and non-local stocks are not. Dams in several rivers significantly reduced or eliminated historical distribution, and other man-made barriers (e.g. culverts) further reduce distribution. Current abundance is at very low level compared to historic estimates. Summer-run populations are generally small due to limited habitat and abundance trends are not well-monitored.

Habitat

Adult steelhead use wide variety of freshwater habitats, spawning in river mainstems and large and small tributaries. They migrate relatively far upstream compared to other salmonids and access is aided by flow conditions during their return timing. Redds (nests) are constructed in riffles and downstream margins of pools in streambeds where gravel sizes are optimal. Instream woody debris, boulders and stream bank structure provide important cover. Newly emerged juveniles use shallow gravel bed areas in riffles, among boulders, or near stream banks. As juveniles grow they move to higher water velocity areas and maintain individual territories for feeding. During long-term rearing, juveniles may move throughout watershed and use differing habitats in response to seasonal flow and temperature

conditions. Instream cover is important for overwintering juveniles, and intact riparian vegetation is essential for contributing woody debris, supporting invertebrate prey, and shading. Freshwater temperatures over 77° F are expected to be stressful or lethal. Central North Pacific Ocean and Gulf of Alaska are likely marine rearing habitats.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Myers, J. M., J. J. Hard, E. J. Connor, R. A. Hayman, R. G. Kope, G. Lucchetti, A. R. Marshall, G. R. Pess, and B. E. Thompson. 2015. Identifying historical populations of steelhead within the Puget Sound distinct population segment. U.S. Dept. Commerce, NOAA Tech. Memo. NMFSNWFSC-128.

Puget Sound Steelhead DPS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, estuarine, and nearshore-marine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine and nearshore marine habitats and processes.	Current insufficient	Both
2	Agriculture and aquaculture side effects	Percent of hatchery- origin fish on spawning grounds is often higher than management goal. Threat is loss of natural productivity.	Manage and modify hatchery operations to achieve goals for percent hatchery fish on spawning grounds.	Current sufficient	Both
3	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, shoreline industrial uses.	Dam and barrier removal.	Current insufficient	External
4	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	Restore or maintain optimum flows for fish.	Current insufficient	External
5	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Fish passage facilities need to be added or improved in some localities.	Current insufficient	External

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
6	Climate change and severe weather	River scour and excessive sedimentation are threats from high flows and bank/hillsides erosion.	Restoration of forests and adequate forest management to protect channels, stream banks, and floodplains, and reduce effects of heavy rains and high flows.	Current insufficient	External

SNAKE RIVER BASIN STEELHEAD DPS (Oncorhynchus mykiss pop. 13)

Conservation Status and Concern

Extant populations are at moderate to high extinction risk. Dams impede passage, reduce access to large areas of historic range, and limit productivity. Proportions of hatchery-origin spawners are a concern.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G5T2T3Q	SNR	Low/stable	Moderate-high

Biology and Life History

Adults in this DPS exhibit summer return-timing. They enter freshwater in immature condition in late spring, and travel to and enter natal tributaries through summer, fall, and in following spring if they hold through winter in mainstem reservoirs. They mature in freshwater and spawn from February to May in calendar year following Columbia R. entry. Adults usually survive spawning and migrate to sea afterwards.

Photo: NOAA

Some adults, especially females, spawn more than once. Juveniles may rear in freshwater for 1 to 3 years, with most rearing for 2 years. Juveniles that migrate seaward do so predominately from March through June; some mature in freshwater without going to sea, more commonly in males than females. Ocean migration paths are not well-documented but sub-adults may rear in North Pacific Ocean or Gulf of Alaska, typically for 1 to 3 years. Age at first return to spawn usually ranges from 3 to 6 years.

Distribution and Abundance

Steelhead in this DPS occur in Snake River tributaries in Washington, Oregon, and Idaho. Of 24 extant populations, two are entirely in Washington and two are in watersheds shared by Washington and Oregon. Historical populations likely occurred upstream of impassable Hells Canyon Dam. Asotin River abundance has been stable, but Tucannon River wild-born fish abundance has been low, and population was rated at high risk. Tucannon steelhead monitoring has revealed high proportions of non-local hatchery-origin and non-local wild-born adults entering river. If these remain and spawn, they may affect abundance and productivity of native population. Also, many Tucannon steelhead were found to bypass river during migration, hold in Snake River upstream of Lower Granite Dam, and a proportion did not return downstream (over two dams) to natal river. Populations partially in Washington were at viable or stable status.

Habitat

Adult steelhead use wide variety of freshwater habitats, spawning or holding in river mainstems and large and small tributaries. They migrate relatively far upstream in natal rivers and access is aided by flow conditions during migration timing. Redds (nests) are constructed in riffles and downstream margins of pools in streambeds where gravel sizes are optimal. Instream woody debris, boulders and stream bank structure provide important cover. Newly emerged juveniles use shallow gravel bed areas in riffles, among boulders, or near stream banks. As juveniles grow they move to higher water velocity areas and maintain individual territories for feeding. During long-term rearing, juveniles may move throughout watershed, using differing habitats in response to seasonal flow and temperature conditions. Instream cover is important for overwintering juveniles, and intact riparian vegetation is essential for contributing woody debris, supporting invertebrate prey, and shading. Freshwater

temperatures over 77° F are expected to be stressful or lethal. Columbia and Snake rivers are migration corridors (long distances), and are greatly modified by dams and reservoirs. North Pacific Ocean and Gulf of Alaska may be marine rearing habitats.

References

Bumgarner, J. D., and J. T. Dedloff. 2011. Lyons Ferry complex hatchery evaluation: summer steelhead annual report 2008 and 2009 run year. Washington Department of Fish and Wildlife, Olympia, WA.
 Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281 pp.

Snake River Basin Steelhead DPS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, and estuarine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine (lower Columbia River) habitats and processes.	Current insufficient	External
2	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, other water extraction.	Dam and barrier removal.	Current insufficient	External
3	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	Restore or maintain adequate passage and optimum flows for fish.	Current insufficient	External
4	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Fish passage facilities need to be added or improved in multiple localities.	Current insufficient	External

5	Agriculture and aquaculture side effects	Percent of hatchery- origin fish on spawning grounds need to be well- monitored and managed so that management goals for wild fish productivity are met. Threat is loss of natural productivity and diversity.	Manage and modify hatchery operations to achieve goals for percent hatchery fish on spawning grounds.	Current sufficient	Both
---	--	---	---	-----------------------	------

Conservation Status and Concern

Extant populations are rated at high extinction risk. Dams impede passage and reduce access to large areas of historic range, and limit productivity. Proportions of hatchery-origin spawners are a concern.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G5T2Q	SNR	Low/increasing	Moderate-high

Biology and Life History

Steelhead in this DPS exhibit summer adult return timing. They enter freshwater in immature condition in late spring, and travel to and enter natal tributaries through summer, fall, and in following spring, if they hold through winter in mainstem reservoirs. They mature in freshwater and spawn from early March to mid-July in calendar year following Columbia River entry. Adults usually survive spawning and migrate to sea afterwards. Some adults, especially females,

Photo: NOAA

spawn more than once. Juveniles may rear in freshwater for 1 to 5 years, with most rearing for 2 years. Juveniles that migrate seaward do so predominately from March through June; some mature in freshwater without going to sea, more commonly in males than females. Ocean migration paths are not well-documented but sub-adults may rear in North Pacific Ocean or Gulf of Alaska, typically for 1 to 3 years. Total age at first return to spawn usually ranges from 3 to 6 years.

Distribution and Abundance

Steelhead in this DPS occur in Columbia River tributaries upstream and exclusive of Yakima River to the U.S./Canada border. Several tributaries upstream of impassable Chief Joseph and Grand Coulee dams could have historically supported additional populations. Steelhead in six artificial propagation programs are included in DPS. Dams, other man-made passage barriers and habitat alterations from land uses significantly reduced, modified or eliminated historical distribution. Barriers and land use impacts (e.g., irrigation) are being corrected in several rivers following Recovery Plan. Although total annual spawner abundance generally has increased in last 10 years, proportions of wild-born adults remain well below recovery goals. The four extant populations were last rated at high extinction risk.

Habitat

Adult steelhead use wide variety of freshwater habitats, spawning or holding in river mainstems and large and small tributaries. They migrate relatively far upstream in natal rivers compared to other salmonids and access is aided by flow conditions during migration timing. Redds (nests) are constructed in riffles and downstream margins of pools in streambeds where gravel sizes are optimal. Instream woody debris, boulders and stream bank structure provide important cover. Newly emerged juveniles use shallow gravel bed areas in riffles, among boulders, or near stream banks. As juveniles grow they move to higher water velocity areas and maintain individual territories for feeding. During long-term rearing, juveniles may move throughout watershed, using differing habitats in response to seasonal flow and temperature conditions. Instream cover is important for overwintering juveniles, and intact riparian vegetation is essential for contributing woody debris, supporting invertebrate prey, and shading. Freshwater temperatures over 77° F are expected to be stressful or lethal. Columbia River mainstem is

migration corridor (long distance) and is greatly modified by dams and reservoirs. North Pacific Ocean and Gulf of Alaska may be marine rearing habitats.

References

Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.

Upper Columbia Steelhead DPS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Riverine, riparian, floodplain, and estuarine habitats lost, modified or heavily degraded by agricultural, urban and residential development.	Restore natural instream habitat forming processes and hydrological functions, e.g., remove diking, channelization, water diversions; restore riparian vegetation. Restore estuarine (lower Columbia River) habitats and processes.	Current insufficient	External
2	Fish and wildlife habitat loss or degradation	Habitat loss and degradation due to dams, transportation crossings, culverts, water diversions, other water extraction.	Dam and barrier removal.	Current insufficient	External
3	Energy development and distribution	Threat is from dam operations that modify natural hydrological cycle and flows and restrict or eliminate fish passage.	ions that modify adequate passage and optimum flows for fish. ows and restrict or		External
4	Fish and wildlife habitat loss or degradation	Dams impede and prevent passage of adults and juveniles.	Add or improve fish passage facilities in multiple localities.	Current insufficient	External
5	Agriculture and aquaculture side effects	Percent of hatchery-origin fish on spawning grounds need to be well-monitored and managed so that management goals for wild fish productivity are met. Threat is loss of natural productivity and diversity.	Manage and modify hatchery operations to achieve goals for percent hatchery fish on spawning grounds.	Current sufficient	Both

BULL TROUT – COASTAL RECOVERY UNIT (Salvelinus confluentus pop. 3)

Conservation Status and Concern

Many of the Washington core area populations have unknown status. Bull Trout face threats from habitat degradation and fragmentation, poor water quality, and introduced non-native fish species.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G4T2Q	SNR	Unknown/unknown	Moderate-high

Biology and Life History

Bull Trout in this DPS exhibit migratory (anadromous and amphidromous) and resident (adfluvial and fluvial) life history forms. They spawn in headwater streams and rivers from late summer to late fall, with falling water temperatures between 41 to 48° F., and may spawn each year or in alternate years. Eggs hatch in late winter or early spring. Fry emerge from gravel in April or May. Most information indicates that sexual maturity is attained in 4 to 7 years. They require colder waters than other trout species. Small Bull Trout eat terrestrial and aquatic insects, and shift to preying on

Photo: Roger Tabor, USFWS

fish as they grow larger. Large Bull Trout are primarily fish predators. Resident and migratory forms may be found together, and either form may produce offspring with either life history strategy.

Distribution and Abundance

Bull Trout in this Recovery Unit occur in Washington and Oregon watersheds west of the Cascade Mountains crest. In Washington, there are 16 core areas (habitat/population units) designated that include multiple populations. One historic core area, White Salmon River, was designated. Most core areas are in Puget Sound and Olympic Peninsula drainages, and two are in Columbia River drainages. Four core areas, Lower Skagit, Upper Skagit, Quinault River, and Lewis River, have been identified as current strongholds and likely have most stable and abundant populations in Recovery Unit. Bull Trout are reported as extirpated from White Salmon, lower Nisqually, and Satsop rivers, but these may not be only Washington extirpated localities in this Unit. Only a few populations are regularly monitored to estimate spawner abundance.

Habitat

Habitat includes deep pools in cold rivers and large tributary streams, often in moderate to fast currents, and large, cold lakes and reservoirs. Conditions that favor population persistence include stable channels, relatively stable stream flow, low levels of fine substrate sediments, high channel complexity with various cover types, and temperatures not exceeding about 59° F. Suitable migratory corridors between seasonal habitats and for genetic exchange among populations are needed. Spawning usually occurs in gravel riffles of small tributary streams, including lake inlet streams, with sites often associated with springs and upwelling groundwater. Optimum temperatures for incubation are about 36 to 39° F., and for juvenile rearing, about 45 to 46° F. Abundance of large woody debris and rubble substrate are important for rearing habitat.

References

USFWS. 2014. Revised draft recovery plan for the coterminous United States population of bull trout (*Salvelinus confluentus*). Portland, Oregon. xiii + 151pp.

WDFW. 2004. Washington State Salmonid Stock Inventory- Bull Trout/Dolly Varden. Washington Department of Fish and Wildlife, Olympia, WA. 449pp.

Bull Trout - Coastal Recovery Unit: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Spawning and resident habitat has been destroyed or is threatened by urbanization, fisheries management activities, agriculture practices, mining, residential development, livestock grazing, dams and logging practices.	Even though many protective measures have taken place, currently-used spawning and resident habitat needs to be protected from degradation.	Current sufficient	Both
2	Invasive and other problematic species and genes	Introgression with hatchery-released eastern brook trout is a primary threat to Bull Trout in some waters.	Hatchery stocking of brook trout in drainages where Bull Trout are known to reside has been curtailed. Reducing existing numbers of brook trout where applicable/possible would be prudent.	Current insufficient	Both
3	Overharvesting of biological resources	Not 'accidental mortality' but intentional poaching of vulnerable fish during spawning season and other times of the year.	Increase law enforcement patrols of Bull Trout habitat during spawning season and close motor vehicle access to sensitive areas.	Current insufficient	Both
4	Climate change and severe weather	Potential climate change effects include increased water temperatures, which may have negative temporal and spatial impacts.	Restoration of forests and adequate forest management to protect riparian cover and restore landscape-level hydrology.		External

BULL TROUT – MID-COLUMBIA RECOVERY UNIT (Salvelinus confluentus pop. 2)

Conservation Status and Concern

Many of the Washington core area populations have unknown status. Bull Trout face threats from habitat degradation and fragmentation, poor water quality, and introduced non-native fishes.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Threatened	Candidate	Yes	G4T2Q	SNR	Unknown/unknown	Moderate

Biology and Life History

Bull Trout in this DPS exhibit resident, adfluvial and fluvial life history forms. They spawn in headwater streams and rivers from late summer to late fall, with falling water temperatures between 41 to 48° F., and may spawn each year or in alternate years. Eggs hatch in late winter or early spring. Fry emerge from gravel in April or May. Most information indicates that sexual maturity is attained in 4 to 7 years. They require colder waters than other trout species. Small Bull Trout eat terrestrial and aquatic insects, and

Photo: Roger Tabor, USFWS

shift to preying on fish as they grow larger. Large Bull Trout are primarily fish predators. Resident and riverine migratory forms may co-occur, and each form produces offspring with either life history strategy.

Distribution and Abundance

Bull Trout in this Recovery Unit occur in Washington, Oregon and Idaho watersheds of the Columbia Basin east of the Cascade Mountains crest. In Washington, there are seven core areas (habitat/population units) designated, and Washington shares two other core areas with Oregon. Core areas may include multiple populations. The Okanogan River is recognized as foraging, migrating, and overwintering habitat. Bull Trout have been extirpated from Lake Chelan. The area upstream from Chief Joseph Dam is currently unoccupied by Bull Trout. Asotin Creek core area was as rated one of the least robust (most threatened). Some populations are regularly monitored, especially in the Yakima River core area, for spawner abundance, but total population abundance estimates are not made.

Habitat

Habitat includes deep pools in cold rivers and large tributary streams, often in moderate to fast currents, and large, cold lakes and reservoirs. Conditions that favor population persistence include stable channels, relatively stable stream flow, low levels of fine substrate sediments, high channel complexity with various cover types, and temperatures not exceeding about 59° F. Suitable migratory corridors between seasonal habitats and for genetic exchange among populations are needed. Spawning usually occurs in gravel riffles of small tributary streams, including lake inlet streams, with sites often associated with springs and upwelling groundwater. Optimum temperatures for incubation are about 36 to 39° F., and for juvenile rearing, about 45 to 46° F. Abundance of large woody debris and rubble substrate are important for rearing habitat.

References

Scholz, A. T. and H. J. McLellan. 2009. Field Guide to the Fishes of Eastern Washington. Eagle Printing, Cheney, Washington. 310pp.

USFWS. 2014. Revised draft recovery plan for the coterminous United States population of bull trout (*Salvelinus confluentus*). Portland, Oregon. xiii + 151pp.

USFWS. 2012. Species Fact Sheet, Bull Trout, Salvelinus confluentus. 4pp.

WDFW. 2004. Washington State Salmonid Stock Inventory. Bull Trout/Dolly Varden. Washington Department of Fish and Wildlife, Olympia, WA. 449pp.

Bull Trout - Mid-Columbia Recovery Unit: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Spawning habitat has been destroyed or is threatened by development, mining and logging practices.	Acquisition of cold headwater spawning habitat could be one solution to protecting it.	Current insufficient	Both
2	Overharvesting of biological resources	Spawning habitat and spawning fish have been damaged/poached-killed by individuals that have easy (motor vehicle) access to the stream's edge.	Increase law enforcement patrols of Bull Trout habitat during spawning season and close motor vehicle access to sensitive areas.	Current insufficient	Both
3	Invasive and other problematic species and genes	Introgression with hatchery-released eastern brook trout and brown trout is a primary threat to Bull Trout in some waters.	Hatchery stocking of brook trout and brown trout in drainages where Bull Trout are known to reside has been curtailed. Reducing existing numbers of these nonnatives where applicable/possible would be prudent.	Current insufficient	Both
4	Climate change and severe weather	Potential climate change effects include increased water temperatures, which may have negative temporal and spatial impacts.	Restoration of forests and adequate forest management to protect riparian cover and restore landscape-level hydrology.		External

INLAND REDBAND TROUT (Oncorhynchus mykiss gairdneri)

Conservation Status and Concern

Species is widespread, but some populations are at risk from non-native hatchery trout competition and interbreeding. Water quality issues threaten most locations, and barriers fragment populations.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	None	Yes	G5T4	SMR	Unknown/unknown	Moderate-high

Biology and Life History

Inland Redband Trout have three history forms; resident, fluvial, and adfluvial. The resident form tends to live out its life in small tributaries and headwater streams. The fluvial form lives most of its life cycle in large rivers and streams before returning to its natal small tributary or headwater stream to spawn. The adfluvial form spends most of its life cycle in a lake or reservoir before returning to its natal headwater stream or tributary to spawn.

Photo: Courtesy USFWS

Distribution and Abundance

Inland Redband Trout historically occurred in the mid- and upper-Columbia River drainages east of the Cascade Mountains crest from above Celilo Falls (now submerged) to barrier falls on the Snake, Spokane and Pend Oreille rivers. It has been reported that current distribution in Washington is approximately 11 percent of the former range. Although population sizes are unknown for most of their Washington distribution, they are presumed stable.

Habitat

Inland Redband Trout prefer the clear, clean, cold water of headwater streams, creeks, small to large rivers, and lakes with lots of dissolved oxygen. Prime habitat consists of an array of riffles, pools, submerged wood, boulders, undercut banks, and aquatic vegetation. Winter habitat includes deep pools with extensive amounts of cover in third-order mountain streams. Summer surveys indicated that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for production.

References

- Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6, Bethesda, MD. 275pp.
- May, B. E., B. J. Writer, and S. Albeke. 2012. Redband Status Update Summary. Prepared by Wild Trout Enterprises, LLC, Bozeman, MT.
- Muhlfeld, C. C., D. H. Bennett, and B. Marotz. 2001. Fall and winter habitat use by Columbia River redband trout in a small stream in Montana. N. Amer. Jour. Fisheries Management 21:170-177.
- Scholz, A. T. and H. J. McLellan. 2009. Field Guide to the Fishes of Eastern Washington. Eagle Printing, Cheney, WA. 310pp.
- Staley, K and J. Mueller. 2000. Rainbow trout (*Oncorhynchus mykiss*). Fish and Wildlife Habitat Management Leaflet. Number 13.
- Wydoski, R. S. and R. R. Whitney 2003. Inland Fishes of Washington, second edition. University of Washington Press, Seattle, WA. 322 pp.

Inland Redband Trout: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Although there are distribution data available, more are needed to accurately assess current status. Western Native Trout Initiative (WNTI) holds the communal database.	Continued survey data and genetic samples need to be collected.	Current insufficient	Both
2	Coordination/ Administration Needs	Complacency with both the current understanding of redband trout and the coordination of all agencies collecting data on redband trout could be considered a threat.	Continued and expanded coordination between agencies and tribes that collect redband trout data.	Current insufficient	Both
3	Invasive and other problematic species and genes	Introgression with hatchery-released non-native rainbow trout is a primary threat to Inland Redband Trout genetic integrity.	Stop hatchery stocking in waters where Inland Redband Trout are known to reside.	Current insufficient	Both
4	Agriculture and aquaculture side effects	Habitat degradation due to farming practices and crop production.	Farmer-targeted outreach to see if new crop culture practices could help reduce impact to fish populations.	Current insufficient	Both
5	Agriculture and aquaculture side effects	Habitat degradation due to ranching and stock-grazing practices.	Work with ranchers to fence riparian areas to prevent stock animals and waste from entering streams.	Current insufficient	Both
6	Energy development and distribution	Habitat loss due to dam construction.	Dam removal is unlikely. We identified the problem but there might not be a solution to this one.	Current insufficient	Both
7	Agriculture and aquaculture side effects	Habitat degradation due to farming practices and crop production.	Use existing plant culture practices that reduce impact to local fish populations.	Current insufficient	Both

WESTSLOPE CUTTHROAT TROUT (Oncorhynchus clarkii lewisi)

Conservation Status and Concern

Westslope Cutthroat Trout is stable and abundant in its range, but faces threats to its habitat and threats from genetic introgression.

Fede Stat	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Specio Cond	None	Yes	G4T3	SNR	Medium/stable	Low-moderate

Biology and Life History

Westslope Cutthroat Trout have three life-history forms-adfluvial, fluvial, and resident, and all forms may occur within a single basin. Adfluvial fish live in lakes and spawn in its tributaries. They will occupy all lake habitats if no other trout species are present, otherwise, they segregate in nearshore, littoral areas. Fluvial fish reside in rivers and migrate to

Photo: Courtesy USGS

tributaries to spawn. Resident fish spend entire life in tributaries. Spawning occurs mainly in small headwater tributaries from March to July at water temperatures near 50°F. Fish tend to spawn in their natal stream. Fluvial and adfluvial forms usually return to rivers or lakes, but some remain in tributaries during summer. Juveniles begin to mature at age 3 years, but usually spawn for first time at age 4 or 5 years. Maturing adfluvial fish move to vicinity of tributaries in fall and winter, and begin to migrate upstream in spring. Adults and juveniles are opportunistic feeders, but primarily forage on insects and invertebrates.

Distribution and Abundance

In Washington, this species historically occurred in Lake Chelan and Methow River basins and in headwaters of Pend Oreille River, and was abundant in Lake Chelan Basin and Pend Oreille River. Naturally self-sustaining populations were found in almost every eastern-draining Cascade Mountain Columbia River subbasin (e.g., Yakima, Wenatchee, and Entiat) above 3,000 feet during 1990s surveys. Some of these may be due to stocking of hatchery fish into barren alpine lakes and streams. In western Washington, they have been reported in a few western Cascade Mountains drainages, such as tributaries to Skagit River and North Fork Skykomish River, South Fork Tolt River, and tributaries in Cowlitz Basin, but it is thought these resulted from releases of an eastern Washington hatchery stock. This species is abundant and stable in Washington.

Habitat

Habitats include small mountain streams, mainstem rivers, and large natural lakes. In rivers, adults prefer large pools and slow velocity areas. Stream reaches with numerous pools and some form of cover generally have highest densities. In lakes they often occur near shoreline areas. Preferred spawning habitat is small gravel substrates and mean water depths from 6.7 to 7.9 inches. Many fry disperse downstream after emergence. Juveniles of migratory populations may spend 1 to 4 years in natal streams, then move to a mainstem river or lake where they remain until they spawn. Juveniles tend to overwinter in interstitial spaces in stream substrates. Larger individuals congregate in deeper pools in winter. Resident fish tend to inhabit tributary shoreline areas in summer and overwinter in pools. Cool, clean, well-oxygenated water is essential.

References

Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6. 275pp.

McIntyre, J. D. and B. E. Rieman. 1995. Westslope cutthroat trout. Pages 1-15 in Young, M. K., editor. Conservation assessment for inland cutthroat trout. USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station General Technical Report RM-256, Fort Collins, CO.

Williams, K. R. 1999. Washington westslope cutthroat status report. Washington Department of Fish and Wildlife, Olympia, WA. 14pp. plus Appendices.

Wydoski, R. S. and R. R. Whitney. 2003. Inland Fishes of Washington, second edition, University of Washington Press, Seattle, WA. 322pp.

Westslope Cutthroat Trout: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Coordination/ administration needs	Complacency with both current understanding of species, and the coordination of all agencies collecting data on it could be considered a threat.	Continue to expand the distribution, habitat and genetic database for this species, with all interested agencies and tribes.	Current insufficient	Both
2	Invasive and other problematic species and genes	Even though many populations are stable, introgression with hatchery-released fish is a primary threat to species.	Stop hatchery stocking in waters where species is known to reside.	Current insufficient	Both
3	Fish and wildlife habitat loss or degradation	As with the other species, habitat fragmentation and degradation, due to various types of development is a constant threat to Westslope Cutthroat Trout.	Continued stewardship of spawning and residential habitat is needed to maintain current population rigor.	Current insufficient	Both

FRESHWATER FISH

BURBOT (Lota lota)

Conservation Status and Concern

Burbot are restricted to only 11 deep, cold-water lakes in Washington. Little is known about abundance, age structure, or productivity of any of the populations.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	None	No	G5	S 3	Unknown/unknown	Moderate

Biology and Life History

Burbot is the only member of codfish family (*Gadidae*) inhabiting freshwater. Spawning occurs in late winter/early spring in Washington lakes when water temperature is about 35°F. Individuals spawn annually or in alternate years. Eggs hatch in about a month. Young eat mainly immature aquatic insects, crayfish, mollusks, and other deepwater invertebrates. Larger individuals feed mostly on fishes. They usually become sexually mature in 3 to 4 years (males) or 4 to 5 years (females). Burbot are large with maximum length up to 33 inches, and maximum weight up to 33 pounds. The oldest Burbot recorded in

Photo: E. Keeley

Washington (gill net caught in Keechelus Lake, upper Yakima Basin) was age 19 years and was 29 inches long. Burbot over age 10 are common in Washington lakes. Little is known about population-specific abundance, age structure, or productivity.

Distribution and Abundance

Burbot are restricted to only 11 deep, cold-water lakes in Washington. Six lakes/reservoirs are in northern Columbia Basin (Osoyoos, Palmer, Chelan, Rufus Woods, Banks, and Roosevelt). Three lakes/reservoirs constructed on ancestral lakes are in upper Yakima Basin (Keechelus, Kachess and Cle Elum), and two lakes are in Pend Oreille region (Sullivan, Bead). No Burbot have been documented in western Washington. Of the eleven Washington lake populations evaluated in 1997, only one (Lake Roosevelt) was rated as "healthy", nine were rated as "unknown" status (relative to abundance and productivity), and one (Banks Lake) was rated "critical". This assessment 17 years ago did not provide adequate population trend data, or other data (size/age structure, productivity) needed for fishery management.

Habitat

In Washington, Burbot are found in deep (200 feet and greater), cold waters of lakes, reservoirs, and large rivers. In summer, stays close to the bottom in deep, cold waters, but may move into shallower water at night. Moves into shallow water in the winter when lakes are homothermous. In spawning, Burbot broadcast eggs usually over sand or gravel (sometimes silt) substrates in up to about 10 feet of water.

References

Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 1997. Status of Burbot in Washington State. Wash. Dept. of Fish and Wildlife Research Report. 51pp.

NatureServe Explorer http://explorer.natureserve.org

Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Burbot: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Inadequate data for population trend, size range, age structure, and productivity.	Research, survey or monitoring - fish and wildlife populations.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Reservoir water and habitat management effects on Burbot are unknown.	Research whether Burbot are entrained and killed by dam and reservoir facilities or management of those facilities and determine the effect of lack of fish passage on Burbot.		External
3	Overharvesting of biological resources	Burbot are harvested but no harvest assessment of impacts to populations are done.	Research, survey or monitoring - utilization.	Current insufficient	WDFW

Conservation Status and Concern

The status of this species is unknown and its major threat is habitat alteration.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G5	S2S3	Unknown/unknown	Moderate

Biology and Life History

The Lake Chub spawns in spring and summer. Eggs hatch in about 10 days. They become sexually mature in their third or fourth year. They sometimes occur in large schools. This species may migrate up to 1 mile between separate spawning and non-spawning habitats. Lake Chub probably do not live more than 5 years and may grow as large as 6 inches.

Photo: K. P. Schmidt, National Park Service

Distribution and Abundance

In Washington, Lake Chub are found in the Columbia River system. They have been found in Cedar Lake (Stevens County) and the North Fork of Beaver Creek (Okanogan County). There was a documented occurrence west of the Cascade mountains in Twin Lake (Snohomish County) in the 1950s, but it is has likely been extirpated. Its distribution appears to be sparse in Washington and its status is unknown.

Habitat

This species occurs in varied habitats, including standing or flowing water, and large or small bodies of water. It is most common in gravel-bottomed pools and stream reaches, and along rocky lake margins. It is more common in lakes in the southern part of the range, mostly in rivers in the north (but in lakes if available). Often it occurs in shallows but may move into deeper parts of lakes in summer. Spawning occurs in river shallows, along rocky shores, in shoals of lakes.

References

Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison. 1,052 pp.

Mongillo, P. E. and M. Hallock. 1999. Field study plan for priority native species, 1999-2003. Washington Department of Fish and Wildlife, Olympia. 15pp.

Page, L. M., and B. M. Burr. 2011. Field guide to the freshwater fishes of North America north of Mexico. Peterson Field Guide series. Houghton Mifflin Harcourt, Boston, MA.

Scott, W. G., and E. J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada, Bulletin 184. 966pp.

Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Lake Chub: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Listed as a "State Candidate Species" in Washington. Spotty distribution makes it vulnerable to population decline. Not enough data on distribution and status.	Periodic surveys to monitor status: increasing or declining.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Loss of habitat from human development merits further surveys and protection of some kind.	Periodic surveys to determine what habitat is currently being used and to document rate of habitat loss.	Current insufficient	WDFW
3	Resource information collection needs	A paucity of current information on distribution, status, and type of habitat use.	Field surveys are needed to determine current distribution, status and habitat use.	Current insufficient	WDFW

Conservation Status and Concern

This species is confined to a small part of the Columbia Basin and its biggest threat is predation by non-native predators.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	None	No	G4	S2S3	Unknown/unknown	Low-moderate

Biology and Life History

Adult fish of all ages and sizes school together, while juveniles of same year class often school together. They inhabit lakes and slow-moving streams. They migrate to shallow water in the spring, but stay in deeper water in winter. Tui Chub first spawn at age 3 years and spawning takes place during late April to late June in

Photo: USDA Forest Service

areas with abundant aquatic vegetation. Multiple spawning by one female may be common. Eggs hatch in 10 to 12 days. Juveniles feed first on diatoms, rotifers, desmids, and other plankton, then transition to larger zooplankton. Adults feed on plankton, insects, crustaceans, and fish larvae and fry (including their own). In streams they will prey on various benthic organisms. Young fish are prey of large trout and introduced warm-water fish species.

Distribution and Abundance

Tui Chub are native to the Columbia Basin in central Washington, which is northernmost part of the species' range. In Washington, Tui Chub are confined to reservoirs, ponds, potholes, and warm, slow-moving reaches of lower Crab Creek, an upper Columbia River tributary. They are common to abundant in several Adams County interconnected lakes (McMannaman, Morgan, Half Moon, Hutchinson, and Shiner).

Habitat

This species usually occurs in weedy shallows of lakes or in mud- or sand-bottomed pools of slow-moving headwaters, creeks, and small to medium rivers. In lakes, Tui Chub spend winter in deep water, and move to shallow water in spring. In summer, this chub also occurs in deep water and in surface waters over deep water. Spawning usually occurs in shallow water where eggs settle to the bottom or adhere to aquatic vegetation. Young remain close to shore near heavy vegetation for most of summer.

References

Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley, CA. 405pp.

Page, L. M., and B. M. Burr. 2011. Peterson field guide to freshwater fishes, Second Edition. Houghton Mifflin Harcourt, Boston, MA. 688pp.

Sigler, W. F., and J. W. Sigler. 1987. Fishes of the Great Basin: A natural history. University of Nevada Press, Reno, NV. 425pp.

Wydoski, R. S., and R. R. Whitney. 2003. Inland fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Tui Chub: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Even though Tui Chub is known to overpopulate in some cases, lake rehabilitations have lowered numbers in Hutchinson and Shiner Lakes.	Need assessment surveys near Crab Creek and discontinue rehabilitations in waters where they are found.	Current insufficient	WDFW
2	Invasive and other problematic species and genes	Because of limited distribution, predation by non-native fish could have a significant impact in Washington.	It is difficult to control predation. Action unknown at this time.	Current insufficient	WDFW

LEOPARD DACE (Rhinichthys falcatus)

Conservation Status and Concern

The status of this species is unknown and it faces threats to its habitat.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G4	S2S3	Unknown/unknown	Moderate-high

Biology and Life History

Leopard Dace spawn between May and July. Several males may spawn with one female. The average life span is probably 3 to 4 years, but could be as long as 7 years. The spawning habitat is probably similar to that of other dace that spawn in stream riffles. Young-of-the year feed on aquatic insect larvae. Yearlings feed on aquatic insects during the summer and in the fall switch to terrestrial insects. Adults feed on aquatic insect larvae, terrestrial insects, and earthworms.

Photo: from Wydoski and Whitney 2003

Distribution and Abundance

Population size and status are unknown. Distribution is spotty within the Columbia River Basin, and in Washington it is found in lower, mid, and upper Columbia River mainstem and tributaries, such as Yakima and Similkameen rivers, and in Snake River.

Habitat

Leopard Dace are usually found in streams, but can also occur in lakes. In streams, it prefers slow to moderate current and is associated with stone substrate covered by fine sediments. In creeks and small to medium rivers, the preferred habitat is flowing pools and gravel runs. They are usually found in slow-moving current, but in greater currents than used by Umatilla Dace, and in slower, deeper water than used by longnose dace. In lakes, Leopard Dace prefer rocky margins.

References

Page, L. M., and B. M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin Co., Boston, MA. 432pp. Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Leopard Dace: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Listed as a "State Candidate Species" in Washington. Spotty distribution makes it vulnerable to population decline. Not enough data on distribution and status.	Periodic surveys to monitor status: increasing or declining.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Loss of habitat from human development merits further surveys and protection of some kind.	Periodic surveys to determine what habitat is currently being used and to document rate of habitat loss.	Current insufficient	WDFW
3	Resource information collection needs	A paucity of current information on distribution, status, and type of habitat use.	Field surveys are needed to determine current distribution, status and habitat use.	Current insufficient	WDFW

Conservation Status and Concern

This species' status is unknown and it faces threats from human development and habitat alterations.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G4	S2	Unknown/unknown	Moderate

Biology and Life History

Spawning probably takes place in early to mid-July. Food preferences are unknown, but presumed to be similar to other dace that feed primarily on insect larvae. The closely-related *R. osculus* is a benthic feeder and its young are primarily planktivores, while adults feed mainly on aquatic insects, freshwater shrimp, plant material and zooplankton. Maximum size Umatilla dace can reach is about is 3 inches, and average life span is probably 3 to 4 years, but could be as long as 8 years.

Photo: Paul Mongillo, WDFW

Distribution and Abundance

This species occurs in Columbia Basin, east of Cascade Mountains crest. In Washington, it has been reported in the Columbia, Yakima, Okanogan, Similkameen, Kettle, Colville, and Snake rivers, and also may occur in the Methow and Wenatchee rivers. This species has experienced extensive habitat loss due to hydroelectric dams.

Habitat

Umatilla Dace are benthic fish that occur in relatively productive, lower elevation streams. They seem to prefer cover provided by cobbles and larger stones where current is fast enough to prevent siltation. They are most often captured along river banks at depths less than 3 feet, but larger fish tend to occupy deeper habitats. The species is absent from colder, mountain tributaries. They have been found in reservoirs where there is a rocky bottom and a noticeable current. Like Leopard Dace, Umatilla Dace usually occupy habitats with slower water velocity than those used by longnose dace, and Umatilla Dace adults use lower water velocities habitats than those used by Leopard Dace.

References

- Hass, G. R. 1999. Personal communication. University of British Columbia, Vancouver. Cited in Wydoski and Whitney 2003.
- Hughes, G. W., and A. E. Peden. 1989. Status of the Umatilla Dace, *Rhinichthys umatilla*, in Canada. Canadian Field-Naturalist 103:193-200.
- Peden, A. E., and G. W. Hughes. 1988. Sympatry in four species of *Rhinichthys* (Pisces), including the first documented occurrences of *R. umatilla* in the Canadian drainages of the Columbia River. Canadian Journal of Zoology 66:1846-1856.
- Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Umatilla Dace: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Listed as a "State Candidate Species" in Washington. Spotty distribution makes it vulnerable to population decline. Not enough data on distribution and status.	Need more assessment surveys to determine current distribution and status and whether it merits a change in listed status.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Human-altered habitat has had a negative impact. Needs flowing water sufficient to maintain interspaces in rubble/cobble.	Need more assessment surveys to determine current distribution and type of habitat usage in Washington.	Current insufficient	WDFW

Conservation Status and Concern

Populations of this endemic species are confined to a very small lowland portion of western Washington and its biggest threat is loss of habitat.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Sensitive	Yes	G3	S2S3	Unknown/unknown	Moderate

Biology and Life History

Olympic Mudminnows are small, average length approximately 2.1 inches, and are not selective feeders, consuming annelids, crustaceans, insects, and mollusks. Spawning begins in late November, subsides during the winter months, then resumes in March and lasts until midJune. Spawning sites are in shallow, low flow areas such as flooded areas adjacent to streams. Males maintain breeding territories. Eggs are adhesive and are deposited on aquatic vegetation; no parental care is given. Fry attach themselves to vegetation, using "gluing" head glands.

Photo: Julie Tyson, WDFW

Distribution and Abundance

The Olympic Mudminnow occurs only in Washington and its current range includes the southern and western lowlands of the Olympic Peninsula, Chehalis River Basin, lower Deschutes River drainage, and south Puget Sound west of the Nisqually River. Populations have also been observed in King and Snohomish counties within the Cherry Creek drainage, Peoples Creek drainage, and Issaquah Creek.

Habitat

This species has three main habitat requirements: water with little to no flow, several inches of soft mud substrate, and abundant aquatic vegetation. Its preferred habitat includes quiet waters with mud or dark bottoms, usually well-vegetated areas and areas under overhanging banks, especially in marshy streams and brownish water of bogs and swamps. They can also be found in low-lying marshes, roadside ditches, and vegetation-choked streams at lower elevations (sea level to 459 feet), but are intolerant of saltwater. This species does not occur in otherwise suitable areas that have introduced spiny-rayed fishes.

References

Glasgow, J., and M. Hallock. 2009. Olympic mudminnow (*Novumbra hubbsi*) in the Green Cove Watershed,
Thurston County, Washington: Distribution and recommendations for protection. Washington Department of
Fish and Wildlife, Olympia. 18pp.

Hagen, D. W., G. E. E. Moodie, and P. F. Moodie. 1972. Territoriality and courtship in the Olympic mudminnow (*Novumbra hubbsi*). Canadian Journal of Zoology 50:1111-1115.

Kendall, A. W., Jr., and A. J. Mearns. 1996. Egg and larval development in relation to systematics of *Novumbra hubbsi*, the Olympic mudminnow. Copeia 3:449-464.

Mongillo, P. E., and M. Hallock. 1999. Washington state status report for the Olympic mudminnow. Washington Department of Fish and Wildlife, Olympia, Washington. 36pp.

Trotter, P. C., B. McMillan, and D. Kappes. 2000. Occurrence of Olympic mudminnow in the east side of Puget Trough. Northwestern Naturalist 81:59-63.

Wydoski, R. S., and R. R. Whitney. 2003. Inland fishes of Washington. 2nd edition. University of Washington Press. Seattle, WA. 322pp.

Olympic Mudminnow: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Classified as a "Sensitive Species" in Washington because of its restricted range, endemic to Washington and its habitat, vulnerable to destruction or negative change.	Continued surveys to confirm distribution and habitat use.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Loss of habitat from human development merits further surveys and protection of some kind.	Due to the amount of time passed since regular surveys, updated surveys to determine what habitat is currently being used and to document rate of habitat loss.	Current insufficient	WDFW
3	Resource information collection needs	Over ten years since the last surveys to determine distribution, status information, and type of habitat use.	More field surveys are needed to determine current distribution, habitat use and status.	Current insufficient	WDFW

MARGINED SCULPIN (Cottus marginatus)

Conservation Status and Concern

This species is confined to three rivers in southeastern Washington and faces threats to its habitat.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Species of Concern	Sensitive	Yes	G3	S1?	Medium/unknown	Moderate

Biology and Life History

Margined Sculpin is a benthic stream dwelling species. Spawning takes place in May to June. Eggs are deposited under rocks and the males actively guard the nest. Adults may reach about 2.5 inches in length. Food habits are unknown, but most sculpins feed on a variety of invertebrates, including aquatic invertebrates, terrestrial insects, and earthworms, and on young fish and fish eggs.

Image: WDFW

Distribution and Abundance

This species is endemic to Oregon and Washington, and occurs in headwater tributaries of Columbia Basin drainages in the Blue Mountains (northeastern Oregon and southeastern Washington). In Washington it occurs in headwaters of the Walla Walla, Touchet, and Tucannon rivers.

Habitat

Margined Sculpin primarily inhabit pools and slow-moving glides in headwater tributaries where water temperatures normally are less than 66°F. Adults are usually found in deeper and faster water than juveniles. They are generally found in habitats with small gravel and silt substrates and avoid larger substrates (large gravel, cobble, boulders). However, this sculpin appears adaptable to a wide variety of currents and substrates. In areas where it is not competing with other sculpin species, it is found typically in moderate to rapid current on a rubble or gravel substrate.

References

Lee, D. S., C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister, and J. R. Stauffer, Jr. 1980. Atlas of North American freshwater fishes. North Carolina Biological Survey Publication #1980-12, 867pp.

Lonzarich, M. R. 1993. Habitat selection and character analysis of *Cottus marginatus*, the margined sculpin. M.S. thesis, University of Washington, Seattle, WA. 88pp.

Wydoski, R. S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press. Seattle, WA. 322pp.

Margined Sculpin: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Listed as a "Sensitive Species" in Washington. Spotty distribution makes it vulnerable to population decline. Not enough data on distribution and status.	Periodic surveys to monitor status: likely declining.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Loss of habitat from human development merits further surveys and protection of some kind.	Periodic surveys to determine what habitat is currently being used and to document rate of habitat loss.	Current insufficient	WDFW
3	Resource information collection needs	Because of its very limited distribution in SE Washington, data on current population status, distribution and type of habitat use are lacking.	Field surveys are needed to determine current distribution, status, and habitat use.	Current insufficient	WDFW

MOUNTAIN SUCKER (Catostomus platyrhynchus)

Conservation Status and Concern

The status of this species is unknown and it faces threats to its habitat.

Federal Status	State Status F		Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G5	S2S3	Unknown/unknown	Low-moderate

Biology and Life History

Mountain Suckers are mostly riverine and spawn in riffles below pools in late spring-early summer when the water temperature is 52 to 66°F. Limited upstream spawning migrations may occur. Their diet is almost entirely algae and diatoms and they scrape food from rocks with their cartilaginous lower jaws. They, especially juveniles, also consume some invertebrates. They form schools, sometimes with other sucker species. Mountain Suckers are small and may reach a total maximum length of 9 inches.

Photo: from Wydoski and Whitney 2003

Distribution and Abundance

In Washington, this species is restricted to the Columbia River system. Mountain Suckers have been found in the Hanford Reach of Columbia River mainstem, and in Cowlitz, Yakima, Wenatchee, Palouse and Snake rivers. Population size and status are unknown.

Habitat

Mountain Suckers utilize river and stream areas of slow to moderate current and pools. Spawning occurs over gravel riffles. This sucker appears to prefer clear, cold creeks and small to medium rivers with clean rubble, gravel or sand substrate. It may favor pool-like habitats in some areas, and faster water in other regions. They are rarely found in lakes. Young fish usually inhabit slower moving waters in side channels, or weedy backwaters. In some areas, juveniles tend to occur closer to reservoirs than do adults. The species is most abundant where there is some form of cover in the water (used as daytime refuge). This sucker's presence may be a sensitive indicator of native fish and invertebrate assemblages.

References

Hallock. M. 2000. Personal communication. Washington Department of Wildlife, Olympia.

Mongillo, P. E. and M. Hallock. 1999. Field study plan for priority native species, 1999-2003. Washington Department of Fish and Wildlife, Olympia. 15pp.

Moyle, P. B., Williams, J. E. and Wikramanayake, E. D. 1989. Fish species of special concern of California. Final report submitted to CDFG, Inland Fisheries Division. Rancho Cordova, California.

Setter, A. L. 2000. Personal communication. Oregon Department of Fish and Wildlife, Enterprise, OR.

Smith G. R. 1966. Distribution and evolution of the North American catostomid fishes of the subgenus *Pantosteus*, genus *Catostomus*. University of Michigan, Museum of Zoology, Miscellaneous Publication 129. 133pp.

Wydoski, R. S. and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press. Seattle, WA. 322pp.

Mountain Sucker: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Listed as a "State Candidate Species" in Washington. Spotty distribution makes it vulnerable to population decline. Not enough data on distribution and status.	Periodic surveys to monitor status: increasing or declining and to confirm current distribution.	Current insufficient	WDFW
2	Fish and wildlife habitat loss or degradation	Loss of habitat from human development merits further surveys and protection of some kind.	Periodic surveys to determine what habitat is currently being used and to document rate of habitat loss.	Current insufficient	WDFW
3	Resource information collection needs	A paucity of current information on distribution, status, and type of habitat use.	Field surveys are needed to determine current distribution, status and habitat use.	Current insufficient	WDFW

Conservation Status and Concern

This species is only found in western Washington and faces threats from loss of habitat and degradation to water quality.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Monitor	No	G1	S1	Unknown/unknown	Moderate-high

Biology and Life History

Salish Suckers begin spawning in March or April, depending on the water temperature, and spawning can be prolonged until late August. Individuals first spawn at the end of their second year. This species is similar to other species of suckers in that it is a broadcast spawner and it deposits its eggs in riffles. Its life span is only 4 to 5 years in British Columbia, but older individuals are known from Washington. In British Columbia,

Photo: Paul Mongillo, WDFW

the species typically co-occurs with juvenile coho salmon, cutthroat trout, and prickly sculpin. All of these species are capable of being significant predators of young Salish Suckers. Little is known about their diet, especially diet of juveniles. However, they probably have a diet similar to longnose suckers, which consists of a variety of benthic-dwelling aquatic invertebrates and occasionally fish eggs.

Distribution and Abundance

Salish Suckers are currently found only in western Washington and a few streams in British Columbia's lower Frazer Valley. In Washington, they have been found in six watersheds draining to Puget Sound (including Hood Canal), from Nooksack River to Lake Cushman in North Fork Skokomish River. Localities they have been reported in include several Nooksack Basin lowland creeks, Whatcom Lake, Skagit Basin including Sauk and Suiattle rivers, Stillaguamish Basin, including Twin, Chitwood, and Trout lakes, Deep Creek in Snohomish Basin, Green River, and Lake Cushman. Population size and status are unknown.

Habitat

Salish Suckers are benthic dwellers, and mainly found in lowland streams and associated ponds, and in off-channel sloughs and marshes of big rivers, as well as in lakes. They inhabit a variety of water velocities over silt and sand substrates, often in areas with instream vegetation and over-hanging riparian vegetation. They have a preference for slow-moving water in streams and most likely seek off-channel habitats during high stream-flows in winter and spring.

References

Hallock, M. 2005. 2005 State Candidate Listing Proposal for a *Catostomus catostomus* form (Salish sucker). Unpublished WDFW document.

McPhail, J.D. 1987. Status of the Salish sucker, *Catostomus* sp., in Canada. Canadian Field-Naturalist 101:231-236. McPhail, J.D. and E.B. Taylor. 1999. Morphological and genetic variation in Northwestern longnose suckers, *Catostomus* catostomus: the Salish sucker problem. Copeia 4:884-982.

Wydoski, R.S., and R. R. Whitney. 2003. Inland Fishes of Washington. 2nd edition. University of Washington Press, Seattle, WA. 322pp.

Salish Sucker: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Loss of habitat from human development merits further surveys and protection of some kind.	Periodic surveys to monitor status: increasing or declining.	Current insufficient	WDFW
2	Agriculture and aquaculture side effects	Studies show fencing off streams will protect habitat from grazing animals.	B.C. studies show habitat enhancement, fencing and riparian plantings would be helpful.	Current insufficient	WDFW
3	Fish and wildlife habitat loss or degradation	Data show loss of habitat is causing population declines.	B.C. studies show habitat enhancement, fencing and riparian plantings would be helpful.	Current insufficient	WDFW

Conservation Status and Concern

Pygmy Whitefish status in Washington is unknown and it faces threats to habitat and water quality.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Species of Concern	Sensitive	Yes	G5	S1S2	Unknown/unknown	Low-moderate

Biology and Life History

Slow growth, low fecundity and short life cycle characterize Pygmy Whitefish. They frequently are found in large schools of several thousand fish in both rivers and lakes. They spawn at night from late summer to early winter depending on the geographic location and elevation. Spawning occurs in

Image: WDFW

stream riffles or along lake shorelines. Female fecundity ranges from 200 to 1,000 eggs. Average life span is 4 to 7 years, and size is usually less than 6 inches long. In general, males mature earlier and die earlier than females. Diet is primarily zooplankton, but may include macroinvertebrates, crustaceans and fish eggs. This species is considered a glacial relict, is one of the most primitive of coregonines, and has greatest discontinuous range of any North American freshwater fish.

Distribution and Abundance

Washington is at the southern end of Pygmy Whitefish's range. Historically they were known to have occurred in 15 Washington lakes. They currently inhabit nine lakes: Lake Chelan (Chelan County), Crescent Lake (Clallam County), Lake Chester Morse (King County), Lake Cle Elum, Lake Kachess, and Keechelus Lake (Kittitas County), Lake Osoyoos (Okanogan County), and Bead Lake and Lake Sullivan (Pend Oreille County). The six lakes they have been extirpated from are: North Twin Lake (Ferry County), Buffalo Lake (Okanogan County), Diamond Lake, Horseshoe Lake, and Marshall Lake (Pend Oreille County), and Little Pend Oreille Lakes (Stevens County). Population sizes and trends are unknown. They may co-occur with other whitefish species.

Habitat

Pygmy Whitefish normally occupy deep, unproductive lakes where the water temperatures are 50°F or lower, but there have been a few cases where this species was found in small shallow and more productive lakes, and they can also be found in streams. Common in lakes and flowing waters of clear or silted rivers in mountain areas; in western lakes, occurs in waters usually less than 20 feet deep, not changing depth seasonally. Spawners use coarse gravel substrates in shallow areas of streams or lakes.

References

Eschmeyer, P. H., and R. M. Bailey. 1955. The pygmy whitefish, *Coregonus coulteri*, in Lake Superior. Transactions of the American Fisheries Society 84:161-199.

Hallock, M., and P. E. Mongillo. 1998. Washington status report for the Pygmy Whitefish. Washington Department of Fish and Wildlife, Olympia. 20pp.

Heard, W. R., and W. L. Hartman. 1966. Pygmy whitefish, *Prosopium coulteri* in Naknek River system of southwest Alaska. U.S. Fish and Wildlife Service, Fishery Bulletin 65:555-579.

MacKay, W. C. 2000. Status of the pygmy whitefish (*Prosopium coulteri*) in Alberta. Alberta Environment, Fisheries and Wildlife Management Division, and Alberta Conservation Association, Wildlife Status Report 27 Edmonton, Alberta. 16pp.

Repsys, A. 1973. Personal communication. University of Washington, College of Fisheries. Seattle.

Weisel, G. F., D. A. Hansel, and R. I. Newell. 1973. The pygmy whitefish, *Prosopium coulteri*, in western Montana. U.S. Department of Commerce, National Marine Fisheries Service, Fishery Bulletin 71(2):587-596.

Pygmy Whitefish: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Classified as a "Sensitive Species" in Washington.	Periodic surveys to monitor status: increasing or declining.	Current sufficient	WDFW
2	Invasive and other problematic species and genes	It is likely that non-native fish are partially responsible for decline in numbers.	Collection of diet data from other species would help confirm or deny predation on species.	Current insufficient	WDFW

REFERENCES

SECTION A: Alphabetical list of species

Bluntnose Sixgill Shark	6
Bocaccio (Puget Sound/Georgia Basin DPS)	10
Broadnose Sevengill Shark	8
Brown Rockfish	12
Bull Trout - Coastal Recovery Unit	83
Bull Trout - Mid-Columbia Recovery Unit	85
Burbot	92
Canary Rockfish (Puget Sound/Georgia Basin DPS)	14
China Rockfish	. 16
Columbia River Chum Salmon ESU	. 62
Copper Rockfish	. 18
Eulachon (Southern DPS)	. 42
Green Sturgeon (Southern DPS)	. 48
Greenstriped Rockfish	20
Hood Canal Summer Chum Salmon ESU	64
Inland Redband Trout (landlocked populations)	87
Lake Chub	94
Leopard Dace	98
Lower Columbia Chinook Salmon ESU	52
Lower Columbia Coho Salmon ESU	66
Lower Columbia Steelhead DPS	70
Margined Sculpin	104
Middle Columbia Steelhead DPS	73
Mountain Sucker	106
Olympic Mudminnow	102
Ozette Sockeye Salmon ESU	68
Pacific Cod (Salish Sea population)	30
Pacific Hake (Georgia Basin DPS)	. 32
Pacific Herring (Georgia Basin DPS)	34
Pacific Lamprey	44
Pacific Sand Lance	36
Puget Sound Chinook Salmon ESU	. 54
Puget Sound Steelhead DPS	. 75
Pygmy Whitefish	. 110
Quillback Rockfish	22
Redstripe Rockfish	. 24
River Lamprey	46

Salish Sucker	108
Snake River Spring/Summer Chinook Salmon ESU	60
Snake River Basin Steelhead DPS	78
Snake River Fall Chinook Salmon ESU	58
Surf Smelt	38
Tiger Rockfish	26
Tui Chub	96
Umatilla Dace	100
Upper Columbia River Spring Chinook Salmon ESU	56
Upper Columbia Steelhead DPS	81
Walleye Pollock (South Puget Sound)	40
Westslope Cutthroat Trout	90
White Sturgeon (Columbia River)	50
Yelloweye Rockfish (Puget Sound/Georgia Basin DPS)	28

Conservation Status Table

Federal Status

Refers to legal designations under the Federal Endangered Species Act (listed as Endangered, Threatened, or Candidate species, or designated as a Sensitive species).

State Status

The Washington Fish and Wildlife Commission has classified 46 species as Endangered, Threatened or Sensitive, under WAC 232-12-014 and WAC 232-12-011. Other designations include Candidate and Monitor.

PHS (Priority Habitats and Species Program)

A species listed under the PHS program is considered to be a priority for conservation and management and requires protective measures for survival due to population status, sensitivity to habitat alteration and/or tribal, recreational or commercial importance. Management recommendations have been developed for PHS species and habitats, and can assist landowners, managers and others in conducting land use activities in a manner that incorporates the needs of fish and wildlife.

Global (G) and State (S) Rankings: Refers to NatureServe status rankings provided by the Natural Heritage Program. These conservation status ranks complement legal status designations and are based on a one to five scale, ranging from critically imperiled (1) to demonstrably secure (5). The global (G) and state (S) geographic scales were used for the SGCN species fact sheets. For more on the methodology used for these assessments, please see: Methodology for Assigning Ranks - NatureServe.

State Rank: characterizes the relative rarity or endangerment within the state of Washington.

- **\$1** = Critically imperiled
- **S2** = Imperiled
- **S3** = Rare or uncommon in the state vulnerable
- **S4** = Widespread, abundant, and apparently secure i
- **S5** = Demonstrably widespread, abundant, and secure in the State
- **SA** = Accidental in the state.
- **SE** = An exotic species that has become established in the state.
- **SH** = Historical occurrences only are known, perhaps not verified in the past 20 years, but the taxon is suspected to still exist in the state.
- **SNR** or = Not yet ranked. Sufficient time and effort have not yet been devoted to ranking of this taxon.
- **SP** = Potential for occurrence of the taxon in the state but no occurrences have been documented.
- **SR** = Reported in the state but without persuasive documentation which would provide a basis for either accepting or rejecting the report (e.g., misidentified specimen).
- **SRF** = Reported falsely in the state but the error persists in the literature.
- **SU**= Unrankable. Possibly in peril in the state, but status is uncertain. More information is need.
- **SX** = Believed to be extirpated from the state with little likelihood that it will be rediscovered.

SZ = Not of conservation concern in the state.

Qualifiers are sometimes used in conjunction with the State Ranks described above:

- **B** Rank of the breeding population in the state.
- **N** Rank of the non-breeding population in the state.

Global Rank: characterizes the relative rarity or endangerment of the element world-wide.

- **G1** = Critically imperiled globally
- **G2** = Imperiled globally
- **G3** = Either very rare and local throughout its range or found locally (even abundantly at some of its locations) in a restricted range vulnerable
- **G4** = Widespread, abundant, and apparently secure globally
- **G5** = Demonstrably widespread, abundant, and secure globally, though it may be quite rare in parts of its range
- **GH** = Historical occurrences only are known, perhaps not verified in the past 20 years, but the taxon is suspected to still exist somewhere in its former range.
- **GNR** = Not yet ranked. Sufficient time and effort have not yet been devoted to ranking of this taxon.
- **GU** = Unrankable. Possibly in peril range-wide but status uncertain. More information is needed.
- **GX** = Believed to be extinct and there is little likelihood that it will be rediscovered.

Qualifiers are used in conjunction with the Global Ranks described above:

Tn Where n is a number or letter similar to those for Gn ranks, above, but indicating subspecies or variety rank. For example, G3TH indicates a species that is ranked G3 with this subspecies ranked as historic.

- Anthony, J. A., D. D. Robya, and K. R. Turcob. 2000. Lipid content and energy density of forage fishes from the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 248: 53-78.
- Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le, and L. Flostrand. 2008. Use of microsatellites to determine population structure and migration of Pacific herring in British Columbia and adjacent regions. Transactions of the American Fisheries Society 137: 1795-1811.
- Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison. 1,052pp.
- Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6. 275 pp.
- Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 1997. Status of Burbot in Washington State. Wash. Dept. of Fish and Wildlife Research Report. 51pp.
- Bumgarner, J. D., and J. T. Dedloff. 2011. Lyons Ferry complex hatchery evaluation: summer steelhead annual report 2008 and 2009 run year. Washington Department of Fish and Wildlife, Olympia, WA.
- Butler, J. L., M. S. Love, and T. E. Laidig. 2012. A guide to the rockfishes, thornyheads, and scorpionfishes of the northeast Pacific. University of California Press. Berkeley and Los Angeles, CA. 185pp.
- Chittaro, P. M., R. W. Zabel, W. Palsson, and C. Grandin. 2013. Population interconnectivity and implications for recovery of a species of concern, the Pacific hake of Georgia Basin. Marine Biology 160: 1157-1170.
- Columbia Basin White Sturgeon Planning Framework. 2013. Prepared by CRITFC, WDFW and ODFW for the Northwest Power and Conservation Council. R. Beamesderfer and P. Anders (eds). 285pp.
- Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson, and E. E. Holmes. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (*Sebastes paucispinis*), canary rockfish (*S. pinniger*), yelloweye rockfish (*S. ruberrimus*), greenstriped rockfish (*S. elongatus*), and redstripe rockfish (*S. proriger*). Seattle, WA: NOAA Fisheries. 234pp
- Ebert, D. A. 2003. The sharks, rays and chimaeras of California. University of California Press, San Francisco.
- Emmett, R. L., S. A. Hinton, S. L. Stone, and M. E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries Volume II: species life history summaries. National Oceanic and Atmospheric Administration. 334pp.
- Eschmeyer, P. H., and R. M. Bailey. 1955. The pygmy whitefish, *Coregonus coulteri*, in Lake Superior. Transactions of the American Fisheries Society 84:161-199.
- Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-113, 281pp.
- Fradkin, S. C. 2001. Rialto Beach Surf Smelt Habitat Monitoring: Quillayute River Navigation Project. Olympic National Park. 16pp.
- Glasgow, J., and M. Hallock. 2009. Olympic mudminnow (*Novumbra hubbsi*) in the Green Cove Watershed,
 Thurston County, Washington: Distribution and recommendations for protection. Washington Department of
 Fish and Wildlife, Olympia. 18pp.
- Gustafson, R. G., J. Drake, M. J. Ford, J. M. Meyers, and E. E. Holmes. 2006. Status review of Cherry Point Pacific herring (*Clupea pallasii*) and updated status review of the Georgia Basin Pacific herring distinct population segment under the Endangered Species Act. Seattle, WA: U.S. Department of Commerce. 182pp.
- Gustafson, R. G., M. J. Ford, D. Teel, and J. S. Drake. 2010. Status review of eulachon (*Thaleichthys pacificus*) in Washington, Oregon, and California. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-105, 360pp.
- Gustafson, R. G., W. H. Lenarz, B. B. McCain, C. C. Schmitt, W. S Grant, T. L. Builder, R. D. Methot. 2000. Status review of Pacific hake, Pacific cod, and walleye pollock from Puget Sound, Washington. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-44, 275pp.
- Hagen, D. W., G. E. E. Moodie, and P. F. Moodie. 1972. Territoriality and courtship in the Olympic mudminnow (*Novumbra hubbsi*). Canadian Journal of Zoology 50:1111-1115.
- Haggerty, M. J., A. C. Ritchie, J. G. Shellberg, M. J. Crewson, and J. Jalonen. 2009. Lake Ozette Sockeye Limiting Factors Analysis. Prepared for Makah Indian Tribe and NOAA Fisheries in cooperation with Lake Ozette Sockeye Steering Committee, Port Angeles, WA. 565pp.
- Hallock, M. 2005. 2005 State Candidate Listing Proposal for a *Catostomus catostomus* form (Salish sucker). Unpublished WDFW document.

- Hallock, M., and P. E. Mongillo. 1998. Washington status report for the Pygmy Whitefish. Washington Department of Fish and Wildlife, Olympia. 20pp.
- Hannah, R. W. and P. S. Rankin. 2011. Site fidelity and movement of eight species of Pacific rockfish at a high-relief rocky reef on the Oregon Coast. North American Journal of Fisheries Management 31: 483-494.
- Hass, G.R. 1999. Personal communication. University of British Columbia, Vancouver. Cited in Wydoski and Whitney 2003.
- Hayes, M. C., R. Hays, S. P. Rubin, D. M. Chase, M. Hallock, C. Cook-Tabor, C. W. Luzier and M. L. Moser. 2013. Distribution of Pacific lamprey *Entosphenus tridentatus* in watersheds of Puget Sound based on smolt monitoring data. Northwest Science 87(2): 95-105.
- Heard, W. R., and W. L. Hartman. 1966. Pygmy whitefish, *Prosopium coulteri* in Naknek River system of southwest Alaska. U.S. Fish and Wildlife Service, Fishery Bulletin 65:555-579.
- Hughes, G. W., and A. E. Peden. 1989. Status of the Umatilla Dace, *Rhinichthys umatilla*, in Canada. Canadian Field-Naturalist 103:193-200.
- Israel, J. A., and B. May. 2010. Indirect genetic estimates of breeding population size in the polyploidy green sturgeon, *Acipenser medirostris*. Molecular Ecology 19:1058-1070.
- Kendall, A. W., Jr., and A. J. Mearns. 1996. Egg and larval development in relation to systematic of *Novumbra hubbsi*, the Olympic mudminnow. Copeia 3:449-464.
- Kramer, D. E., and V. M. O'Connell. 1995. Guide to northeast Pacific rockfishes: genera *Sebastes* and *Sebastolobus*. Alaska Sea Grant College Program, University of Alaska.
- Lamb, A. and P. Edgell. 2010. Coastal fishes of the Pacific Northwest. Harbour Publishing Co. Ltd. Madeira Park, BC. 335pp.
- Langness, M., P. Dionne, E. Dilworth, and D. Lowry. 2014. Summary of coastal intertidal forage fish spawning surveys: October 2012-September 2013. Washington Department of Fish and Wildlife, Olympia, WA. FPA 14-01 FPA 14-01. 51pp.
- Larson, S., J. Christiansen, D. Griffing, J. Ashe, D. Lowry and K. Andrews. 2010. Relatedness and polyandry of sixgill sharks, Hexanchus griseus, in an urban estuary. Conservation Genetics. 10.1007/s10592-010-0174-9
- Lee, D. S., C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister, and J. R. Stauffer, Jr. 1980. Atlas of North American freshwater fishes. North Carolina Biological Survey Publication #1980-12, 867pp.
- Lonzarich, M. R. 1993. Habitat selection and character analysis of *Cottus marginatus*, the margined sculpin. M.S. thesis, University of Washington, Seattle, WA. 88pp.
- Love, M. S. 2011. Certainly more than you want to know about the fishes of the Pacific coast. Really Big Press. Santa Barbara, CA. 649pp.
- Love, M. S., M. Yoklavich, and L. Thorsteinson. 2002. The rockfishes of the northeast Pacific. University of California Press. Berkeley and Los Angeles, CA. 404pp.
- MacKay, W. C. 2000. Status of the pygmy whitefish (*Prosopium coulteri*) in Alberta. Alberta Environment, Fisheries and Wildlife Management Division, and Alberta Conservation Association, Wildlife Status Report 27 Edmonton, AB. 16pp.
- Matthews, K. R. 1990. A comparative study of habitat use by young-of-the-year, subadult, and adult rockfish on four habitat types in Central Puget Sound. Fishery Bulletin 88: 223-239.
- Matthews, K. R. 1990. "An experimental study of the habitat preferences and movement patterns of copper, quillback, and brown rockfishes (*Sebastes* spp.)." *Environmental Biology of Fishes* 29.3 (1990): 161-178.
- May, B. E., B. J. Writer, and S. Albeke. 2012. Redband Status Update Summary. Prepared by Wild Trout Enterprises, LLC, Bozeman, MT.
- McFarlane, G. A. and R. J. Beamish. 1985. Biology and fishery of Pacific whiting, *Merluccius productus*, in the Strait of Georgia. Marine Fisheries Review 47: 23-34.
- McIntyre, J. D. and B. E. Rieman. 1995. Westslope cutthroat trout. Pages 1-15 in Young, M.K., editor. Conservation assessment for inland cutthroat trout. USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station General Technical Report RM-256, Fort Collins, CO.
- McPhail, J. D. 1987. Status of the Salish sucker, *Catostomus* sp., in Canada. Canadian Field-Naturalist 101:231-236. McPhail, J.D. and E.B. Taylor. 1999. Morphological and genetic variation in Northwestern longnose suckers, *Catostomus*: the Salish sucker problem. Copeia 4:884-982.
- Mongillo, P. E. and M. Hallock. 1999. Field study plan for priority native species, 1999-2003. Washington Department of Fish and Wildlife, Olympia. 15pp.

- Mongillo, P. E., and M. Hallock. 1999. Washington state status report for the Olympic mudminnow. Washington Department of Fish and Wildlife, Olympia, Washington. 36pp.
- Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley, CA. 405pp.
- Moyle, P. B., Williams, J. E. and Wikramanayake, E. D. 1989. Fish species of special concern of California. Final report submitted to CDFG, Inland Fisheries Division. Rancho Cordova, California.
- Muhlfeld, C. C., D. H. Bennett, and B. Marotz. 2001. Fall and winter habitat use by Columbia River redband trout in a small stream in Montana. N. Amer. Jour. Fisheries Management 21:170-177.
- Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel. D. M. Van Doornik, and M. T. Maher. 2006. Historical population structure of Pacific Salmonids in the Willamette River and Lower Columbia River basins. NOAA Tech. Memo. NMFS-NWFSC-73, 311pp.
- National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for the Puget Sound/Georgia Basin Distinct Population Segments of yelloweye and canary rockfish and endangered status for the Puget Sound/Georgia Basin Distinct Population Segment of bocaccio rockfish. Federal Register. pp. 22276-22290.
- NMFS. 2010. Endangered and threatened wildlife and plants: threatened status for Southern Distinct Population Segment of eulachon. Federal Register, 50 CFR Part 223. pp. 13012-13024.
- National Marine Fisheries Service (NMFS). 2013. Federal Recovery Outline Pacific Eulachon Southern Distinct Population Segment. 24pp.
- NMFS, Southwest Region. 2010. Federal Recovery Outline North American Green Sturgeon, Southern Distinct Population Segment.
 - http://www.westcoast.fisheries.noaa.gov/publications/protected_species/other/green_sturgeon/green_sturgeon sdps recovery outline2010.pdf
- National Oceanic and Atmospheric Administration (NOAA). 2009. Pacific hake (*Merluccius productus*) Georgia Basin DPS fact sheet. http://www.nmfs.noaa.gov/pr/pdfs/species/pacifichake_detailed.pdf
- NatureServe Explorer http://explorer.natureserve.org
- Oregon Department of Fish and Wildlife (ODFW) and WDFW. 2014. Studies of Eulachon Smelt in Oregon and Washington. C. Mallette, editor. Oregon Dept. of Fish and Wildlife and Washington Dept. of Fish and Wildlife project completion report to NOAA Fisheries. 159pp.
- Orr, J. W., Wildes, S., Kai, Y., Raring, N., Nakabo, T., Katugin, O., & Guyon, J. (2015). Systematics of North Pacific sand lances of the genus *Ammodytes* based on molecular and morphological evidence, with the description of a new species from Japan. Fishery Bulletin, 113(2).
- Pacunski R. E., W. Palsson, and H. G. Greene. 2013. Estimating fish abundance and community composition on rocky habitats in the San Juan Islands using a small remotely operated vehicle. Olympia, WA: Washington Department of Fish and Wildlife. FPT 13-02 FPT 13-02. 57 p.
- Page, L. M., and B. M. Burr. 2011. Field guide to the freshwater fishes of North America north of Mexico. Peterson Field Guide series. Houghton Mifflin Harcourt, Boston, MA.
- Page, L. M., and B. M. Burr. 2011. Peterson field guide to freshwater fishes, Second Edition. Houghton Mifflin Harcourt, Boston, MA. 688 pp.
- Page, L. M., and B. M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin Co., Boston, MA. 432 pp. Palsson, W.A. 1990. Pacific cod (*Gadus macrocephalus*) in Puget Sound and adjacent waters: Biology and stock assessment. Wash. Dept. Fish. Tech. Rep. No. 112. 137pp.
- Palsson, W. A., T. S. Tsou, G. G. Bargmann, R. M. Buckley, J. E. West, M. L. Mills, Y. W. Cheng, and R. E. Pacunski. 2009. The biology and assessment of rockfishes in Puget Sound. Washington Department of Fish and Wildlife.
- Peden, A. E., and G. W. Hughes. 1988. Sympatry in four species of *Rhinichthys* (Pisces), including the first documented occurrences of *R. umatilla* in the Canadian drainages of the Columbia River. Canadian Journal of Zoology 66:1846-1856.
- Pedersen, M. 1985. Puget Sound Pacific whiting, *Merluccius productus*, resource and industry: an overview. Marine Fisheries Review 47: 35-38.
- Penttila, D. 2005. WDFW Priority Habitat and Species Management Recommendations: Forage fish spawning habitat. Washington Department of Fish and Wildlife. 19pp.
- Penttila, D. 2000. Documented spawning seasons of populations of the surf smelt, *Hypomesus*, in the Puget Sound basin. Washington Department of Fish and Wildlife, Olympia, WA. 36pp.

- Point No Point Treaty Tribes and Washington Department of Fish and Wildlife. 2014. Summer Chum Salmon Conservation Initiative (SCSCI) Five-year Review: Supplemental Report No. 8 of SCSCI An Implementation Plan to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca Region. WDFW, Olympia, WA. 237pp.
- Quinnell, S., and C. Schmitt. 1991. Abundance of Puget Sound demersal fishes: 1987 research trawl survey results. Washington Department of Fisheries Prog. Rep. No. 286, 267pp.
- Robards, M. D., M. F. Willson, R. H. Armstrong, and J. F. Piatt, eds. 1999. Sand lance: a review of biology and predator relations and annotated bibliography. In: U.S. Department of Agriculture FS, Pacific Northwest Research Station, editor. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 327pp.
- Ruckelshaus, M. H., K. P. Currens, W. H. Graeber, R. R. Fuerstenberg, K. Rawson, N. J. Sands, and J. B. Scott. 2006. Independent populations of Chinook salmon in Puget Sound. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-78, 125pp.
- Scholz, A. T. and H. J. McLellan. 2009. Field Guide to the Fishes of Eastern Washington. Eagle Printing, Cheney, Washington. 310pp.
- Scott, W. G., and E. J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada, Bulletin 184. 966pp.
- Seeb, L. W. 1998. Gene flow and introgression within and among three species of rockfishes, *Sebastes auriculatus, S. caurinus,* and *S. maliger*. Journal of Heredity 89:393-403.
- Setter, A. L. 2000. Personal communication. Oregon Department of Fish and Wildlife, Enterprise, OR.
- Sigler, W. F., and J. W. Sigler. 1987. Fishes of the Great Basin: A natural history. University of Nevada Press, Reno, NV. 425pp.
- Small, M. P., J. L. Loxterman, A. E. Frye, J. F. Von Bargen, and C. Bowman. 2005. Temporal and spatial genetic structure among some Pacific herring populations in Puget Sound and the southern Strait of Georgia.

 Transactions of the American Fisheries Society 134: 1329 1341.
- Smith G. R. 1966. Distribution and evolution of the North American catostomid fishes of the subgenus *Pantosteus*, genus *Catostomus*. University of Michigan, Museum of Zoology, Miscellaneous Publication 129. 133pp.
- Staley, K and J. Mueller. 2000. Rainbow trout (*Oncorhynchus mykiss*. Fish and Wildlife Habitat Management Leaflet. Number 13.
- Stick, K. C., A. Lindquist and D. Lowry. 2014. 2012 Washington State herring stock status report. Olympia, WA: Washington Department of Fish and Wildlife. FPA 09-05 FPA 09-05. 97pp.
- Trotter, P. C., B. McMillan, and D. Kappes. 2000. Occurrence of Olympic mudminnow in the east side of Puget Trough. Northwestern Naturalist 81:59-63.
- US Fish and Wildlife Service (USFWS). 2014. Revised draft recovery plan for the coterminous United States population of bull trout (*Salvelinus confluentus*). Portland, Oregon. xiii + 151pp.
- USFWS. 2012. Conservation Agreement for Pacific Lamprey (*Entosphenus tridentatus*) in the States of Alaska, Washington, Oregon, Idaho and California. 57pp.
- USFWS. 2012. Species Fact Sheet, Bull Trout, Salvelinus confluentus. 4pp.
- Waples, R. S., R. P. Jones, B.R. Beckman and G.A. Swan. 1991 Status Review for Snake River Fall Chinook Salmon. NOAA Technical Memorandum NMFS F/NWC-201, 80pp.
- Washington Department of Fish and Wildlife (WDFW), unpublished data
- WDFW. http://wdfw.wa.gov/publications/01219/wdfw01219.pdf
- WDFW. 2004. Washington State Salmonid Stock Inventory. Bull Trout/Dolly Varden. Washington Department of Fish and Wildlife, Olympia, WA. 449pp.
- Weisel, G.F., D.A. Hansel, and R.I. Newell. 1973. The pygmy whitefish, *Prosopium coulteri*, in western Montana. U.S. Department of Commerce, National Marine Fisheries Service, Fishery Bulletin 71(2):587-596.
- Williams, G. D., Andrews, K. S., Katz, S. L., Moser, M. L., Tolimieri, N., Farrer, D. A. and Levin, P. S. (2012), Scale and pattern of broadnose sevengill shark *Notorynchus cepedianus* movement in estuarine embayments. Journal of Fish Biology, 80: 1380–1400. doi: 10.1111/j.1095-8649.2011.03179.x
- Williams, K. R. 1999. Washington westslope cutthroat status report. Washington Department of Fish and Wildlife, Olympia, WA. 14pp. plus Appendices.
- Wydoski, R. S. and R. R. Whitney 2003. Inland Fishes of Washington, second edition. University of Washington Press, Seattle, WA. 322 pp.

Hallock. M. 2000. Personal communication. Washington Department of Wildlife, Olympia. Repsys, A. 1973. Personal communication. University of Washington, College of Fisheries. Seattle.

State Wildlife Action Plan Update

Appendix A-5

Species of Greatest Conservation Need

Fact Sheets

INVERTEBRATES

Conservation Status and Concern
Biology and Life History
Distribution and Abundance
Habitat Needs
Stressors
Conservation Actions Needed

Washington Department of Fish and Wildlife 2015

Appendix A-5 SGCN Invertebrates – Fact Sheets

Table of Contents

What is Included in Appendix A-5	1
MILLIPEDE	2
LESCHI'S MILLIPEDE (Leschius mcallisteri)	2
MAYFLIES	4
MAYFLIES (Ephemeroptera)	4
[unnamed] (Cinygmula gartrelli)	
[unnamed] (<i>Paraleptophlebia falcula</i>)	
[unnamed] (<i>Paraleptophlebia jenseni</i>)	
[unnamed] (Siphlonurus autumnalis)	
[unnamed] (Cinygmula gartrelli)	
[unnamed] (Paraleptophlebia falcula)	4
[unnamed] (Paraleptophlebia jenseni)	4
[unnamed] (Siphlonurus autumnalis)	4
DRAGONFLIES and DAMSELFLIES	7
Family Gomphidae: CLUBTAIL DRAGONFLIES	7
Columbia Clubtail (Gomphus lynnae)	
Pacific Clubtail (Gomphus kurilis)	
White-belted Ringtail (Erpetogomphus compositus)	
SUBARCTIC BLUET (Coenagrion interrogatum)	
STONEFLIES	12
STONEFLIES (Plecoptera)	
Sasquatch Snowfly (Bolshecapnia sasquatchi)	
Northern Forestfly (Lednia borealis)	
Wenatchee Forestfly (Malenka wenatchee)	
Pacific Needlefly (Megaleuctra complicata)	
Cascades Needlefly (Megaleuctra kincaidi)	
Yosemite Springfly (Megarcys yosemite)	
Talol Springfly (Pictetiella lechleitneri)	
Rainier Roachfly (Soliperla fenderi)	
Sasquatch Snowfly (Bolshecapnia sasquatchi)	
Northern Forestfly (Lednia borealis)	
Wenatchee Forestfly (Malenka wenatchee)	
Pacific Needlefly (Megaleuctra complicata)	
Cascades Needlefly (Megaleuctra kincaidi)	
Yosemite Springfly (Megarcys yosemite)	
TAIOLOUMENV PICTENENO PCHIENTEN)	

Rainier Roachfly <i>(Soliperla fenderi)</i>	13
BEETLES	17
HATCH'S CLICK BEETLE (Eanus hatchi)	17
Family Carabidae: GROUND AND TIGER BEETLES	19
Mann's Mollusk-eating Ground Beetle (Scaphinotus mannii)	19
Beller's Ground Beetle (Agonum belleri)	19
Columbia River Tiger Beetle (Cicindela columbica)	19
Siuslaw Sand Tiger Beetle (Cicindela hirticollis siuslawensis)	19
Mann's Mollusk-eating Ground Beetle (Scaphinotus mannii)	19
Beller's Ground Beetle (Agonum belleri)	19
Columbia River Tiger Beetle (Cicindela columbica)	19
Siuslaw Sand Tiger Beetle (Cicindela hirticollis siuslawensis)	19
CADDISFLIES	24
CADDISFLIES (Trichoptera)	24
[unnamed] (Allomyia acanthis)	
[unnamed] (Goereilla baumanni)	
[unnamed] (Limnephilus flavastellus)	24
[unnamed] (Psychoglypha browni)	24
[unnamed] (Rhyacophila pichaca)	24
[unnamed] (Rhyacophila vetina)	24
[unnamed] (Allomyia acanthis)	
[unnamed] (Goereilla baumanni)	24
[unnamed] (Limnephilus flavastellus)	24
[unnamed] (Psychoglypha browni)	
[unnamed] (Rhyacophila pichaca)	24
[unnamed] (Rhyacophila vetina)	24
MOTHS	28
Genus Copablepharon	28
Sand Verbena Moth (Copablepharon fuscum)	
[unnamed] (Copablepharon columbia)	
[unnamed] (Copablepharon mutans)	
[unnamed] (Copablepharon viridisparsa hopfingeri)	
Sand Verbena Moth (Copablepharon fuscum)	
[unnamed] (Copablepharon columbia)	
[unnamed] (Copablepharon mutans)	
[unnamed] (Copablepharon viridisparsa hopfingeri)	
BUTTERFLIES	31
GREAT ARCTIC (Oeneis nevadensis gigas)	
ISLAND MARBLE (Euchloe ausonides insulanus)	
MONARCH BUTTERFLY (Danaus plexippus)	
TAYLOR'S CHECKERSPOT (Euphydryas editha taylori)	
Family Lycaenidae: GOSSAMER WING BUTTERFLIES	
Makah Copper (<i>Lycaena mariposa charlottensis</i>)	
Golden Hairstreak (<i>Habrodais grunus herri</i>)	
Johnson's Hairstreak (<i>Callophrys johnsoni</i>)	
Juniper Hairstreak (<i>Callophrys gryneus</i> Columbia Basin segregate)	
Hoary Elfin (<i>Callophrys polios</i> Puget Trough segregate)	
Puget (Blackmore's) Blue (Icaricia icarioides blackmorei)	

Straits Acmon Blue (<i>Icaricia acmon sp.</i>)	40
Makah Copper (Lycaena mariposa charlottensis)	41
Golden Hairstreak (Habrodais grunus herri)	41
Johnson's Hairstreak (Callophrys johnsoni)	41
Juniper Hairstreak (Callophrys gryneus Columbia Basin segregate)	41
Hoary Elfin (Callophrys polios Puget Trough segregate)	41
Puget (Blackmore's) Blue (Icaricia icarioides blackmorei)	41
Straits Acmon Blue (Icaricia acmon sp.)	41
Subfamily Heliconiinae: FRITILLARY BUTTERFLIES	
Puget Sound Fritillary (Speyeria cybele pugetensis)	48
Valley Silverspot (Speyeria zerene bremnerii)	48
Oregon Silverspot (Speyeria zerene hippolyta)	48
Meadow Fritillary (Boloria bellona toddi)	
Silver-bordered Fritillary (Boloria selene atrocostalis)	48
Puget Sound Fritillary (Speyeria cybele pugetensis)	48
Valley Silverspot (Speyeria zerene bremnerii)	48
Oregon Silverspot (Speyeria zerene hippolyta)	48
Meadow Fritillary (Boloria bellona toddi)	48
Silver-bordered Fritillary (Boloria selene atrocostalis)	48
Family Hesperiidae: SKIPPER BUTTERFLIES	
Propertius Duskywing (Erynnis propertius) western Washington populations only	55
Oregon Branded Skipper (Hesperia colorado Salish Sea segregate)	55
Mardon Skipper (<i>Polites mardon</i>)	55
Sonora Skipper (<i>Polites sonora siris</i>)	
Yuma Skipper (<i>Ochlodes yuma</i>)	
Propertius Duskywing (Erynnis propertius) western Washington populations only	
Oregon Branded Skipper (Hesperia colorado Salish Sea segregate)	
Mardon Skipper (<i>Polites mardon</i>)	
Sonora Skipper (<i>Polites sonora siris</i>)	
Yuma Skipper (Ochlodes yuma)	55
BUMBLE BEES	62
Genus Bombus: BUMBLE BEES	
Western Bumble Bee (Bombus occidentalis)	
Morrison's Bumble Bee (Bombus morrisoni)	
Suckley Cuckoo Bumble Bee (Bombus suckleyi)	
Western Bumble Bee (Bombus occidentalis)	
Morrison's Bumble Bee (Bombus morrisoni)	
Suckley Cuckoo Bumble Bee (Bombus suckleyi)	
MOLLLICKS	
MOLLUSKS Family Oreohelicidae: MOUNTAINSNAILS	66
Chelan Mountainsnail (<i>Oreohelix sp. 1</i>)	
Hoder's Mountainsnail (<i>Oreohelix sp.</i> 1)	
Mad River Mountainsnail (<i>Oreohelix n. sp.</i>)	
Ranne's Mountainsnail (<i>Oreohelix n. sp.</i>)	
Limestone Point Mountainsnail (<i>Oreohelix sp. 18</i> or <i>O. idahoensis baileyi</i>)	
Chelan Mountainsnail (<i>Oreohelix sp. 1</i>)	
Hoder's Mountainsnail (<i>Oreohelix sp.</i> 1)	
Mad River Mountainsnail (<i>Oreohelix n. sp.</i>)	
Ranne's Mountainsnail (<i>Oreohelix n. sp.</i>)	
•• •• •• • · · · · ·	

Limestone Point Mountainsnail (Oreohelix sp. 18 or O. idahoensis baileyi)	66
Family Polygyridae: FORESTSNAILS, DUSKYSNAILS, OREGONIANS, AND HESPERIANS	70
Dry land forestsnail (Allogona ptychophora solida)	70
Washington Duskysnail (<i>Amnicola sp. 2</i>)	70
Columbia Oregonian (Cryptomastix hendersoni)	70
Puget Oregonian (<i>Cryptomastix devia</i>)	
Poplar Oregonian (<i>Cryptomastix populi</i>)	
Mission Creek Oregonian (Cryptomastix magnidentata)	
[unnamed Oregonian] (Cryptomastix mullani hemphilli)	
Dalles Hesperian (Vespericola depressa)	
Dry land forestsnail (<i>Allogona ptychophora solida</i>)	
Washington Duskysnail (<i>Amnicola sp. 2</i>)	
Columbia Oregonian (<i>Cryptomastix hendersoni</i>)	
Puget Oregonian (<i>Cryptomastix devia</i>)	
Poplar Oregonian (<i>Cryptomastix populi</i>)	
Mission Creek Oregonian (<i>Cryptomastix magnidentata</i>)	
[unnamed Oregonian] (Cryptomastix mullani hemphilli)	
Dalles Hesperian (Vespericola depressa)	
Family Vertiginidae	
Hoko Vertigo (<i>Nearctula new sp.</i> or <i>Vertigo new sp.</i>)	
Pacific Vertigo (Vertigo andrusiana)	
Idaho Vertigo (<i>Vertigo idahoensis</i>)	
OTHER TERRESTRIAL SNAILS	
Oregon Megomphix (<i>Megomphix hemphilli</i>)	
Dalles Sideband (<i>Monadenia fidelis minor</i>)	
Crowned Tightcoil (<i>Pristiloma pilsbryi</i>)	
Nimapuna Tigersnail (<i>Anguispira nimapuna new spp.</i>)	
Oregon Megomphix (<i>Megomphix hemphilli</i>)	
Dalles Sideband (<i>Monadenia fidelis minor</i>)	
Crowned Tightcoil (<i>Pristiloma pilsbryi</i>)	
Nimapuna Tigersnail (<i>Anguispira nimapuna new spp.</i>)	
Families: Lymnaeidae and Hydrobiidae	
Shortface Lanx or Giant Columbia River Limpet (Fisherola nuttalli)	
Masked Duskysnail (Lyogyrus sp. 2)	
Olympia Pebblesnail (<i>Fluminicola virens</i>)	
Salmon River Pebblesnail (Fluminicola gustafsoni)	
Ashy Pebblesnail (Fluminicola fuscus)	
Shortface Lanx <i>or</i> Giant Columbia River Limpet (<i>Fisherola nuttalli</i>)	
Masked Duskysnail (<i>Lyogyrus sp. 2</i>)	
Olympia Pebblesnail (Fluminicola virens)	
Salmon River Pebblesnail (Fluminicola gustafsoni)	
Ashy Pebblesnail (Fluminicola fuscus)	
Family Pleuroceridae (Genus Juga): FRESHWATER AQUATIC SNAILS	
Barren Juga (Juga hemphilli hemphilli)	
Dalles Juga (Juga hemphilli dallesensis)	
Brown Juga (Juga sp. 3)	
Three-band Juga (Juga sp. 7)	
One-band Juga (Juga sp. 8)	89

TAILDROPPER SLUGS	93
Bluegray Taildropper (Prophysaon coeruleum)	93
Spotted Taildropper (<i>Prophysaon vanattae pardalis</i>)	93
FRESHWATER BIVALVES	96
Families Unionidae and Margaritiferidae: FRESHWATER MUSSELS	96
California Floater (Anodonta californiensis)	96
Winged Floater (Anodonta nuttaliana)	96
Western Ridged Mussel (Gonidea angulata)	96
Western Pearlshell (Margaritifera falcata)	96
MARINE BIVALVE	100
OLYMPIA OYSTER (Ostrea lurida)	100
MARINE GASTROPOD	102
PINTO ABALONE (Haliotis kamtschatkana)	102
EARTHWORM	104
GIANT PALOUSE EARTHWORM (Driloleirus americanus)	104
REFERENCES	106
SECTION A: Alphabetical list of species	106
SECTION B: Explanation of Terms	
SECTION C: Full List of References	111

What is Included in Appendix A-5

Introduction

Appendix A-5 is one component of the State Wildlife Action Plan (SWAP) Update, and contains information about invertebrates included in our Species of Greatest Conservation Need (SGCN) list for 2015. Included are fact sheets for each of the invertebrates identified as SGCN in the 2015 SWAP. The information provided includes a summary of the conservation concern and conservation status, description distribution and habitat, climate change sensitivity and an overview of key threats and conservation actions needed.

What it means to be an SGCN

The SGCN list includes both animals that have some form of official protection status and those which may be in decline, but are not yet listed as part of either the Federal or State Endangered Species program. One of the purposes of the SWAP is to direct conservation attention to species and habitats *before* they become imperiled and recovery becomes more difficult and costly. Presence on this list does not necessarily mean that conservation attention will be directed towards the animal; rather, that conservation actions for the species are *eligible* for State Wildlife Grants funding, and may be more competitive for other grant programs. It also raises the profile of an animal to a wide audience of conservation partners and may encourage other organizations to initiate projects that may benefit the species.

Climate Vulnerability

Please see Chapter 5 for an explanation of the methodology used to assess climate vulnerability. For a full list of all the SGCN ranks, including a narrative description of sensitivity and references, please see Appendix C.

Explanation of terms used in the document

Please see Section B (page 113) for a description of terms and abbreviations used in this document.

Alphabetical List of Species

For an alphabetical list of all the invertebrates included, please see Section A (page 110).

References

References are provided separately with each fact sheet, and also collectively for all SGCN invertebrates in the REFERENCES section at the end of this document.

MILLIPEDE

LESCHI'S MILLIPEDE (Leschius mcallisteri)

Conservation Status and Concern

Very little is known of this cryptic species, which was discovered and identified in 2004. It has only been detected within a small area in Thurston County.

Federal	State Status PHS		Global	State	Population	Climate
Status			Ranking	Ranking	size/trend	Vulnerability
None	Candidate	Yes	GNR	SNR	Unknown/unknown	N/A

Biology and Life History

This species was discovered and designated as a new genus and species in early 2004. No studies have been conducted.

Distribution and Abundance

Six males and seven female paratypes were collected in February 2004 at and close by McAllister Springs near Olympia, WA. The collection area is located upstream of the Nisqually Wildlife Refuge and just downslope of a housing development situated on a bluff. More recent surveys at the

Photo: W. Leonard

type locality detected several individuals of the species. Actual total distribution of the species is unclear. It has not been detected elsewhere, but the species is cryptic and may be more widely distributed.

Habitat

Specimens were collected in leaf litter along a steep, east-facing slope in the lower Nisqually River Valley. The site was vegetated by mature second-growth forest dominated by bigleaf maple (*Acer macrophylum*), red alder (*Alnus rubrum*), western red-cedar (*Thuja plicata*), and western swordfern (*Polystichum munitum*). It appears to be limited to leaf litter in forest bottoms and perennial springs.

References

Shear, W. A. and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to North America: Leschius mcallisteri, n. gen., n. sp. (Diplopoda: Chordeumatida: Anthroleucosomatoidea). Zootaxa. 609:1-7. http://www.mapress.com/zootaxa/2004f/z00609f.pdf

W. Leonard, WSDOT, pers.comm. K. McAllister, WSDOT, pers.comm.

Leschi's Millipede: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Only a handful of individuals have been found in a localized area with a specific combination of habitat features	Need to establish baseline survey effort beyond current known locations in areas with similar habitat features	Nothing current - new action needed	Both
2	Fish and wildlife habitat loss or degradation	Development on bluff above site location in Nisqually Valley. Area in which <i>L. mcallisteri</i> was found is probably private land	Investigate possibility of extending area protection	Nothing current - new action needed	External

MAYFLIES

MAYFLIES (Ephemeroptera)

Conservation Status and Concern

These mayfly species are generally rare and have very restricted distributions. Mayflies are very sensitive to pollution, and as such are usually only found at high quality, minimally polluted sites. Mayflies are a commonly used index of water quality and aquatic ecosystem health.

COMMON NAME (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
[unnamed] (Cinygmula gartrelli)	None	None	No	G2G3	SNR	Low/unknown
[unnamed] (Paraleptophlebia falcula)	None	None	No	G1G2	SNR	Low/unknown
[unnamed] (Paraleptophlebia jenseni)	None	None	No	G2G4	SNR	Low/unknown
[unnamed] (Siphlonurus autumnalis)	None	None	No	G2G4	SNR	Low/unknown

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
[unnamed] (Cinygmula gartrelli)	Low-moderate				
[unnamed] (Paraleptophlebia falcula)	Low-moderate				
[unnamed] (Paraleptophlebia jenseni)	Low-moderate				
[unnamed] (Siphlonurus autumnalis)	Low				

Biology and Life History

All mayflies are aquatic in their developmental stages. Their lifespan is spent almost entirely undergoing numerous molts. Larval existence is usually three to six months, but can be as short as two weeks or as long as two years. The nymphs are generalists, moving over stones and weeds to graze off bacteria, collecting from sediments or feeding on detritus. Most species are feeders or scrapers. Adults do not eat; they have nonfunctional digestive systems. Unlike most insects, the mayfly typically has two winged stages. It is the only existing insect that molts after getting functional wings. The first stage, the subimago, is a subadult stage typically found perched on shoreline vegetation; it lasts from four minutes to 48 hours (correlated with the lifespan of the species' adult

Siphlonurus lacustris, a close relative of S. autumnalis. Photo: Hectonichus

stage). Soon after it is formed (in most species), the subimago molts to form the imago, the true adult or

reproductive stage. Both subimagos and adults tend to remain along banks at emergence sites. Mayfly eggs are eaten by snails and caddisfly larvae. The nymphs may be eaten by fish, frogs, birds, flies, or water beetles. The subimagos are eaten by fish, birds, dragonflies, water beetles, or other predatory insects. Mating occurs in a swarm, and the eggs are laid as the female skims the water. The eggs sink to the bottom, and develop sticky substances or adhesive disks, depending on the species. Some species are parthenogenic. Adults of most species are short-lived (less than two hours to three days). Some species emerge in the spring while others dominate in autumn. Mayfly dispersal is limited in the larval stage by drainage systems and in adult stages by relatively short life spans and weak flying ability of gravid females. Dispersal at the population level has been little studied. Adult dispersal ability has not been extensively studied; however, several characteristics appear to limit occurrences to a short distance, including weak flying ability, extremely short life cycle, and tendency to remain in the area of emergence. This may partly account for the wide range of variability in some species, since once a population becomes established there is little opportunity for exchange of genetic materials with populations in other drainage systems.

Distribution and Abundance

Cinygmula gartrelli: In Washington, this species occurs in the Ohanapecosh River, Mt. Rainier National Park, Lewis County; and Huckleberry Creek and Ipsut Falls in Mt. Rainier National Park, Pierce County. It was also recently found in Oregon in the Etolius River, Jefferson County.

Paraleptophlebia falcula: In Washington, this rare species occurs in the South Fork Walla Walla River. In Oregon, it occurs in few historical sites in Benton and Union Counties with new localities in South Fork Walla Walla River, Umatilla County.

Paraleptophlebia jenseni: This species is only known from Badger Gulch, Holter Gulch, and Rock Creeks in Klickitat County.

Siphlonurus autumnalis: In Washington, this species occurred historically in Clallam, Grays Harbor, Jefferson, Lewis, and Pierce Counties; it was recently collected in Clallam County.

Habitat

Some mayflies species have very specific requirements. They are most commonly found on firm substrate in streams and lake littoral zones, but some are adapted for soft substrate. Mayfly nymphs are usually microhabitat specialists. Each species survives best on a specific substrate at a certain depth under water with a certain amount of wave action. Some species generally live in medium to large streams. Other species burrow into soft areas where flow is slower, or in areas of lakes and rivers where deposits occur; the particular substrate and burrow depends on the genus. The primitive habitat of mayflies is lentic (still water), even though most extant mayflies live in lotic (flowing water) environments.

C. gartrelli: This species was found at high-altitude creeks, falls, and rivers in Mt. Rainier National Park.

- **P. falcula:** The genus often prefers moderate to fast streams with sand, gravel and detritus substrates.
- **P. jenseni:** P. jenseni is rare and has only been found in one substantial, fast running creek and two of its small, rocky, transient tributaries.
- **S. autumnalis:** This species is associated with medium to large rivers, and has been taken from rocky but somewhat quiet edgewaters along relatively large rivers in the Northwest. It has also been collected at a cold, spring brook in Montana.

References

- Edmunds, G. F. and R. D. Waltz. 1996. Ephemeroptera. Pages 126-163 in R.W. Merritt and K.W. Cummins (editors). An introduction to the aquatic insects of North America. 3rd Edition. Kendall/Hunt Publishers, Dubuque, Iowa.
- Edmunds, G. F., S. L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. University of Minnesota Press, Minneapolis, 330 pages.
- Jacobus L. M. and W. P. McCafferty. 2002. Analysis of some historically unfamiliar Canadian mayflies (Ephemeroptera). The Canadian Entomologist. 134(02): 141-155.
- Jensen, S. L. 1966. The mayflies of Idaho (Ephemeroptera). M.S. thesis. University of Utah.
- McCafferty, W. P., B.C. Kondratieff. 1999. New species of PARALEPTOPHLEBIA (Ephemeroptera: Leptophlebiidae) from Idaho and Washington. Entomological News 110(4): 217-220.
- McCafferty, W. P. and R. L. Newell. 2007. Insecta, Ephemeroptera: range extension and new state records from far western Montana, U.S.A. Check List, 3(3): 260-261.
- Meyer, M. D. and W. P. McCafferty. 2008. Mayflies (Ephemeroptera) of the far western United States. Part 3: California. Transactions of the American Entomological Society 134(3-4):337-430.
- Meyer, M. D. and W. P. McCafferty. 2007. Mayflies (Ephemeroptera) of the far western United States. Part I: Washington. Transactions of the American Entomological Society, 133(1-2): 21-63.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.
- Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis (Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American Naturalist 69(4):551-555. D. Anderson, WDFW, pers.comm.

Mayflies: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
2	Climate change and severe weather	Potential for streams drying up	Determine distribution, population status	Current insufficient	Both
3	Fish and wildlife habitat loss or degradation	Water quality is of extreme importance to aquatic insects	Protect riparian habitats	Current insufficient	Both

DRAGONFLIES and DAMSELFLIES

Family Gomphidae: CLUBTAIL DRAGONFLIES

Conservation Status and Concern

These three dragonflies in the Gomphidae family are SGCN in Washington due to the small number of isolated populations and continued threats to their habitat.

COMMON NAME (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Columbia Clubtail (Gomphus lynnae)	None	Candidate	Yes	G1	S1	Low/unknown
Pacific Clubtail (Gomphus kurilis)	None	Candidate	Yes	G4	S1	Critical/declining
White-belted Ringtail (Erpetogomphus compositus)	None	Candidate	No	G5	S1	Low/unknown
	Climate vulnerability: Moderate-high					

Biology and Life History

Clubtail dragonflies complete a life cycle composed of two main phases: a flightless aquatic larva (nymph stage), which may be continuous for one to two winters, and the adult flight (reproductive stage). They inhabit sites year-round as egg, larval nymph, and adult, typically moving within only a few to several hundred meters of their natal locations. Adults do not seasonally migrate, and die soon after their reproductive summer. Both life stages are predatory; the majority of life cycle is spent as aquatic larvae. Nymphs feed on aquatic invertebrates and possibly small vertebrates (fish, frog and salamander larva). After multiple aquatic instars (gradual metamorphosis) over one or two winters, mature nymphs

White-belted Ringtail Photo: W. Leonard

crawl onto rocks or vegetation and shed their exoskeleton to become a new adult (teneral) in late spring and summer. Adults are aerial predators of smaller insects and similar sized butterflies and moths (Lepidoptera), as well as smaller Odonates. Water temperature influences the timing of emergence from within a year or over two years. Weather influences flight period duration, with wet or cold conditions potentially shortening the flight period and warm, dry conditions promoting the duration and later occurrence dates of the flight period. Male Clubtails seek mates by patrolling a territory that coincides with optimal aquatic habitat for female egg-laying, and hence for larvae. There is usually no courtship behavior. After copulation, females usually hover just above the water of slow moving or gentle current stretches and close to shore while periodically dipping the tail to deposit multiple eggs.

Distribution and Abundance

These species occur in low numbers of small isolated populations (Table 1). For the Columbia Clubtail, only a single population is known in Washington. Only three localities in Washington are known for the Pacific Clubtail, and confirmation is needed for the Thurston County location; a historical record exists from Lake Washington (King County, 1933). The White-belted Ringtail is more widespread throughout the western U.S., but restricted to two known locales in Washington, the extreme northern end of its range.

Table 1. Overall range, counties and estimated number of extant populations in Washington for Dragonfly SGCN.

Species	Range Overall	WA Counties	Populations
Columbia Clubtail	Highly disjunct: E WA; John Day, Owyhee, Malheur rivers in OR	Benton - Yakima River Horn, north of Benton City (1000')	1
Pacific Clubtail	Restricted to N CA–OR Pacific coast and mountains - north to S Puget Trough	Skamania - Bass, Ice House Lakes; Thurston - Black Lake	3?
White-belted Ringtail	Local in S part of Columbia Basin (1000'); CA, ID, OR, NV, AZ, NM, UT, TX	Grant - Crab Creek Benton - Yakima River.	2

Habitat

Research is needed to quantify specific habitat requirements for these species, including aquatic larval substrates, river and stream, or lake and pond characteristics, and other key habitat features.

Columbia Clubtail: Over its range, uses slower-moving, open sandy to muddy, rivers with gravelly rapids in sagebrush-riparian woodland; may be more widespread in Washington.

Pacific Clubtail: At large ponds and lakes in western Washington; in other parts of range, streams and rivers with good currents, sandy to muddy bottoms.

White-belted Ringtail: Open sandy streams/rivers, irrigation ditches, occasionally sink holes; typically in desert country, sagebrush-riparian woodland.

References

Hassall C. and D.J. Thompson. 2008. The effects of environmental warming on Odonata: a review. International journal of Odontology 11:131-153.

Paulson, D.R. 2014. Washington Odonata. Slater Museum of Natural History, University of Puget Sound, Tacoma. Sept 2014. http://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/washington-odonata/

Paulson, D.R. 2009. Dragonflies and damselflies of the West. Princeton University Press, Princeton, NJ. US Forest Service and Bureau of Land Management (USFS-BLM). 2008a. Species fact sheet: Columbia Clubtail (Gomphus lynnae). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.

USFS-BLM. 2008b. Species fact sheet: Pacific Clubtail (Gomphus kurilis). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.

USFS-BLM. 2008c. Species fact sheet: White-belted Ringtail (Erpetogomphus compositus). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.

Family Gomphidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Agriculture and aquaculture side effects	Pesticide and fertilizer runoff into streams	Monitor occurrence waters for chemical contaminants	Nothing current - new action needed	Both
2	Agriculture and aquaculture side effects	Siltation and degradation of stream and bottom habitat used by developing larvae by unsustainable grazing, commercial or recreational uses	Work to improve unsustainable grazing and commercial use practices in waters of known occurrence	Nothing current - new action needed	Both
3	Climate change and severe weather	Increased environmental temperatures may affect life history with unknown consequences	Monitor streams in context of climate changes	Nothing current - new action needed	Both
4	Fish and wildlife habitat loss or degradation	Vulnerable mostly because of extreme rarity of any known populations	Efforts that protect water quality most important to larval development. Use land acquisitions, conservation easements and landowner agreements to protect significant shoreline areas from degradation	Nothing current - new action needed	Both
5	Fish and wildlife habitat loss or degradation	Loss of riparian vegetation that provide shade and perch sites; ameliorates stream temps.	Monitor vegetation around know occurrence sites	Nothing current - new action needed	Both
6	Invasive and other problematic species	Introduced predatory fish species that may not have co-evolved with these species	Monitor streams in context of non-native aquatic species	Nothing current - new action needed	Both

SUBARCTIC BLUET (Coenagrion interrogatum)

Conservation Status and Concern

The Subarctic Bluet is a species of damselfly that is restricted to boreal fens and bogs in the northeastern corner of the state. Only two populations of Subarctic Bluet have been located in Washington.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	None	No	G5	S1	Low/unknown	Moderate-high

Biology and Life History

The Subarctic Bluet is a damselfly in the pond damsel family (Coenagrionidae). Adults mate in dense vegetation; females lay eggs in small slits they cut in aquatic plants and have been observed egg-laying in floating sedge and grass leaves and stems, and emergent grass stems. Eggs develop quickly, and the resulting larvae are aquatic and feed on other aquatic invertebrates. This species overwinters in the larval stage. Adults are also predators that specialize on flying insects. The adult period for this species may be relatively short; adults have been detected at Washington sites in July.

Photo: M. Reese

Distribution and Abundance

The Subarctic Bluet is a boreal species, and ranges across most of Canada and into the western United States in northern Washington and Montana. The species is known from only two sites in Washington, in Ferry and Pend Oreille Counties, between 4500 to 5000 feet in elevation. It may occur in additional boreal bogs and fens in this region. There is no information on population size from either Washington locality.

Habitat

This species depends on boreal bogs and fens, rare habitat types that are restricted to the northeast corner of the state. Within these rare wetlands, Subarctic Bluets use dense sedge and moss mats, and adults also use the shrub ecotone. These habitats are sensitive to disturbance and many activities that impact local hydrology.

References

Paulson, D. 2014. Washington Odonata. Slater Museum of Natural History, University of Puget Sound, Tacoma, Washington. Available at: http://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/washington-odonata/ (Accessed 8 October 2014).
 Paulson, D. 2009. Dragonflies and Damselflies of the West. Princeton Univ. Press, Princeton, NJ. 535 pp.
 US Forest Service and Bureau of Land Management (USFS-BLM). 2011. Species fact sheet: Subarctic Bluet. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.

Subarctic Bluet: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Agriculture and aquaculture side effects	Bog/fen obligate; habitat and species are vulnerable to alteration of local hydrology from logging and road building	Identify bog/fen sites and landowners within species range and develop plans to conserve	Nothing current - new action needed	Both
2	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both

STONEFLIES

STONEFLIES (Plecoptera)

Conservation Status and Concern

Stoneflies generally require cold, clear, running water and are especially sensitive to human disturbance; they are excellent indicators of water quality. An estimated 43 percent of North American stoneflies are vulnerable to extinction, imperiled, or extinct. Adults are weak fliers, and there is a high level of endemism; four of these species have only been found in Washington. Some of these species are restricted to glacier-fed streams, at risk due to climate change.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Sasquatch Snowfly (Bolshecapnia sasquatchi)	None	None	No	G2	SNR	Low/unknown
Northern Forestfly (Lednia borealis)	Candidate	None	No	G3G4	S3S4	Low/unknown
Wenatchee Forestfly (Malenka wenatchee)	None	None	No	G2	SU	Low/unknown
Pacific Needlefly (Megaleuctra complicata)	None	None	No	G3	SU	Low/unknown
Cascades Needlefly (Megaleuctra kincaidi)	None	None	No	G2	SU	Low/unknown
Yosemite Springfly (Megarcys yosemite)	None	None	No	G2	SNR	Low/unknown
Talol Springfly (Pictetiella lechleitneri)	None	None	No	G1G3	SNR	Low/unknown
Rainier Roachfly (Soliperla fenderi)	None	None	No	G2	S1S2	Low/unknown

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
Sasquatch Snowfly (Bolshecapnia sasquatchi)	Moderate-high				
Northern Forestfly (Lednia borealis)	High				
Wenatchee Forestfly (Malenka wenatchee)	Moderate-high				
Pacific Needlefly (Megaleuctra complicata)	Moderate-high				
Cascades Needlefly (Megaleuctra kincaidi)	Moderate-high				
Yosemite Springfly (Megarcys yosemite)	High				
Talol Springfly (Pictetiella lechleitneri)	Moderate				
Rainier Roachfly (Soliperla fenderi)	Moderate-high				

Taxonomic note: The Northern Forestfly (*Lednia borealis*) was recently described from specimens originally identified as *L. tumana*, a Candidate for listing under the Endangered Species Act (ESA). The Talol Springfly (*Pictetiella lechleitneri*) was described by Stark and Kondratieff (2004). Baumann and Potter (2007) determined that *Bolshecapnia sasquatchi* is restricted to British Columbia and Washington; Montana specimens, previously assigned to this species, were described as *B. missiona*. *Soliperla* specimens from Mt. Adams, Skamania County, were originally thought to be *S. fenderi*, but have been reclassified as the type specimens of a new species, *S. cowlitz*.

Biology and Life History

Stoneflies usually live in areas with running water, and are important predators and shredders in aquatic ecosystems. The females lay hundreds or even thousands of eggs in a ball which they initially carry on their abdomens, and later deposit into the water. The eggs typically hatch in two to three weeks, but some species undergo diapause as eggs during the dry season. The nymphs physically resemble wingless adults, but often have external gills, which may be present on almost any part of the body. The nymphs (technically, "naiads") are aquatic and live in the benthic zone of well-oxygenated creeks and lakes. In early stages

Soliperla sierra, a close relative of S. fenderi Photo: B. Stark

(called instars), stoneflies tend to be herbivores or detritivores, feeding on plant material such as algae, leaves, and other fresh or decaying vegetation; in later instars, the nymphs of many species shift to being omnivores or carnivores, and some species become predators on other aquatic invertebrates. The insects remain in the nymphal form for one to four years, depending on species, and undergo from 12 to 33 molts before emerging and becoming terrestrial as adults. Stonefly adults are generally weak fliers and stay close to stream, river, or lake margins where the nymphs are likely to be found. The adults emerge only during specific times of the year and only survive one to four weeks. As adults, very few stonefly species feed but those that do, feed on algae and lichens, nectar, or pollen.

Distribution and Abundance

Sasquatch Snowfly: This species' range includes Washington and British Columbia. In Washington, it is known from Lewis and Whatcom Counties (Ohanapecosh River, Mt. Rainier

National Park, and Razor Hone Creek, near Mt. Baker). British Columbia records are from the Fraser River near Agassiz, and the Similkameen and Skagit rivers in Manning Provincial Park.

Northern Forestfly: The Northern Forestfly, a Washington endemic, is only known from high elevation glacial-fed streams in the Cascades, including Mt. Rainier and North Cascades National Parks, and Mt. Baker-Snoqualmie National Forest.

Wenatchee Forestfly: This species is known only from springs draining into Lake Wenatchee in Chelan County, Washington.

Pacific Needlefly: Megaleuctra species are "always rare". This species is found in the Cascades in Washington, Oregon, and northern California. Washington records include King, Pierce, Lewis, Skamania, and Cowlitz Counties.

Cascades Needlefly: This species is known from a few dozen occurrences from Oregon and Washington. An additional record is available from Lolo Pass, Clearwater County, Idaho and the Flathead River basin in western Montana.

Yosemite Springfly: It is known from Mt Rainier National Park (Fryingpan Creek at Sunrise Road Bridge, Pierce County), Mt. Hood, Oregon, and Mt. Lyell, (Yosemite National Park) California.

Talol Springfly: This species is only known from Carbon River, Mt. Rainier National Park, Pierce County, Washington.

Rainier Roachfly: This species is known from around fifteen occurrences within Mt. Rainier National Park, Pierce County, Washington. The species is presently known only from the Mt. Rainier National Park, but may occur elsewhere.

Habitat

Adults are terrestrial and can be found near aquatic habitats with running water, resting on rocks, debris, and vegetation. As nymphs, stoneflies live in aquatic habitats, mainly along the bottom of cool, clean, flowing waters with relatively high oxygen concentrations, mainly on rocky, stony, or gravel substrates. A few species are found in cold ponds and lakes at high elevations and northern latitudes.

Sasquatch Snowfly: This species is associated with creeks and rivers.

Northern Forestfly: This species has been collected from springs draining into alpine lakes.

Needleflies: These species are restricted to springs, seeps and rheocrenes (springs that flow from a defined opening into a confined channel). *Megaleuctra* species are usually associated with spring seeps and rheocrenes. They inhabit exclusively spring habitats, ranging from small seeps to large flowing springs. Even when it occurs in large springs, it is usually found along the edges instead of out in the area of flow. Water quality must be consistently good and the temperature cold. The nymphs are often found in small, consistently wet seepage areas some distance from nearest the creek, river or lake habitat. The essential habitat for the nymphs is springs or seeps that might not even be visibly flowing.

Wenatchee Forestfly: The Wenatchee Forestfly is found in springs draining into a large lake.

Yosemite Springfly: This species is reported from glacier-fed streams.

Talol Springfly: This species is reported from glacier-fed streams.

Rainier Roachfly: This species occurs in spring-fed seeps and streams (rheocrenes). Nymphs in this genus are generally collected in seeps and in the splash zones of small springs and streams.

References

- Baumann, R. W. and B. C. Kondratieff 2010. The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia, 6(25):315-327. (Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia06-25.pdf)
- Baumann, R.W. and B.P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae) in North America. Baumann, R. W. and D. S. Potter 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162. Available online: http://www2.pms-lj.si/illiesia/Illiesia03-15.pdf
- Illiesia, 9(06):65-93. Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia09-06.pdf
- Jordan, S. F. 2013. Soliperla fender (Jewett 1955). Species Fact Sheet. The Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5 pp
- Kondratieff, B. C. and R. A. Lechleitner. 2002. Stoneflies (Plecoptera) of Mt. Rainer National Park, Washington. Western North American Naturalist 62(4): 385–404.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1.

 NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed: September 22, 2014).
- Stark, B. P. and D. L. Gustafson. 2004. New species and records of Soliperla Ricker, 1952 from western North America (Insecta, Plecoptera, Peltoperlidae). Spixiana 27(2):97-105.
- Stark, B. P. and B. C. Kondratieff. 2004. Pictetiella lechleitneri (Plecoptera: Perlodidae), a new species from Mt. Rainier National Park, Washington, U.S.A. Proceedings of the Entomological Society of Washington 106(4): 747-750.
- US Fish and Wildlife Service (USFWS). 2011. Endangered and threatened wildlife and plants; 12-month finding on a petition to list the Bearmouth mountainsnail, Byrne Resort mountainsnail, and meltwater lednian stonefly as endangered or threatened. Federal Register 76(65): 18684-18701.

Stoneflies: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Ca	scades Needlefly, N	orthern Forestfly, Pacific Nee	edlefly, Rainier Roachfly, Wena	tchee Forestfly	
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
2	Climate change and severe weather	Potential for springs to dry up	Monitor spring/seep habitats	Current insufficient	Both
Sas	squatch Snowfly				
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
Tal	ol Springfly				
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
2	Resource information collection needs	Little life history information	Investigate life history, ecology	Nothing current - new action needed	External
3	Climate change and severe weather	Potential for glacial-fed habitat to dry up	Monitor glacial-fed river habitat	Current insufficient	External
Yo	semite Springfly				
1	Resource Information Collection Needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both

BEETLES

HATCH'S CLICK BEETLE (*Eanus hatchi***)**

Conservation Status and Concern

Hatch's Click Beetle is a SGCN due to its small number of isolated populations, highly limited distribution and range, and use of specialized, highly restricted, and threatened *Sphagnum* moss bog habitat.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G1	S1	Low/declining	Moderate-high

Biology and Life History

Click beetles (Elateridae) have a unique prothorax anatomy that allows them to suddenly flip into the air, emitting a 'click' sound. This behavior is used to right the beetle when on its back and to escape predators. Adult Hatch's Click Beetles are active in the spring, typically on floating mats of Sphagnum moss. Elaterid adults and larvae are known to be carnivorous as well as herbivorous; however, no studies of adult or larval *E. hatchi* diets have been reported. Adults

Photo: T. Loh

are thought to feed within flowers on honey dew, pollen, nectar, and the flowers themselves. Larvae appear to inhabit *Sphagnum* moss mats, and likely predate small insects and require multiple years to develop.

Distribution and Abundance

Known from only four bogs in lowland King and Snohomish Counties; one of these sites is now highly degraded and unlikely to support this beetle. Extensive searches have been made for Hatch's Click Beetle; however, additional surveys in the Puget Trough region are needed. No populations of this species have been estimated.

Habitat

Hatch's Click Beetle is a *Sphagnum* bog obligate species, inhabiting bogs between 0 to 1640 feet in elevation. *Sphagnum* bogs are unique, peat-forming wetlands with vegetation dominated by *Sphagnum* mosses. Bogs are typically small in size and situated in closed depressions within small watersheds, and thus geographically isolated. An ancient habitat, today bogs persist in relict patches that thousands of years ago were part of more broadly occurring muskeg-like vegetation following the retreat of the glaciers at the end of the last ice age. *Sphagnum* bogs make up only three percent of the wetlands in western Washington. Adults have been collected in low, floating *Sphagnum* mats and also encountered in bog shrubs and trees. Larvae have been found near bog margins, above the water line. No formal habitat studies have been conducted for this rare beetle.

References

Bergdahl, J. 1997. Endemic Sphagnum-bog beetles from the Puget Sound Region: Kings Lake and Snoqualmie Bogs, King County, Washington. Northwest Biodiversity Center, Seattle, Washington.

Lane, M. 1971. Key to the genus Eanus. in M. Hatch, Beetles of the Pacific Northwest. University of Washington Publications in Biology. 16: 28-29.

Lane, M. 1938. A new species of the genus Eanus (Coleoptera Elatridae). Pan-Pacific Entomologist. 14(4): 188-191. Martin, R. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchii). Relicense Study T-4. Final report to Puget Sound Energy for FERC Project No. 2150. Hamer Environmental, Mt. Vernon, Washington.

US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet: Hatch's Click Beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.

Hatch's Click Beetle: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Fish and wildlife habitat loss or degradation	Bog/fen obligate; habitat and species are vulnerable to alteration of local hydrology from development	Designation of sites as having unique and important value to fish and wildlife	Current insufficient	Both

Family Carabidae: GROUND AND TIGER BEETLES

Conservation Status and Concern

These four beetle species are SGCN due to the small number of isolated populations, highly limited distribution and range, and dependence on specialized, restricted and threatened habitats.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Mann's Mollusk-eating Ground Beetle (Scaphinotus mannii)	None	Candidate	Yes	GNR	SNR	Low/unknown
Beller's Ground Beetle (Agonum belleri)	None	Candidate	Yes	G3	S 3	Low/unknown
Columbia River Tiger Beetle (Cicindela columbica)	None	Candidate	Yes	G2	SH	Extirpated?
Siuslaw Sand Tiger Beetle (Cicindela hirticollis siuslawensis)	None	Monitor	No	G5T1T2	S1	Critical/unknown

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
Mann's Mollusk-eating Ground Beetle (Scaphinotus mannii)	Moderate-high				
Beller's Ground Beetle (Agonum belleri)	Moderate-high				
Columbia River Tiger Beetle (Cicindela columbica)	Moderate				
Siuslaw Sand Tiger Beetle (Cicindela hirticollis siuslawensis)	Moderate-high				

Biology and Life History

Four Carabidae beetles are designated as SGCN in Washington; two are ground beetles (subfamily Carabinae) and two are tiger beetles (subfamily Cicindelinae). Carabid beetles live on and in the soil; carabid SGCN depend on a narrow range of soil conditions within rare habitat types. Carabids are key predators of the insect world; as both larvae and adults they feed on other insects and, to a lesser extent, plant material. Adults hunt by sight and are fast runners that can quickly subdue their prey. Siuslaw Sand Tiger Beetle, Columbia River Tiger Beetle, and Beller's

Siuslaw Sand Tiger Beetle Photo: R. Lyons, Xerxes Society

Ground Beetle adults generally forage during the day, and at night burrow into soil, sand, or other substrate. Mann's Mollusk-eating Ground Beetle is a slug and snail feeding specialist; adults hunt at

night, taking cover under stones during the day. Carabids undergo complete metamorphosis, which means they have egg, larval, pupal, and adult life stages. Females create shallow burrows in the soil with their ovipositor, where they lay eggs singly; larvae feed and develop, pupation occurs, and adults emerge from these tunnel-like burrows. Thus, soil condition, including texture, moisture, and temperature is a vital element of habitat quality. Carabid beetles typically reproduce annually; adults can live for several years, and larvae may require multiple years for complete development. Mann's Mollusk-eating Ground Beetle and Beller's Ground Beetle are flightless species with highly limited dispersal capability. Adults of both tiger beetle SGCN can fly, but these species too are highly localized and sedentary. All four carabid SGCN inhabit their sites year-round (as egg, larva, pupa and adult).

Distribution and Abundance

Carabid beetle SGCN have restricted ranges and distributions within Washington (summarized in Table 1). Distribution is limited in part by a combination of their dependence on restricted ecological niches, and those niches' location within rare habitat types. Their distribution and abundance is characterized by small numbers of isolated populations. Limited surveys have been conducted in Washington to determine the current distribution of Mann's Mollusk-eating Ground Beetle, Beller's Ground Beetle, and Columbia River Tiger Beetle. However, further surveys are needed to determine their distributions, and locate any extant Washington populations of Columbia River Tiger Beetle and Siuslaw Sand Tiger Beetle. Population sizes have not been determined for these species on any site.

Overall range, WA counties and estimated number of extant populations for carabid beetle SGCN.

Species	Range Overall	Washington Counties	Populations
Mann's Mollusk- eating Ground Beetle	SE WA and NE Oregon: Snake River tributaries	Asotin, Whitman	<10
Beller's Ground Beetle	Disjunct: Queen Charlotte Islands, SW British Columbia (Canada); Puget Sound lowlands, WA; NW Oregon	King, Kitsap, Mason, Skagit, Snohomish, Thurston	20-30
Columbia River Tiger Beetle	SE WA, NE Oregon, Idaho: along the Columbia, Snake, and Salmon Rivers Recent detection: Idaho only	Asotin, Benton, Columbia, Franklin, Garfield, Walla Walla	Extant?
Siuslaw Sand Tiger Beetle	Coastal beaches SW WA south to N California. Recent detections: Oregon only	Pacific	Extant?

Habitat

Carabid beetles occupy a wide variety of habitat types and ecological niches. The four Washington carabid SGCN are habitat specialists; they require soil and substrate texture, temperature, and moisture within narrow ranges, and those conditions must be found within rare habitat types, for example *Sphagnum* bogs or undisturbed and uniquely situated riverine or coastal sands.

Mann's Mollusk-eating Ground Beetle: This species uses shaded moist ground in low elevation (less than 2600 feet) forest and shrub-vegetated springs and damp canyons within the Snake River drainage that are not subject to periodic inundation of water from dams.

Beller's Ground Beetle: This species occurs only in low to mid-elevation (less than 3280 feet) Puget Trough *Sphagnum* bogs; unique, peat-forming wetlands with vegetation dominated by

Sphagnum genus mosses. *Sphagnum* bogs are typically small in size and situated in closed depressions within small watersheds, and thus are geographically isolated. An ancient habitat, today bogs persist in relict patches that thousands of years ago were part of more broadly occurring muskeg-like vegetation. *Sphagnum* bogs make up only three percent of the wetlands in western Washington.

Columbia River Tiger Beetle: This beetle uses well-established riverine sandbars and dunes along the Columbia and Snake River systems that are not inundated by spring floods or high water levels resulting from dam management. These sand habitats are open and only sparsely vegetated with shrubs and herbaceous species.

Siuslaw Sand Tiger Beetle: Inhabits a narrow ecological niche: unvegetated sands at the edge of freshwater outflows on Pacific Coast beaches. A study of this species' habitat in Oregon found adult beetles using firm, flat, moist sand at and near the freshwater edge, including areas upstream of the river mouth and along backwater lagoons and wetlands; and the sloping edge of dryer dunes just above the river's high water mark.

References

- Bartels, P. 1995. Columbia River tiger beetle 1995 survey: Columbia and Snake River, Region Two. Washington Department of Fish and Wildlife, Ephrata.
- Bergdahl, J. 1997. Endemic Sphagnum-bog beetles from the Puget Sound Region: Kings Lake and Snoqualmie Bogs, King County, Washington. Northwest Biodiversity Center, Seattle, Washington.
- Blackburn, M. 2012. Surveys to determine the status of rare Beller's ground beetle (Agonum belleri) and Hatch's click beetle (Eanus hatchii) in suitable bog habitats on FS lands in the Mt. Baker-Snoqualmie and Okanogan-Wenatchee National Forests of Washington. Project completion report to the Interagency Special Status/Sensitive Species Program (ISSSP), US Bureau of Land Management and US Forest Service. 26pp.
- Erwin, T. 2011. eAgra entry: Scaphinotus mannii. Available at http://canopy.lifedesks.org/pages/705 (Accessed 3 October, 2014).
- Labonte, J., D. Scott, J. McIver, and J. Hayes. 2001. Threatened, endangered, and sensitive insects in eastern Oregon and Washington forests and adjacent lands. Northwest Science, Vol. 75, Special Issue.
- Mazzacano, C., S. Jepsen, and S. Hoffman-Black. 2010. Surveys to determine the status of two rare insect species on the Oregon coats: the Siuslaw hairy-necked tiger beetle (Coleoptera: Cicindelidae: Cicindela hirticollis siuslawensis Graves, Krejci, and Graves, 1988) and the Oregon plant bug (Hemiptera: Miridae: Lygus oregonae Knight, 1944). Project completion report submitted to the Interagency Special Status/Sensitive Species Program (ISSSP), US Bureau of Land Management and US Forest Service. 26pp.
- Shook, G. 1981. The status of Columbia River tiger beetle (Cicindela columbica Hatch) in Idaho (Coleoptera: Cicindelidae). Pan-Pacific Entomologist 57(2):359-363.
- US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet: Beller's ground beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2007. Species fact sheet: Siuslaw Sand tiger beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2005. Species fact sheet: Columbia River tiger beetle. Prepared by G. Brenner. Portland, Oregon.

Family Carabidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Со	lumbia River Tiger B	eetle		1	ı
1	Energy development and distribution	Requires narrow range of soil texture and moisture: threatened by inundation of reservoirs on Columbia/Snake Rivers	Where dams remain in rivers, develop timing and duration water level control best management practices to support species	Nothing current - new action needed	Both
2	Resource information collection needs	Knowledge of current distribution is incomplete	Conduct baseline inventory on Snake River, and revisit historic locales and potential habitat on Columbia	Nothing current - new action needed	Resource Information Collection Needs
Ma	nn's Mollusk-eating	Ground Beetle			
1	Energy development and distribution	Requires riparian forest areas threatened by inundation of reservoirs on Snake River	Where dams remain in rivers, develop timing and duration water level control best management practices to support species	Nothing current - new action needed	Both
2	Agriculture and aquaculture side effects	Intensive livestock use may trample the beetle or reduce riparian vegetation and compact soil	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Nothing current - new action needed	Both
3	Resource information collection needs	Lacking information on complete species distribution in WA, ID, and OR	Conduct baseline inventory along Snake River	Nothing current - new action needed	Both
Ве	ller's Ground Beetle				
1	Fish and wildlife habitat loss or degradation	Bog/fen obligate; habitat and species are vulnerable to alteration of local hydrology from development	Designation of sites as having unique and important value to fish and wildlife	Current insufficient	Both
2	Agriculture and aquaculture side effects	Bog/fen obligate; habitat and species are vulnerable to alteration of local hydrology from logging and road building	Leading or participating in land use planning for rural, urban, and forestry lands	Current insufficient	Both
3	Resource information collection needs	Knowledge of current distribution is incomplete	Baseline survey and inventory to understand distribution of fish and wildlife populations	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Siu	slaw Sand Tiger Bee	tle			
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, establish in habitat and stabilize soil, thereby making habitat unsuitable	Using herbicide and mechanical methods to maintain open ground and appropriate soil condition	Nothing current - new action needed	Both
2	Resource Information Collection Needs	Need to determine where extant in WA	Revisit historic locales and search for new populations	Current insufficient	Both

CADDISFLIES

CADDISFLIES (Trichoptera)

Conservation Status and Concern

Caddisflies are aquatic insects. They are very sensitive to water quality and changes in water flow. Certain species have been used as biotic indicators of pollution.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
[unnamed] (Allomyia acanthis)	None	None	No	G2G3	SNR	Low/unknown
[unnamed] (Goereilla baumanni)	None	None	No	G2	SNR	Low/unknown
[unnamed] (Limnephilus flavastellus)	None	None	No	G2	SNR	Low/unknown
[unnamed] (Psychoglypha browni)	None	None	No	G2G4	SNR	Low/unknown
[unnamed] (Rhyacophila pichaca)	None	None	No	G2G3	SNR	Low/unknown
[unnamed] (Rhyacophila vetina)	None	None	No	G2	SNR	Low/unknown

CLIMATE VULNERABILITY RANKING				
Common Name (Scientific name)	Ranking			
[unnamed] (Allomyia acanthis)	High			
[unnamed] (Goereilla baumanni)	High			
[unnamed] (Limnephilus flavastellus)	Moderate-high			
[unnamed] (Psychoglypha browni)	Moderate-high			
[unnamed] (Rhyacophila pichaca)	Moderate			
[unnamed] (Rhyacophila vetina)	High			

Biology and Life History

Caddisflies are closely related to the Lepidoptera (moths and butterflies). They are aquatic in the immature stages. During the day, adults hide in cool, moist environments such as the vegetation along river banks. Few species have actually been observed feeding; they imbibe nectar. The body and wings are covered with long silky hairs (setae) – a distinctive characteristic of the order. Adults live several weeks and usually mate on vegetation or rocks surrounding water. There is generally one complete generation per year, although some species require two years for development and some less than a year. Eggs, in masses numbering up to 800, are laid within a jelly that swells on contact with water. A female may wash off a partially extruded egg mass by dipping her abdomen into water during flight, or

she may place the mass on stones in the water or on aquatic plants just above the water. Young larvae hatch within a few days and most species progress through five instars before emerging as a winged adult. Although most larvae feed on aquatic plants, algae, diatoms, or plant debris, a few are predatory on other aquatic insects, crustaceans, and mollusks, and a few are omnivorous. The larvae play an important role in the aquatic community, reducing plant growth and disposing of animal and plant debris. In some species the larvae form webs of debris for protection, while others form a funnel-like web between stones in running water to catch food. Some protect their bodies with cases,

Rhyacophila acutiloba – a caddisfly in the Rhyacophila genus.
Photo: T. Murray

whereas others spin protective lairs or are free-living. They produce silk from glands on the lower lip (labium), and many herbivorous species spin tubular protective cases that are open at both ends and enlarge as the larvae grow. Sand grains, pebbles, bits of wood or vegetation are added to cases to provide protection and rigidity. In case-bearing forms, the head and thorax protrude from the case, which is pulled along by the abdomen. The larva pupates inside the larval case, which then becomes a cocoon, or inside a specially constructed cocoon. After two or three weeks the pupa bites its way out of the cocoon and swims or crawls to the water surface, using its hair-fringed middle pair of legs. Caddisfly adults sometimes emerge in large numbers, often forming swarms. Adults tend to remain somewhat near the emergence site where oviposition occurs. They tend to disperse shorter distances in dense forest compared with more open vegetation. Although dispersal flights are common, such flights are relatively short and only occur immediately following emergence. Large river caddisflies have been collected over three miles from water.

Distribution and Abundance

Allomyia acanthis: Adults of this species are known from the Cascade Range in Washington and Oregon. Reported from Paradise Ice Caves, Mt. Rainier National Park, Pierce County, Washington. Larvae are undescribed/unknown. *Allomyia* species occur in very small, localized populations, with many isolated mountains inhabited by a single endemic species, and many species in this genus remain undescribed or undiscovered.

Goereilla baumanni: In Washington, this species is known from streams in the Big Spring Picnic Ground on Mt. Spokane, Spokane County. Also reported from spring seepage areas in Montana and Idaho. In all three states, it is always reported in very low abundance.

Limnephilus flavastellus: This species has been recorded in Mason County, and was recently reported from Mt. Rainier National Park, Pierce County, Washington. It is also found in British Columbia, Oregon (Douglas, Klamath, Yamhill Counties). The larvae are undescribed/unknown.

Psychoglypha browni: Recently reported from Mt. Rainier National Park, Pierce County, Washington. Adults are known from Oregon (Clackamas, Klamath, and Lane Counties). The larvae are undescribed/unknown.

Rhyacophila pichaca: This species is recorded from Olympic Hot Springs, Boulder Lake, Washington, Clallam County. Also known from Cascade Head Experimental Forest, Tillamook County, near Otis, Oregon.

Rhyacophila vetina: This species is uncommon in the high Cascades of Washington. It was recently reported from Mt. Rainier National Park, Lewis and Pierce Counties. It has also been reported in Clackamas County, Oregon.

Habitat

Most North American caddisfly species occur in cool, running freshwater, but some also occur in most types of freshwater habitats: spring streams and seepage areas, rivers, lakes, marshes, and temporary pools.

- **A. acanthis:** This species is normally found in very cold, high altitude springs, seeps, and small spring streams up to six feet across. They are often found grazing on the surface or sides of larger rocks in open, sunny areas.
- **G. baumanni:** G. baumanni appears to inhabit organic muck in spring areas. It is currently known from higher altitudes.
- **L. flavastellus:** This species has a broad altitudinal range from low altitude valley ponds to high mountain ponds and lakes, and is tolerant of large temperature variations. It is most abundant in waters without salmonids.
- **P. browni:** This species inhabits depositional areas of streams and large springs in mid- and high altitude localities.
- **R. pichaca:** This species has been found at low and high altitude lakes, possibly along tributaries. Specific habitat information has not been described.
- **R. vetina:** This species is associated with cold springs and spring channels at mid- to high altitudes.

References

- Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultural Experiment Station Technical Bulletin, 134:1-152.
- Clemson University Department of Entomology (J.C. Morse, ed.). 2002. Last Updated 5 September 2006.

 Trichoptera World Checklist. Online. Available: http://entweb.clemson.edu/database/trichopt/index.htm.
- Denning, D. G. 1956. Several new species of western Trichoptera. Pan-Pacific Entomologist 32(2):73-80.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.
- Ruiter, D. E., B. C. Kondratieff, R. A. Lechleitner, and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187.
- Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200.
- Stagliano, D. M., G. M. Stephens, and W. R. Bosworth. 2007. Aquatic invertebrate species of concern on USFS Northern Region lands. Report prepared for USDA Forest Service, Northern Region, Missoula, Montana.
- B. Kondratieff, Colorado State University, pers.comm.
- D. Ruiter, University of Texas, pers.comm.

Caddisflies: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
2	Climate change and severe weather	Drying of streams	Determine distribution, population status	Current insufficient	Both
3	Fish and wildlife habitat loss or degradation	Water quality is of extreme importance to aquatic insects.	Protect riparian habitats	Current insufficient	Both

MOTHS

Genus Copablepharon

Conservation Status and Concern

These four *Copablepharon* moths (Family Noctuidae) are imperiled due to rare habitat types, small number of isolated populations, extremely limited range, and known threats to their habitats. The Sand Verbena Moth was petitioned for listing under the ESA, and the US Fish and Wildlife Service (USFWS) found "the petition presents substantial information indicating that listing the Sand Verbena Moth may be warranted."

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Sand Verbena Moth (Copablepharon fuscum)	In review	Candidate	Yes	G1G2	S1	Low/unknown
[unnamed] (Copablepharon columbia)	None	None	No	GNR	SNR	Critical/declining
[unnamed] (Copablepharon mutans)	None	None	No	GNR	SNR	Critical/declining
[unnamed] (Copablepharon viridisparsa hopfingeri)	None	None	No	GNR	SNR	Critical/declining

CLIMATE VULNERABILITY RANKING								
Common Name (Scientific name)	Ranking							
Sand Verbena Moth (Copablepharon fuscum)	Moderate-high							
[unnamed] (Copablepharon columbia)	Moderate							
[unnamed] (Copablepharon mutans)	Moderate							
[unnamed] (Copablepharon viridisparsa hopfingeri)	Moderate							

Biology and Life History

The Sand Verbena Moth was discovered on a few coastal beach sites on Vancouver Island, British Columbia, Canada, and Whidbey Island, in northwestern Washington, and described as a new species in 1995. The three additional *Copablepharon* moth species were described in 2004. They inhabit small, geographically isolated sand dune complexes in the Columbia River Basin of eastern Washington, rare ecological systems that are threatened by several factors. There has been little study of the biology and life history of these species. Sand Verbena Moth has received some attention from Pacific Northwest biologists; however, even

Sand Verbena Moth larva feeding on host flowers. Photo: N. Page

host plants are not confirmed for the other three species. *Copablepharon* moths complete a single life cycle annually (univoltine). They are sedentary, nocturnal moths that do not stray far from their restricted habitats and host plants. Specialists of well-drained and sandy soils, the larvae burrow into the soil, emerging at night to feed on vegetation. Sand Verbena Moth larvae feed on only a single plant, yellow sand verbena (*Abronia latifolia*) (Family Nyctaginaceae), a regionally rare, perennial species found on coastal dunes and beaches. Adult moths nectar primarily from this plant as well and females lay eggs directly on the flowers. Larvae feed on both flowers and leaves. Adults are present from mid-May through early July, and usually fly during dusk and early evening. Larvae are dormant, burrowed in the sand during winter, reemerging in early-spring to feed and then pupate. *C. columbia* adults occur in early-June; *C. mutans* adults in late August and early September; and *C. viridisparsa hopfingeri* flies in July and August.

Distribution and Abundance

The distributions of these species are limited by their dependence on rare and highly restricted ecological systems. An endemic of Salish Sea sandy coastal sites, the Sand Verbena Moth is known from only 10 sites; five on Vancouver Island, British Columbia, Canada, and five in Washington along the eastern edge of the Straits of Juan de Fuca (San Juan, Island, Jefferson, and Clallam Counties). Sand Verbena Moth is the only *Copablepharon* species known from west of the Cascades Mountains. Recent efforts have been made to locate additional populations within and outside of this area.

C. columbia, C. mutans, and C. viridisparsa hopfingeri are each restricted to a small number of sand dune sites in the semiarid Columbia Basin in eastern Washington. C. columbia is known from only a single sand dune complex, located on the southwest shore of Moses Lake (Grant County), and despite extensive sampling in this region, most specimens have been collected from a single dune within this site. C. mutans has been found in two sand dune areas along the Columbia River: near the Wanapum Dam (Grant County) and within the US Department of Energy Hanford site (Benton County). C. viridisparsa hopfingeri historically occurred in sand dunes along the Columbia River from Trail, British Columbia, Canada to Wenatchee, Washington. However, the only recent records are from Bridgeport State Park (Okanogan County) and Fort Spokane State Park (Lincoln County).

Habitat

Copablepharon moths are habitat specialists that rely on loose, well-drained soils, especially sand. They are restricted to active (non-stabilized) sandy sites, coastal sand beaches and spits for Sand Verbena Moth, and for the three other taxa, inland sand dunes in an arid shrub-steppe setting. The sands in all cases are glacially derived, and wind action provides soil disturbance that supports native vegetation. Beach and sand dune sites that have been stabilized from introduced plants or by other actions typically lose much of their native vegetation. These sand substrate habitats are rare in the Pacific Northwest. Additional habitat parameters are known for Sand Verbena Moth, which has received some study; this moth persists only on sites with large, dense, flowering patches of yellow sand verbena.

References

- COSEWIC, 2003. COSEWIC Assessment and Status Report on the Sand Verbena Moth Copablepharon fuscum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 39 pp.
- Gibble, W. and J. Fleckenstein. 2013. *Copablepharon fuscum* (sand-verbena moth) and *Abronia latifolia* (yellow sand-verbena) Washington State surveys. Report prepared for US Fish and Wildlife Service. University of WA Botanic Gardens, Seattle and WA Department of Natural Resources, Olympia. Natural Heritage Report 2013-02.
- Hallock, L., R. Haugo, and R. Crawford. 2007. Conservation strategy for Washington inland sand dunes. WA Department of Natural Resources, Olympia. Natural Heritage Report 2007-05.

Lafontaine J. D., Crabo L. G., Fauske G. A. (2004) Genus Copablepharon. pp.146–180 in: Lafontaine (2004), Noctuoidea: Noctuidae (part) – Agrotini. In: Hodges RW (Ed.) The Moths of North America. Fascicle 27.1. The Wedge Entomological Research Foundation, Washington, 394 pp.

Pacific Northwest Moths. 2014. Western WA Univ. Bellingham. Available at: http://pnwmoths.biol.wwu.edu/ Troubridge, J. and L. Crabo. 1995. A new species of Copablepharon (Lepidoptera: Noctuidae) from British Columbia and Washington. J. Entomol. Soc. Brit. Columbia. 92: December. pp. 87-90.

USFWS. 2011. US Department of the Interior, Fish and Wildlife Service. Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List the Sand Verbena Moth as Endangered or Threatened. Federal Register Vol. 76, No. 33: 9309-9318.

WildEarth Guardians. 2010. Petition to list the Sand Verbena Moth (*Copablepharon fuscum*) under the US Endangered Species Act. Submitted to the U.S Secretary of Interior February 4, 2010.

Genus Copablepharon: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Sai	nd Verbena Moth				
1	Climate change and severe weather	Populations located adjacent to marine waters- that are rising	Evaluate landscape and develop plan to increase habitat area and habitat heterogeneity in currently occupied sites and within occupied landscapes	Nothing current - new action needed	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete natives and otherwise make habitat unsuitable	Using herbicide and mechanical methods to maintain open sand dunes	Nothing current - new action needed	Both
Co	pablepharon columb	pia			
1	Invasive and other problematic species	Sand dune obligate: dunes are being stabilized by invasive species, especially cheatgrass	Eradicate cheatgrass and other invasive plants from dune systems	Nothing current - new action needed	Both
Co	pablepharon mutan	S			
1	Invasive and other problematic species	Sand dune obligate: dunes are being stabilized by invasive species, especially cheatgrass	Eradicate cheatgrass and other invasive plants from dune systems	Nothing current - new action needed	Both
Co	pablepharon viridisp	arsa hopfingeri			
1	Invasive and other problematic species	Sand dune obligate: dunes are being stabilized by invasive species, especially cheatgrass	Eradicate cheatgrass and other invasive plants from dune systems	Nothing current - new action needed	Both

BUTTERFLIES

GREAT ARCTIC (Oeneis nevadensis gigas)

Conservation Status and Concern

A Pacific Northwest endemic, this butterfly has been found on a single site within the United States, in northwestern Washington; it also occurs in southwestern British Columbia, and may occur on other sites with similar habitat. It is a SGCN due to its restricted range, distribution, and habitat, and many threats to its grassland-forest edge habitat.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G5TU	SH	Critical/unknown	Low-moderate

Biology and Life History

The Great Arctic, a member of the Satyr (Satyrinae) butterfly subfamily, is a large tawny brown butterfly with a bark-like patterned ventral hindwing, such that when perched they are quite camouflaged. Great Arctic belongs to a group of butterflies, the arctics and alpines, that inhabit far northern and alpine climes. One unusual aspect of their life history is a life cycle, from egg to adult that spans two years. The life history of Great Artic is not well known. Adults are present in June and July, and females lay eggs on unknown species of grasses where larvae develop over two years; the timing and location of larval and pupal stages are unknown. This two-year life cycle is synchronized amongst individuals and results in adults mostly occurring in evennumbered years. Males exhibit territorial flight behaviors of

Photo: M. Patterson

perching and patrolling, and are known to congregate on ridges and hilltops, a behavior called "hilltopping". This butterfly's habits of jerky flights through open forest and perching on trees where they are concealed makes them difficult to detect.

Distribution and Abundance

The species occurs in British Columbia, primarily on Vancouver Island, with a few sites in the mainland Coast Range, and a single site known from Washington, on Orcas Island (San Juan County) in the northwestern portion of the state. Recent efforts to relocate Great Arctic on Orcas Island have been inconclusive; WDFW surveyors had fleeting observations of unidentified but similar looking butterflies, and located additional potential habitat for future survey. If this butterfly persists in Washington, population sizes are likely small.

Habitat

The Great Arctic inhabits forest openings, meadow edges, and rocky slopes and outcrops from sea level to mid-elevations. Aside from dependence on specific but unknown grasses and forest edge ecotone, little is known of their habitat requirements.

References

Dornfeld, E. J. 1980. Butterflies of Oregon. Timber Press, Forest Grove, Oregon. 276 pp.

Guppy, C. and J. Shepard. 2001. Butterflies of British Columbia: including Western Alberta, Southern Yukon, The Alaska Panhandle, Washington, Northern Oregon, Northern Idaho, and Northwestern Montana. University of British Columbia Press, Vancouver, B.C.

Pyle, R. 1989. Washington butterfly conservation status plan. WDFW. Olympia. 216pp.

Great Arctic: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection Needs	Current status and distribution in WA unknown	Survey historic locale and other potential sites	Current insufficient	WDFW
2	Invasive and other problematic species	Forest encroachment due to long-term fire suppression has reduced amount and quality of habitat. Host plant is a grass, and species utilizes open forest and forest edge	Remove invading trees and shrubs	Nothing current - new action needed	Both

ISLAND MARBLE (Euchloe ausonides insulanus)

Conservation Status and Concern

The Island Marble is a rare butterfly, restricted to two San Juan Islands. Petitioned for listing under the ESA in 2012, the USFWS found "listing the island marble butterfly as an endangered species may be warranted.".

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
In review	Candidate	Yes	G5T1	S1	Critical/declining	Moderate-high

Biology and Life History

The Island Marble is a univoltine butterfly; the adult flight period extends from approximately mid-April through late June. Adults feed on floral nectar, and more than 10 plant species have been documented as nectar sources, primarily of the mustard family (Brassicaceae). Species that serve as larval hosts include field mustard (*Brassica campestris*), tall tumble-mustard (*Sisymbrium altissimum*), and Menzies pepper-grass (*Lepidium virginicum* var. menziesii). Adults regularly travel from their natal patches and have been observed flying a mile or more. Island Marble females lay eggs on the flowers of specific mustard species, and when egglaying are selective about individual plants, location within mustard

Photo: T. Hanson

patches, and at the micro-scale, flower phenology and the location on plants. Larvae feed on flowers, pedicels and developing fruits through five growth stages (instars) before leaving the host plant and making their way through the plant canopy in search of pupation sites. Pupation sites are located above the ground on senesced grasses or other low vegetation, within 25 feet of their hostplant. This species spends the majority of its annual life cycle (July to April), including winter as a pupa (chrysalis). Larval survival is low (six percent to fifth instar), with threats including predation (especially by spiders), browsing deer, human disturbance, and weather events.

Distribution and Abundance

The Island Marble was found in a total of four distinct populations at 52 sites on San Juan and Lopez islands. It was originally known from only 14 specimens collected on Vancouver and Gabriola Islands in southwestern British Columbia, between 1861 and 1908. It was believed extinct, and then rediscovered at the San Juan Island National Historical Park in 1998, and formally described in 2001. WDFW surveys found that most Island Marble sites and populations discovered early on are now extinct. The sole definitively extant population persists with an estimated 50 to 100 adults on the south end of San Juan Island.

Habitat

The Island Marble inhabits open grasslands, disturbed sites, and herbaceous or sparsely vegetated habitats including native prairie, fields and pastures, sand dunes, gravel pits, and marine beach and lagoon margins where their annual hostplants persist. Extensive research has been conducted on the host patch characteristics selected by females for egg-laying.

References

- Fleckenstein, J. and A. Potter. 1999. 1997, 1998 Project summary Puget prairie butterfly surveys. Washington Department of Natural Resources and Washington Department of Fish and Wildlife, Olympia, WA.
- Guppy, C. and J. Shepard. 2001. Butterflies of British Columbia: including Western Alberta, Southern Yukon, The Alaska Panhandle, Washington, Northern Oregon, Northern Idaho, and Northwestern Montana. University of British Columbia Press, Vancouver, B.C.
- Lambert, A.M. 2011. Natural history and population ecology of a rare pierid butterfly, *Euchloe ausonides* insulanus Guppy and Shepard (Pieridae). PhD Thesis, University of Washington, 199 pp.
- Potter, A., T. Hanson, and S. Vernon. 2011. Surveys for the island marble butterfly (*Euchloe ausonides* insulanus) in San Juan County, Washington, 2010. Washington Department of Fish and Wildlife, Olympia, Washington.
- USFWS. 2014. Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List the Island Marble Butterfly as an Endangered Species. Federal Register Vol. 79, No. 160: 49045-49047.
- Xerces The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, *Euchloe ausonides* insulanus (Guppy and Shepard, 2001) as an endangered species under the US endangered species act. Portland, OR. Submitted August 22, 2012.

Island Marble: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Invasive and other problematic species	Black-tailed deer abundance and extensive herbivory of hostplants and eggs/larvae	Erect deer-exclusion fences in areas of habitat	Current insufficient	Both
2	Agriculture and aquaculture side effects	Development of commercial fields of butterfly's host within area occupied, that serve as ecological traps	Consider planning for zones that would exclude large- scale farming of hostplant as a crop	Nothing current - new action needed	Both

MONARCH BUTTERFLY (Danaus plexippus)

Conservation Status and Concern

The Monarch butterfly faces significant threats in both summer and winter habitats, and action is needed to restore populations. Western Monarchs, including those breeding within Washington, have declined by more than 50 percent since 1997.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
In review	None	No	G4	S4	Low/declining	Moderate

Biology and Life History

Monarchs, once common throughout the United States, undertake a spectacular multi-generational migration of thousands of miles between their northern breeding areas and overwintering areas in interior montane Mexico and coastal California. Most Monarchs that breed west of the Rocky Mountains, including in Washington State, overwinter in California. The life cycle of the Monarch butterfly is directly intertwined with their milkweed host (genus *Asclepias*). Monarchs lay their eggs on milkweed species, and resulting larvae and pupae develop on these plants. The milkweed plants' chemical defense compounds are accumulated in Monarch larvae, pupae, and adults

Photo: D. Ramsey

and used to defend against their predators. The duration of complete development (from egg to adult) is dependent on weather conditions and can vary from 25 days to seven weeks. Like most butterflies, Monarch adults rely on floral nectar for nutrition. Although Monarchs are dependent on temperate zones for reproduction, the adults cannot survive freezing temperatures. Late summer adults undergo a physiological transformation to fat-storing, non-reproductive butterflies. They commence movements south (often in groups) to overwintering sites, covering an average of 25 to 30 miles per day, stopping at night, to feed, and during inclement weather. During spring migration, Monarchs typically do not travel in groups. They make their way north through subsequent generations until late summer.

Distribution and Abundance

Monarchs occur throughout most of the United States, southern Canada, and northern Mexico. In Washington, they are found east of the Cascades where milkweed occurs. Estimates of the historic California wintering population range from 1 million to 10 million butterflies. Monarchs have undergone an enormous decline in numbers in both eastern and western populations. The California overwintering population dropped from an estimated 1.2 million butterflies in 1997 to 200,000 in 2013. The number of Monarchs in Washington State is relatively low. Milkweeds are patchily distributed within the Columbia Basin. Monarchs migrating south through Washington often concentrate along the large river courses of the Columbia and Snake Rivers.

Habitat

Monarchs breed and travel through Washington but do not overwinter in the state. Monarchs require secure patches of milkweed and nectar resources during breeding, roosting sites and safe travel corridors for migration. Milkweeds and Monarchs in Washington occur in weedy fields and sparsely vegetated habitats, typically near wetlands or riparian areas. Southbound travel corridors, often river courses, need abundant late season nectar and trees for roosting at night and during periods of inclement weather.

References

Center for Biological Diversity, Center for Food Safety, The Xerces Society, and L. Brower. 2014. Petition to protect the monarch butterfly (*Danaus plexippus* plexippus) under the Endangered Species Act. Submitted 26 August. 159pp.

Monroe, M., D. Frey and S. Stevens. 2014. Western monarch Thanksgiving count data 1997-2013. Available from: http://www.xerces.org/butterfly-conservation/western-monarch-thanksgiving-count/ Accessed 20 October 2014.

Oberhauser, K. and M. Solensky, eds. 2004. The Monarch Butterfly: Biology and Conservation. Cornell University Press.

Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA.

Monarch Butterfly: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Out of date and incomplete information on distribution	Conduct inventory and revisit historic locales (E WA)	Nothing current - new action needed	Both
2	Education needs	Hostplants are often targeted for removal by herbicide and mechanical methods	Habitat management planning	Nothing current - new action needed	Both

TAYLOR'S CHECKERSPOT (Euphydryas editha taylori)

*See Appendix B for a range and potential habitat distribution map

Conservation Status and Concern

This subspecies is currently restricted to a small scattering of eight populations in Washington, a single population in British Columbia, and two populations in Oregon. The decline of Taylor's Checkerspot has accompanied the loss of open prairie and grassland habitats. Taylor's Checkerspot was listed by the Washington Fish and Wildlife Commission as endangered in 2006, and listed endangered federally by the USFWS in 2013.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
Endangered	Endangered	Yes	G5T1	S1	Critical/stable	Moderate-high

Biology and Life History

Taylor's Checkerspot, a subspecies of Edith's Checkerspot, is a medium-sized butterfly with a striking checkered pattern of orange to brick red, black and cream. They complete one life cycle each year, and inhabit their sites year-round as eggs, larvae, pupae and adults. Adults emerge from pupation in the spring and feed on floral nectar from a variety of plants, often specializing on a few plant species. Adults mate and females subsequently lay eggs in clusters on plants in the family Plantaginaceae, primarily English plantain

Photo: WDFW

(*Plantago lanceolata*) and members of the Scrophulariaceae, primarily harsh paintbrush (*Castilleja hispida*). Eggs hatch in eight to nine days, and the resulting caterpillars (larvae) create webbing and feed communally through the spring on the hostplant species. Larvae enter a dormant phase (diapause) in late June to early August (exact timing dependent upon site conditions) when hostplants are no longer palatable. Larvae often diapause in a sheltered location under rocks, logs, or litter. The diapause phase lasts from summer until late winter (late January to late March). Upon breaking diapause, Checkerspot larvae resume feeding more broadly on oviposition plants and additional food sources (including sea blush (*Plectritis congesta*) and blue-eyed Mary (*Collinsia parviflora*). After spending nine to 10 months as larvae, they progress into pupae in late March through early May. Adults emerge two weeks later and live for a few days to two weeks.

Distribution and Abundance

In Washington, the species was historically found on over 80 grassland sites from southeastern Vancouver Island, British Columbia through the southern Willamette Valley in Oregon. Taylor's Checkerspot is now restricted to a handful of populations; six populations are found in Clallam County on the northeastern Olympic Peninsula, and a single population persists in the south Puget Sound region, located on the Joint Base Lewis-McChord (JBLM). Efforts are currently underway to reestablish the butterfly on three south Sound sites. The Clallam County sites have populations of 1,000 or more butterflies on two sites, with more modest numbers at four others. The JBLM site has been estimated at >10,000 individuals.

Habitat

Taylor's Checkerspot inhabits short-stature grasslands in low-elevation prairies and meadows, old forest clearings, coastal meadows and stabilized dunes, and montane meadows, and balds. A study in Oregon found that Taylor's Checkerspots selected habitat for egg-laying that occurred within high cover of short-stature native bunchgrasses and adult nectar resources, indicating that females select egg-laying sites based on habitat condition. The British Columbia study population had multiple hostplant species available and females' selection of egg-laying sites in this environment was influenced by hostplant phenology and condition. Characteristics of egg-laying habitat consistently identified in the British Columbia and three Olympic Peninsula populations were abundance (number or percent cover) and density of hostplants.

References

- Grosboll, D. N. 2011. Taylor's Checkerspot (*Euphydryas editha taylori*) oviposition habitat selection and larval hostplant use in Washington State. M.E.S. Thesis, The Evergreen State College, Olympia. 77 pp.
- Page, N., P. Lilley, J. Heron, and N. Kroeker. 2009. Distribution and habitat characteristics of Taylor's Checkerspot on Denman Island and adjacent areas of Vancouver island (2008). Report prepared for British Columbia Ministry of Environment and Parks Canada. Raincoast Applied Ecology, Vancouver. 32 pp.
- Severns, P. M. and A. D. Warren. 2008. Selectively eliminating and conserving exotic plants to save an endangered species from local extinction. Animal Conservation 11:476-483.
- Severns. P. M and D. Grosboll. 2010. Patterns of reproduction in four Washington State populations of Taylor's checkerspot (*Euphydryas editha taylori*) during the spring 2010. Report submitted to the Nature Conservancy. 81 pp.
- Stinson, D. W. 2005. Washington State status report for the Mazama pocket gopher, streaked horned lark, and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129 pp.
- USFWS. 2013. Endangered and threatened wildlife and plants; determination of endangered status for Taylor's Checkerspot butterfly and threatened status for the streaked horned lark; final rule. Federal Register 78 (192):61451-61503.

Taylor's Checkerspot: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both
3	Invasive and other problematic species	Trees and shrubs encroaching on habitat in forest matrix sites, primarily within Clallam Co, due to long-term fire suppression	Remove invading trees and shrubs	Current insufficient	Both
4	Fish and wildlife habitat loss or degradation	Only a few, small and disjunct populations remain in the south Sound region.	Reintroduce at restored prairie sites	Current sufficient	WDFW
5	Fish and wildlife habitat loss or degradation	Military training on JBLM that is poorly timed or placed and significantly impacts populations	Develop best management practices for areas occupied by butterfly within JBLM	Current insufficient	Both

Family Lycaenidae: GOSSAMER WING BUTTERFLIES

Conservation Status and Concern

Seven lycaenid butterflies were recognized as SGCN due to their rare and restricted hostplants and habitat types, small number of isolated populations, highly limited range and distribution, and threats to their habitat.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Makah Copper (Lycaena mariposa charlottensis)	None	Candidate	Yes	G5T5	S2	Low/declining
Golden Hairstreak (Habrodais grunus herri)	None	Candidate	Yes	G4G5	S1	Critical/declining
Johnson's Hairstreak (Callophrys johnsoni)	None	Candidate	Yes	G3G4	S2S3	Low/unknown
Juniper Hairstreak (Callophrys gryneus Columbia Basin segregate)	None	Candidate	Yes	G5TU	S2?	Low/unknown
Hoary Elfin (Callophrys polios Puget Trough segregate)	None	Monitor	No	G5T2T3	S2S3	Critical/declining
Puget (Blackmore's) Blue (Icaricia icarioides blackmorei)	None	Candidate	Yes	G5T3	S2	Low/declining
Straits Acmon Blue (Icaricia acmon sp.)	None	None	No	G5T?	SNR	Critical/declining

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
Makah Copper (Lycaena mariposa charlottensis)	Moderate-high				
Golden Hairstreak (Habrodais grunus herri)	N/A				
Johnson's Hairstreak (Callophrys johnsoni)	Moderate-high				
Juniper Hairstreak (Callophrys gryneus Columbia Basin segregate)	Moderate				
Hoary Elfin (Callophrys polios Puget Trough segregate)	Low-moderate				
Puget (Blackmore's) Blue (Icaricia icarioides blackmorei)	Alpine populations - High Low elevation populations - Low-moderate				
Straits Acmon Blue (Icaricia acmon sp.)	Moderate-high				

Taxonomic note: Genera synonyms: Hairstreak *Callophrys = Mitoura*; Elfin *Callophrys = Incisalia*; Blue *Icaricia = Plebejus*; Straits Acmon Blue was discovered in 2005.

Biology and Life History

The Lycaenidae butterfly family consists of small and often brightly colored species with the common names: copper, hairstreak, elfin, and blue. Lycaenid butterfly SGCN complete a single life cycle annually (univoltine), except Straits Acmon Blue which has two generations per year (spring and late summer). All are sedentary butterflies and do not migrate; instead, the species inhabits sites year-round (as egg, larva, pupa and adult), typically moving within only a few hundred yards of their natal locations. Adults emerge from their chrysalids (pupae) during species-specific time periods (See Table 1). Males begin emergence first, followed by females; late season individuals are

Hoary Elfin perched in kinnikinnick on south Puget Sound prairie. Photo: R. Gilbert

primarily or solely females. Weather influences butterfly emergence and the flight period duration, with wet or cold conditions potentially delaying emergence, and warm, dry conditions promoting earlier emergence. Male lycaenids seek mates using patrolling patterned flight or perching on vegetation in select spots and darting out to inspect passing butterflies. Females search for egg-laying sites by slowly flying and hovering above hostplant vegetation, and then landing and crawling to inspect vegetation before depositing eggs singly. Both males and females feed by using their long proboscis to sip floral nectar. Males of most species require salts, which they obtain from evaporated puddles and moist soil and animal urine and feces. Larvae are slug-like in appearance and highly camouflaged in their host species. Many lycaenid larvae engage in mutualistic relationships with ants, known as myrmecophily, which typically consists of ants tending and milking larvae, obtaining nutrition in the form of a nectar-like substance (honeydew) in the process, and also protecting larvae from predators and parasitoids; in some situations the ants move butterfly larvae or pupae into ground chambers, including their nests. Ant interactions have been observed with Golden Hairstreak and Puget Blue; however, more study is needed to determine the extent of interaction and ecological significance of ant-larval relationships in

these species. The overwintering stage varies by species: Makah Copper and Golden Hairstreak overwinter as eggs; Puget Blue as larvae; and Johnson's and Juniper Hairstreaks, and Hoary Elfins as pupae. The overwintering stage is not known for Straits Acmon Blue.

Key life history attributes for Washington populations of lycaenid butterfly SGCN.

Species	Adult Period	Hostplants	Primary Nectar Plants
Makah Copper	Jul-Aug	Bog cranberry (Vaccinium oxycoccos)	Swamp gentian (Gentiana douglasiana)
Golden Hairstreak	Aug-Sep	Golden chinquapin (Chrysolepis chrysophylla)	Late-summer flowers in tree canopy and herbaceous forest edge
Johnson's Hairstreak	Jun-Jul	Western dwarf mistletoe (Arceuthobium campylopodum)	Variety of herbaceous and shrub, mid-summer flowering plants
Juniper Hairstreak	Apr-May	Western juniper (Juniperus occidentalis)	Unknown
Hoary Elfin	Apr-May	Kinnikinnick (Arctostaphylos uva-ursi)	Kinnikinnick
Puget (Blackmore's) Blue	Jun-Jul	Sickle-keeled lupine, broadleaf lupine (Lupinus albicaulis, L. latifolius)	Host lupine
Straits Acmon Blue	May-Jun; Aug	Black knotweed (<i>Polygonum paronychia</i>)	Unknown

Distribution and Abundance

The distributions of these species are limited in part by a combination of their dependence on rare hostplant occurrence within rare habitat types. Their distribution and abundance in Washington is characterized by small numbers of small isolated populations. Recent survey efforts have been undertaken in Washington to determine the current distribution of Makah Copper, Golden Hairstreak, Johnson's Hairstreak, Hoary Elfin, Puget Blue, and Straits Acmon Blue. Still, little is known of the current distribution of Johnson's Hairstreak and Juniper Hairstreak, and of Hoary Elfin on the Kitsap Peninsula. Species overall range in Washington and estimated number of populations are summarized in Table 2.

Overall range; Washington counties and estimated number of extant populations for lycaenid butterfly SGCN.

Species	Range-Overall	Counties in WA	Est # Pop in WA
Makah Copper	Outer coast and low-elevation Olympic Peninsula, WA	Clallam, Grays Harbor, Jefferson, Mason,	10-15
Golden Hairstreak	Disjunct, and limited by chinquapin host: N Oregon Cascades; small area in Oregon Coast Range; small area in S WA Cascades	Skamania	1-2
Johnson's Hairstreak	Mature forests in SW British Columbia; western WA; W Oregon and N California	Jefferson, Lewis, Mason, Pierce, Skamania, Snohomish	5-10? Few recent detections

Juniper Hairstreak	Scattered in central Columbia Basin: SE WA; NE Oregon	Asotin, Columbia, Douglas, Franklin, Garfield, Grant, Klickitat	5-10? Few recent detections
Hoary Elfin	South Puget Sound region	Kitsap, Mason, Pierce, Thurston	10-15
Puget (Blackmore's) Blue	S Vancouver Is, British Columbia; eastern Olympic Mountain range, south Puget Sound region, WA	Clallam, Grays Harbor, Jefferson, Mason, Pierce, Thurston	7-10 (S Puget Sound), 30-40 (Olympic Mountains)
Straits Acmon Blue	Coastal WA: Straits of Juan de Fuca	Clallam	3

Habitat

These species inhabit a wide diversity of ecological systems, from forests to prairies, all of which are rare and declining. Hostplants for these butterflies are also rare, uncommon, or ecologically restricted. This species group includes butterflies that use tree or tree-growing (mistletoe) hostplants and inhabit the forest canopy (Golden Hairstreak, Johnson's Hairstreak, Juniper Hairstreak), as well as prostrate, woody shrub-dependent species (Makah Copper, Hoary Elfin, Straits Acmon Blue), and an herbaceous plant (lupine) feeder (Puget Blue) (see Table 1). Research is needed on all species to understand their life history and quantify specific habitat requirements including vegetation structure, food plant size and density, and key habitat features.

Makah Copper: A coastal *Sphagnum* bog obligate, this butterfly's hostplant is bog cranberry, a prostrate, vine-like, dwarf evergreen shrub. Both butterfly and host occur within 20 miles of the outer coast and Salish Sea. Bogs in this region are small, low elevation patches dominated by *Sphagnum* mosses and other bog-specific herbaceous plants and shrubs within an otherwise heavily forested landscape.

Golden Hairstreak: Confined to the few small patches of golden chinquapin, a broadleaf evergreen tree that occurs in low to middle elevations in southern Skamania County, the northern extent of the species' range. The Golden Hairstreak spends much of its adult life, and all of its egg, larval, and pupal life stages in the open forest canopy of chinquapins. Small, adjacent forest openings in this landscape often provide additional floral nectar sources and puddling sites. Beyond their chinquapin host requirement, little is known of their habitat needs.

Johnson's Hairstreak: This butterfly depends on western dwarf mistletoe, a plant that parasitizes old-growth western hemlock (*Tsuga heterophylla*) trees. Eggs are laid and larvae feed on western dwarf mistletoe, which typically grows high up in its host tree. Western hemlock occurs in low to middle elevations; Johnson's Hairstreak has been found in western Washington forests from 100 to 2500 feet in elevation. Small, adjacent forest openings in this landscape often provide additional floral nectar sources and puddling sites.

Juniper Hairstreak: Inhabits low to middle elevation, Columbia River Basin shrub-steppe where stands of its host western juniper, a short evergreen tree, occur. Nectaring occurs on spring flowering shrub-steppe plants in close proximity to host junipers. The Juniper Dunes Wilderness (Bureau of Land Management) in Franklin County is one of the few Washington locations where the species can reliably be found. Beyond their juniper host need, little is known of their habitat requirements.

Hoary Elfin: This species' hostplant, kinnikinnick, is a short, prostrate, evergreen woody shrub, relatively common at most elevations in western Washington; however the butterfly occurs only

at low elevations on glacial outwash prairies and forest opening balds in the south Puget Sound region and early successional scrub-heath habitats (including forest clearings) on the Kitsap Peninsula. Hoary Elfin habitat across all regions is open or located at forest edge.

Puget (Blackmore's) Blue: Inhabits low elevation grasslands (prairies) in south Puget Sound, and sub-alpine meadows in the Olympic Mountains. The perennial sickle-keeled lupine is the larval host and primary adult nectar source for the Puget Blue on two south Sound prairies. The butterfly's dependence on sickle-keeled lupine limits their habitat to areas and sites that support significant patches of this plant. Density of host lupine across two Puget Blue varied between years and sites from 0.08-0.48 plants per square yard. Another important habitat feature is bare ground depressions where water collects and evaporates during the adult flight period; males rely on these sites to obtain minerals (puddling). There have been no studies of habitat requirements for sub-alpine Olympic Mountain Puget Blue populations.

Straits Acmon Blue: This Acmon Blue subspecies is restricted to a few coastal sand spits and beaches along the southern shores of the Straits of Juan de Fuca, in Clallam County where it uses the semi-shrubby, prostrate, black knotweed for its host. Beyond their host need and sand spit and beach occurrence, little is known of their habitat requirements.

References

- Ballmer, G. and G. Pratt. 1991. Quantification of ant attendance (Myrmecophily) of lycaenid larvae. Journal of Research on the Lepidoptera. 30(1-2): 95-112.
- Davis, R. and K. Weaver. 2010. Johnson's Hairstreak surveys in Oregon and Washington (2010). US Forest Service, Interagency Monitoring Program. Roseburg, Oregon. 10pp. + appendices.
- Fleckenstein, J. 2014. Rare alpine butterflies in the Olympic Mountains. Final report to the US Forest Service and Bureau of Land Management. Natural Heritage Program, Washington Department of Natural Resources. Olympia. 14 pp.
- Fleckenstein, J. 2009. Makah Copper survey project. Final report to the US Fish and Wildlife Service. Natural Heritage Program, Washington Department of Natural Resources. Olympia. 17pp.
- Hays, D., A. Potter, C. Thompson, and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.
- James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. Oregon State University Press, Corvallis. 447 pp.
- LaBar, C. C. 2009. Investigating the use of herbicides to control invasive grasses in prairie habitats: effects of non-target butterflies. M.S. Thesis, Washington State University, Vancouver. 37pp.
- Pyle, R. 1989. Washington butterfly conservation status report and plan. Washington Department of Fish and Wildlife, Olympia. 216pp.
- Wainwright, M. 2008. Chinquapin (Golden) Hairstreak butterfly survey report. US Forest Service, Gifford Pinchot National Forest. 6pp.

Family Lycaenidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Ma	akah Copper	I		l .	
1	Agriculture and aquaculture side effects	Bog/fen obligate; habitat and species are vulnerable to alteration of local hydrology from logging and road building	Leading or participating in land use planning for rural, urban, and forestry lands	Current insufficient	Both
2	Resource information collection needs	Species in WA likely distinct subspecies	Genetic study to determine if WA populations are distinct subspecies	Nothing current - new action needed	Both
Go	lden Hairstreak				
1	Agriculture and aquaculture side effects	Habitat and hostplant, a rare tree/shrub occurs in areas with active logging practices	Develop plan with landowners to manage sites for butterfly, host, and habitat	Nothing current - new action needed	Both
2	Resource information collection needs	Current distribution unknown	Identify host patches and survey for butterfly	Current insufficient	Both
3	Resource information collection needs	Need to identify habitat needs, including optimal canopy cover in order to manage for species	Study habitat selection and requirements and use this information to develop management plans	Nothing current - new action needed	Both
Joh	nson's Hairstreak				
1	Agriculture and aquaculture side effects	Species habitat is low- elevation, old-growth forest that has been impacted by logging	Habitat management planning that recognizes importance of forest type and mistletoe species	Current insufficient	External
2	Resource information collection needs	Lacking information on current status of known sites and distribution	inventory; status assessment	Current insufficient	Both
Jur	niper Hairstreak	l	I	I	1
1	Resource information collection needs	Lacking information on current status of known sites and distribution	Inventory; status assessment	Nothing current - new action needed	WDFW
2	Fish and wildlife habitat loss or degradation	Juniper woodlands are threatened with development, unsustainable grazing practices, ORV use, etc.	Habitat management planning that recognizes importance of juniper woodlands	Current insufficient	External
Но	ary Elfin				
1	Fish and wildlife habitat loss or degradation	Development destroying prairie habitat	Species and habitat management plans for occupied sites	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
2	Fish and wildlife habitat loss or degradation	Development destroying prairie habitat, including highway building	Purchase and protect prairie sites	Current insufficient	Both
3	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
4	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both
5	Resource information collection needs	Knowledge of current distribution is incomplete	Conduct surveys to determine current status and distribution of populations, especially needed on the Kitsap Peninsula	Nothing current - new action needed	WDFW
Pu	get (Blackmore's) Bl	ue	l .	I	
1	Resource information collection needs	Knowledge of current distribution is incomplete	Conduct surveys to determine current status and distribution of populations, primarily needed on the Kitsap Peninsula and northeast Olympic Peninsula	Nothing current - new action needed	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
3 Str	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Climate change and severe weather	Populations located adjacent to marine waters- that are rising	Evaluate landscape and develop plan to increase habitat area and habitat heterogeneity in currently occupied sites and within occupied landscapes	Nothing current - new action needed	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete natives and otherwise make habitat unsuitable	Using herbicide and mechanical methods to maintain open condition of vegetation	Nothing current - new action needed	Both

Subfamily Heliconiinae: FRITILLARY BUTTERFLIES

*See Appendix B for range and potential habitat distribution maps for the Oregon and Valley Silverspots

Conservation Status and Concern

These species were recognized as SGCN in Washington due to their rare and restricted hostplants and habitat types, small number of isolated populations, limited range and distribution, and known threats to their habitats.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Puget Sound Fritillary (Speyeria cybele pugetensis)	None	None	No	G5TU	S3?	Low/declining
Valley Silverspot (Speyeria zerene bremnerii)	None	Candidate	Yes	G5T3T4	S2S3	Critical/declining
Oregon Silverspot (Speyeria zerene hippolyta)	Threatened	Endangered	Yes	G5T1	SX	Extirpated
Meadow Fritillary (Boloria bellona toddi)	None	None	No	GNR	SNR	Low/declining
Silver-bordered Fritillary (Boloria selene atrocostalis)	None	Candidate	Yes	GNR	SNR	Low/declining

CLIMATE VULNERABILITY RANKING				
Common Name (Scientific name)	Ranking			
Puget Sound Fritillary (Speyeria cybele pugetensis)	Low-moderate			
Valley Silverspot (Speyeria zerene bremnerii)	Low-moderate			
Oregon Silverspot (Speyeria zerene hippolyta)	Moderate			
Meadow Fritillary (Boloria bellona toddi)	Low-moderate			
Silver-bordered Fritillary (Boloria selene atrocostalis)	Moderate-high			

Biology and Life History

The Heliconiinae (Fritillary) subfamily consists of medium and large sized butterflies with distinctive black line and dot patterning on bright orange dorsally, and a heavily-patterned ventrum with silvery orbs (genus *Speyeria*: greater fritillaries) or muted colored triangles (genus *Boloria*: lesser fritillaries). The greater fritillaries (genus *Speyeria*) complete a single life cycle annually (univoltine), while the lesser fritillaries (genus *Boloria*) have two generations per year (spring and late summer). All are sedentary butterflies and do not migrate; instead, the species inhabits sites year-round (as egg, larva, pupa and adult). Adults emerge from their chrysalids (pupae) during species-specific time periods; typically early-to-late summer for *Speyeria*, and both spring and late summer for *Boloria*. Males begin emergence first, followed by females; late season individuals are primarily or solely females. Weather influences butterfly emergence and flight period duration, with wet or cold conditions potentially

Puget Sound Fritillary Photo: R. Gilbert

delaying emergence. Male fritillaries seek mates using rapid patrolling and searching flight behavior. Females search for egg-laying sites by slowly flying and hovering above hostplants and then landing and crawling to inspect vegetation before depositing eggs singly. Both males and females feed by using their long proboscis to sip floral nectar. Research on other *Speyeria* spp. suggests that nectar availability affects the number of eggs laid by females. These species depend on violets (genus *Viola*) for their hostplants. *Speyeria* fritillaries lay eggs late in the summer. A tiny larva hatches within a few weeks and seeks shelter to overwinter, but does not feed until the following spring. In *Boloria* fritillaries, the first (spring) generation of eggs mostly develops quickly, resulting in the second (summer) generation. Larvae from this second generation develop slowly and are the overwintering form for these butterflies. Fritillary larvae are generally dark with many bristled spines, and feed nocturnally; these characteristics, along with a gland that secretes defensive chemicals, protect larvae from predators.

Distribution and Abundance

The distribution of these species is limited in part by their dependence on rare habitat types. Their distribution and abundance in Washington is characterized by low numbers of small isolated populations. The Oregon Silverspot has been extirpated from Washington, though habitat has been restored and plans have been made to reintroduce this species. Declines in both the number and size of populations have been documented for the other four species. Surveys were recently conducted to determine the current distribution of the Puget Sound Fritillary and Valley Silverspot in the south Puget Sound region, and Meadow and Silver-bordered Fritillary in northeastern Washington. Little is known of the current status and distribution of these species in other portions of their range within the state. Species overall range, Washington counties, and estimated number of populations are summarized in Table 1.

Table 1. Overall range; Washington counties and estimated number of extant populations for fritillary butterfly SGCN.

Species	Range-Overall	Counties in WA	Est # Pop in WA
Puget Sound Fritillary	Scattered populations: W Oregon; SW WA; montane NE Olympic Mountains, WA	Clallam, Clark, Cowlitz, Lewis, Mason, Pierce, Skamania, Thurston	15-20
Valley Silverspot	Scattered populations: SW WA; south Puget Sound region, WA; montane NE Olympic Mountains, WA; San Juan Islands, WA; southern Vancouver Island, Canada. Extirpated from Oregon.	Clallam, Cowlitz, Jefferson, Lewis, Pierce, Thurston	10-15
Oregon Silverspot	Coastal Oregon and Northern CA	Grays Harbor, Pacific	Extirpated from WA
Meadow Fritillary	Okanogan Highlands: British Columbia, Canada and northeastern WA	Ferry, Okanogan possible Stevens, Pend Oreille	5-10 (few recent detections)
Silver-bordered Fritillary	Scattered populations: E Oregon; E WA; N Idaho; NW Montana; E British Columbia; W Alberta	Grant, Lincoln, Okanogan, Pend Oreille, Stevens, Whitman	15-20 (few recent detections)

Habitat

These species inhabit a wide diversity of ecological systems, from coastal dunes to native prairies, boreal bogs, and aspen meadows, all of which are rare and declining. Research is especially needed for the Meadow and Silver-bordered Fritillaries to understand and quantify specific habitat requirements including vegetation structure, food plant size and density, and key habitat features.

Puget Sound Fritillary: Relies on open habitats in western Washington where its host violets grow, including montane meadows in the northeastern Olympic Mountains, and low-elevation river and creek courses, forest openings, and native grasslands. Egg-laying has been observed in the south Puget Sound region on two violet species (*V. praemorsa* and early blue violet, *V. adunca*). Adults require late-season nectar, and especially seek out native and non-native thistles (*Cirsium*). There have been no hostplant or habitat studies in Olympic Mountain populations.

Valley Silverspot: Restricted to native grasslands in western Washington, primarily montane meadows in the northeastern Olympic Mountains, and low-elevation, short-stature grasslands in the south Puget Sound region. In a two-year study of Valley Silverspot habitat and nectar use on two south Sound prairies, early blue violet was identified as a larval host, and two plants were selected for adult nectar sources (showy fleabane, [*Erigeron speciosus*] and Canada thistle [*C. arvense*]). There have been no hostplant or habitat studies in Olympic Mountain populations.

Oregon Silverspot: Uses open, short-stature grasslands in coastal dunes, bluffs, and nearby forest glades. Habitat studies have been conducted for this butterfly on the remaining sites in Oregon; early blue violet is the sole hostplant for this butterfly, and females selected patches with more than 20 plants per square yard for egg-laying sites. Although the Oregon Silverspot has been extirpated from Washington, WDFW has led habitat restoration efforts on coastal sites in Pacific County in preparation for future butterfly reintroductions.

Meadow Fritillary: Inhabits meadows, forest openings, and riparian corridors in aspen and pine woodlands between 2000 to 4500 feet in elevation in northeastern Washington. Another violet host butterfly, it is found with the white-flowering Canada violet (*V. canadensis*). Beyond their violet host need, little is known of their habitat requirements.

Silver-bordered Fritillary: This butterfly is dependent on fen and *Sphagnum* bog sites located in the xeric steppe and open forests of the Columbia River Basin. Bogs in this region are small, midelevation patches dominated by *Sphagnum* moss species and other bog-specific herbaceous plants and shrubs. Their hostplants are unknown violet species, likely marsh violet (*V. palustris*) and bog violet (*V. nephrophylla*). Beyond their fen and bog habitat restriction, little is known of their habitat requirements.

References

- Boggs, C. 2003. Environmental variation, life histories, and allocation *in* Butterflies: Ecology and Evolution Taking Flight. Boggs, C., W. Watt, and P. Ehrlich, eds. The University of Chicago Press. 737pp.
- Hays, D., A. Potter, C. Thompson, and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.
- James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. Oregon State Univ. Press, Corvallis. 447pp. Pyle, R. 1989. Washington butterfly conservation status report and plan. WDFW, Olympia. 216pp.
- Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb, and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington, and British Columbia. Northwest Science 85: 361–388.
- The Nature Conservancy. 1990. Population dynamics and habitat selection of the Oregon silverspot butterfly (*Speyeria zerene hippolyta*): a comparative study at four primary sites in Oregon. Report to the Siuslaw National Forest. Portland, Oregon.
- USFWS. 2001. Oregon silverspot butterfly (*Speyeria zerene hippolyta*) revised recovery plan. US Fish and Wildlife Service, Portland, Oregon. 1 pp.
- US Forest Service and Bureau of Land Management (USFS-BLM). 2012. Species fact sheet: Meadow Fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2010. Species fact sheet: Silver-bordered fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2009. Species fact sheet: Valley Silverspot. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.

Subfamily Heliconiinae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Pu	get Sound Fritillary				
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both
3	Resource information collection needs	Knowledge of current distribution is incomplete	Conduct surveys to determine current status and distribution of populations, primarily needed on the Kitsap Peninsula and northeast Olympic Peninsula	Nothing current - new action needed	Both
4	Invasive and other problematic species	Trees and shrubs encroaching on habitat in forest matrix sites throughout range, due to long-term fire suppression	Remove invading trees and shrubs	Current insufficient	Both
Va	lley Silverspot				
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
3	Resource Information Collection Needs	Incomplete knowledge of distribution in NE Olympic Mountains	Conduct surveys to determine current status and distribution of populations in the WA southern Cascades	Nothing current - new action needed	WDFW
Ore	egon Silverspot				
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both
3	Fish and wildlife habitat loss or degradation	No populations currently extant in WA	Reintroduce at restored sites	Nothing current - new action needed	Both
Me	adow Fritillary				
1	Agriculture and aquaculture side effects	Intensive livestock use may cause direct harm to butterfly through trampling, and indirect harm by reducing host and nectar species and compacting soil	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Nothing current - new action needed	Both
2	Invasive and other problematic species	Forest encroachment due to long-term fire suppression has reduced amount and quality of habitat. Hostplant is an herbaceous species and butterfly occupies open habitats	Remove invading trees and shrubs	Nothing current - new action needed	Both
3	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore meadows	Nothing current - new action needed	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD		
Silv	Silver-bordered Fritillary						
1	Agriculture and aquaculture side effects	Intensive livestock use may cause direct harm to butterfly through trampling, and indirect harm by reducing host and nectar species and compacting soil	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Nothing current - new action needed	Both		
2	Invasive and other problematic species	Forest encroachment due to long-term fire suppression has reduced amount and quality of habitat. Hostplant is an herbaceous species and butterfly occupies open habitats	Remove invading trees and shrubs	Nothing Current - new action needed	Both		
3	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore meadows	Nothing Current - new action needed	Both		

Family Hesperiidae: SKIPPER BUTTERFLIES

*See Appendix B for a range and potential habitat distribution map for the Mardon Skipper

Conservation Status and Concern

These five butterflies in the Skipper Family were recognized as SGCN throughout their ranges due to the small number of isolated populations, specialized and restricted habitat, and known threats to their habitat.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Propertius Duskywing (Erynnis propertius) western Washington populations only	None	None	No	G5	S 3	Low/declining
Oregon Branded Skipper (Hesperia colorado Salish Sea segregate)	None	None	No	G5T3T4	S2	Critical/declining
Mardon Skipper (Polites mardon)	None	Candidate	Yes	G2G3T2 T3	S1	Low/declining
Sonora Skipper (Polites sonora siris)	None	None	No	G4T3	S2S3	Critical/declining
Yuma Skipper (Ochlodes yuma)	None	Candidate	Yes	G5	S1	Critical/declining

CLIMATE VULNERABILITY RANKING				
Common Name (Scientific name)	Ranking			
Propertius Duskywing (<i>Erynnis propertius</i>) western Washington populations only	Moderate			
Oregon Branded Skipper (Hesperia colorado Salish Sea segregate)	Moderate			
Mardon Skipper (Polites mardon)	Moderate-high			
Sonora Skipper (Polites sonora siris)	Low-moderate			
Yuma Skipper (Ochlodes yuma)	Moderate			

Taxonomic note: Skipper butterflies are members of two subfamilies: Propertius Duskywing is a Pyrginae (dicot or spread-wing skippers); Oregon Branded, Mardon, Sonora, and Yuma Skipper are Hesperiinae (monocot or folded-wing skippers).

Biology and Life History

These skippers complete a single life cycle annually (univoltine). All are sedentary butterflies and do not migrate; instead, the species inhabits sites year-round (as egg, larva, pupa and adult), typically moving within only a few hundred meters of their natal locations. Adults emerge from their chrysalids (pupae) during species-specific time periods (See Table 1). Males begin emergence first, followed by females; late-season individuals are primarily or solely females. Weather influences butterfly emergence and the flight period duration, with wet or cold conditions delaying emergence. Male skippers seek mates by perching on low vegetation and then darting out to inspect passing butterflies. Males that detect females commence courtship behavior; when males

Propertius Duskywing Photo: A. Barna

detect another male they engage in a territory defense behavior of tight, upward spiraling flight. Females search for egg-laying sites by slowly flying and hovering just above hostplant vegetation and then depositing single eggs. Both males and females feed by using their long proboscis to sip floral nectar. Skipper larvae conceal themselves in silken shelters and primarily feed at night. Hesperiinae larvae create shelters formed by webbing their hostplant grass blades together, and their prepupal larvae construct strong silken shelters in hostplant grasses in which pupation occurs. Propertius Duskywing (Pyrginae Skipper) larvae construct large cocoons in folded oak leaves, which drop to the ground over the winter, where pupation occurs in early-spring. These species overwinter as larvae, except for Oregon Branded Skipper which survives the winter period in the egg stage.

Table 1. Key life history attributes for Washington populations of skipper butterfly SGCN.

Species	Adult Period	Hostplant s	Primary Nectar Plants
Propertius Duskywing	Apr-May	Garry oak (Quercus garryana)	Common camas (Camassia quamash)
Oregon Branded Skipper	Jul-Aug	Unknown grass/sedge	Tansy ragwort (<i>Tanacetum</i> vulgare), white-top aster (<i>Sericocarpus rigidus</i>)
Mardon Skipper	May-Jun	Grasses/sedges (spp. are site specific)	Violets (<i>Viola</i>), common vetch (<i>Vicia sativa</i>)
Sonora Skipper	Jun-Jul	Unknown grass/sedge	Unknown
Yuma Skipper	Jun-Jul	Common reed (Phragmites americanus)	Unknown

Distribution and Abundance

These skippers primarily occur in a few small isolated populations. Though once common, large populations of these butterflies in Washington are extant today only for Mardon Skipper in the southeastern Cascades.

Table 2. Overall range; counties and estimated number of Washington populations for skipper butterfly SGCN.

Species	Range-Overall	Counties in WA	Est # Pop in WA
Propertius Duskywing (western Washington only)	Aligned with oak host distribution: SW British Columbia; south and north Puget Sound, WA; E slope Cascades, WA; W Oregon; south to NW California	Mason, San Juan, Skamania, Thurston	6-10
Oregon Branded Skipper	SW British Columbia; south and north Puget Sound, WA	Pierce, San Juan, Thurston	5
Mardon Skipper	Highly disjunct: South Puget Sound, WA; Southeast Cascades, WA; Southwest Oregon; NW California	Klickitat, Lewis, Pierce, Skamania, Thurston, Yakima	3 (S Puget Sound) 30-40 (SE Cascades)
Sonora Skipper	SW WA	Grays Harbor, Mason, Thurston	2-5?
Yuma Skipper	Highly disjunct: Columbia Basin, WA; SE Oregon; E Central California; Nevada; S Utah; E Colorado; N Arizona	Asotin, Grant, Klickitat	3-5?

Habitat

These species use rare and declining habitat types. Oregon Branded, Mardon, and Sonora Skippers inhabit glacial outwash prairies in western Washington that have been reduced to less than three percent of historical cover. Research is needed for all species to more accurately quantify specific habitat requirements including vegetation structure, food plant size and density, and key habitat features.

Propertius Duskywing: An obligate of Garry oak (*Quercus garryana*), this species Inhabits low-elevation (up to 2000 feet), open-canopied, oak woodlands and savannah. Oak woodlands are rare, patchily distributed, and declining in western Washington. Research is needed to determine the specific Garry oak understory requirements of Propertius Duskywing larvae for overwintering, and by pupae for their development.

Oregon Branded Skipper: In the south Puget Sound region, this species selects habitat within glacial outwash prairies dominated by short-stature native grasses and sedges, especially Roemer's fescue (*Festuca roemeri*) and long-stoloned sedge (*Carex inops*), with open structure, and abundant bare ground (or moss/lichen). The sole extant San Juan County population uses open meadows between 1500 to 2200 feet in elevation. Egg-laying has been observed on Roemer's fescue and long-stoloned sedge, however, their use as larval hostplants have not been confirmed with larval feeding.

Mardon Skipper: Inhabits glacial outwash prairies in the south Puget Sound region, and montane meadows 1800 to 5500 feet in elevation in the southeastern Cascade Mountain Range. In south Puget Sound grasslands, Mardon Skippers use open, grass dominated habitat with abundant Roemer's Fescue interspersed with early blue violet and select early blue violet and common vetch as nectar sources. Adult Mardon Skippers select for short, open-structured, native fescue grasslands, which provide access to nectar and oviposition plants and a requisite thermal environment. Mardon Skippers on two south Sound prairies oviposited on Roemer's fescue, and females selected for small, mostly green fescue plants, in sparse, short-statured, and open-

structured vegetation. In the southeastern Cascade Mountains, Mardon Skippers are found in meadows in an otherwise forested landscape; a variety of grasses and sedges are used for egglaying (and larval hosts) and females select for large, well developed plants. The historical and ongoing loss of montane meadow habitat is well-documented.

Sonora Skipper: Sonora Skipper inhabits glacial outwash prairies, forest glades, and road edges in southwest Washington lowlands. The hostplants for this species have not been identified, and habitat selection and suitability have not been studied.

Yuma Skipper: The native common reed is the known hostplant for this skipper which is limited to a few marshes in the xeric Columbia Basin steppe. To date, this butterfly has not been found in stands of the invasive, non-native common reed, although further surveys are needed to address this potential. Beyond their need for the native species of common reed, little is known of their habitat requirements.

References

- Beyer, L. and C. Schultz. 2010. Oviposition selection by a rare grass skipper *Polites mardon* in montane habitats:

 Advancing ecological understanding to develop conservation strategies. Biological Conservation 143:862-872.
- Crawford, R. and H. Hall. 1997. Changes in the south Puget Sound prairie landscape. Pp 11-15 in P. Dunn and K. Ewing (eds.) Ecology and Conservation of the south Puget Sound Prairie Landscape. The Nature Conservancy, Seattle, Washington . 289pp.
- Hays, D., A. Potter, C. Thompson, and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.
- Henry, E. and C. Shultz. 2012. A first step towards successful conservation: understanding local oviposition site selection of an imperiled butterfly, mardon skipper. J. Insect Conserv. DOI 10.1007/s10841-012-9496-x.
- James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. Oregon State University Press, Corvallis. 447pp.
- Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp.
- Pyle, R. 1989. Washington butterfly conservation status report and plan. Washington Department of Fish and Wildlife, Olympia. 216pp.
- Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb, and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington, and British Columbia. Northwest Science 85: 361–388
- Takaoka, S., and F. Swanson. 2008. Change in extent of meadows and shrub fields in the central western Cascade Range, Oregon. The Professional Geographer 60:527-540.
- Thompson, J. 2007. Mountain meadows—here today, gone tomorrow? Meadow science and restoration. Science Findings Issue 94. PNW Research Station, Portland, OR. http://www.fs.fed.us/pnw/sciencef/scifi 94. PNW Research Station, Portland, OR. http://www.fs.fed.us/pnw/sciencef/scifi 94. PNW Research Station, Portland, OR.

Family Hesperiidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Pro	ppertius Duskywing			I	I
1	Fish and wildlife habitat loss or degradation	Oak woodland requisite habitat still being developed	Review proposed projects and protect oak woodland and savanna habitat	Current insufficient	Both
2	Invasive and other problematic species	Oak woodland and savanna being invaded by non-native shrubs and grasses	Using herbicide, fire, and mechanical methods to restore native oak woodland and savanna	Current insufficient	Both
3	Invasive and other problematic species	Oak woodland and savanna being invaded by native trees, especially Douglas-fir	Remove invading trees	Current insufficient	Both
4	Resource Information Collection Needs	Knowledge of current distribution is incomplete	Revisit historic locales and search for new populations	Current insufficient	Both
Ore	egon Branded Skippe	er			
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	Both
3	Resource information collection needs	Effectiveness of management is minimized by the little known of the habitat requirements for this butterfly	Conduct research to characterize the habitat selected by females for oviposition (multi-year).	Nothing current - new action needed	Both
4	Fish and wildlife habitat loss or degradation	Only a few, small and disjunct populations remain in the south Sound region	Reintroduce at restored prairie sites	Nothing current - new action needed	WDFW

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Ma	ardon Skipper				
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	WDFW
2	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Planting/seeding native prairie species	Current insufficient	WDFW
3	Resource information collection needs	Knowledge of current distribution and site status in southern Cascades is incomplete	Conduct surveys to determine current status and distribution of populations in the WA southern Cascades	Current insufficient	Both
4	Invasive and other problematic species	Forest encroachment due to long-term fire suppression has reduced amount and quality of habitat. Hostplant is a grass, and species utilizes open meadows.	Remove invading trees and shrubs	Current insufficient	External
5	Fish and wildlife habitat loss or degradation	Only a few, small and disjunct populations remain in the south Sound region.	Reintroduce at restored prairie sites	Nothing current - new action needed	WDFW
6	Resource information collection needs	High likelihood south Sound and Cascades populations are distinct subspecies.	Genetic study to evaluate difference between south Sound and Cascades populations	Nothing current - new action needed	Both
7	Climate change and severe weather	Species vulnerable in south Sound to cool, wet spring weather; in Cascades to warm winters with low snowpack	Evaluate landscape and develop plan to increase habitat area and habitat heterogeneity in currently occupied sites and within occupied landscapes	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD			
Soi	Sonora Skipper							
1	Invasive and other problematic species	Invasive plants, those currently here, and many yet to come in the future, out-compete native grassland species, and otherwise make habitat unsuitable	Using herbicide, fire, and mechanical methods to restore native prairie	Current insufficient	Both			
Yuı	ma Skipper							
1	Management Decision Needs	State Parks and other land managers not aware that native Phragmites exists and is the host for this butterfly - so they often attempt to treat native Phragmites as a weed	Develop management plans specific to occupied sites	Current insufficient	Both			
2	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Nothing current - new action needed	WDFW			

BUMBLE BEES

Genus Bombus: BUMBLE BEES

Conservation Status and Concern

Bumble bees have recently become the focus of conservation concern and efforts due to their precipitous population declines and prodigious capabilities as pollinators. In a recent status assessment, IUCN (International Union of Conservation of Nature) identified three Washington species as facing high or extremely high risk of extinction: Western Bumble Bee and Morrison's Bumble Bee were ranked Vulnerable, and Suckley Cuckoo Bumble Bee was ranked Critically Endangered.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Western Bumble Bee (Bombus occidentalis)	None	None	No	G2G3	S2S3	Low/declining
Morrison's Bumble Bee (Bombus morrisoni)	None	None	No	G4G5	SNR	Critical/unknown
Suckley Cuckoo Bumble Bee (Bombus suckleyi)	None	None	No	GH	SNR	Critical/declining

CLIMATE VULNERABILITY RANKING				
Common Name (Scientific name) Ranking				
Western Bumble Bee (Bombus occidentalis)	Moderate-high			
Morrison's Bumble Bee (Bombus morrisoni)	Moderate			
Suckley Cuckoo Bumble Bee (Bombus suckleyi)	Moderate			

Biology and Life History

These three bumble bee species are from two distinct subgenera: Western and Morrison's Bumble Bees are classified within the *Bombus* subgenus, and Suckley Cuckoo Bumble Bee in the *Psithyrus* subgenus. Bees from these two subgenera have markedly different life histories. *Bombus* subgenus species live in small, highly social and interdependent colonies with structured roles: egg-laying females (queens), foraging and nesting females (workers), and males. Cuckoo bumble bees do not live in a social group, but use the nests and tending workers of social bumble bee species to reproduce. Suckley Cuckoo

Morrison's Bumble Bee Photo: H. V. Davis

Bumble Bees use the nests of Western Bumble Bee and likely several other *Bombus* species. Bumble bee colonies are annual. In late-winter or early-spring, queens, which are the sole survivors from the previous year, emerge from their overwintering sites to feed on floral nectar, collect pollen, and search for suitable nest sites, which are often abandoned rodent holes. *Bombus* subgenus queens lay eggs in their individual nests and gather nectar and pollen to feed their first brood of workers. In the nest, eggs develop into larvae and then spin cocoons in which they pupate. Once they emerge from their cocoons, the workers then take over tending and provisioning young, while the queen continues to lay eggs, and

typically no longer leaves the nest. Late in the season, the colony produces males and new queens which mate. Males, workers, and old queens eventually die; only the newly mated queens are capable of surviving through winter. Bumble bees are key generalist pollinators of native plants and agricultural crops. Through their foraging and collection of nectar and pollen they physically transfer the latter between plants, allowing them to reproduce. Their unique behavior of "buzz pollination", in which they grab onto and strongly shake an entire flower by vibrating their powerful wing muscles, results in large amounts of pollen being released and produces a more complete fruit set than other pollinators, including honey bees.

Distribution and Abundance

All three bumble bee species historically occurred in healthy populations across large geographic areas. Recent surveys reveal significant declines in their numbers, distribution, and ranges. Additional surveys are needed to determine the location and number of extant Washington populations for all three species, especially for Morrison's Bumble Bee and Suckley Cuckoo Bumble Bee.

Western Bumble Bee: Historically common in the western United States and Canada: western South Dakota south to northern New Mexico west to northern California and north to southern Alaska. Recent surveys have located only a handful of populations in Washington, primarily in remote subalpine and montane sites. A 28 percent reduction was estimated in detected rangearea in a recent study, and Western Bumble Bee was found largely absent from the western portion of its range (including Washington). Over the past decade, relative abundance of Western Bumble Bee populations is estimated to have declined approximately 50 percent, while Washington has experienced even greater decline.

Morrison's Bumble Bee: Historical geographic range primarily within the intermountain western United States: northern Colorado south to northern Mexico west to southern California and north to southern British Columbia, Canada. Within Washington, Morrison's Bumble Bee occurred historically in the Columbia Basin; however, only a few recent sightings are known from this region. Many previously known strongholds for this bumble bee have been intensively surveyed in recent years without detection; the decline in rangewide relative abundance is estimated at 82.6 percent.

Suckley Cuckoo Bumble Bee: Occurred historically in western Canada and the United States: southwestern Manitoba southwest to western South Dakota south to southern Colorado west to northern California north to the Yukon and Northwest Territories south to central British Columbia; a few populations have also been documented in eastern Canada. This cuckoo bumble bee historically was found throughout Washington. Recent rangewide surveys detected this species in only six localities, including one near far northeastern Washington.

Habitat

Bumble bees depend on habitats with rich floral resources throughout the nesting season, and many species select specific suites of plants for obtaining nectar and pollen. They also select flowers based on their structure and the bee's tongue length. For example, the short to medium length-tongued Suckley Cuckoo Bumble Bee uses shallow to medium-depth flowers. Bumble bees require above and belowground micro-sites for overwintering and nesting, including logs, stumps, and abandoned rodent and ground-nesting bird nests. Their habitats must also be protected from insecticides. Bumble bees are adaptable; they do not require native vegetation. However, intensive agricultural development has been shown to result in regional bumble bee declines. Although habitat loss and insecticide use have played a role in bumble bee declines, their rapid and widespread declines even from apparently high

quality habitats support the current prevailing hypothesis that pathogens introduced into the wild from commercial bumble bee facilities are the main factor in declines.

References

- Bumble Bee Watch. 2014. Available: http://bumblebeewatch.org/ Accessed November 3, 2014.
- Cameron, S., J. Lozier, J. Strange, J. Koch, N. Cordes, L. Solter, and T. Griswold. 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108:662–667.
- Hatfield, R., S. Colla, S. Jepsen, L. Richardson, and R. Thorp. 2014. IUCN assessments for North American *Bombus* spp. for the North American IUCN bumble bee specialist group. The Xerces Society for Invertebrate Conservation. Portland, OR.
- Schweitzer, D., N. Capuano, B. Young, and S. Colla. 2012. Conservation and management of North American bumble bees. NatureServe, Arlington, Virginia, and USDA Forest Service, Washington, D.C.
- Thorp, R., D. Horning, Jr, and L. Dunning. 1983. Bumble bees and cuckoo bumble bees of California (Hymenoptera: Apidae). Bulletin of the California Insect Survey: Vol. 23. University of CA Press. Berkley and Los Angeles.
- Williams, P. H., S. R. Colla, and Z. Xie. 2009. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology 23(4):931-940.
- Wilson, J., L. Wilson, L. Loftis, and T. Griswold. 2010. The montane bee fauna of north central Washington, USA, with floral associations. W North American Naturalist 70(2):198-207.

Genus Bombus: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
We	estern Bumble Bee				
1	aquaculture side effects bees for use in pollination of commercial crops introduces pathogens into the wild policie transle establication the wild policie establication the wild policie establication the wild poli		Review of federal/state policies that allow translocation and establishment of commercially-reared bumble bees in North America	Current insufficient	Both
2	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
Mc	orrison's Bumble Bee	2			
1	Agriculture and aquaculture side effects	Importation of bumble bees for use in pollination of commercial crops introduces pathogens into the wild	Review of federal/state policies that allow translocation and establishment of commercially-reared bumble bees in North America	Current insufficient	Both
2	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both
Suc	ckley Cuckoo Bumbl	e Bee			
1	Agriculture and aquaculture side effects	Importation of bumble bees for use in pollination of commercial crops introduces pathogens into the wild	Review of federal/state policies that allow translocation and establishment of commercially-reared bumble bees in North America	Current insufficient	Both
2	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current Insufficient	Both

MOLLUSKS

Family Oreohelicidae: MOUNTAINSNAILS

Conservation Status and Concern

Many mountainsnail species and subspecies have specialized habitat requirements and very restricted ranges, low ability to disperse, and are vulnerable to disturbances such as logging, fire, unsustainable grazing, or introduced predators. Most mountainsnail species and subspecies (roughly 91 percent) are considered imperiled or critically imperiled by NatureServe.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Chelan Mountainsnail (Oreohelix sp. 1)	In review	None	No	G2	S2	Critical/declining
Hoder's Mountainsnail (Oreohelix n. sp.)	None	None	No	GNR	SNR	Critical/declining
Mad River Mountainsnail (Oreohelix n. sp.)	None	None	No	GNR	SNR	Critical/declining
Ranne's Mountainsnail (Oreohelix n. sp.)	None	None	No	GNR	SNR	Critical/declining
Limestone Point Mountainsnail (Oreohelix sp. 18 or O. idahoensis baileyi)	None	None	No	G1	SH	Critical/declining

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
Chelan Mountainsnail (Oreohelix sp. 1)	Low-moderate				
Hoder's Mountainsnail (Oreohelix n. sp.)	Low-moderate				
Mad River Mountainsnail (Oreohelix n. sp.)	Low-moderate				
Ranne's Mountainsnail (Oreohelix n. sp.)	Low				
Limestone Point Mountainsnail (Oreohelix sp. 18 or O. idahoensis baileyi)	Low-moderate				

Taxonomic note: Many of the Oreohelicidae that are considered distinct species are not yet formally described, and it is likely that additional rare species of *Oreohelix* will be discovered with further investigation.

Biology and Life History

Mountainsnails are terrestrial gastropods of western North America. Mountainsnails eat leaf litter, detritus, and microorganisms on the surface of logs, rocks, or soil. They are hermaphroditic, having both male and female organs. They are live-bearers; the eggs hatch before leaving the uterus of the parent, and they raise their young within their shells until they reach a certain size. It is not known how long they live, or how often they reproduce.

Distribution and Abundance

Chelan Mountainsnail a.k.a. Tiny Canyon Mountainsnail (*Oreohelix sp.* 1): A local endemic of the eastern foothills

Limestone Point Mountainsnail Photo: from Jensen et al. 2012

of the Cascades in central Washington. Populations of the Chelan Mountainsnail are few, small, and scattered. Its known range covers about 270 square miles in eastern Chelan County. Within this area this snail has been found at less than 10 sites from about one-fourth acre to 10 acres in size. Most of the sites are scattered, ranging from less than one acre to a few acres in size, and only one individual was observed (seven sites destroyed in the 1994 Tyee Fire were those of the Entiat Mountainsnail, erroneously identified as this species). Sites scattered within an area roughly bounded by the Columbia River on the southeast, Lake Chelan on the northwest to include the Twentyfive Mile Creek drainage, then southwest to Tyee Mountain, south to Chumstick Mountain, and following the ridge south and southeast to Burch Mountain, then south to the confluence of the Wenatchee and Columbia Rivers. The USFWS is conducting a status review after a finding that it may warrant listing under the ESA.

Hoder's Mountainsnail: This species is only known from Dick Mesa, about 3.5 miles northeast of Entiat, Chelan County.

Mad River Mountainsnail: This species has only been collected at one site on the Mad River in the Entiat Valley, eastern Chelan County.

Ranne's Mountainsnail: This species is only known from one site of less than 10 acres on Dick Mesa, about 3 miles northeast of Entiat, Chelan County.

Limestone Point Mountainsnail: Known from Lime Point, Asotin County, WA, and the Seven Devils Mountains and Snake River Canyon below the mouth of the Salmon River, Idaho. At Limestone Point, empty shells are scattered over the northeastern slope; no living specimens have been found in Washington in recent years, but additional season appropriate surveys are needed.

Habitat

Oreohelix species are often associated with limestone outcrops, or areas with soil or rock with a fair percentage of lime.

Chelan Mountainsnail: Generally open Douglas-fir and ponderosa pine; this species has been found in two types of habitats broadly described as: 1) in schist talus, and 2) in litter or under shrubs in and adjacent to open dry forest stands with pinegrass or elk sedge understory. The typical site occurs within concave landforms that accumulate and maintain moisture more efficiently than the surrounding landscape. Elevations range from 1200 to 2600 feet; site aspect is variable.

Hoder's Mountainsnail: On or near ridgetop in grassland and timber edge, with buckwheat (*Eriogonum* sp.) and arrowleaf balsamroot (*Balsamorrhiza sagitta*).

Mad River Mountainsnail: In talus under black cottonwood (*Populus balsamifera*) or bigleaf maple.

Ranne's Mountainsnail: On southeasterly aspect near the ridgetop, in grassland with buckwheat and arrowleaf balsamroot.

Limestone Point Mountainsnail: Associated with limestone outcrops and talus at mid-elevations in arid land.

References

- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344 pp.
- Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail. Originally issued as: Burke, T. E. Management Recommendations, February 1999. Revised October 2005. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. 22 pp.,
- Gaines, W. L., A. L. Lyons, K. Weaver, and A. Sprague. 2011. Monitoring the short-term effects of prescribed fire on an endemic mollusk in the dry forests of the eastern Cascades, Washington, USA. Forest Ecology and management 261:1460-1465.
- Jepsen, S., A. Carleton, and S. F. Jordan. 2012. Spring 2012 Blue Mountains terrestrial mollusk surveys. Final report to the Interagency Special Species Status/Sensitive Species Program. The Xerces Society for Invertebrate Conservation. 88 pp.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.

Family Oreohelicidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD				
Ch	Chelan Mountainsnail								
1	Resource information collection needs	Need taxonomic clarification	Taxonomic clarification; delineate occupied habitat	Current insufficient	External				
2	Fish and wildlife habitat loss or degradation	Fires; road building, unsustainable logging	Need to identify core habitat sites and protect alteration	Current insufficient	External				
3	Invasive and other problematic species	Predation by wild turkeys	Increase turkey harvest, if needed	Nothing current - new action needed	WDFW				
Hoder's Mountainsnail									
1	Agriculture and aquaculture side effects	Fires; road building	Develop management recommendations	Current insufficient	External				

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
2	Invasive and other problematic species	Predation by wild turkeys	Increase turkey harvest, if needed	Current insufficient	WDFW
3	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline	Need taxonomic clarification	Current insufficient	External
Lin	nestone Point Moun	tainsnail			
1	Resource information collection needs	Need information; confirm still extant	Taxonomic and status clarification	Current insufficient	Both
Ma	nd River Mountainsn	ail			
1	Agriculture and aquaculture side effects	Fires; road building; need taxonomic clarification	Delineate and protect occupied habitat	Current insufficient	Both
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline	Taxonomic confirmation, description	Nothing current - new action needed	External
Rai	nne's Mountainsnail				
1	Resource Information collection needs	Taxonomic clarification	Formal species description; taxonomic clarification	Nothing current - new action needed	External
2	Agriculture and aquaculture side effects	Prescribed fires	Special management, or designation	Current insufficient	External
3	Agriculture and aquaculture side effects	Unsustainable grazing of mountainsnail habitat	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Current insufficient	External
4	Invasive and other problematic species	Predation by wild turkeys	Increase turkey harvest, if needed	Nothing current - new action needed	WDFW

Family Polygyridae: FORESTSNAILS, DUSKYSNAILS, OREGONIANS, AND HESPERIANS

Conservation Status and Concern

These snails are of conservation concern because they have specialized habitat requirements, such as moist mature forest with a hardwood component, or moist sites in otherwise dry environments. Snails do not readily disperse and populations are isolated. They are vulnerable to disturbances or alteration of these sites, which may occur through logging, development, use of talus for road-building, or large ungulate grazing of springs.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Dry land forestsnail (Allogona ptychophora solida)	None	None	No	G5T2	S1S2	Low/unknown
Washington Duskysnail (Amnicola sp. 2)	None	None	No	G1	S1	Low/declining
Columbia Oregonian (Cryptomastix hendersoni)	In review	Candidate	Yes	G1G2	S1	Critical/declining
Puget Oregonian (Cryptomastix devia)	In review	None	No	G3	S2S3	Low/declining
Poplar Oregonian (Cryptomastix populi)	None	Candidate	Yes	G2	S1S2	Low/declining
Mission Creek Oregonian (Cryptomastix magnidentata)	None	None	No	G1	SNR	Low/unknown
[unnamed Oregonian] (Cryptomastix mullani hemphilli)	None	None	No	GNR	SNR	Low/unknown
Dalles Hesperian (Vespericola depressa)	None	None	No	G2Q	S1	Low/unknown

CLIMATE VULNERABILITY RANKING					
Common Name (Scientific name)	Ranking				
Dry land forestsnail (Allogona ptychophora solida)	Low-moderate				
Washington Duskysnail (Amnicola sp. 2)	Low-moderate				
Columbia Oregonian (Cryptomastix hendersoni)	Moderate-high				
Puget Oregonian (Cryptomastix devia)	Low-moderate				
Poplar Oregonian (Cryptomastix populi)	Low				
Mission Creek Oregonian (Cryptomastix magnidentata)	N/A				
[unnamed Oregonian] (Cryptomastix mullani hemphilli)	N/A				
Dalles Hesperian (Vespericola depressa)	Low-moderate				

Taxonomic notes: The Polygyridae is a large and diverse family of roughly 294 described snail species in North America. The *Cryptomastix* species are medium to moderately large Pacific Northwest endemics; there are likely more *Cryptomastix* and other Polygyrids that will be described with genetic analysis, and some will deserve conservation attention. *C. magnidentata* (Pilsbry 1940) [=*Cryptomastix* (*Cryptomastix*) n. sp. 2 ['Hells Canyon Oregonian' of Frest and Johannes 1995].

Biology and Life History

Polygyrids are generally herbivorous and fungivorous snails; Dalles Hesperian feed by scraping algae, yeast, bacteria and diatoms from rock and woody surfaces; they may also consume green plant materials (Duncan 2009). All of the species addressed here are terrestrial, except the Washington Duskysnail (*Amnicola sp. no.2*), which is a freshwater snail. Washington Duskysnail is a detritivore and grazes along the stems and leaves of aquatic plants eating small organisms clinging to this material (Frest and Johannes, 1995). In most terrestrial gastropods, crossfertilization appears to be the norm, but self-fertilization can occur in at least some species in the absence of

Dalles Hesperian Photo: W. Leonard

potential mates. Pilsbry (1940) states of the family Polygyridae, "Their food is chiefly the mycelia of fungi." While it is suspected that mycophagy is the primary life style of these species, it appears that at least the young may be partially herbivorous on green plants during certain seasons.

Life history of the terrestrial Polygyrids may resemble that described for the Oregon Forestsnail (*Allogona townsendiana*). This species is most active during the wet spring months when mating occurs. Adults lay eggs in new or existing flask-shaped nesting holes, or sometimes in pre-existing depressions in soil, moss, and under coarse woody debris, or at the base of vegetation. Juvenile snails hatch approximately eight to nine weeks after oviposition, and disperse from the nest site within hours of hatching.

Oregon Forestsnails estivate deep within litter, under logs or the bark of coarse woody debris during dry summer months and become active again with fall rains. Once the first frosts occur, Oregon Forestsnails enter hibernation until the following spring. Adults likely reach reproductive maturity by two years and have a life span of at least five to eight years, though this may be an underestimate. Edworthy *et al.* (2012) reported that adults generally remained in a core area of less than 18 square yards. (The maximum daily dispersal was 15 feet and the maximum displacement over three years was 105 feet.

Columbia Oregonians consume herbaceous plants in captivity, and may also consume algae on wet surfaces and decaying remains of herbaceous plants.

Puget Oregonians hatch from eggs and live for more than one year. However, specific details on life span and reproduction for this species were not found. Like most terrestrial gastropods, *Cryptomastix* are hermaphroditic, having both male and female organs. Burke (1999) suggested that Puget Oregonian (*C. devia*) might aid in the dispersal of fungal spores, including mycorrhizal fungi that form tree-root associations which promote healthy tree growth.

Dalles Hesperians live approximately three to five years. Individuals may breed during their second season. Egg laying sites are thought to be in very moist or wet locations, such as in wet moss or under rocks or wood. They are present all year, but probably not active under snow in winter. Individuals are entirely terrestrial, but seek refugia sites where the humidity level is relatively high and temperature is constant, such as deep within cracks in mud, in rock talus or under permanently moist vegetation. May travel several hundred feet during a season, only to return to original refugia sites.

Distribution and Abundance

Dry Land Forestsnail: *Allogona* in the Pacific Northwest include three species; the very common *A. ptychophora* occurs from the Cascade Range in British Columbia into northern Oregon and east to the Continental Divide. A distinct subspecies, *A. ptychophora solida*, is confined to local populations in the Snake River Canyon, Asotin County, Washington, and eastward in Nez Perce and into Lewis Counties, Idaho. Distinct *A.p. solida* are locally common in Idaho, but appear rare west of the Snake River.

Washington Duskysnail: This species is currently known from only three lake sites: one in Ferry County, one in Okanogan County, and one in northwestern Montana. The Washington Duskysnail is declining due mainly to habitat degradation and destruction, both in terms of populations and numbers of individuals.

Columbia Oregonian: This species is known from 13 locations at the east end of the Columbia Gorge along both sides of the river from The Dalles to Rufus, Wasco and Sherman Counties in Oregon; this includes only four small sites in Klickitat County, Washington. Most locations are isolated from one another by the arid surrounding landscape. Originally also occurred in Skamania County, and in The Dalles, Oregon, but these sites were lost to by development. Specimens that may be this species suggest its range may extend north into Yakima County, and east along the Columbia and Snake Rivers and the Washington-Oregon border, in Umatilla and Wallowa Counties, Oregon, to Adams and Washington Counties, Idaho, but this requires confirmation.

Puget Oregonian: This species is found in the western Cascade Range and Puget Trough from southern Vancouver Island, B.C. through western Washington to the Oregon side of the Columbia Gorge. Records exist from Clark, Cowlitz, King, Lewis, Pierce, Skamania, and Thurston Counties,

Washington. Kogut and Duncan (2005) noted 178 locations, but at most sites only one to three snails were found. Most sites are in Gifford Pinchot National Forest, where it is relatively common only in the Cowlitz and Cispus River drainages; elsewhere it is quite rare and local. Much of its former range is now urban or has been developed for agriculture; 10 of 42 records from prior to 1994 are from the metropolitan Seattle area. There is a single record from the eastern Cascades near Cle Elum. Formerly found in Hood River and Wasco Counties of Oregon, and in British Columbia (primarily Vancouver Island). In Oregon, this species is in severe decline; currently only a few sites in Multnomah County remain.

Poplar Oregonian: This species is found along the Snake River in Whitman and Asotin Counties, Washington, and in Cottonwood Canyon, Nez Perce County, Idaho.

Mission Creek Oregonian: This species is found in the Snake River Canyon, Grand Ronde Canyon, and Joseph Creek Wildlife Area in Asotin County, Joseph Canyon, Wallowa County, Oregon, and in Lewis and Nez Perce Counties, Idaho.

[unnamed Oregonian] (*C. mullani hemphilli*): A small disjunct population of this taxa occurs in Swakane Canyon in Chelan County. Also found in northern Idaho and Sanders and Missoula Counties, Montana.

Dalles Hesperian: This species survives at a few scattered, widely separate colonies in the Columbia Gorge: from Rufus, Oregon downstream to Vancouver, Washington. Historic sites are located in Wasco, Hood River and Sherman Counties in Oregon; and Clark, Skamania and Klickitat Counties in Washington. No specific information on abundance at these sites is documented.

Habitat

Dry Land Forestsnail: The Dry Land Forestsnail is found in talus and rocky riparian areas in the Snake River Canyon.

Washington Duskysnail: This is a freshwater species that occurs in kettle lakes among aquatic vegetation beds, but is absent from dense aquatic vegetation areas. The species is found on soft oxygen-rich substrate at a depth of approximately two to six feet.

Columbia Oregonian: This species occurs at seeps and spring-fed streams and in associated talus in the semi-arid eastern portion of the Columbia River Gorge. Inhabits margins of low to midelevation seeps, and spring-fed streams in an otherwise arid landscape. Typically found among moist talus, leaf litter and shrubs, or under logs and other debris.

Puget Oregonian: This species is thought to be a mature forest specialist and inhabits moist old-growth and late successional stage forests and riparian areas at low and middle elevations (below 600 feet). Mature to late successional moist forest and riparian zones, under logs, in leaf litter, around seeps and springs, and often associated with hardwood debris and leaf litter and/or talus. It is often found under or near bigleaf maple and may be under western swordferns growing under these trees, or on the underside of bigleaf maple logs. Canopy cover is generally high. Often found in old-growth western hemlock/swordfern plant associations with bigleaf maple and/or possibly other hardwood components well represented.

Poplar Oregonian: This species is found in talus and brushy draws in canyons in moderately xeric, rather open and dry situations, in talus on steep, cool (generally north or east facing) lower slopes in major river basins. Surrounding vegetation is sage scrub. Talus vegetation includes *Celtus*, *Artemesia*, *Prunus*, *Balsamorrhiza*, grasses, small limestone moss (*Seligeria* sp.) and bryophytes.

Mission Creek Oregonian: This species has been found in rocky, brushy draws and riparian areas.

[unnamed Oregonian] (C. mullani hemphilli): There is no habitat data available for this species.

Dalles Hesperian: This species is generally found in wet or very moist sites. In dry areas, it is associated with a permanent water source such as a spring or seep.

References

- Applegarth, J. S. 1999. Management Recommendations for *Cryptomastix hendersoni*, the Columbia Oregonian (land snail) v.20, Section 2, in T. E. Burke, J.S. Applegarth, and T. R. Weasma. Management Recommendations for Survey and Manage Terrestrial Mollusks (v. 2). USFS and BLM.
- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344 pp.
- Burke, T., J. Applegarth, T. Weasma, and N. Duncan. 1999. Management recommendations for Survey and Manage terrestrial mollusks, ver. 2.0. USDA Forest Service, USDI Bureau of Land Management. Available online at http://www.or.blm.gov/surveyandmanage/MR/TM23Species/m2000-003.htm
- COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Forestsnail *Allogona townsendiana* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 87pp. (www.registrelepsararegistry.gc.ca/default_e.cfm).
- Duncan, N. 2009. *Vespericola columbianus depressa*. Species Fact Sheet. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management.
- Edworthy, A., K. Steensma, H. Zandberg, and P. Lilley. 2012. Dispersal, home range size and habitat use of an endangered land snail, the Oregon Forestsnail (*Allogona townsendiana*). Canadian Journal of Zoology 90(7):875–884.
- Frest, T. J., and E. J. Johannes. 1995. Interior Columbia Basin Mollusk Species of Special Concern. Final Report, Deixis Consultants, Seattle. Prepared for Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA 362 pp.
- Steensma, K. M. M., L. P. Lilley, and H. M. Zandberg. 2009. Life history and habitat requirements of the Oregon forestsnail, *Allogona townsendiana* (Mollusca, Gastropoda, Pulmonata, Polygyridae), in a British Columbia population. Invertebrate Biology 128:232–242.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.

Family Polygyridae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Col	umbia Oregonian			ı	l
1	Fish and wildlife habitat loss or degradation	Loss of perennial flow due to diversions	Taxonomic clarification for additional taxa; delineate occupied sites	Unknown	Both
2	Fish and wildlife habitat loss or degradation	Habitat loss to development	Delineate and protect sites	Unknown	Both
Dal	les Hesperian				ı
1	Fish and wildlife habitat loss or degradation	Road building, disturbance of talus; habitat alteration that creates xeric conditions; need distribution data	Delineate and protect sites	Current insufficient	WDFW
2	Agriculture and aquaculture side effects	Unsustainable grazing of habitat	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Current insufficient	Both
3	Resource information collection needs	Need distribution data	Inventory	Current insufficient	WDFW
Dry	land Forestsnail				ı
1	Fish and wildlife habitat loss or degradation	Road building and maintenance	Delineate and protect sites	Current insufficient	WDFW
2	Resource information collection needs	Need distribution data	Identify sites	Current insufficient	WDFW
Mis	ssion Creek Oregoni	an			ı
1	Fish and wildlife habitat loss or degradation	Limestone quarrying	Develop management recommendations	Nothing current - new action needed	WDFW
2	Agriculture and aquaculture side effects	Unsustainable logging practices	Develop management recommendations	Nothing current - new action needed	WDFW
3	Agriculture and aquaculture side effects	Unsustainable grazing of riparian habitat	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Nothing current - new action needed	Both
Po	olar Oregonian				
1	Resource information collection needs	Status assessment	Status assessment	Current insufficient	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
2	Fish and wildlife habitat loss or degradation	Mining of basalt talus	Management recommendations; tech assistance	Nothing current - new action needed	WDFW
3	Agriculture and aquaculture side effects	Livestock grazing practices that do not benefit the species	Outreach, coordinate with landowners to incorporate management recommendations to benefit the species	Nothing current - new action needed	Both
Pu	get Oregonian				
1	Resource information collection needs	Status assessment	Status assessment	Current insufficient	Both
2	Fish and wildlife habitat loss or degradation	Habitat loss to urbanization	Management recommendations; tech assistance	Nothing current - new action needed	WDFW
3	Agriculture and aquaculture side effects	Habitat loss to logging of old-growth; bigleaf maple	Management recommendations; tech assistance	Current insufficient	Both
Wa	ashington Duskysnai				
1	Fish and wildlife habitat loss or degradation	Pollution, siltation	Protect water quality	Current insufficient	External
2	Resource information collection needs	Taxonomic clarification	Formally describe species	Nothing current - new action needed	External
[ur	named Oregonian]	(Cryptomastix mullani hemph	illi)		
1	Resource information collection needs	Need taxonomic confirmation	Inventory; taxonomic clarification	Nothing current - new action needed	External

Family Vertiginidae

Conservation Status and Concern

These three very rare *Vertigo* species are small snails found in small isolated populations, perhaps remnants of a previously much wider range. These small populations, associated with old-growth and/or riparian hardwoods are very vulnerable to logging, road building, fires, or other disturbances.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Hoko Vertigo (Nearctula new sp. or Vertigo new sp.)	In review	None	No	G1	S1	Critical/unknown
Pacific Vertigo (Vertigo andrusiana)	None	None	No	GNR	S1?	Critical/ extirpated?
Idaho Vertigo (Vertigo idahoensis)	None	None	No	G1G2	SNR	Critical/unknown
	Climate vulnerability: Low-moderate					

Taxonomic note: Burke (2013) considers this group within the family Vertiginidae; earlier authorities placed the subfamily Vertigininae in the family Pupillidae, and in the superfamily Pupilloidea, order Pulmonata, and class Mollusca (Duncan 2005). Frest and Johannes (1996b) placed the Hoko Vertigo into the *Vertigo californica* group. Sterki (1892) gave this group a subgeneric name, *Nearctula*, which was regarded as a synonym of the genus *Vertigo* by Pilsbry (1948). Recently *Nearctula* has been used by some authors as the valid genus for this species group. The Hoko Vertigo has not yet been formally named or described.

Biology and Life History

The Vertiginidae are minute (roughly .05 to 0.12 inch) terrestrial snails with ovoid-shaped shells. Land snails, including Vertiginid snails, are hermaphroditic and exchange gametes with conspecific individuals when conditions are favorable. At least some species seem to retain the fertilized eggs and give birth to small numbers of live young. The Hoko Vertigo is thought to be a short-lived species with a potential life span of less than two years. The distinctly arboreal lifestyle and mouthparts of this group of snails suggest that they feed on microorganisms growing on the surfaces of smooth-barked trees and shrubs or epiphytic lichens. In Pacific Northwest forests, Vertiginidae snails overwinter on

Vertigo columbiana Photo: W. Leonard

tree limbs, so presumably they are not killed by freezing temperatures.

Distribution and Abundance

Hoko Vertigo: Hoko Vertigo is known only from along the east side of the Hoko River in Clallam County in the northwestern part of the Olympic Peninsula. The tendency of these snails to have a patchy distribution may make it difficult to make estimates of population size and population trends. Surveys of roughly 300 acres in Olympic National Forest did not find any new locations. Random grid surveys across the Northwest Forest Plan area in Oregon and Washington did not locate this species in any of 498 plots searched. However, a specimen that may prove to be this

species was collected in the Salem BLM district of Oregon. This species is under review by the USFWS for listing under the ESA.

Pacific Vertigo: This species appears to have once been widely distributed in the Pacific Northwest, with a historical range including well-separated areas of the Cascade and Klamath provinces. It is now apparently very rare, with no confirmed sightings in the Oregon/Washington region in recent years. There are historical records from the San Bernardino Mountains of California north through western Oregon and southwest Washington to Vancouver Island, British Columbia. In Washington, records are in the Puget Trough and Olympic Peninsula (Grays Harbor, Thurston, and King Counties). In Oregon, the species occurred west of the Cascade Mountains, with records from Clackamas, Douglas and Klamath Counties. To date, most known records are from before 1950, with the exception of one 1979 record from Thurston County, Washington, and one 1999 record from Fremont-Winema National Forest, Klamath County, Oregon (Jordan 2013).

Idaho Vertigo: Burke (2013) collected this species along a creek in Stevens County, Washington. Pilsbry (1948) found it along a creek east and northeast of the old town, Meadows, Adams County, Idaho. The type locality is the only known Idaho site, but this population has not been relocated. Searches during 1988, 1993, and 1994 within the lower Salmon River, Little Salmon River, and Payette River drainages in Idaho have also failed to find this species.

Habitat

The typical habitat for Vertigo snails ranges from moist riparian to relatively dry forests dominated by cottonwood, alder, Douglas-fir, spruce, or hemlock, depending on the species.

Hoko Vertigo: The Hoko Vertigo seems to be an old-growth riparian associate. The two known locations are at the bases of wooded slopes near streams at low elevations of between roughly 40 and 300 feet; it is unknown if the species occurs at higher elevations. The habitat seems to be characterized by old trees, riparian hardwoods, and mesic conditions. This species is arboreal and has been found on trunks and lower limbs of deciduous trees, mainly alders. They are most easily detected on the undersides of limbs and leaning trunks of young alders that have relatively smooth bark. One of the two known sites is at the base of a steep northwest-facing slope with seeps and consists of second-growth Douglas-fir forest with a sizable component of bigleaf maple. This site is near a stream; understory vegetation includes liverworts, large swordfern, and maidenhair fern. The other site is at the foot of a slope next to the Hoko River and is characterized by the presence of old hardwood trees, mostly alder.

Pacific Vertigo: This species occurred in forested sites at lower elevations and may be found on trunks and lower branches of deciduous trees and shrubs, as well as among the litter beneath them. Pilsbry (1948) wrote that "some thousands of specimens were taken...about clumps of bushes in a meadow" in Oswego, Clackamas County, Oregon. A 1979 Thurston County record notes "maple, salal" as the habitat. A 1999 record from Klamath County, Oregon (Fremont-Winema National Forest) lists the habitat as a drainage through a small open meadow with an overstory of ponderosa pine and western juniper.

Idaho Vertigo: This species is a riparian associate, but there is little other information. Habitat characteristics are described from only the type locality. At this site, the Idaho Vertigo inhabits a mid-elevation grass and sedge meadow with springs, seeps, bogs, and fens.

References

- Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko Vertigo. Originally issued as Management Recommendations by John S. Applegarth, February 1999. Revised by Nancy Duncan, October 2005. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington, 16 pp.
- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344 pp.
- Frest, T. J. 1999. A Review of the land and freshwater Mollusks of Idaho. Final report to the Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South Walnut, P.O. Box 25, Boise, Idaho 83707. 281 pp. plus appendices.
- Jordan, S. 2013. *Vertigo andrusiana* (Pilsbry 1899) Pacific Vertigo. Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1.

 NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed September 11, 2014).
- Pilsbry, H. A. 1948. Land Mollusca of North America (north of Mexico). Monograph of the Academy of Natural Sciences of Philadelphia, 2(2): 521-1113.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.

Family Vertiginidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD				
Но	Hoko Vertigo								
1	Agriculture and aquaculture side effects	Activities that result in drying of habitat (such as logging); need formal species description	Protect sites	Current insufficient	Both				
2	Resource information collection needs	Need formal species description	Taxonomy; describe species; protect sites	Current insufficient	External				
Ida	Idaho Vertigo								
1	Resource information collection needs	Need distribution data	Inventory; status assessment	Current insufficient	Both				
Pa	Pacific Vertigo								
1	Resource information collection needs	Need distribution data; may be extirpated	Inventory/status information	Current insufficient	Both				

Conservation Status and Concern

These terrestrial snails are very rare and have distributions that include small isolated populations, perhaps remnants of previously much wider ranges. These small isolated populations, often associated with old-growth and/or riparian hardwoods and are very vulnerable to logging, road building, fires, or other disturbances.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Oregon Megomphix (Megomphix hemphilli)	None	None	No	G3	S1	Low/unknown
Dalles Sideband (Monadenia fidelis minor)	In review	Candidate	Yes	G4G5T2	S1	Low/unknown
Crowned Tightcoil (Pristiloma pilsbryi)	None	None	No	G1	S1	Low/unknown
Nimapuna Tigersnail (Anguispira nimapuna new spp.)	None	None	No	G1	SNR	Critical/ unknown

CLIMATE VULNERABILITY RANKING				
Common Name (Scientific name)	Ranking			
Oregon Megomphix (Megomphix hemphilli)	Low-moderate			
Dalles Sideband (Monadenia fidelis minor)	Low-moderate			
Crowned Tightcoil (Pristiloma pilsbryi)	Low-moderate			
Nimapuna Tigersnail (Anguispira nimapuna new spp.)	N/A			

Taxonomic note: Oregon Megomphix is in the family Megophicidae; Dalles Sideband is in the Bradybaenidae; Crowned Tightcoil is in the Pristilomatidae; Nimapuna Tigersnail is in the Discidae. 'Anguispira nimapuna new spp' appears to be an undescribed subspecies (T. Burke, pers. comm.); they are distinctly like A. nimapuna from Idaho, but are smaller, with thinner shells and with weaker rib sculpturing.

Biology and Life History

Land snails are hermaphroditic and exchange gametes with other conspecific individuals when conditions are favorable, typically in the spring, and then both will lay eggs in damp subsurface situations where the eggs will be relatively safe from predators and desiccation. Land snails do not tend their eggs or young. There is no larval stage and newborn snails look like miniature adults (the innermost part of the shell develops within the egg).

Snails need moisture, so where the habitat dries out, they will estivate in the summer, become active with fall rains,

Photo: W. Leonard

and hibernate when the season turns cold. Land snails eat plants (living or dead), fungi, fruit, microorganisms, litter, wood, and dead animals. Of these species, more is known about Oregon Megomphix and the Dalles Sideband. The Oregon Megomphix seems to be more secretive and photophobic than other Northwest land snails, as no live animals and very few of their shells have been found out in the open; all have been found under the cover of leaf mold or within soft soil or in spaces within rock heaps. Loose soil may be necessary for egg-laying by sideband snails, which lay several dozen eggs; they are likely to live more than six years, and probably mature in two years. During the moist spring and fall seasons, Dalles Sidebands may be found in the open, away from refugia. Daily refugia used during moist seasons can be down wood, rock or accumulations of litter. During the summer, snails are found deep in talus accumulations which are adjacent to springs or streams and which serve as refuge sites from desiccation and protection from predators while the snails are immobile. These deep rock refugia also provide the important, environmentally stable sites needed to survive wildfire events and cold winter conditions. Mollusks which inhabit talus habitats also utilize the surrounding forest areas during moist, cool conditions, ranging out from the refugia provided by the rocks to forage in the adjacent forest floor litter.

Distribution and Abundance

Oregon Megomphix: This species is known from Olympia southward in foothills of the Cascade and Coast Ranges in conifer/hardwood forests up to 3000 feet in elevation, south through the Willamette Valley, Cascade Range foothills, and Coast Range of Oregon. For Washington there are 12 records from Thurston, Lewis, and Cowlitz Counties based on 45 specimens (many collected 30 to 120 years ago) that provide seven mappable locations, which are all at low elevations (below 500 feet) in the southwestern part of the state. It is more widespread in Oregon, known from the Siuslaw, Umpqua, and Willamette National Forests and is suspected to occur in the Mt. Hood, Rogue River, and Siskiyou National Forests, and the Columbia River Gorge National Scenic Area.

Dalles Sideband: This species is known from the Columbia Gorge from Hood River east to the vicinity of The Dalles on both sides of the Columbia River and in upland sites in the lower Deschutes River watershed within Mt. Hood National Forest in Wasco County, Oregon. The species may have occurred historically in the central and part of the eastern Columbia Gorge and south up the Deschutes River Valley as far as 50 miles from the confluence. A total of 98 sites are known, but most sites are in Oregon, and only a few individuals have been found at most sites. Known sites are widely scattered across the species' range and separated by non-habitat. The distribution of stable rock refugia sites across the landscape may determine or help to explain the distribution of the species in areas with short fire-return intervals.

Crowned Tightcoil: This species is known from Pacific County, Washington and the Northern Coast Range of Oregon; there are also historical records from Portland. Stone (2009) states it has also been found in Clallam County, Washington, and is suspected to occur in Grays Harbor, Washington, Cowlitz and Clark Counties, Washington and Multnomah, Clatsop and Columbia Counties, Oregon.

Nimapuna Tigersnail: This yet-to-be described subspecies occurs at two locations on ridges on opposite sides of Lake Chelan, Chelan County, Washington (Burke 2013). Outside of Washington, this species is known from less than 10 localities in the Clearwater, Lochsa, and Selway Rivers' drainages in Idaho County, Idaho, and Wallowa County, Oregon (Hendricks et al. 2006, Burke 2013).

Habitat

Oregon Megomphix: Habitat is within moist conifer/hardwood forests up to 3000 feet in elevation in hardwood leaf litter and decaying non-coniferous plant matter under bigleaf maple trees, or beaked hazelnut (*Corylus cornuta*) bushes, and swordferns, often near rotten logs or stumps. A bigleaf maple component in the tree canopy and an abundance of swordfern on forested slopes and terraces seem characteristic. Appears to be primarily fossorial, often found on soil under leaf litter or in rodent burrows. The presence of rotten logs seems to be important to local survival. Unusually large or multiple-stemmed bigleaf maples, or clumps of bigleaf maples, seem to provide the most favorable habitat.

Dalles Sideband: The species has been found in moist talus habitat (especially around seeps and springs), and in forested areas in upland sites near, but outside of, riparian corridors. In some forested sites, the species has been found associated with down wood where no rock substrates occur. Down wood may provide temporary refugia used during dispersal in the wet season, while rock substrates provide more stable refugia used for estivation during summer and winter and during fire events.

Crowned Tightcoil: This species has been collected in moist leaf and woody debris litter in low elevation forested areas under the dense thickets of salal (*Gaultheria shallon*) near the coastal beaches, and in riparian areas under red alder and swordfern. Stone (2009) characterizes it as associated with riparian and old-growth habitat, though it has been collected in the headwater riparian areas of managed second-growth western hemlock forests. Typically associated with abundant, persistent moisture.

Nimapuna Tigersnail: In Idaho this species has been found between 1500-2550 feet in elevation at sites with an overstory that included western red-cedar and grand fir, with some alder, paper birch, Douglas-fir and/or ponderosa pine; often under wood or on bryophyte mats among dense ferns.

References

- Applegarth, J. S. 2000. Management recommendations for terrestrial mollusk species *Megomphix hemphilli* the Oregon Megomphix. Version 2.0. Unpublished report to the Oregon Bureau of Land Management. 39 pp.
- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344 pp.
- Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband. Originally issued as Management Recommendations by T. R. Weasma, 1998. Revised by N. Duncan. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington, 14pp.
- Frest, T. J. 1999. A Review of the land and freshwater Mollusks of Idaho. Final report to the Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South Walnut, P.O. Box 25, Boise, Idaho 83707. 281 pp. plus appendices.
- Hendricks, P., B. A. Maxell and S. Lenard. 2006. Land Mollusk Surveys on USFS Northern Region Lands. A report to the USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana. 11 pp. plus appendices.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed September 11, 2014).
- Pilsbry, H. A. 1948. Land Mollusca of North America (north of Mexico). Monograph of the Academy of Natural Sciences of Philadelphia, 2(2): 521-1113.
- Stone, T., 2009. Crowned Tightcoil (*Pristiloma pilsbryi*). Species Fact Sheet. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.

OTHER TERRESTRIAL SNAILS: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD				
Cro	Crowned Tightcoil								
1	Fish and wildlife habitat loss or degradation	Habitat loss to development	Technical assistance to regulatory agencies	Current insufficient	WDFW				
2	Agriculture and aquaculture side effects	Logging of mature timber	Develop management recommendations	Current insufficient	WDFW				
3	Resource information collection needs	Need to delineate distribution	Inventory	Current insufficient	Both				
Da	lles Sideband								
1	Fish and wildlife habitat loss or degradation	Road building; fires; habitat alteration that creates xeric conditions	Develop management recommendations	Current insufficient	WDFW				
Nir	napuna Tigersnail								
1	Resource information collection needs	Lack of data; need distribution data.	Describe and protect sites	Nothing current - new action needed	WDFW				
2	Resource information collection needs	Possible new subspecies; need taxonomic clarification	Clarify taxonomy	Nothing current - new action needed	External				
Ore	Oregon Megomphix								
1	Overharvesting of biological resources	Cutting of bigleaf maples for burls; loss of rotten logs	Increased protection of bigleaf maples by enforcement, outreach, etc.	Current insufficient	External				
2	Resource information collection needs	Clarify distribution, status	Status assessment	Nothing current - new action needed	Both				

Families: Lymnaeidae and Hydrobiidae

Conservation Status and Concern

These species require clear, cold, well-oxygenated waters, and are threatened by pollution and siltation. North America once had approximately 700 species of native freshwater snails from 16 families. Currently, 67 species (10 percent) are considered likely extinct, 278 (40 percent) endangered, 102 (15 percent), threatened, 73 (10 percent) vulnerable, and 26 (4 percent) have uncertain taxonomic status.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend
Shortface Lanx or Giant Columbia River Limpet (Fisherola nuttalli)	None	Candidate	Yes	G2	S2	Uncommon/ declining
Masked Duskysnail (Lyogyrus sp. 2)	None	None	No	G1G2	S1	Critical/declining
Olympia Pebblesnail (Fluminicola virens)	None	None	No	G2	S2	Low/unknown
Salmon River Pebblesnail (Fluminicola gustafsoni)	None	None	No	GNR	SNR	Low/unknown
Ashy Pebblesnail (Fluminicola fuscus)	None	Candidate	Yes	G2	S2	Uncommon/ declining

CLIMATE VULNERABILITY RANKING							
Common Name (Scientific name)	Ranking						
Shortface Lanx or Giant Columbia River Limpet (Fisherola nuttalli)	Moderate						
Masked Duskysnail (Lyogyrus sp. 2)	Low-moderate						
Olympia Pebblesnail (Fluminicola virens)	Low-moderate						
Salmon River Pebblesnail (Fluminicola gustafsoni)	N/A						
Ashy Pebblesnail (Fluminicola fuscus)	Moderate						

Taxonomic notes: The Shortface Lanx (*Fisherola nuttalli*) is in the family Lymnaeidae (it is not a limpet); Masked Duskysnail (*Lyogyrus sp. 2*) is an undescribed species in the family Hydrobiidae. The genus *Fluminicola* was

formerly considered to be in the family Hydrobiidae, but more recent classification system based on genetics treats Lithoglyphidae at the family level, instead of as a subfamily (Lithoglyphinae) in the Hydrobiidae family (Jordan 2013). Hershler and Liu (2012) indicate that the genus *Fluminicola* includes two separate lineages and is in need of revision. The Salmon River Pebblesnail (*F. gustafsoni*) is a recently described species, closely related to *F. virens*.

Biology and Life History

2015 STATE WILDLIFE ACTION PLAN

Ashy Pebblesnail Photo: WDFW

For these aquatic snails, limiting factors may include hardness, acidity, dissolved oxygen, salinity, high temperature, and food availability as associated with depth. Snails are uncommon in habitats with surface acidity greater than pH 5. Dissolved oxygen limits diversity, so severely polluted waters (oxygen consumed by algae blooms) are often devoid of freshwater snails excepting pollution-tolerant species. Most species live in the shallows, (depths less than 10 feet) where food abundance is greatest. As a result, drastic water fluctuations (draw-downs) may cause declines in snail populations.

Shortface Lanx: This is a small pulmonate (lunged) snail; it feeds by scraping algae and diatoms from rock surfaces in streams. May occasionally feed on other plant surfaces. *Fisherola* are hermaphrodites but do not appear to be self-fertilized, thus mating occurs between two individuals. Eggs are laid from spring to autumn in gelatinous capsules attached to plants, stones, or other objects. They lack a free-swimming larval stage, and hatchlings are morphologically similar to adults, except that they lack a functional reproductive system. Young snails appear to grow rapidly and require only a few months to reach full size. Individual *F. nuttalli* probably live for only one year, as this species breeds once and dies afterwards (semelparous breeding). Individuals are present year-round in the streams they inhabit, but are inactive during the winter.

Masked Duskysnail: This species, like all Hydrobiid snails, has gills that make them dependent upon dissolved oxygen in the water. This species feeds on the algal and microbial film on aquatic plants, and likely on detritus. Individuals overwinter as adults and do not disperse widely, so populations remain very localized in their distribution. Information is sparse, but reproductive biology is probably similar to other Hydrobiid species. Hydrobiids typically are dioecious (i.e., have separate sexes) and semelparous (i.e., breed only once in their life time and then die), and individuals have a life span of one year, with 90 percent or more of the population turning over annually. Surviving individuals are generally those that do not breed during their first year. Eggs are laid in the spring and hatch in approximately two to four weeks. Sexual maturity is reached by late summer after a few months of growth.

Pebblesnails: Pebblesnails feed by scraping bacteria, diatoms and other perilithic organisms from rock surfaces, and may occasionally feed on aquatic plant surfaces. This species is present all year, but not active in winter. Having no lungs or gills, snails in this genus respire through the mantle cavity, and have low tolerance for hypoxia and anoxia. The *Fluminicola* genus exhibits separate sexes with both male and female individuals. Reproduction is by copulation and crossfertilization, and these species are believed to be semelparous (reproducing only once in a lifetime). Eggs are laid from spring to autumn in gelatinous capsules attached to plants, stones, or other objects. The individual life span of these species is thought to be approximately one to two years, and population turnover is probably greater than 90 percent. Often, species in this genus appear to be community dominants, comprising most of the invertebrate biomass.

Distribution and Abundance

Shortface Lanx: This species was historically present throughout much of the Columbia River drainage in Washington, Montana, Oregon, Idaho, and British Columbia, but most populations were extirpated due to habitat loss resulting from dams, impoundments, water removal, and pollution. This species is now presumed extirpated in Montana and possibly in British Columbia. Currently in Washington, large populations of *F. nuttalli* persist in the Okanogan River and the Hanford Reach of the Columbia River; small populations are found in the Methow and Grand Ronde rivers. The species also occurs in the lower Deschutes River in Oregon, and the Snake River

in Oregon and Idaho. In Idaho, it occurs in the Middle and Upper Snake River reaches from Elmore County, upstream to at least Bingham County. Populations also occur in the Salmon River and Hells Canyon of the Snake River including parts of Nez Perce and Idaho Counties. Additional small populations are found in Oregon in the Grande Ronde, John Day, and Imnaha Rivers, and the lower Columbia River near Bonneville Dam.

Masked Duskysnail: The Masked Duskysnail is currently known from three or four sites in two kettle lakes: Curlew Lake in Ferry County, Washington, and Fish Lake, Chelan County, Washington.

Olympia Pebblesnail: The Olympia Pebblesnail is known only from Oregon and Washington. In Washington, it is known from about 12 locations, including Cowlitz, Grays Harbor, Pacific, San Juan, Skamania and Thurston Counties in Washington. In Oregon, it is limited in distribution to the lower Columbia River below Portland, the upper Deschutes River, the Umpqua River, the Willamette River from Corvallis to its mouth, and large tributary streams of the Willamette River including the Tualatin and Clackamas Rivers.

Salmon River Pebblesnail: This species is known only from the Salmon, Clearwater and lower Snake Rivers. In Washington it is only recorded from Asotin County.

Ashy Pebblesnail: This species has been extirpated from much of its historic range. It was historically widespread, with populations scattered throughout Washington in the lower Snake River, lower to middle Columbia River, and large tributaries of these rivers including the Methow, Willamette, Wenatchee, Deschutes, Okanogan, Grande Ronde, and Spokane Rivers (Asotin, Benton, Cowlitz, Chelan, Clark, Franklin, Klickitat, Okanogan, Skamania, Spokane, and Walla Walla Counties). Targeted surveys were conducted at over 500 sites in more than 30 streams in the Columbia Basin (Oregon, Washington, Idaho); this species was absent from nearly all sites (including some historic sites), and detected at just five streams. In Washington, it has been detected relatively recently (1990 or later) in the Okanogan, Grande Ronde and Methow Rivers; Hanford Reach of the Columbia River; and a limited portion of the Snake River.

Habitat

Shortface Lanx: Shortface lanx are found in unpolluted, cold, well-oxygenated perennial streams and rivers, generally 100 to 325 feet wide, with a cobble-boulder substrate. Within such streams it is found primarily on diatom-covered rocks at the edges of rapids or immediately downstream from rapids in areas that have suitable substrate. Shortface Lanx have not been found in areas with silt or mud substrates, extreme seasonal variations in water level, an abundance of aquatic plants or algae, bedrock substrate, or where dredging or mining occurs.

Masked Duskysnail: This species is a kettle lake inhabitant and riparian associate. It lives in lentic ecosystems on oxygenated mud substrates with aquatic plants.

Pebblesnails: This genus is fairly intolerant of impounded waters and soft substrates as well as nutrient-enhanced or lacustrine (lake) habitats. These species are usually found in clear, cold streams with high dissolved oxygen content. They are generally found on hard rocky surfaces where they graze on algae and detritus. They occur under rocks and vegetation in the slow to rapid currents of streams. It is common at the edges of rapids or immediately downstream from whitewater areas, and becomes much less common or absent in major rapids. In the absence of rapids or whitewater areas, this species is restricted to habitat with sufficient flow, oxygenation, and stable substrate.

References

- Duncan, N. 2005. Conservation Assessment for *Lyogyrus* n. sp. 2 Masked Duskysnail. Originally issued as Management Recommendations, December 1998 by R. Monthey. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 10 pp.
- FMCS (Freshwater Mollusk Conservation Society) 2013. Website (http://molluskconservation.org/Snails Ftpage.html)
- Frest, T. J and E. J. Johannes. 1997. Land snail survey of the lower Salmon River drainage, Idaho. Report prepared for USDI BLM, Idaho, Deixis Consultants, Seattle. 367 pp.
- Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special concern. Final report to the Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.
- Hershler, R. and T. J. Frest. 1996. A review of the North American freshwater snail genus *Fluminicola* (Hydrobiidae). Smithsonian Contributions to Zoology 583: 1-41.
- Hershler, R. and H. P. Liu. 2012. Molecular phylogeny of the western North American pebblesnails, genus Fluminicola (Rissooidea: Lithoglyphidae), with description of new species. Journal of Molluscan Studies 78:321-329.
- Jordan, S. F. 2013a. Olympia Pebblesnail (*Fluminicola virens*). Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 9 pp.
- Jordan, S. F. 2013b. Ashy Pebblesnail/ Columbia Pebblesnail (*Fluminicola fuscus*). Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 19pp.
- Mazzacano, C. 2014. Limpets: giant Columbia River limpet (Fisherola nuttalli), (Gastropoda: Lymnaeidae). The Xerces Society for Invertebrate Conservation. (Online: http://www.xerces.org/giant-columbia-river-limpet/)
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed: September 17, 2014).
- Neitzel, D. A. and Frest, T. J. 1992. Survey of Columbia River Basin streams for Columbia pebblesnail *Fluminicola columbiana* and shortface lanx *Fisherola nuttalli*. Technical Report PNL-8229, Battelle Pacific Northwest Laboratory, Richland, WA. 83pp.
- Neitzel, D. A. and T. J. Frest. 1989. Survey of Columbia River Basin streams for giant Columbia River spire snail *Fluminicola columbiana* and great Columbia River limpet *Fisherola nuttalli*. Tech. Rep. #PNL7103, Battelle Pacific Northwest Labs. 59pp.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.

Families: Lymnaeidae and Hydrobiidae

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Asl	ny Pebblesnail				
1	Fish and wildlife habitat loss or degradation	Water pollution, siltation	Protect water quality	Current Insufficient	Both
Ma	sked Duskysnail		'		
1	Fish and wildlife habitat loss or degradation	Pollution	Protect sites	Nothing current - new action needed	Both
2	Resource information collection needs	Formally describe species	Taxonomy; describe species	Nothing current - new action needed	External
Oly	mpia Pebblesnail				
1	Fish and wildlife habitat loss or degradation	Pollution, siltation	Improve water quality of occupied streams	Current insufficient	Both
Sal	mon River Pebblesn	ail		I	
1	Fish and wildlife habitat loss or degradation	Pollution, siltation	Improve water quality of occupied streams	Current insufficient	External
Sh	ortface Lanx				
1	Fish and wildlife Pollution and siltation habitat loss or degradation		Protection of water quality	Current insufficient	WDFW
2	Agriculture and aquaculture side effects	Pollution and siltation	Develop management recommendations	Current insufficient	WDFW

Family Pleuroceridae (Genus Juga): FRESHWATER AQUATIC SNAILS

Conservation Status and Concern

These species require cold, clear, well-oxygenated water; they are sensitive to pollution, and intolerant of warm waters, low dissolved oxygen, or major seasonal fluctuations. Destruction of springs by grazing, logging, and diversions (e.g. for water supply, fish hatcheries) has already caused extensive extinction of *Juga* species throughout western North America.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend		
Barren Juga (Juga hemphilli hemphilli)	None	None	No	G2T1	S1	Low/unknown		
Dalles Juga (Juga hemphilli dallesensis)	None	None	No	G2T1	S1	Low/unknown		
Brown Juga (Juga sp. 3)	None	None	No	G1	S1	Low/unknown		
Three-band Juga (Juga sp. 7)	None	None	No	G1	S1	Low/unknown		
One-band Juga (Juga sp. 8)	None	None	No	G2G3	SNR	Low/unknown		
	Climate vulnerability: Moderate-high							

Taxonomic notes: The genus *Juga* and *Oreobasis* are synonymous. Three-Band Juga (*Juga* sp. 7) listed as Juga (*Juga* n. sp. 2) and One-band Juga (*Juga* sp. 8) listed as *Juga* n. sp. 1 in Frest and Johannes (1995: 178). The taxonomy of the Pleuroceridae, like most freshwater gastropods, has been based largely on shell morphology, and the tremendous variation makes the current taxonomy problematic and species identification difficult. Current work using reproductive anatomy and DNA to help resolve some of the taxonomic problems will likely result in changes in taxonomy in the future. Lee et al. (2006) analyzed DNA and suggested that *J. hemphilli* is a disjunct lineage from eastern North America, and should be designated *Elimia hemphilli*, but O'Foighil et al. (2009) reported that the Lee et al. (2006) paper was based on mislabeled voucher specimens, and confirmed that *J. hemphilli* belongs in *Juga* based on both DNA and anatomical evidence.

Biology and Life History

Juga species are freshwater aquatic snails with tall conical shells, native to the streams and springs of the Pacific Northwest and the Great Basin. Juga snails are characterized as rasper-grazers, feeding on both algae and detritus on rock surfaces and deciduous leaf litter. They exhibit seasonal migrations both upstream and downstream. The egg masses of Juga are most often found in loose (non-cemented) but stable cobble substrate, with free and fairly vigorous flow through at least the upper substrate layers. Egg masses are located under rocks in the spring, and eggs hatch in one month. Juga species live from five to seven years, reaching sexual maturity in three years, and can continue to grow.

Genus *Juga*Photo: nwnature.net

Distribution and Abundance

Where found, *Juga* can comprise over 90 percent of the invertebrate biomass in some streams. These five species seem to be restricted in distribution in Washington to the Columbia River Gorge, which historically provided abundant springs for habitat. Frest and Johannes (1995) systematically collected throughout much of the Gorge from 1987-1992, so that substantial additions to the range or an increase in the number of sites is highly unlikely.

Barren Juga: Barren Juga are known from a few populations on the west end of the Columbia Gorge in Washington and Oregon (mostly urbanized areas in Clark and Skamania Counties, Washington and Multnomah County, Oregon). Dillon (1989) lists occurrences from Oak Creek west of Corvallis, Benton County, Oregon.

Dalles Juga: The Dalles Juga has been found in Mill Creek and the central and eastern Columbia River Gorge from Hood River to the Dalles, in Hood River and Wasco Counties, Oregon and Skamania County, Washington. Lee et al. (2006) determined that material collected in 1883 by Whiteaves at the headwaters of the Columbia River in British Columbia and described as *Goniobasis columbiensis* is, in fact, this species.

Brown Juga: The Brown Juga is rare, found only in a few of the central and eastern Columbia Gorge tributaries, Skamania and Klickitat Counties, Washington, and in Multnomah and Hood River Counties, Oregon (Frest and Johannes 1995).

Three-band Juga: Three-band Juga are known from scattered sites, mostly in the eastern Columbia Gorge: Skamania and Klickitat Counties., WA, and Hood River, Wasco, Sherman, and Gilliam Counties, Oregon.

One-band Juga: One-band Jugas are known from a few of the central and eastern Columbia Gorge tributaries in Skamania and Klickitat Counties, Washington. Substantive range extensions are unlikely as most of the Columbia Gorge streams, as well as tributaries of the Klickitat and White Salmon rivers in recent years were surveyed.

Habitat

Barren Juga: The Barren Juga is found at low elevation large springs and small to medium streams with a level bottom and a stable gravel substrate and fast-flowing, unpolluted, highly oxygenated cold water. These typically lack aquatic macrophytes and have little epiphytic algae.

Dalles Juga: This species is found in low elevation large springs and small to medium streams with a stable gravel substrate and fast-flowing, unpolluted, highly oxygenated cold water. Relatively few macrophytes or epiphytic algal taxa are present.

Brown Juga: This species is found in low to medium elevation small spring-fed streams and springs, with cold, fast-flowing, well oxygenated water and gravel substrate. It is most frequently found in very small and shallow but perennial spring-fed streams and springs.

Three-band Juga: This species occurs in shallow, slow flowing springs and permanent seeps, sometimes associated with talus. Most often, these are covered by dense brush; the substrate ranges from bare rock faces to mud and sand. Rarely, this species occurs in smaller spring-fed streams.

One-band Juga: This species occurs in low to mid-elevation spring-fed streams and large springs with, cold, fast flowing, highly oxygenated water and a level bottom; if in streams, only in low-gradient streams, generally spring-fed.

References

- Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special concern. Final report to the Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.
- Lee, T., J. J. Kim, H. C. Hong, J. B. Burch and D. O'Foighil. 2006. Crossing the Continental Divide: the Columbia drainage species *Juga hemphilli* (Henderson, 1935) is a cryptic member of the eastern North American genus *Elimia* (Cerithioidea: Pleuroceridae). Journal of Molluscan Studies 72:314-317.
- O'Foighil, D. O., T. Lee, D. C. Campbell, and S. A. Clark. 2009. All voucher specimens are not created equal: A cautionary tale involving North American pleurocerid gastropods. Journal of Molluscan Studies 75:305-306.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853

Family Pleuroceridae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Ba	rren Juga				
1	Fish and wildlife habitat loss or degradation	or destruction; pollution		Current insufficient	Both
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline;	ean one or more e in greater		External
Bro	own Juga				
1	Fish and wildlife habitat loss or degradation	Water diversions; habitat loss to development	Protect small spring-fed streams	Current insufficient	WDFW
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline;	Taxonomic clarification	Current insufficient	External
Da	lles Juga				
1	Fish and wildlife habitat loss or degradation	Water diversions; habitat loss to development	Taxonomic clarification	Nothing current - new action needed	Both
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline;	Taxonomic clarification	Current insufficient	External
On	e-band Juga				
1	Fish and wildlife habitat loss or degradation	Water diversions; habitat loss to development	Taxonomic clarification	Unknown	Both

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline;	Formal species description, taxonomic clarification	Nothing current - new action needed	External
Th	ree-band Juga				
1	Resource information collection Needs	Need formal species description and status assessment	Formal species description, and status assessment	Nothing current - new action needed	Both
2	Fish and wildlife habitat loss or degradation	Water diversions; habitat loss to development	Management recommendations; identification and protection of sites;	Nothing current - new action needed	Both
3	Agriculture and aquaculture side effects	Intensive livestock use may trample the species or reduce riparian vegetation	Install fencing to carefully manage or prohibit livestock access to occupied riparian areas	Current insufficient	Both

SLUGS

TAILDROPPER SLUGS

Conservation Status and Concern

These endemic taildropper slugs are of concern due to their rarity. The Spotted Taildropper is only found in part of one county, and the rarity of both species suggest they have specific habitat needs that make them sensitive to land use activities, such as logging and loss of coarse woody debris.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	
Bluegray Taildropper (Prophysaon coeruleum)	None	Candidate	Yes	G3G4	S1	Low/declining	
Spotted Taildropper (Prophysaon vanattae pardalis)	None	None	No	GNR	SNR	Critical/ unknown	
	Climate vulnerability: Low-moderate						

Taxonomic note: *P.v. pardalis* has not been formally described as a subspecies; some specimens collected in northwestern Oregon assigned to this taxa appear to be a color variation of *P. andersoni*. Molecular analysis compared the genetic similarities of specimens identified as *P. coeruleum* from locations in western Oregon, Washington, California and Idaho. The results indicate that the species is not monophyletic in regards to color (i.e., body color is not related to genetic similarity), and there is a divergence in genetic similarity that occurs in southwestern Oregon populations which has resulted in several "clades" or variants in that region. None of these clades as yet have been officially named or described as subspecies or separate species.

Biology and Life History

Like most terrestrial gastropods, taildroppers are hermaphroditic, having both male and female organs. Although not confirmed specifically for *P. coeruleum*, self-fertilization has been demonstrated in some species of gastropods, but cross-fertilization is the norm. Slugs are generally oviparous (egg-laying). Eggs of *Prophysaon* slugs are laid in clusters in cool damp spots including under logs or pieces of wood on the shaded forest floor. Slugs are preyed upon by a variety of vertebrates and other invertebrates. Tail-dropping is a means to escape some predators. Fungi made up most (90 percent) of the identifiable food ingested by *P. coeruleum*; this

Bluegray Taildropper Photo: J.S. Applegarth

included a variety of mycorrhizal fungi and the species may be an agent of spore dispersal for these fungi, which are beneficial symbionts of many plants. Other food items include plant material and lichens; plant material is more commonly consumed in spring than in fall. There is no specific information available about the life history of the Spotted Taildropper.

Distribution and Abundance

Bluegray Taildropper: This species occurs in a few isolated populations and is a rare Pacific Northwest endemic closely associated with coniferous forest stands and conifer debris. In Washington, scattered sites are documented within the Puget Trough; extant populations occur in Lewis and Cowlitz Counties. The entire species range encompasses the Oregon Coast Range, Oregon and Washington Cascades, Puget Trough, Klamath Mountains of southwestern Oregon and northern California, western Idaho, and southern Vancouver Island, British Columbia. Although somewhat widespread and abundant in southwestern Oregon, it is rare and likely declining elsewhere in its range (including the rest of Oregon, and in California, Washington, Idaho, and British Columbia) with populations scattered and disjunct.

Spotted Taildropper: A quite rare subspecies from a very limited range in Pacific County, Washington. It is a rare spotted form of the Scarletback Taildropper, a common slug of western Washington and western Oregon forests. May or may not also occur in northwestern Oregon.

Habitat

Bluegray Taildropper: This species inhabits moist, coniferous or mixed-wood forests of varying age classes and is associated with moist forest floor conditions and abundant coarse woody debris, particularly of bigleaf maple. All records from British Columbia are from within the Coastal Douglas-fir biogeoclimatic zone, while in Washington, it is often associated with older forests and required microhabitat features, including abundant coarse woody debris or other cover, a deep forest litter layer and shaded, moist forest floor conditions.

Spotted Taildropper: Little habitat information is available for this subspecies; they have been found in snags, stumps, coarse woody debris, and large swordferns.

References

- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344pp.
- COSEWIC. 2006. COSEWIC assessment and update status report on the blue-grey taildropper slug *Prophysaon coeruleum* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, Canada. 27 pp.
- Duncan, N. 2005. Conservation assessment for *Prophysaon coeruleum*, Blue-Gray Taildropper. Originally issued as Burke, T., N. Duncan, and P. Jeske. 1999. Management Recommendations. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington.
- Kelley, R., S. Dowlan, N. Duncan, and T. Burke. 1999. Field guide to survey and manage terrestrial mollusk species from the northwest forest plan. Unpublished report of the Bureau of Land Management, Oregon State Office. 114pp.
- McGraw, R., N. Duncan and E. Cazares, 2002. Fungi and other items consumed by the Blue-gray Taildropper slug (*Prophysaon coeruleum*) and the Papillose Taildropper slug (*Prophysaon dubium*). The Veliger, Vol. 45, No. 3, Pp. 261-264.
- Wilke, T. and N. Duncan 2004. Phylogeographical patterns in the American Pacific Northwest: lessons from the arionid slug *Prophysaon coeruleum*, Molecular Ecology (2004) 13: 2303-2315.

Taildropper Slugs: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Blι	uegray Taildropper				
1	Agriculture and aquaculture side effects	Logging of mature forest sites, loss of coarse woody debris	Identify and protect sites	Nothing current - new action needed	External
Sp	otted Taildropper				
1	Resource information collection needs	Lack of data on current status and distribution	Determine distribution, population status	Current insufficient	Both

FRESHWATER BIVALVES

Families Unionidae and Margaritiferidae: FRESHWATER MUSSELS

Conservation Status and Concern

Freshwater mussels have been greatly affected by dams and annual water drawdowns, as well as degraded water quality resulting from development and agriculture. Many historical sites no longer support mussels, and many local populations no longer successfully reproduce.

Common Name (Scientific name)	Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	
California Floater (Anodonta californiensis)	None	Candidate	Yes	G3Q	S2	Low/declining	
Winged Floater (Anodonta nuttaliana)	None	None	No	G4Q	S1	Low/declining	
Western Ridged Mussel (Gonidea angulata)	None	None	No	G3	S2S3	Uncommon/ declining	
Western Pearlshell (Margaritifera falcata)	None	None	No	G4G5	S3S4	Uncommon/ declining	
	Climate vulnerability: Moderate						

Taxonomic notes: Recent genetic research suggests that the California and Winged Floaters belong to a single clade, and that this clade exhibits basin-specific substructuring and may contain at least six distinct groups. However, before new species or genus level designations are made, the taxonomy for the entire Unionidae family needs to be resolved. The Western Ridged Mussel is the only species in the genus Gonidea.

Biology and Life History

Freshwater mussels are filter feeders that consume phytoplankton and zooplankton suspended in the water. Freshwater mussels have separate sexes, although hermaphrodites (individuals with male and female traits that are capable of self-fertilization) have been documented for some North American species, including the Western Pearlshell. Freshwater mussels have a complex life cycle. During breeding, males release sperm into the water and females filter it from the water for fertilization to occur. Embryos develop into larvae called glochidia, which are

Western Pearlshell Photo: WDFW

released into the water and must encounter and attach to a fin or gill filaments of host fish. Glochidia form a cyst around themselves and remain on a host for several weeks. They subsequently release from the host fish and sink to the bottom, burrow in the sediment and remain buried until they mature. During their lives, mussels may move less than a few yards from the spot where they first landed after dropping from their host fish. Because freshwater mussels are not able to move far on their own, their association with fish allows them to colonize new areas, or repopulate areas from which they have been extirpated. Freshwater mussels that live in dense beds, including Western Ridged Mussel and Western Pearlshells, provide an important water purification service; they can filter suspended solids, nutrients

and contaminants from the water column and collectively improve water quality by reducing turbidity and controlling nutrient levels.

California Floater/Winged Floater: Floater species grow quickly, reach sexual maturity in four to five years, and probably have a maximum life span of about 15 years. Host fish are unknown, but may include Chiselmouth (*Acrocheilus alutaccus*) and Northern Pikeminnow (*Ptychocheilus oregonensis*). Like other freshwater mussels, California and Winged Floaters rely on host fishes to reproduce and disperse.

Western Ridged Mussel: The Western Ridged Mussel is a relatively slow growing and long-lived species perhaps living 20 to 30 years, and can be an important indicator of water quality. The fish host species in Washington are unknown, but in northern California, Hardhead (*Mylopharodon conocephalus*), Pit Sculpin (*Cottus pitensis*), and Tule Perch (*Hysterocarpus traski*) are hosts for Western Ridged Mussels.

Western Pearlshell: The average life span is approximately 60 to 70 years, although some individuals are thought to have lived more than 100 years. Because this species is sedentary, sensitive to environmental changes, and long-lived, it can be an excellent biological indicator of water quality. Documented host fishes for Western Pearlshells include Cutthroat Trout (*Oncorhyncus clarkii*), Rainbow/Steelhead Trout (*O. mykiss*), Chinook Salmon (*O. tshawytscha*), and Brown Trout (*Salmo trutta*), and a number of other fish are considered potential hosts.

Distribution and Abundance

California Floater/Winged Floater: Historically widespread west of the Continental Divide from British Columbia to Baja, but extirpated from many areas by dams. It is problematic to determine the distribution of these species because of their morphological similarity and confusion of taxonomy; this range description may prove to apply to several distinct species. Frest and Johannes (1995) reported the range has been reduced and extant populations were found in the following areas: the Middle Snake River in Idaho; the Fall and Pit Rivers in Shasta County, California; the Okanogan River in Chelan County, Washington; and Roosevelt and Curlew Lakes in Ferry County, Washington. Extirpated from much of historic range, including the Willamette and lower Columbia Rivers and the Central Valley in California.

Western Ridged Mussel: The Western Ridged Mussel is widely distributed in Washington, Oregon, California, Idaho, Nevada, and southern British Columbia. This species is more common east of the Cascades of Oregon and Washington than on the western side. In Washington, the Western Ridged Mussel was known from the Columbia River (Kittitas County), Toppenish Creek (Yakima County), Yakima River (Benton County), the Snake River (Columbia County), Chehalis River (Grays Harbor, Lewis Counties), Skookumchuck River (Lewis County), Spokane River (Lincoln County), the Columbia, Okanagan, Similkameen, Spokane and Little Spokane Rivers, Osoyoos Lake, Palmer and Hangman Creeks, and Spokane Falls (Okanagan County), and Colville River (Stevens County). Declines or extirpations have been reported in the Little Spokane, Wenatchee, and Yakima Rivers.

Western Pearlshell: The range of the Western Pearlshell extends from Alaska and British Columbia south to California and east to Nevada, Wyoming, Utah and Montana; it is apparently most abundant in Oregon, Washington, Idaho and British Columbia. In Washington, Pearlshells have been extirpated from much of the mainstem Columbia and Snake Rivers; substantial declines, die-offs, or lack of recent reproduction have also been reported from the SanPoil River (Ferry County), Kettle River (Stevens County), the Little Spokane River (Spokane County),

Snohomish River, Muck Creek (Pierce County), Bear Creek (King County), and Nason Creek (Chelan County). High levels of arsenic and organochlorine pesticides were found in the tissues of other mussel species collected from the mid-Columbia River during that survey. This species has also been extirpated from northern Nevada, from most areas in northern Utah, several rivers in Montana, and numerous other locations. In addition, there are reports of populations of Western Pearlshells that apparently have not reproduced for decades. Populations of such a long-lived species may appear stable, when in fact they are not reproducing; populations showing repeated reproduction, evidenced by multiple age classes, are now rare.

Habitat

Freshwater mussels are found in shallow habitats in permanent bodies of water, including creeks, rivers, and ponds generally at low elevations. Mussels tend to concentrate in areas of streams with consistent flows and stable substrate conditions. They are often absent or sparse in high-gradient, rocky rivers, but are frequently encountered in low-gradient creeks and rivers, perhaps because they provide a variety of habitat conditions, reliable flow, good water quality, and diverse fish communities.

California Floater/Winged Floater: Floaters occur in natural lakes, reservoirs, and downstream low-gradient reaches of rivers in pool habitats. Because their thin shells are prone to damage, floaters favor habitats of sand and silt substrates in lower gradient streams than those favored by Western Pearlshells and Western Ridged Mussels; sandbars near the mouths of tributary streams or below riffles are important habitats.

Western Ridged Mussel: Western Ridged Mussels inhabit the bottom of cold creeks, rivers, and lakes from low to mid-elevations with substrates that vary from gravel to firm mud, and include at least some sand, silt or clay. It is generally associated with constant flow, shallow water (less than 10 feet in depth), and well-oxygenated substrates. This species is often present in seasonally turbid streams, but absent from continuously turbid water (e.g. glacial meltwater streams).

Western Pearlshell: This species inhabits cold creeks and rivers with clear, cold water and sea-run salmon or native trout including waterways above 5,000 feet in elevation. Western Pearlshells are typically found at depths of 1.5 to 5 feet, and they tend to congregate in areas with boulders and gravel substrate, with some sand, silt and clay. Western Pearlshells occur in waterways with low velocities and stable substrates and are frequently found in eddies or pools and areas with stones or boulders that likely shelter mussel beds from scour during flood events. This species appears to be intolerant of sedimentation.

References

- Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special concern. Final report to the Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.
- Jepsen, S., C. LaBar, and J. Zarnoch. 2012. Profile: Western pearlshell (*Margaritifera falcata*). The Xerces Society. 24 pp. (Available at http://www.xerces.org/western-pearlshell/).
- Jepsen, S., C. LaBar, and J. Zarnoch. 2011. Profile: California floater (*Anodonta californiensis*) / Winged floater (*Anodonta nuttalliana*). The Xerces Society. 31 pp. (Available at http://www.xerces.org/california-and-winged-floaters/).
- Jepsen, S., C. LaBar, and J. Zarnoch. 2011. Profile: Western ridged mussel (*Gonidea angulata*) The Xerces Society. 19 pp. (Available at http://www.xerces.org/western-ridged-mussel/).
- Nedeau, E. J., A. K. Smith, J. Stione, and S. Jepsen. 2009. Freshwater Mussels of the Pacific Northwest. 2nd edition. The Xerces Society. 51pp.

Families Unionidae and Margaritiferidae: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
Calif	fornia Floater				'
1	Agriculture and aquaculture side effects	Water level fluctuations; pollution	Protect water quality	Current insufficient	External
2	Resource information collection needs	Taxonomic uncertainty may mean one or more taxa are in greater decline	Taxonomic clarification	Current insufficient	External
Wes	stern Pearlshell				
1	Fish and wildlife habitat loss or degradation	Pollution, siltation	Protect water quality	Current insufficient	External
2	Agriculture and aquaculture side effects	Pollution, siltation	Protect water quality	Current insufficient	External
3	Fish and wildlife habitat loss or degradation	Suction dredging for gold	Delineate and protect sites	Current insufficient	Both
Wes	stern Ridged Mussel		'		
1	Fish and wildlife habitat loss or degradation	Pollution; need info on life history, ecology	Protect water quality	Current insufficient	External
2	Resource information collection needs	Need info on life history, ecology	Life history research	Current insufficient	External
Win	ged Floater				'
1	Agriculture and aquaculture side effects	Water level fluctuations; pollution; need taxonomic clarification	Technical assistance to regulatory agencies	Current insufficient	Both
2	Resource information collection needs	Need taxonomic clarification	Taxonomic clarification;	Current insufficient	External

MARINE BIVALVE

OLYMPIA OYSTER (Ostrea lurida)

Conservation Status and Concern:

Washington's only native oyster, it is currently present in diminished abundance (less than five percent) due to overharvest and habitat alterations throughout most of the species historical range (circa 1850) in Washington. Evidence of natural recruitment and restoration success observed but lack of suitable habitat limits further increases.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G5	SNR	Low/stable	High

Biology and Life History

Olympia Oysters are hermaphroditic and able to alternate between male and female annually during reproduction cycles. Sexual maturity is observed in oysters greater than 0.6 inch shell length, which is typically reached in 12 months. Fecundity is observed to be very high for young oysters in comparison to older oysters. Fertilized larvae are initially brooded internally by the female and then released as large, free-swimming pediveligers for 7 to 10 days before settlement and attachment to available hard substrates. Populations are tolerant of a

Photo: Wikipedia Commons

wide range of environmental conditions and salinity values but are intolerant of freshwater exposures. Intertidal survival is dependent upon thermal refuges provided by immersion, partial immersion, moist substrates, or by location on or underneath rocks, boulders, oysters or other structure. Extreme freezing weather events may result in significant mortalities in exposed intertidal occurrences. Maximum adult size appears to be 3.5 inches but typically they range from 2 to 2.4 inches, reached in five to six years. Maximum age is generally 10 years.

Distribution and Abundance

Olympia Oysters are native along the Pacific coast of North America, form Gale Passage (British Columbia) to Bahia de San Quintin (Baja California). Primarily found, historically and currently, in the low intertidal zone in Puget Sound with rare subtidal occurrences. In Willapa Bay the species occurred both in the intertidal and subtidal historically but now appear to be limited to subtidal occurrences. Occurrences in Grays Harbor appear to be historically and currently of very limited abundance. Present throughout nearly all of the species historical range in Washington. While currently found in diminished abundance, the species is commonly observed intertidally in portions of Hood Canal, South Puget Sound, and Central Puget Sound plus specific embayments in North Sound, Admiralty Inlet and Straits of Juan de Fuca. Dense occurrences in natural beds are limited and estimated to be less than five percent of total historical extents and numbers of beds (circa 1850). The Willapa Bay population exhibits observable larval production but abundance of adults remains unknown. Adults are occasionally observed in Grays Harbor. Natural recruitment success in portions of Puget Sound appears to be on the increase.

Habitat

Olympia Oysters occur primarily as an intertidal species in Puget Sound and both intertidal and subtidal in Willapa Bay. They form shallow (less than two feet in elevation) loose beds of oysters and shell on unconsolidated mud, sand, gravel substrates. They may also be found attached to rocky structures. The species requires hard substrates (oysters, shell, gravel, rock) for attachment of recruits and formation of natural beds.

References

Blake, B. and A. Bradbury. 2012. Plan for Rebuilding Olympia Oyster (*Ostrea lurida*) Populations in Puget Sound with a Historical and Contemporary Overview. Washington Department of Fish and Wildlife, Olympia.

Olympia Oyster: Conservation Threats and Strategies

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Invasive and other problematic species	Localized occurrences of the non-native predators Ocinebrellus inornatus and Koinostylochus ostreaophagus.	Re-establish or enhance presence of viable, self-sustaining source populations.	Current sufficient	Both
2	Overharvesting of biological resources	By-catch mortality from Pacific Oyster commercial harvest and other uses of tidelands	Re-establish or enhance presence of viable, self-sustaining source populations.	Current sufficient	Both
3	Fish and wildlife habitat loss or degradation	Shoreline and tideland modifications, including nearshore or estuarine restoration projects.	Re-establish or enhance presence of viable, self-sustaining source populations.	Current sufficient	Both
4	Fish and wildlife habitat loss or degradation	Siltation from upland practices and nutrient inputs	Re-establish or enhance presence of viable, self-sustaining source populations.	Current sufficient	Both
5	Agriculture and aquaculture side effects	Genetic fitness impacts from unrestricted distribution of generic hatchery-origin native oysters	Re-establishment and enhancement of genetic diversity through restoration historic and new sites.	Current sufficient	Both

MARINE GASTROPOD

PINTO ABALONE (Haliotis kamtschatkana)

Conservation Status and Concern

The Pinto Abalone has failed to recover from dramatic declines resulting from excessive recreational and illegal harvest, despite fishery closure. There is strong evidence of recruitment failure, perhaps because the densities of remaining populations are below the threshold for successful reproduction.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G3G4	SNR	Uncommon/declining	Moderate-high

Biology and Life History

Adult Pinto Abalone feed primarily on drift macroalgae, such as bull kelp (*Nereocystis luetkeana*), and juveniles feed predominantly on microalgae and diatoms. Pinto Abalone are broadcast spawners and the sperm and eggs are only viable for a short period, so successful reproduction requires that adults be aggregated. After eggs are successfully fertilized, embryos rapidly become free-swimming trochophores, which metamorphose into veliger larvae. After approximately 10 to 14

Photo: Wikimedia Commons

days as plankton, the swimming veligers settle onto suitable substrate. Newly settled juvenile abalone require crevices for added protection from predators and remain cryptic until mature. Upon maturation at approximately two inches in shell length, abalone become more exposed and are more easily found in their habitat. Many are semi-exposed or fully exposed on open rocky habitat by the time they reach 3.5 inches in shell length.

Distribution and Abundance

Pinto Abalone are distributed from Point Conception, California to southeast Alaska. In Washington, they are generally found on hard, rocky substrates in exposed coastal areas, including Puget Sound, Strait of Juan de Fuca and the San Juan Archipelago. Abundance at index sites in the San Juan Islands declined 92 percent between 1992 and 2013.

Habitat

Pinto Abalone are typically found on rocky substrate, in water between 10 and 65 feet deep. Their preferred habitat in the San Juan Archipelago and the Strait of Juan de Fuca is exposed rock, often covered (at least partially) with crustose coralline algae.

References

Vadopalas, B. and J. Watson. 2014. Recovery Plan for Pinto Abalone (*Haliotis kamtschatkana*) in Washington state. Puget Sound Restoration Fund. 50 pp.

Pinto Abalone: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Resource information collection needs	Reproductive failure due to low densities	Research augmentation methods	Current insufficient	WDFW
2	Overharvesting of biological resources	Reproductive failure due to low densities	Life history research	Current insufficient	WDFW
3	Overharvesting of biological resources	Small populations vulnerable to illegal harvest	Outreach and enforcement of harvest restrictions	Current insufficient	WDFW
4	Resource information collection needs	Limited understanding of life history and limiting factors	Life history research	Current insufficient	WDFW

EARTHWORM

GIANT PALOUSE EARTHWORM (Driloleirus americanus)

Conservation Status and Concern

Data on this species are sparse. It is difficult to detect and few surveys have been performed to determine its distribution and abundance. There has been an obvious reduction of range in the Palouse region of Washington with conversion of prairie to cropland. Introduced worm species appear to exclude native species, including this one.

Federal Status	State Status	PHS	Global Ranking	State Ranking	Population size/trend	Climate Vulnerability
None	Candidate	Yes	G1	S2	Unknown/unknown	Low-moderate

Taxonomic note: A genetics study is currently underway to determine whether the worms found in the East Cascades are the same as those found in the Palouse regions of Washington and Idaho. Preliminary findings indicate that these populations are likely the same species.

Biology and Life History

A large, pale or white earthworm, this species has until relatively recently been considered endemic to the Palouse prairies of eastern Washington and Idaho, where it was discovered in 1897. This species is considered to be "anecic", meaning that it burrows vertically deep into the ground and lives in deep, semi-permanent burrows, coming to the surface in wet conditions. Burrows have been found at a depth of 15 feet.

Giant Palouse Earthworm
Photo: M. Teske

Distribution and Abundance

In Washington, the Giant Palouse Earthworm has been found in Chelan, Kittitas and Whitman Counties. It may be more widespread because recent records from the east slope of the Cascades have expanded its known range. Based on knowledge of other species in the Megascolecidae family to which this species belongs, the worm's range could extend along the Columbia Plateau in a band just below the terminal moraines of the Pleistocene glaciation. Because these worms are very slow colonists, range limits are probably determined by the extent of Pleistocene glaciation and the Missoula Floods, both of which would have eliminated earthworms.

Habitat

Originally assumed to require deep, loamy soils characteristic of the Palouse bunchgrass prairies, the species was found in the eastern Cascades occupying gravelly sandy loam and other rocky soils in forested areas. They have been found in open forest, shrub-steppe, and prairie. Of sites surveyed, only one occurrence was in non-native vegetation on land enrolled in the Conservation Reserve Program.

References

USFWS. 2011. Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition to List the Giant Palouse Earthworm (Driloleirus americanus) as Threatened or Endangered. Federal Register 76(143):44547-44564.

- J. Fleckenstein, WDNR, pers.comm.
- J. Maynard-Johnson, University of Idaho, pers.comm.
- K. McAllister, WSDOT, pers.comm.

Giant Palouse Earthworm: Conservation Threats and Actions

	STRESSOR	DESCRIPTION	ACTION NEEDED	LEVEL OF INVESTMENT	LEAD
1	Agriculture and aquaculture side effects	In the Palouse region, plowing and soil disturbance due to agricultural activity has converted GPE habitat	Surveys are needed in undisturbed areas to determine site occupancy.	Nothing current - new action needed	Both
2	Resource information collection needs	Originally found in Palouse prairie and thought to be endemic there, but recent detections in the East Cascades and clues regarding range characteristics indicate the need for greater survey efforts	Past surveys have been conducted in the Palouse region. East Cascades detections were accidental at first. Very limited, spot surveys done since.	Current insufficient	External
3	Resource information collection needs	Questions remain regarding possible genetic differences between the Palouse and East Cascade populations	Research on genetics being done by J. Maynard-Johnson at University of Idaho. Results not definitive.	Current sufficient	External
4	Fish and wildlife habitat loss or degration	WSDOT highway and USFS road building and alteration have disrupted earthworm concentrations. This is how they were discovered in the East Cascades.	Review of proposed transportation projects	Current insufficient	Both
5	Invasive and other problematic species	Invasive, non-native earthworm species, notably the European earthworm (Lumbricus terrestris).	Note occurrences and continue surveys	Current insufficient	Both

REFERENCES

SECTION A: Alphabetical list of species

A C1-1:fl-:	Allamania
A Caddisfly	Allomyia acanthis
A Caddisfly	Goereilla baumanni
A Caddisfly	Limnephilus flavastellus
A Caddisfly	Psychoglypha browni
A Caddisfly	Rhyacophila pichaca
A Caddisfly	Rhyacophila vetina
A Mayfly	Cinygmula gartrelli
A Mayfly	Paraleptophlebia falcula
A Mayfly	Paraleptophlebia jenseni
A Mayfly	Siphlonurus autumnalis
A Noctuid Moth	Copablepharon columbia
A Noctuid Moth	Copablepharon mutans
A Noctuid Moth	Copablepharon viridisparsa hopfingeri
Ashy Pebblesnail	Fluminicola fuscus
Barren Juga	Juga hemphilli hemphilli
Beller's Ground Beetle	Agonum belleri
Bluegray Taildropper	Prophysaon coeruleum
Brown Juga	Juga sp. 3
California Floater	Anodonta californiensis
Cascades Needlefly	Megaleuctra kincaidi
Chelan Mountainsnail	Oreohelix sp. 1
Columbia Clubtail	Gomphus lynnae
Columbia Oregonian	Cryptomastix hendersoni
Columbia River Tiger Beetle	Cicindela columbica
Crowned Tightcoil	Pristiloma pilsbryi
Dalles Hesperian	Vespericola depressa
Dalles Juga	Juga hemphilli dallesensis
Dalles Sideband	Monadenia fidelis minor
Dry Land Forestsnail	Allogona ptychophora solida
Giant Palouse Earthworm	Driloleirus americanus
Golden Hairstreak	Habrodais grunus herri
Great Arctic	Oeneis nevadensis gigas
Hatch's Click Beetle	Eanus hatchii
Hoary Elfin	Callophrys polios Puget Trough segregate
Hoder's Mountainsnail	Oreohelix n. spp
Hoko Vertigo	Vertigo sp. 1 (Nearctula new spp.)
Idaho Vertigo	Vertigo idahoensis
Island Marble	Euchloe ausonides insulanus

Johnson's Hairstreak	Callophrys johnsoni
Juniper Hairstreak	Callophrys gryneus Columbia Basin segregate
Leschi's Millipede	Leschius mcallisteri
Limestone Point Mountainsnail	Oreohelix sp. 18 (O. idahoensis baileyi)
Mad River Mountainsnail	Oreohelix n. spp
Makah Copper	Lycaena mariposa charlottensis
Mann's Mollusk-eating Ground Beetle	Scaphinotus mannii
Mardon Skipper	Polites mardon
Masked Duskysnail	Lyogyrus sp. 2
Meadow Fritillary	Boloria bellona toddi
Mission Creek Oregonian	Cryptomastix magnidentata
Monarch Butterfly	Danaus plexippus
Morrison's Bumblebee	Bombus morrisoni
Nimapuna Tigersnail	Anguispira nimapuna
Pinto Abalone	Haliotis kamtschatkana
Northern Forestfly	Lednia borealis
Olympia Oyster	Ostrea conchaphila
Olympia Pebblesnail	Fluminicola virens
One-band Juga	Juga sp. 8
Oregon Branded Skipper	Hesperia colorado Salish Sea segregate
Oregon Megomphix	Megomphix hemphilli
Oregon Silverspot	Speyeria zerene hippolyta
Pacific Clubtail	Gomphus kurilis
Pacific Needlefly	Megaleuctra complicata
Pacific Vertigo	Vertigo andrusiana
Poplar Oregonian	Cryptomastix populi
Propertius Duskywing	Erynnis propertius
Puget (Blackmore's) Blue	Icaricia icarioides blackmorei
Puget Oregonian	Cryptomastix devia
Puget Sound Fritillary	Speyeria cybele pugetensis
Rainier Roachfly	Soliperla fenderi
Ranne's Mountainsnail	Oreohelix n. sp
Salmon River Pebblesnail	Fluminicola gustafsoni
Sand Verbena Moth	Copablepharon fuscum
Sasquatch Snowfly	Bolshecapnia sasquatchi
Shortface Lanx	Fisherola nuttalli
Silver-bordered Fritillary	Boloria selene atrocostalis
Siuslaw Sand Tiger Beetle	Cicindela hirticollis siuslawensis
Sonora Skipper	Polites sonora siris
Spotted Taildropper	Prophysaon vanattae pardalis
Straits Acmon blue	Icaricia acmon ssp <u>.</u>
Subarctic Bluet	Coenagrion interrogatum
Suckley Cuckoo Bumblebee	Bombus suckleyi

Talol Springfly	Pictetiella lechleitneri	16
Taylor's Checkerspot	Euphydryas editha taylori	41
Three-band Juga	Juga sp. 7	93
Unnamed Oregonian	Cryptomastix maullani hemphilli	74
Valley Silverspot	Speyeria zerene bremnerii	52
Washington Duskysnail	Amnicola sp. 2	74
Wenatchee Forestfly	Malenka wenatchee	16
Western Bumblebee	Bombus occidentalis	66
Western Pearlshell	Margaritifera falcata	100
Western Ridged Mussel	Gonidea angulata	100
White-belted Ringtail	Erpetogomphus compositus	11
Winged Floater	Anodonta nuttaliana	100
Yosemite Springfly	Megarcys yosemite	16
Yuma Skipper	Ochlodes yuma	59

Conservation Status Table

Federal Status: Refers to legal designations under the Federal ESA (listed as Endangered or Threatened or recognized as a Candidate species for listing), or designated as a Sensitive species.

State Status: The Washington Fish and Wildlife Commission has classified 46 species as Endangered, Threatened or Sensitive, under WAC 232-12-014 and WAC 232-12-011. Species can also be designated Candidate Species for state listing by WDFW policy.

PHS (Priority Habitats and Species Program): A species listed under the PHS program is considered to be a priority for conservation and management and requires protective measures for survival due to population status, sensitivity to habitat alteration and/or tribal, recreational or commercial importance. Management recommendations have been developed for PHS species and habitats, and can assist landowners, managers and others in conducting land use activities in a manner that incorporates the needs of fish and wildlife.

Global (G) and State (S) Rankings: Refers to NatureServe status rankings provided by the Natural Heritage Program. These conservation status ranks complement legal status designations and are based on a one to five scale, ranging from critically imperiled (1) to demonstrably secure (5). The global (G) and state (S) geographic scales were used for the SGCN species fact sheets. For more on the methodology used for these assessments, please see: Methodology for Assigning Ranks - NatureServe.

State Rank: characterizes the relative rarity or endangerment within the state of Washington.

- **\$1** = Critically imperiled
- **S2** = Imperiled
- **S3** = Rare or uncommon in the state vulnerable
- **S4** = Widespread, abundant, and apparently secure i
- S5 = Demonstrably widespread, abundant, and secure in the State
- **SA** = Accidental in the state.
- **SE** = An exotic species that has become established in the state.
- **SH** = Historical occurrences only are known, perhaps not verified in the past 20 years, but the taxon is suspected to still exist in the state.
- **SNR** = Not yet ranked. Sufficient time and effort have not yet been devoted to ranking of this taxon.
- **SP** = Potential for occurrence of the taxon in the state but no occurrences have been documented.
- **SR** = Reported in the state but without persuasive documentation which would provide a basis for either accepting or rejecting the report (e.g., misidentified specimen).
- **SRF** = Reported falsely in the state but the error persists in the literature.
- **SU**= Unrankable. Possibly in peril in the state, but status is uncertain. More information is need.
- **SX** = Believed to be extirpated from the state with little likelihood that it will be rediscovered.
- **SZ** = Not of conservation concern in the state.

Qualifiers are sometimes used in conjunction with the State Ranks described above:

- **B** Rank of the breeding population in the state.
- **N** Rank of the non-breeding population in the state.

Global Rank: characterizes the relative rarity or endangerment of the element world-wide.

- **G1** = Critically imperiled globally
- **G2** = Imperiled globally
- **G3** = Either very rare and local throughout its range or found locally (even abundantly at some of its locations) in a restricted range vulnerable
- **G4** = Widespread, abundant, and apparently secure globally
- **G5** = Demonstrably widespread, abundant, and secure globally, though it may be quite rare in parts of its range
- **GH** = Historical occurrences only are known, perhaps not verified in the past 20 years, but the taxon is suspected to still exist somewhere in its former range.
- **GNR** = Not yet ranked. Sufficient time and effort have not yet been devoted to ranking of this taxon.
- **GU** = Unrankable. Possibly in peril range-wide but status uncertain. More information is needed.
- **GX** = Believed to be extinct and there is little likelihood that it will be rediscovered.

Qualifiers are used in conjunction with the Global Ranks described above:

Tn Where n is a number or letter similar to those for Gn ranks, above, but indicating subspecies or variety rank. For example, G3TH indicates a species that is ranked G3 with this subspecies ranked as historic.

SECTION C: Full List of References

- Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultural Experiment Station Technical Bulletin, 134:1-152.
- Applegarth, J. S. 1999. Management Recommendations for *Cryptomastix hendersoni*, the Columbia Oregonian (land snail) v.20, Section 2, in T. E. Burke, J. S. Applegarth, and T. R. Weasma. Management Recommendations for Survey and Manage Terrestrial Mollusks (v. 2). USFS and BLM.
- Applegarth, J. S. 2000. Management recommendations for terrestrial mollusk species *Megomphix hemphilli* the Oregon Megomphix. Version 2.0. Unpublished report to the Oregon Bureau of Land Management. 39 pp.
- Ballmer, G. and G. Pratt. 1991. Quantification of ant attendance (Myrmecophily) of lycaenid larvae. Journal of Research on the Lepidoptera. 30(1-2): 95-112.
- Bartels, P. 1995. Columbia River tiger beetle 1995 survey: Columbia and Snake River, Region Two. Washington Department of Fish and Wildlife, Ephrata.
- Baumann, R. W. and B. C. Kondratieff 2010. The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia, 6(25):315-327. (Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia06-25.pdf)
- Baumann, R. W. and D. S. Potter 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162. Available online: http://www2.pms-lj.si/illiesia/Illiesia03-15.pdf
- Baumann, R. W. and. B. P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae) in North America. Illiesia, 9(06):65-93. Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia09-06.pdf
- Bergdahl, J. 1997. Endemic Sphagnum-bog beetles from the Puget Sound Region: Kings Lake and Snoqualmie Bogs, King County, Washington. Northwest Biodiversity Center, Seattle, Washington
- Beyer, L. and C. Schultz. 2010. Oviposition selection by a rare grass skipper *Polites mardon* in montane habitats:

 Advancing ecological understanding to develop conservation strategies. Biological Conservation 143:862-872.
- Blackburn, M. 2012. Surveys to determine the status of rare Beller's ground beetle (Agonum belleri) and Hatch's click beetle (Eanus hatchii) in suitable bog habitats on FS lands in the Mt. Baker-Snoqualmie and Okanogan-Wenatchee National Forests of Washington. Project completion report to the Interagency Special Status/Sensitive Species Program (ISSSP), BLM and US Forest Service. 26pp.
- Blake, B. and A. Bradbury. 2012. Plan for Rebuilding Olympia Oyster (*Ostrea lurida*) Populations in Puget Sound with a Historical and Contemporary Overview. Washington Department of Fish and Wildlife, Olympia.
- Boggs, C. 2003. Environmental variation, life histories, and allocation *in* Butterflies: Ecology and Evolution Taking Flight. Boggs, C., W. Watt, and P. Ehrlich, eds. The University of Chicago Press. 737pp.
- Bumble Bee Watch. 2014. Available: http://bumblebeewatch.org/ Accessed November 3, 2014.
- Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University Press, Corvallis, OR. 344pp.
- Burke, T., J. Applegarth, T. Weasma, and N. Duncan. 1999. Management recommendations for Survey and Manage terrestrial mollusks, ver. 2.0. USDA Forest Service, USDI Bureau of Land Management. Available online at http://www.or.blm.gov/surveyandmanage/MR/TM23Species/m2000-003.htm
- Cameron, S., J. Lozier, J. Strange, J. Koch, N. Cordes, L. Solter, and T. Griswold. 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences 108:662–667.
- Center for Biological Diversity, Center for Food Safety, The Xerces Society, and L. Brower. 2014. Petition to protect the monarch butterfly (*Danaus plexippus* plexippus) under the Endangered Species Act. Submitted 26 August. 159pp.
- Clemson University Department of Entomology (J.C. Morse, ed.). 2002. Last Updated 5 September 2006. Trichoptera World Checklist. Online. Available: http://entweb.clemson.edu/database/trichopt/index.htm.
- COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Forestsnail *Allogona townsendiana* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 87 pp. (www.registrelepsararegistry.gc.ca/default_e.cfm).
- COSEWIC. 2006. COSEWIC assessment and update status report on the blue-grey taildropper slug *Prophysaon coeruleum* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, Canada. 27 pp.
- COSEWIC, 2003. COSEWIC Assessment and Status Report on the Sand Verbena Moth Copablepharon fuscum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 39pp.

- Crawford, R. and H. Hall. 1997. Changes in the south Puget Sound prairie landscape. Pp 11-15 *in* P. Dunn and K. Ewing (eds.) Ecology and Conservation of the south Puget Sound Prairie Landscape. The Nature Conservancy, Seattle, Washington. 289pp.
- Davis, R. and K. Weaver. 2010. Johnson's Hairstreak surveys in Oregon and Washington (2010). US Forest Service, Interagency Monitoring Program. Roseburg, Oregon. 10 pp. + appendices
- Denning, D. G. 1956. Several new species of western Trichoptera. Pan-Pacific Entomologist 32(2):73-80.
- Dornfeld, E. J. 1980. Butterflies of Oregon. Timber Press, Forest Grove, Oregon. 276 pp.
- Duncan, N. 2009. *Vespericola columbianus depressa*. Species Fact Sheet. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management.
- Duncan, N. 2005. Conservation Assessment for *Lyogyrus* n. sp. 2 Masked Duskysnail. Originally issued as Management Recommendations, December 1998 by R. Monthey. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 10 pp.
- Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband. Originally issued as Management Recommendations by T. R. Weasma, 1998. Revised by N. Duncan. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington, 14 pp.
- Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail. Originally issued as:
 Burke, T.E. Management Recommendations, February 1999. Revised October 2005. USDA Forest Service
 Region 6 and USDI Bureau of Land Management, Oregon and Washington. 22 pp.,
- Duncan, N. 2005. Conservation assessment for *Prophysaon coeruleum*, Blue-Gray Taildropper. Originally issued as Burke, T., N. Duncan, and P. Jeske. 1999. Management Recommendations. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington.
- Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko Vertigo. Originally issued as Management Recommendations by John S. Applegarth, February 1999. Revised by Nancy Duncan, October 2005. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington, 16 pp.
- Edmunds, G.F. and R.D. Waltz. 1996. Ephemeroptera. Pages 126-163 in R.W. Merritt and K.W. Cummins (editors). An introduction to the aquatic insects of North America. 3rd Edition. Kendall/Hunt Publishers, Dubuque, lowa.
- Edmunds, G.F., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. University of Minnesota Press, Minneapolis, 330 pages.
- Edworthy, A., K. Steensma, H. Zandberg, and P. Lilley. 2012. Dispersal, home range size and habitat use of an endangered land snail, the Oregon Forestsnail (*Allogona townsendiana*). Canadian Journal of Zoology 90(7):875–884.
- Erwin, T. 2011. eAgra entry: Scaphinotus mannii. Available at http://canopy.lifedesks.org/pages/705 (Accessed 3 October, 2014).
- Fleckenstein, J. 2014. Rare alpine butterflies in the Olympic Mountains. Final report to the US Forest Service and Bureau of Land Management. Natural Heritage Program, Washington Department of Natural Resources. Olympia. 14 pp.
- Fleckenstein, J. 2009. Makah Copper survey project. Final report to the US Fish and Wildlife Service. Natural Heritage Program, Washington Department of Natural Resources. Olympia. 17 pp.
- Fleckenstein, J. and A. Potter. 1999. 1997, 1998 Project summary Puget prairie butterfly surveys. Washington Department of Natural Resources and Washington Department of Fish and Wildlife, Olympia, WA.
- FMCS (Freshwater Mollusk Conservation Society) 2013. Website (http://molluskconservation.org/Snails Ftpage.html.)
- Foighil, D. O., T. Lee, D. C. Campbell, and S. A. Clark. 2009. All voucher specimens are not created equal: A cautionary tale involving North American pleurocerid gastropods. Journal of Molluscan Studies 75:305-306.
- Frest, T. J. 1999. A Review of the land and freshwater Mollusks of Idaho. Final report to the Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South Walnut, P.O. Box 25, Boise, Idaho 83707. 281 pp. plus appendices.
- Frest, T. J and E. J. Johannes. 1997. Land snail survey of the lower Salmon River drainage, Idaho. Report prepared for USDI BLM, Idaho, Deixis Consultants, Seattle. 367 pp.
- Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special concern. Final report to the Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.

- Frest, T. J., and E. J. Johannes. 1995. Interior Columbia Basin Mollusk Species of Special Concern. Final Report, Deixis Consultants, Seattle. Prepared for Interior Columbia Basin Ecosystem Management Project, Walla Walla, WA 362 pp.
- Gaines, W. L., A. L. Lyons, K. Weaver, and A. Sprague. 2011. Monitoring the short-term effects of prescribed fire on an endemic mollusk in the dry forests of the eastern Cascades, Washington, USA. Forest Ecology and management 261:1460-1465.
- Gibble, W. and J. Fleckenstein. 2013. *Copablepharon fuscum* (sand-verbena moth) and *Abronia latifolia* (yellow sand-verbena) Washington State surveys. Report prepared for US Fish and Wildlife Service. University of WA Botanic Gardens, Seattle and WA Department of Natural Resources, Olympia. Natural Heritage Report 2013-02.
- Grosboll, D. N. 2011. Taylor's Checkerspot (*Euphydryas editha taylori*) oviposition habitat selection and larval hostplant use in Washington State. M.E.S. Thesis, The Evergreen State College, Olympia. 77 pp.
- Guppy, C. and J. Shepard. 2001. Butterflies of British Columbia: including Western Alberta, Southern Yukon, The Alaska Panhandle, Washington, Northern Oregon, Northern Idaho, and Northwestern Montana. University of British Columbia Press, Vancouver, B.C.
- Hallock, L., R. Haugo, and R. Crawford. 2007. Conservation strategy for Washington inland sand dunes. WA Department of Natural Resources, Olympia. Natural Heritage Report 2007-05.
- Hassall, C. and D. J. Thompson. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odontology 11:131-153.
- Hatfield, R., S. Colla, S. Jepsen, L. Richardson, and R. Thorp. 2014. IUCN assessments for North American *Bombus* spp. for the North American IUCN bumble bee specialist group. The Xerces Society for Invertebrate Conservation. Portland, OR.
- Hays, D., A. Potter, C. Thompson, and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.
- Hendricks, P., B. A. Maxell and S. Lenard. 2006. Land Mollusk Surveys on USFS Northern Region Lands. A report to the USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana. 11 pp. plus appendices.
- Henry, E. and C. Shultz. 2012. A first step towards successful conservation: understanding local oviposition site selection of an imperiled butterfly, mardon skipper. J. Insect Conserv. DOI 10.1007/s10841-012-9496-x.
- Hershler, R. and Liu, H. P. 2012. Molecular phylogeny of the western North American pebblesnails, genus Fluminicola (Rissooidea: Lithoglyphidae), with description of new species. Journal of Molluscan Studies 78:321-329.
- Hershler, R. and T. J. Frest. 1996. A review of the North American freshwater snail genus *Fluminicola* (Hydrobiidae). Smithsonian Contributions to Zoology 583: 1-41.
- Jacobus L. M. and W. P. McCafferty. 2002. Analysis of some historically unfamiliar Canadian mayflies (Ephemeroptera). The Canadian Entomologist. 134(02): 141-155.
- James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. Oregon State University Press, Corvallis. 447 pp.
- Jensen, S. L. 1966. The mayflies of Idaho (Ephemeroptera). M.S. thesis. University of Utah.
- Jepsen, S., A. Carleton, and S. F. Jordan. 2012. Spring 2012 Blue Mountains terrestrial mollusk surveys. Final report to the Interagency Special Species Status/Sensitive Species Program. The Xerces Society for Invertebrate Conservation. 88pp.
- Jepsen, S., C. LaBar, and J. Zarnoch. 2012. Profile: Western pearlshell (*Margaritifera falcata*). The Xerces Society. 24 pp. (Available at http://www.xerces.org/western-pearlshell/).
- Jepsen, S., C. LaBar, and J. Zarnoch. 2011. Profile: California floater (*Anodonta californiensis*) / Winged floater (*Anodonta nuttalliana*). The Xerces Society. 31 pp. (Available at http://www.xerces.org/california-and-winged-floaters/).
- Jepsen, S., C. LaBar, and J. Zarnoch. 2011. Profile: Western ridged mussel (*Gonidea angulata*) The Xerces Society. 19 pp. (Available at http://www.xerces.org/western-ridged-mussel/).
- Jordan, S. 2013. *Vertigo andrusiana* (Pilsbry 1899) Pacific Vertigo. Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management.
- Jordan, S. F. 2013. Soliperla fender (Jewett 1955). Species Fact Sheet. The Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.

- Jordan, S. F. 2013a. Olympia Pebblesnail (*Fluminicola virens*). Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 9 pp.
- Jordan, S. F. 2013b. Ashy Pebblesnail/ Columbia Pebblesnail (*Fluminicola fuscus*). Species Fact Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 19pp.
- Kelley, R., S. Dowlan, N. Duncan, and T. Burke. 1999. Field guide to survey and manage terrestrial mollusk species from the northwest forest plan. Unpublished report of the Bureau of Land Management, Oregon State Office. 114pp.
- Kondratieff, B.C. and R.A. Lechleitner. 2002. Stoneflies (Plecoptera) of Mt. Rainer National Park, Washington. Western North American Naturalist 62(4): 385–404.
- LaBar, C. C. 2009. Investigating the use of herbicides to control invasive grasses in prairie habitats: effects of non-target butterflies. M.S. Thesis, Washington State University, Vancouver. 37 pp.
- Labonte, J., D. Scott, J. McIver, and J. Hayes. 2001. Threatened, endangered, and sensitive insects in eastern Oregon and Washington forests and adjacent lands. Northwest Science, Vol. 75, Special Issue.
- Lafontaine, J. D, L. G. Crabo, G. A. Fauske. 2004 Genus Copablepharon. pp.146–180 in: Lafontaine (2004), Noctuoidea: Noctuidae (part) Agrotini. In: Hodges RW (Ed) The Moths of North America. Fascicle 27.1. The Wedge Entomological Research Foundation, Washington, 394 pp.
- Lambert, A. M. 2011. Natural history and population ecology of a rare pierid butterfly, *Euchloe ausonides* insulanus Guppy and Shepard (Pieridae). PhD Thesis, University of Washington, 199 pp.
- Lane, M. 1971. Key to the genus Eanus. in M. Hatch, Beetles of the Pacific Northwest. University of Washington Publications in Biology. 16: 28-29.
- Lane, M. 1938. A new species of the genus Eanus (Coleoptera Elatridae). Pan-Pacific Entomologist. 14(4): 188-191.
- Lee, T., J. J. Kim, H. C. Hong, J. B. Burch and D. O'Foighil. 2006. Crossing the Continental Divide: the Columbia drainage species *Juga hemphilli* (Henderson, 1935) is a cryptic member of the eastern North American genus *Elimia* (Cerithioidea: Pleuroceridae). Journal of Molluscan Studies 72:314-317.
- Martin, R. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchii). Relicense Study T-4. Final report to Puget Sound Energy for FERC Project No. 2150. Hamer Environmental, Mt. Vernon, Washington.
- Mazzacano, C. 2014. Limpets: giant Columbia River limpet (Fisherola nuttalli), (Gastropoda: Lymnaeidae). The Xerces Society for Invertebrate Conservation. (Online: http://www.xerces.org/giant-columbia-river-limpet/)
- Mazzacano, C., S. Jepsen, and S. Hoffman-Black. 2010. Surveys to determine the status of two rare insect species on the Oregon coats: the Siuslaw hairy-necked tiger beetle (Coleoptera: Cicindelidae: Cicindela hirticollis siuslawensis Graves, Krejci, and Graves, 1988) and the Oregon plant bug (Hemiptera: Miridae: Lygus oregonae Knight, 1944). Project completion report submitted to the Interagency Special Status/Sensitive Species Program (ISSSP), BLM and US Forest Service. 26pp.
- McCafferty, W. P., B. C. Kondratieff. 1999. New species of PARALEPTOPHLEBIA (Ephemeroptera: Leptophlebiida) from Idaho and Washington. Entomological News 110(4): 217-220.
- McCafferty, W. P. and R. L. Newell. 2007. Insecta, Ephemeroptera: range extension and new state records from far western Montana, U.S.A. Check List, 3(3): 260-261.
- McGraw, R., N. Duncan and E. Cazares, 2002. Fungi and other items consumed by the Blue-gray Taildropper slug (*Prophysaon coeruleum*) and the Papillose Taildropper slug (*Prophysaon dubium*). The Veliger, Vol. 45, No. 3, P. 261-264.
- Meyer, M. D. and W. P. McCafferty. 2008. Mayflies (Ephemeroptera) of the far western United States. Part 3: California. Transactions of the American Entomological Society 134(3-4):337-430.
- Meyer, M.D. and W.P. McCafferty. 2007. Mayflies (Ephemeroptera) of the far western United States. Part I: Washington. Transactions of the American Entomological Society, 133(1-2): 21-63.
- Monroe, M., D. Frey and S. Stevens. 2014. Western monarch Thanksgiving count data 1997-2013. Available from: http://www.xerces.org/butterfly-conservation/western-monarch-thanksgiving-count/ Accessed 20 October 2014.
- NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.
- Nedeau, E. J., A. K. Smith, J. Stione, and S. Jepsen. 2009. Freshwater Mussels of the Pacific Northwest. 2nd edition. The Xerces Society. 51 pp.

- Neitzel, D. A. and Frest, T. J. 1992. Survey of Columbia River Basin streams for Columbia pebblesnail *Fluminicola columbiana* and shortface lanx *Fisherola nuttalli*. Technical Report PNL-8229, Battelle Pacific Northwest Laboratory, Richland, WA. 83 pp.
- Neitzel, D. A. and T. J. Frest. 1989. Survey of Columbia River Basin streams for giant Columbia River spire snail *Fluminicola columbiana* and great Columbia River limpet *Fisherola nuttalli*. Tech. Rep. #PNL7103, Battelle Pacific Northwest Labs. 59 pp.
- Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis (Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American Naturalist 69(4):551-555.
- Oberhauser, K. and M. Solensky, eds. 2004. The Monarch Butterfly: Biology and Conservation. Cornell University Press.
- Pacific Northwest Moths. 2014. Western WA Univ. Bellingham. Available at: http://pnwmoths.biol.wwu.edu/ Viewed January 10, 2014.
- Page, N., P. Lilley, J. Heron, and N. Kroeker. 2009. Distribution and habitat characteristics of Taylor's Checkerspot on Denman Island and adjacent areas of Vancouver island (2008). Report prepared for British Columbia Ministry of Environment and Parks Canada. Raincoast Applied Ecology, Vancouver. 32 pp.
- Paulson, D. R. 2014. Washington Odonata. Slater Museum of Natural History, University of Puget Sound, Tacoma. Sept 2014. http://www.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/washington-odonata/
- Paulson, D. 2009. Dragonflies and Damselflies of the West. Princeton Univ. Press, Princeton, NJ. 535pp.
- Pilsbry, H. A. 1948. Land Mollusca of North America (north of Mexico). Monograph of the Academy of Natural Sciences of Philadelphia, 2(2): 521-1113.
- Potter, A., T. Hanson, and S. Vernon. 2011. Surveys for the island marble butterfly (*Euchloe ausonides* insulanus) in San Juan County, Washington, 2010. Washington Department of Fish and Wildlife, Olympia, Washington.
- Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp.
- Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA.
- Pyle, R. 1989. Washington butterfly conservation status plan. WDFW. Olympia. 216pp.
- Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200.
- Ruiter, D. E., B. Kondratieff, R. A. Lechleitner, and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187.
- Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb, and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington, and British Columbia. Northwest Science 85: 361–388.
- Schweitzer, D., N. Capuano, B. Young, and S. Colla. 2012. Conservation and management of North American bumble bees. NatureServe, Arlington, Virginia, and USDA Forest Service, Washington, D.C.
- Severns. P. M and D. Grosboll. 2010. Patterns of reproduction in four Washington State populations of Taylor's checkerspot (*Euphydryas editha* taylori) during the spring 2010. Report submitted to the Nature Conservancy. 81pp.
- Severns, P. M. and A. D. Warren. 2008. Selectively eliminating and conserving exotic plants to save an endangered species from local extinction. Animal Conservation 11:476-483.
- Shear, W. A. and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to North America: Leschius mcallisteri, n. gen., n. sp. (Diplopoda: Chordeumatida: Anthroleucosomatoidea). Zootaxa. 609:1-7. http://www.mapress.com/zootaxa/2004f/z00609f.pdf
- Shook, G. 1981. The status of Columbia River tiger beetle (Cicindela columbica Hatch) in Idaho (Coleoptera: Cicindelidae). Pan-Pacific Entomologist 57(2):359-363.
- Stagliano, D. M., G. M. Stephens, and W. R. Bosworth. 2007. Aquatic invertebrate species of concern on USFS Northern Region lands. Report prepared for USDA Forest Service, Northern Region, Missoula, Montana.
- Stark, B. P. and D. L. Gustafson. 2004. New species and records of Soliperla Ricker, 1952 from western North America (Insecta, Plecoptera, Peltoperlidae). Spixiana 27(2):97-105.

- Stark, B. P. and B. C. Kondratieff. 2004. Pictetiella lechleitneri (Plecoptera: Perlodidae), a new species from Mt. Rainier National Park, Washington, U.S.A. Proceedings of the Entomological Society of Washington 106(4): 747-750.
- Steensma, K. M. M., L. P. Lilley, and H. M. Zandberg. 2009. Life history and habitat requirements of the Oregon forestsnail, *Allogona townsendiana* (Mollusca, Gastropoda, Pulmonata, Polygyridae), in a British Columbia population. Invertebrate Biology 128:232–242.
- Stinson, D. W. 2005. Washington State status report for the Mazama pocket gopher, streaked horned lark, and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129 pp.
- Stone, T., 2009. Crowned Tightcoil (*Pristiloma pilsbryi*). Species Fact Sheet. Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.
- Takaoka, S., and F. Swanson. 2008. Change in extent of meadows and shrub fields in the central
- The Nature Conservancy. 1990. Population dynamics and habitat selection of the Oregon silverspot butterfly (*Speyeria zerene hippolyta*): a comparative study at four primary sites in Oregon. Report to the Siuslaw National Forest. Portland, Oregon
- Thompson, J. 2007. Mountain meadows—here today, gone tomorrow? Meadow science and restoration. Science Findings Issue 94. PNW Research Station, Portland, OR. http://www.fs.fed.us/pnw/sciencef/scifi 94. PNW Research Station (Proposition of the Proposition of
- Thorp, R., D. Horning, Jr, and L. Dunning. 1983. Bumble bees and cuckoo bumble bees of California (Hymenoptera: Apidae). Bulletin of the California Insect Survey: Vol. 23. University of CA Press. Berkley and Los Angeles.
- Troubridge, J. and L. Crabo. 1995. A new species of Copablepharon (Lepidoptera: Noctuidae) from British Columbia and Washington. Journal of Entomology. Soc. Brit. Columbia. 92: December. Pp. 87-90.
- US Fish and Wildlife Service (USFWS). 2014. Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List the Island Marble Butterfly as an Endangered Species. Federal Register Vol. 79, No. 160: 49045-49047.
- USFWS. 2013. Endangered and threatened wildlife and plants; determination of endangered status for Taylor's Checkerspot butterfly and threatened status for the streaked horned lark; final rule. Federal Register 78 (192):61451-61503.
- USFWS. 2011. Endangered and threatened wildlife and plants; 12-month finding on a petition to list the Bearmouth mountainsnail, Byrne Resort mountainsnail, and meltwater lednian stonefly as endangered or threatened. Federal Register 76(65): 18684-18701
- USFWS. 2011. Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition to List the Giant Palouse Earthworm (Driloleirus americanus) as Threatened or Endangered. Federal Register 76(143):44547-44564
- USFWS. 2011. Endangered and Threatened Wildlife and Plants: 90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.
- USFWS. 2011. Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List the Sand Verbena Moth as Endangered or Threatened. Federal Register Vol. 76, No. 33: 9309-9318.
- USFWS. 2001. Oregon silverspot butterfly (*Speyeria zerene hippolyta*) revised recovery plan. US Fish and Wildlife Service, Portland, Oregon. 13 pp.
- US Forest Service and Bureau of Land Management (USFS-BLM). 2012. Species fact sheet: Meadow Fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2011. Species fact sheet: Subarctic Bluet. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2010. Species fact sheet: Silver-bordered fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2009. Species fact sheet: Beller's ground beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2009. Species fact sheet: Hatch's Click Beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2009. Species fact sheet: Valley Silverspot. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2008a. Species fact sheet: Columbia Clubtail (Gomphus lynnae). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.

- USFS-BLM. 2008b. Species fact sheet: Pacific Clubtail (Gomphus kurilis). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.
- USFS-BLM. 2008c. Species fact sheet: White-belted Ringtail (Erpetogomphus compositus). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.
- USFS-BLM. 2007. Species fact sheet: Siuslaw Sand tiger beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.
- USFS-BLM. 2005. Species fact sheet: Columbia River tiger beetle. Prepared by G. Brenner. Portland, Oregon.
- Vadopalas, B. and J. Watson. 2014. Recovery Plan for Pinto Abalone (*Haliotis kamtschatkana*) in Washington state. Puget Sound Restoration Fund. 50pp.
- Wainwright, M. 2008. Chinquapin (Golden) Hairstreak butterfly survey report. US Forest Service, Gifford Pinchot National Forest. 6pp.
- WildEarth Guardians. 2010. Petition to list the Sand Verbena Moth (*Copablepharon fuscum*) under the US Endangered Species Act. Submitted to the U.S Secretary of Interior February 4, 2010.
- Wilke, T. and N. Duncan 2004. Phylogeographical patterns in the American Pacific Northwest: lessons from the arionid slug *Prophysaon coeruleum*, Molecular Ecology (2004) 13: 2303-2315.
- Williams, P. H., S. R. Colla, and Z. Xie. 2009. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology 23(4):931-940.
- Wilson, J., L. Wilson, L. Loftis, and T. Griswold. 2010. The montane bee fauna of north central Washington, USA, with floral associations. W North American Naturalist 70(2):198-207.
- Xerces –The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, *Euchloe ausonides* insulanus (Guppy and Shepard, 2001) as an endangered species under the US endangered species act. Portland, OR. Submitted August 22, 2012.
- D. Anderson, WDFW, pers.comm.
- J. Fleckenstein, WDNR, pers.comm.
- B. Kondratieff, Colorado State University, pers.comm.
- W. Leonard, WSDOT, pers.comm.
- J. Maynard-Johnson, University of Idaho, pers.comm.
- K. McAllister, WSDOT, pers.comm.
- D. Ruiter, University of Texas, pers.comm.

Appendix B

Potential Range and Habitat Distribution Maps

Table of Contents

B.0 Overview	1
B.1 Methodology	1
B.1.1 Select Range Units and Scale	
B.1.2 Select HUC 12s	
B.1.3 Selectively Highlight Adjacent HUC 10s	3
B.1.4 Identify Potentially Suitable Habitat for Habitat Distr	bution4
B.2 Application	5
B.2.1 Keeping Maps Relevant	5
B.3 Range and Potential Habitat Distribution Maps for Selec	ted SGCN7
LIST OF FIGURES	
Figure B-1: HUC 10 and HUC 12 Watersheds in Washington	2
Figure B-2: Highlighting HUC 12s with Documented Recent Occ	currences of Washington Ground Squirrel 3
Figure B-3: Adding HUC 10s	
Figure B-4: Associated Suitable Habitat for Washington Ground	Squirrel in Washington5
LIST OF MAPS	
MAMMALS	
American Badger	
American Pika	_
Black-tailed Jackrabbit	
Brush Prairie Pocket Gopher	
Canada Lynx	
Cascade Red Fox	
Columbian White-tailed Deer	
Fisher	
Grizzly Bear	
Hoary Bat	
Kincaid's Meadow Vole	
Mazama Pocket Gopher	
Olympic Marmot	
Pygmy Rabbit	
Shaw Island Townsend's Vole	
Silver Haired Bat	23
Spotted Bat	24

Townsend's Big-eared Bat	25
Washington Ground Squirrel	26
Western Gray Squirrel	27
White-tailed Jackrabbit	28
Wolverine	29
Woodland Caribou	30
BIRDS	
American White Pelican	31
Bald Eagle	32
Burrowing Owl	33
Clark's Grebe	34
Common Loon	35
Ferruginous Hawk	36
Flammulated Owl	37
Golden Eagle	38
Great Gray Owl	39
Greater Sage Grouse	40
Lewis' Woodpecker	41
Loggerhead Shrike	42
Marbled Murrelet	43
Northern Spotted Owl	44
Oregon Vesper Sparrow	45
Peregrine Falcon	46
Purple Martin	47
Pygmy Nuthatch	48
Red-necked Grebe	49
Sage Thrasher	50
Sagebrush Sparrow	51
Sandhill Crane (Greater)	52
Sharp-tailed Grouse	53
Slender-billed White-breasted Nuthatch	54
Streaked Horned Lark	55
Western Bluebird (Western WA only)	56
Western Grebe	
Western Snowy Plover	58
White-headed Woodpecker	59
Yellow-billed Cuckoo	60
AMPHIBIANS	
Cascade Torrent Salamander	61
Columbia Spotted Frog	62
Columbia Torrent Salamander	
Cope's Giant Salamander	
Dunn's Salamander	
Larch Mountain Salamander	
Northern Leopard Frog	
Olympic Torrent Salamander	

Oregon Spotted FrogRocky Mountain Tailed Frog	
Van Dyke's Salamander	72
Western Toad	73
Woodhouse's Toad	74
REPTILES	
Night Snake	75
Pygmy Horned Lizard	76
Ringneck Snake	77
Sagebrush Lizard	78
Sharp-tailed Snake	79
Side-blotched Lizard	80
Striped Whipsnake	81
Western Pond Turtle	82
INVERTEBRATES	
Mardon Skipper	83
Oregon Silverspot	84
Taylor's Checkerspot Butterfly	85
Valley Silverspot	86

Appendix B Potential Range and Habitat Distribution Maps

B.0 Overview

This appendix describes the methodology for developing potential range and habitat distribution maps. It includes maps generated for a subset of the Species of Greatest Conservation Need (SGCN). The maps were built specifically to reflect the following information for each individual species:

- Known occurrences;
- Potential habitat distribution; and
- Areas where conservation actions are being, or could be, applied.

These maps are referred to as "potential" habitat distribution maps because they depict range as areas with documented occurrences, as well as areas with suspected or possible occupancy based on the availability of suitable habitat and the proximity of that suitable habitat to occupied areas.

Since these maps are based on occurrence data, maps were generated only for those species for which sufficient data existed in our database. Species were prioritized for initial map development based in part on WDFW's immediate need for spatial distribution data. For example, we prioritized map development for the following species:

- Those that will be covered in the Wildlife Areas Habitat Conservation Plan, currently in preparation by WDFW; and
- Those for which the agency is currently, or will soon, develop status assessments.

These maps are identified as "working drafts" because, as we become more familiar with these map products and their utility for conservation planning, and as new data becomes available, we intend to refine these maps and develop additional maps for other SGCN as appropriate. This information is intended to be used in conservation planning, for example to identify and prioritize areas for population surveys or to determine priority areas for restoration.

B.1 Methodology

Species range was defined as the geographic area in which a species regularly occurs within Washington, including areas used for breeding as well as important distinct foraging, wintering, or migration areas where appropriate. Range does not include accidental, infrequent, or peripheral areas that are disconnected from the regularly occurring area or wintering or migration areas that are generally broad and nonspecific. We chose to spatially represent range using watershed boundaries (hydrologic units) at various scales and we used ecological systems¹ as the basis for representing potentially suitable habitat distribution of the species within its range. Each step in the process is described below, using the example of the Washington Ground Squirrel.

B.1.1 Select Range Units and Scale

We used the United States Geologic Survey (USGS) Hydrologic Unit Code (HUC) national watershed classification system to delineate range. The United States is divided and subdivided into successively smaller hydrologic units which are classified into various levels. The hydrologic units are nested within

¹ Ecological systems are a component of the National Vegetation Classification Scheme (NVCS) and have been used through the State Wildlife Plan Update to describe habitat needs of SGCN.

each other, from the largest geographic area to the smallest. Each hydrologic unit is identified by a unique code (HUC), indicating the relative scale. We selected two units to delineate range; HUC 12 (smaller) and HUC 10 (larger - see figure 1 for the distribution and relative size of HUC 10 and HUC 12 watersheds throughout Washington).

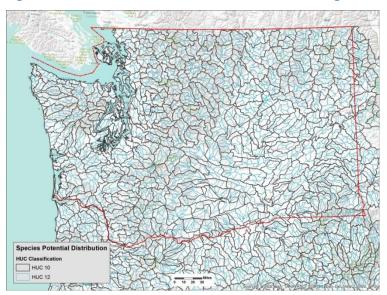


Figure B-1: HUC 10 and HUC 12 Watersheds in Washington

B.1.2 Select HUC 12s

Species occurrence data from the WDFW database was mapped as they occur in HUC 12 watersheds. The data used were considered to have high accuracy and were from 1978 to 2015 (figure 2). HUC 12s were selected based on the presence of species occurrence and used as the core range for the species. This preliminary list was then edited by WDFW biologists who used empirical data and literature to determine extant, incidental, accidental, and infrequent occupancy status for HUC 12s. The resulting HUC 12 selected watersheds represent the highest degree of certainty in depicting the recently occupied species range (Figure 2).

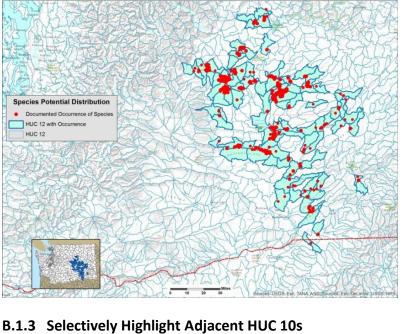
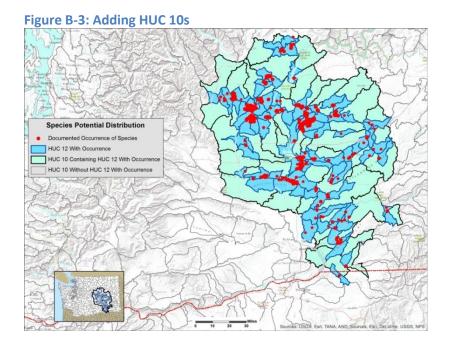



Figure B-2: Highlighting HUC12s with Documented Recent Occurrences of Washington Ground Squirrel

The initial set of HUC 12s selected for each species is limited by known occurrence data. However, not every area in the state has been surveyed for all species and, therefore, using only occupied HUC 12s would likely underestimate the range of a species and limit potential conservation action. Since the HUC system is hierarchical, HUC 12s are nested within the larger HUC 10 watershed unit. HUC 10s were then selected based on proximity to HUC 12s that were considered occupied by a species to identify areas that a species has the potential to occur (Figure 4).

2015 STATE WILDLIFE ACTION PLAN

B.1.4 Identify Potentially Suitable Habitat for Habitat Distribution

We defined habitat distribution as the spatial arrangement of ecological systems² suitable for a species within its predefined range. Ecological systems are a classification unit developed by NatureServe and are defined as a group of existing plant community types that tend to co-occur within landscapes sharing similar ecological processes, substrates, and/or environmental gradients (Rocchio and Crawford 2008). The Ecological System classification provides a meso-scale target that is useful for ecological mapping, assessments, and conservation prioritization. While ecological systems include natural and semi-natural vegetation, cover types, as used by the National Vegetation Classification Standard (NVCS), include non-natural vegetation or cover, such as agriculture, introduced vegetation, and development. Because both ecological systems and cover types are geospatially mapped, comparing their distribution in Washington to occurrence points of SGCN was a useful exercise in determining species associations with these two categories.

- 1. The draft Field Guide to Washington's Ecological Systems (Rocchio and Crawford 2008);
- 2. Ecological system descriptions, as housed in NatureServe, where there is evidence that the system occurs in Washington State, but does not appear in Rocchio and Crawford (2008); and
- 3. Cover type descriptions, as used by NVCS.

Species were associated with ecological systems on a species-by-species basis for 98 ecological systems in Washington. Biologists used expert knowledge and published habitat associations (Rocchio and Crawford 2008) and preferences to associate ecological systems to species using four categories, closely associated, generally associated, unsuitable, and unknown (figure 5). It should be noted that associated habitat and habitat distribution refers here to the extent of ecological systems with which a species is associated, representing potential suitable habitat. Some, if not all species, respond to finer scale habitats such as vernal pools or forest stand age or condition that cannot necessarily be mapped but may drive where a species occurs.

- **1. Closely Associated:** The species demonstrates preference for the ecological system, as indicated by greater occurrence, high densities, greater reproductive output, or other indicators of preference, than in other ecological systems. A species that is closely associated to individual ecological systems often rely on one to a few ecological systems for a significant part, or all, of its life history requirements.
- **2. Generally Associated:** The species occurs in, but does not prefer, the ecological system, as indicated by lesser occurrence, lower densities, or other indicators of a general relationship with the ecological system. A species that is generally associated with individual ecological systems can typically rely on numerous ecological systems to meet its life history requirements.

Note: A species can be closely associated with some ecological systems and generally associated with others, given differences in occurrence, densities, reproductive output, or other indicators of preference.

- 3. Unsuitable: A species demonstrates no use or only occasional use of the ecological system.
- **4. Unknown:** The species' use of the ecological system is unknown. There were questions or uncertainty whether or not a species used an ecological system.

² Ecological systems are a component of the National Vegetation Classification Scheme (NVCS) and have been used through the State Wildlife Plan Update to describe habitat needs of SGCN.

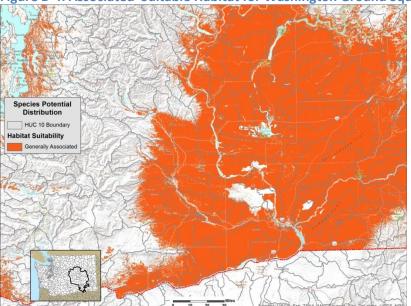


Figure B-4: Associated Suitable Habitat for Washington Ground Squirrel in Washington

B.2 Application

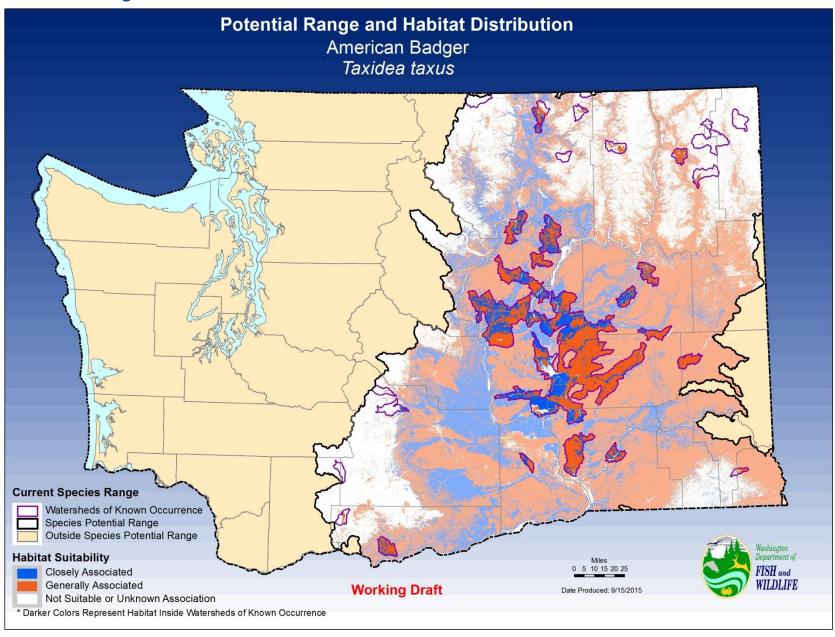
As mentioned in the Overview to this section, these maps are intended to be used to inform conservation planning at fairly broad scales to determine the most effective places to direct conservation actions and potential investment. Such actions may include:

- 1. Conducting species survey efforts in areas that are thought to contain suitable habitat but for which no occurrence data exist;
- 2. Working with our conservation partners to further evaluate, within watersheds, where specific actions, such as habitat restoration, might take place; and
- 3. Implementing conservation measures for SGCN on agency-owned and managed lands. Over time, these activities are expected to lead to further refinement of species ranges, mapped ecological associations, and associated habitat designations.

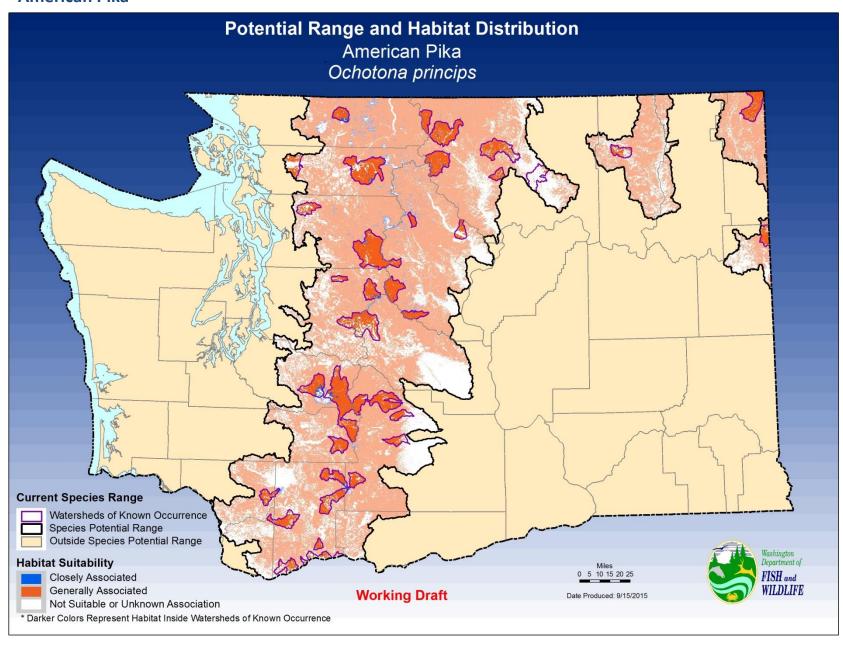
The maps provided in this appendix are referred to as "potential" species range and distribution maps because they are based on a combination of the factors that define the content of the maps. WDFW makes no assertion that an individual species currently physically occurs across the mapped area. The maps are not meant to be used in a regulatory environment nor replace existing range maps that may have been adopted for use in species recovery planning. They are also not meant to identify specific places for conservation action but rather guide further evaluation within watersheds as to where the most appropriate conservation actions might take place.

B.2.1 Keeping maps relevant

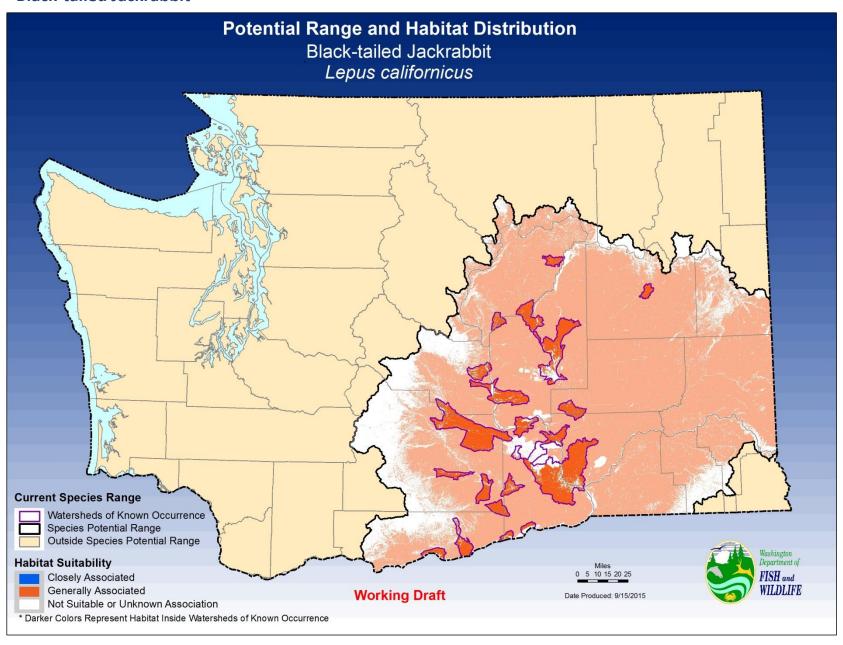
These map products are intended to be dynamic through links to WDFW cooperatively managed wildlife occurrence datasets. WDFW also has strong data sharing partnerships with U.S. Forest Service, Bureau of Land Management, eBird, and other organizations that will be useful in updating species range and habitat distribution maps. Thus maps will be updated and improved based on:

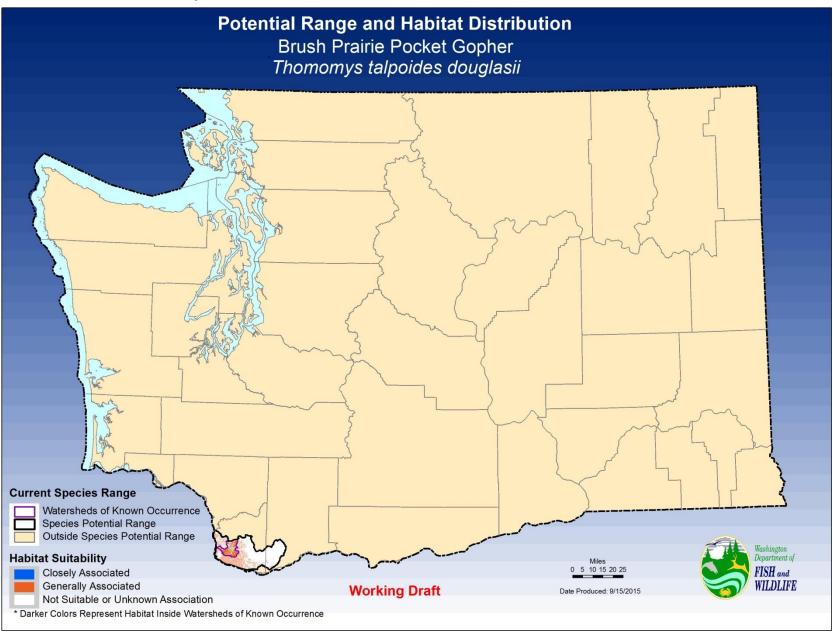

- 1. The identification of new species occurrences from directed survey efforts by WDFW and/or partners:
- 2. A better understanding of species associations with ecological systems through research;

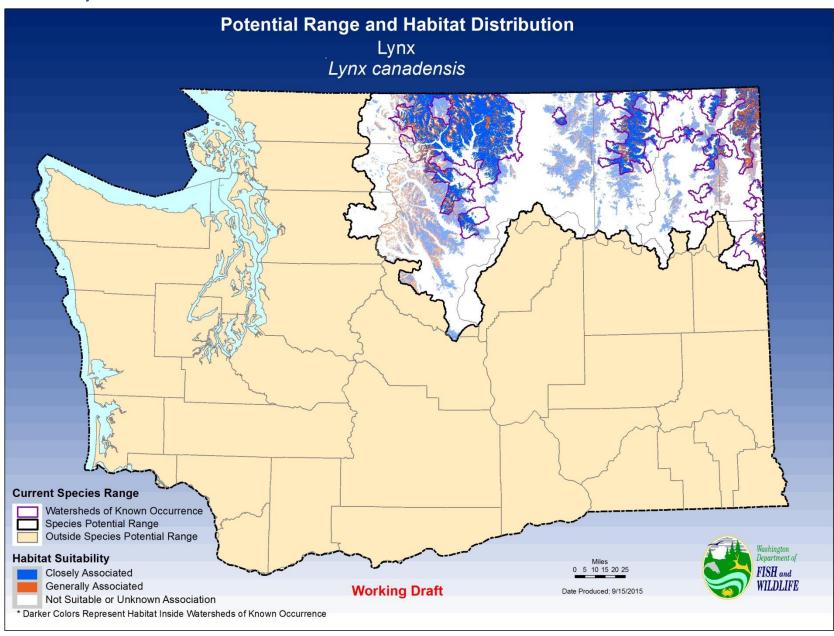
3. Refined mapping of ecological systems.

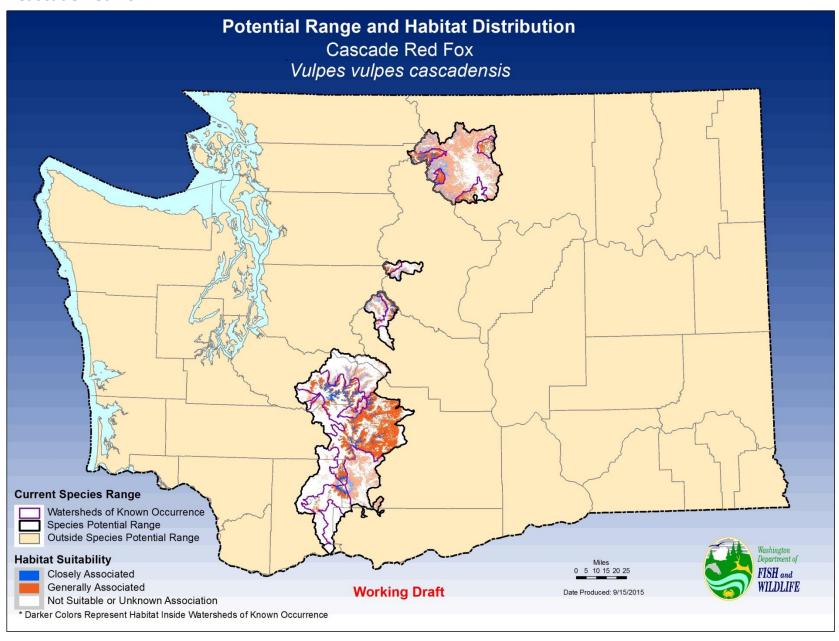

A specific process to update range map products based on the above factors to keep species maps relevant over time will be developed by WDFW. The process will also identify the frequency of updates and the mechanism by which new maps will be disseminated both within WDFW and to conservation partners.

B.3 Range and Potential Habitat Distribution Maps for Selected SGCN

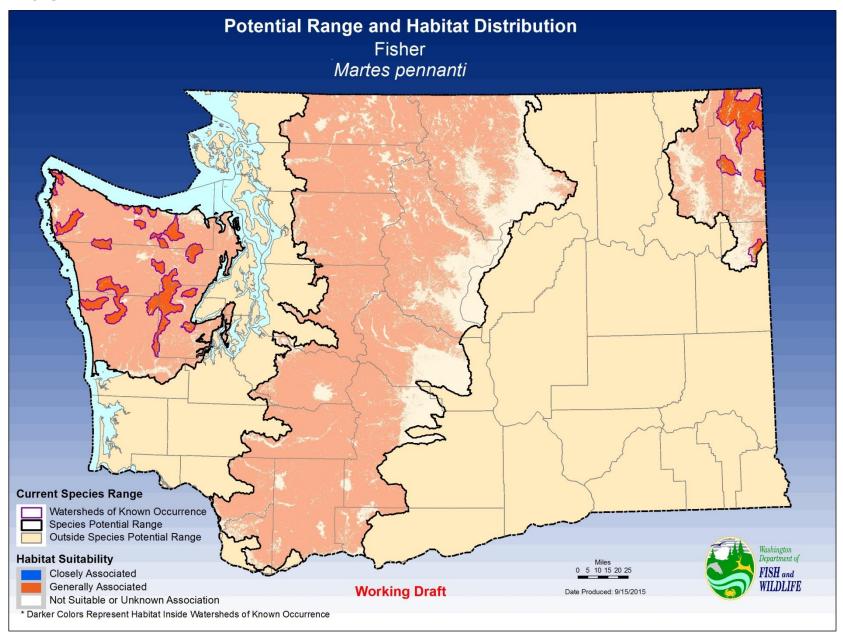

American Badger

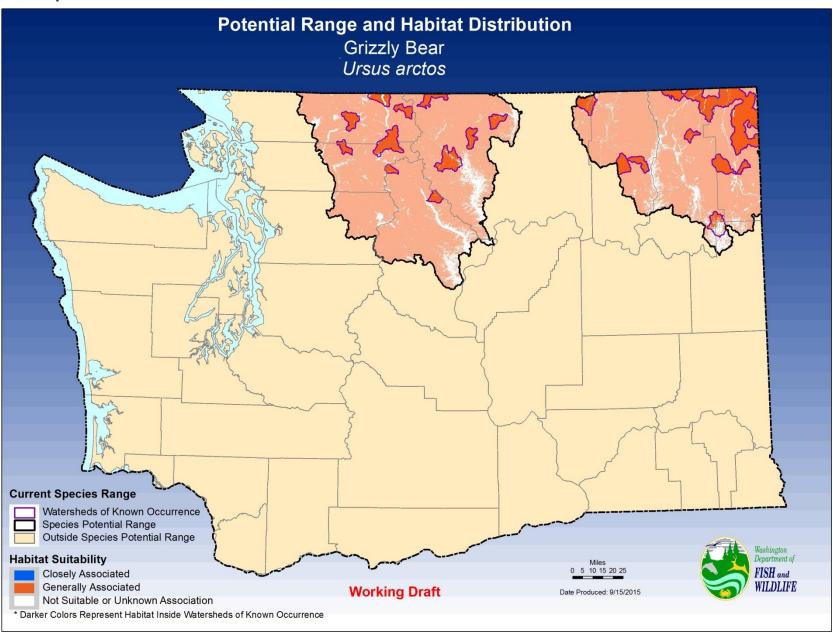

American Pika

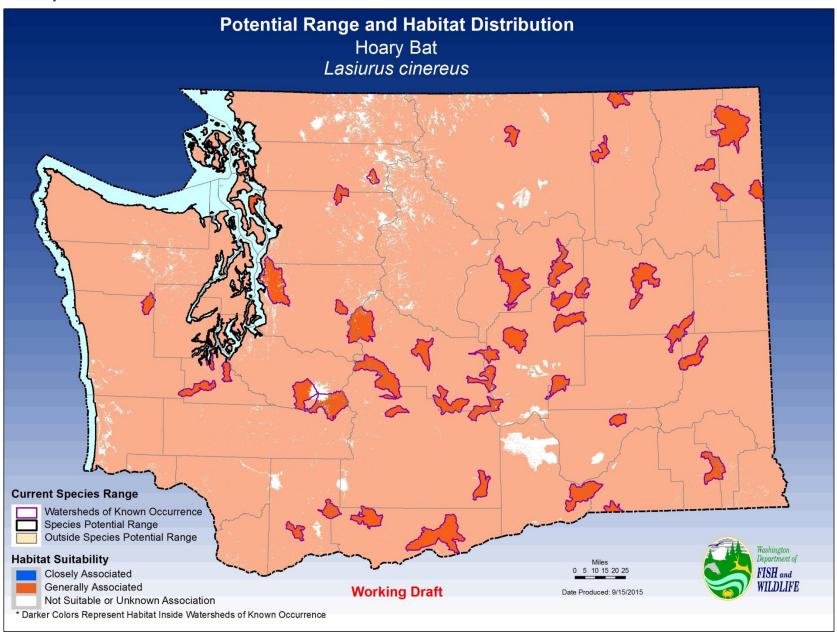

Black-tailed Jackrabbit

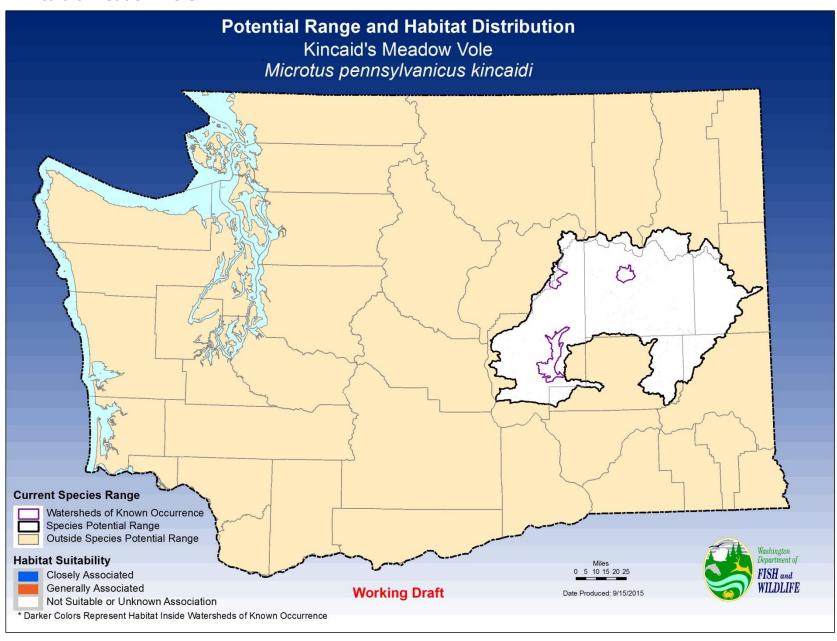

Brush Prairie Pocket Gopher

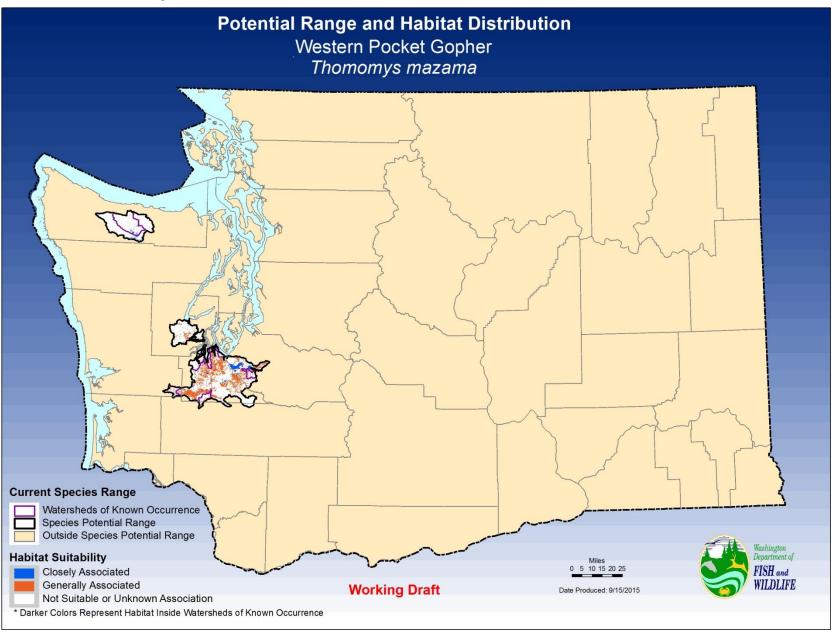

Canada Lynx

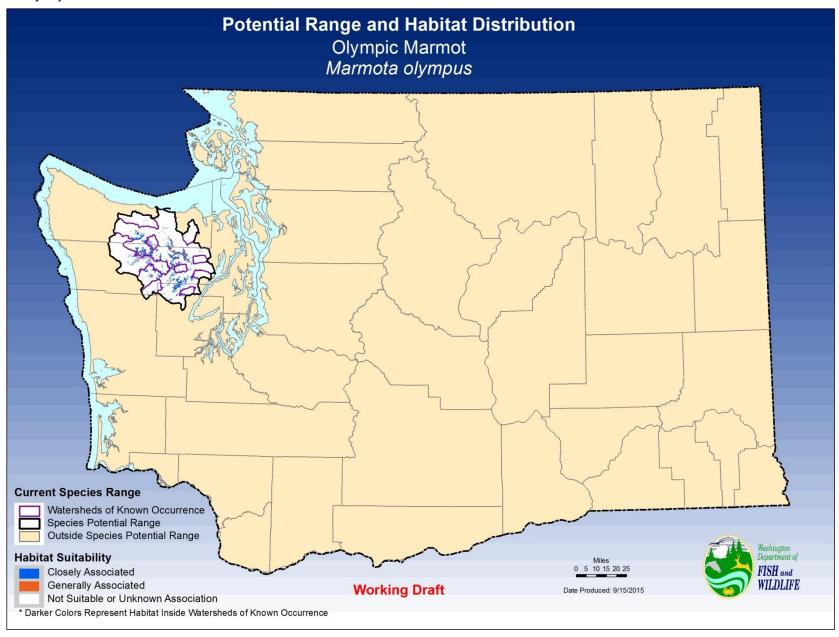

Cascade Red Fox

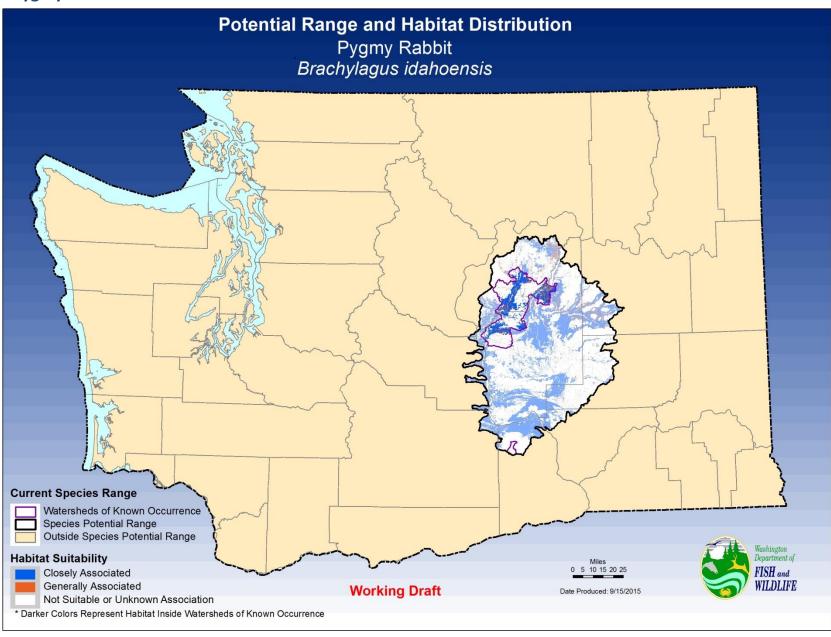

Columbian White-tailed Deer

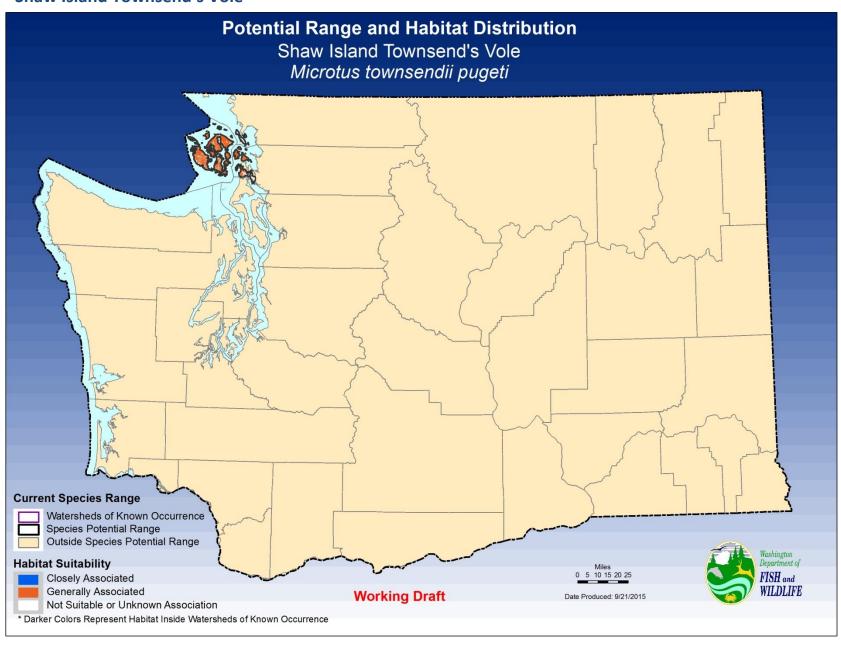

Fisher

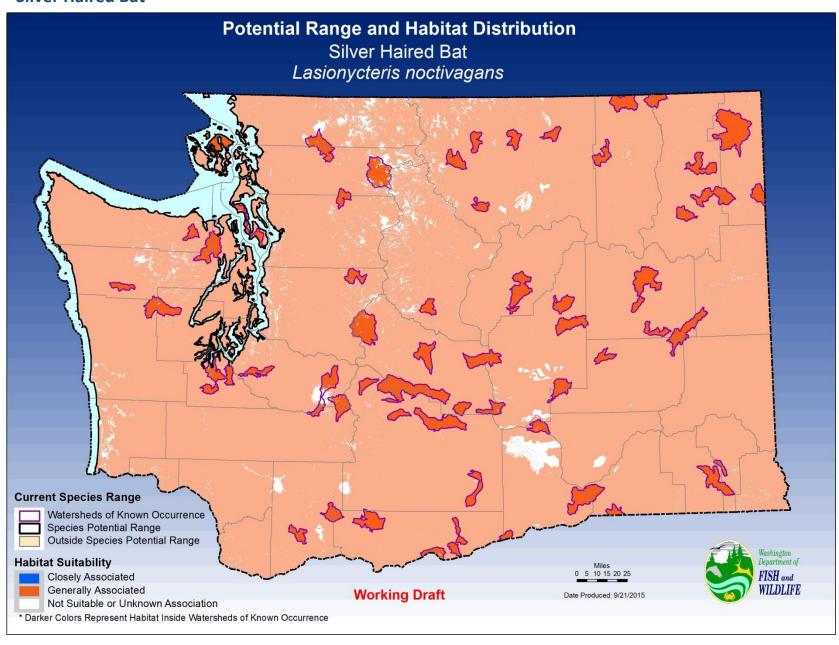

Grizzly Bear

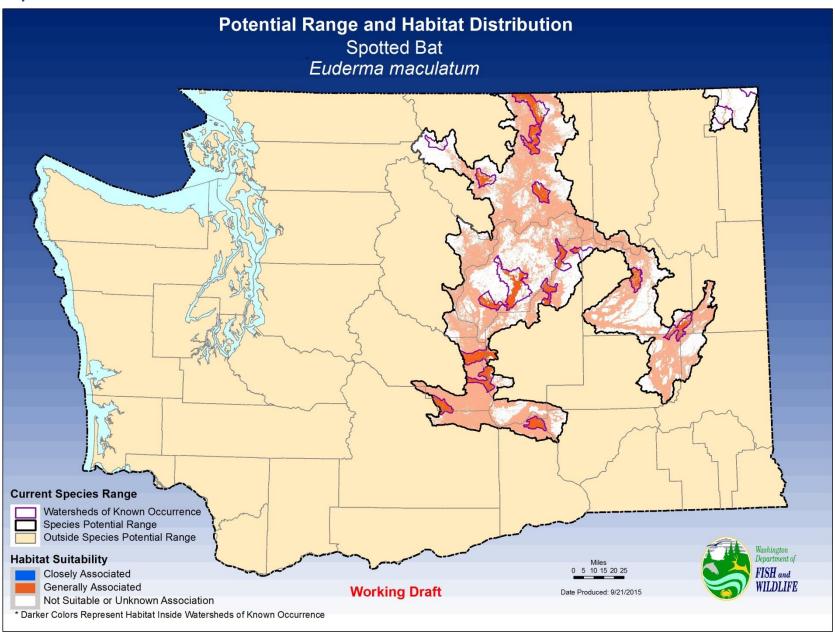

Hoary Bat

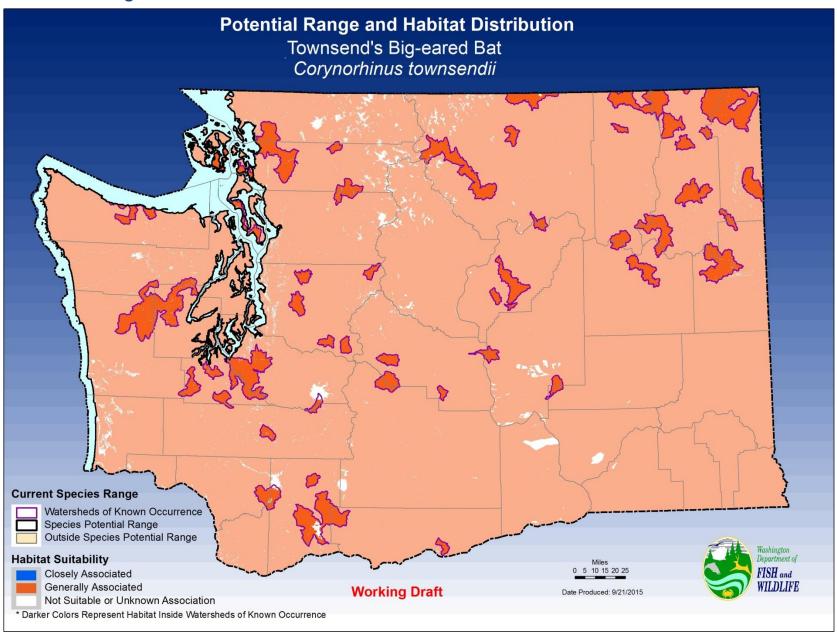

Kincaid's Meadow Vole

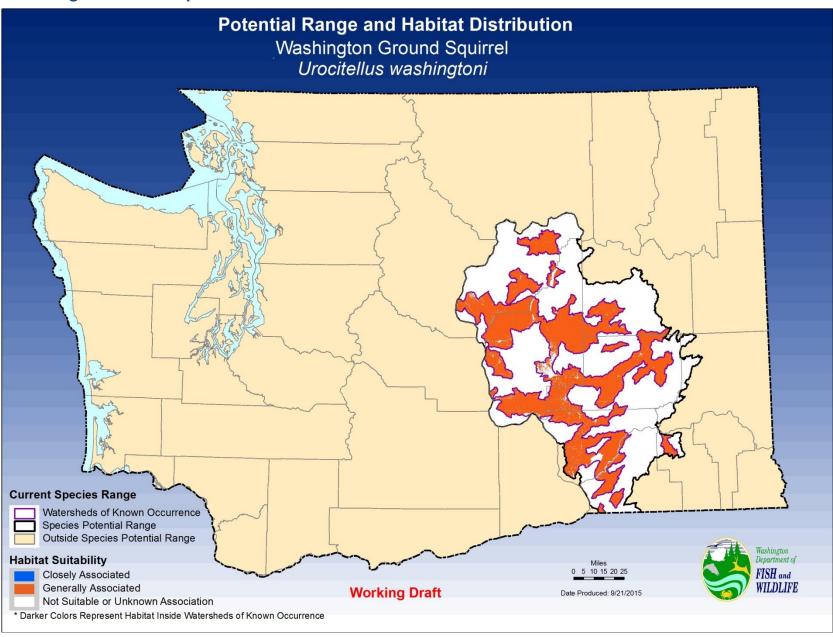

Mazama Pocket Gopher

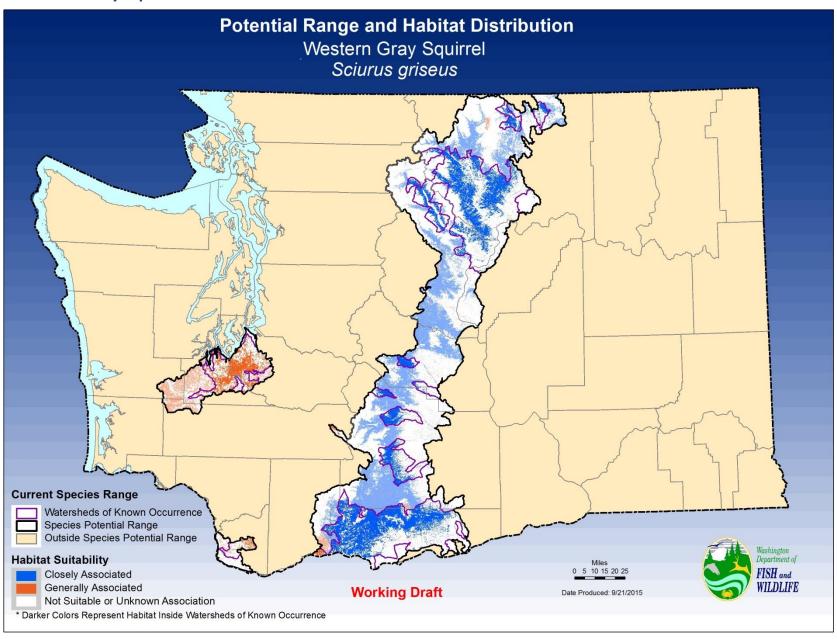

Olympic Marmot

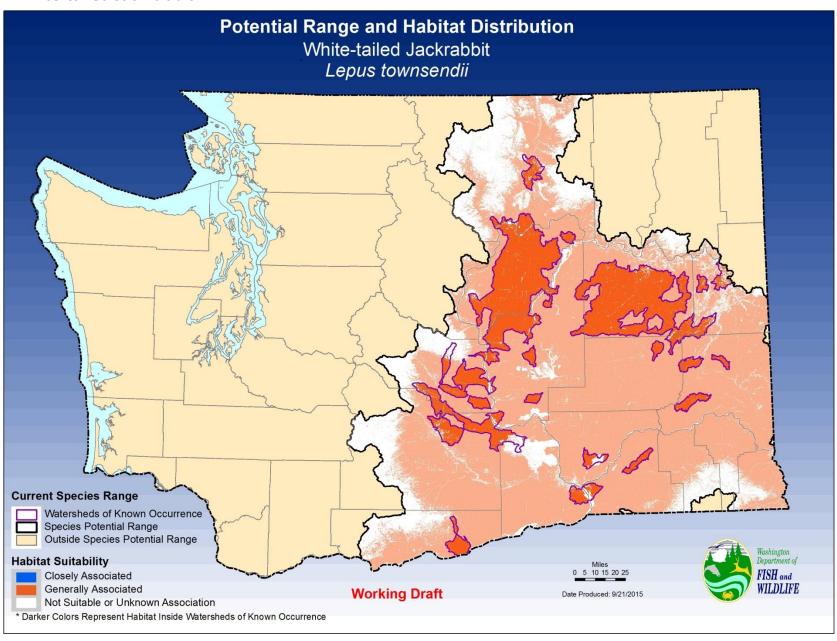

Pygmy Rabbit

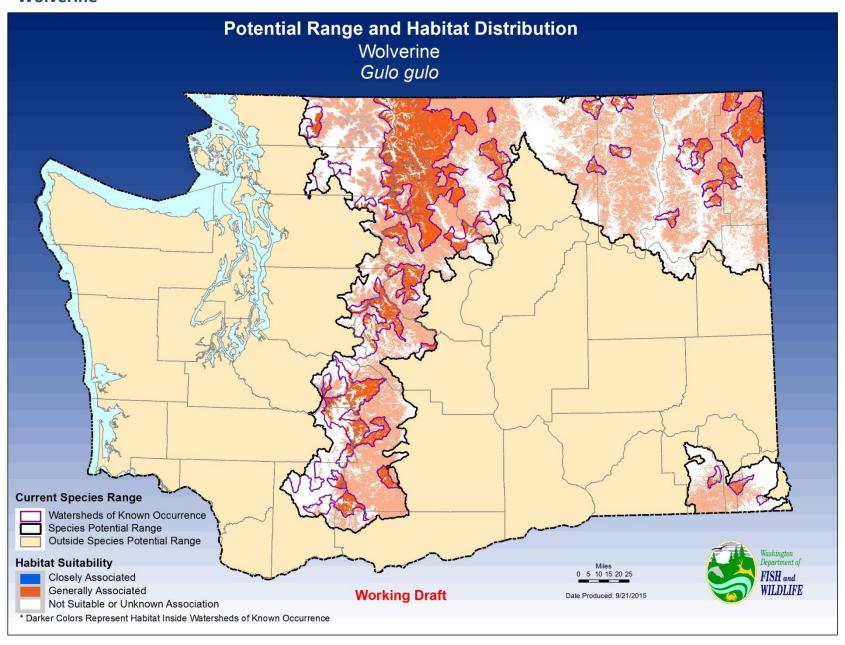

Shaw Island Townsend's Vole

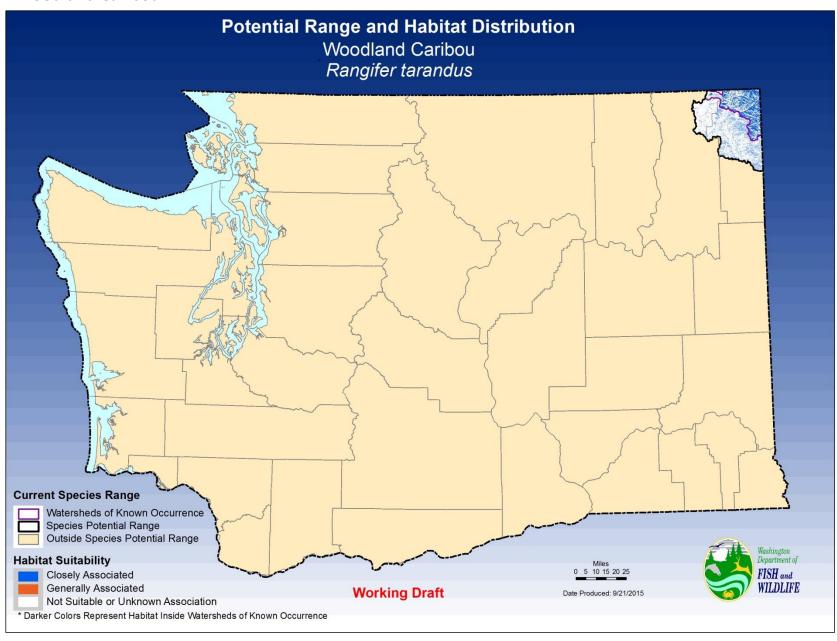

Silver Haired Bat

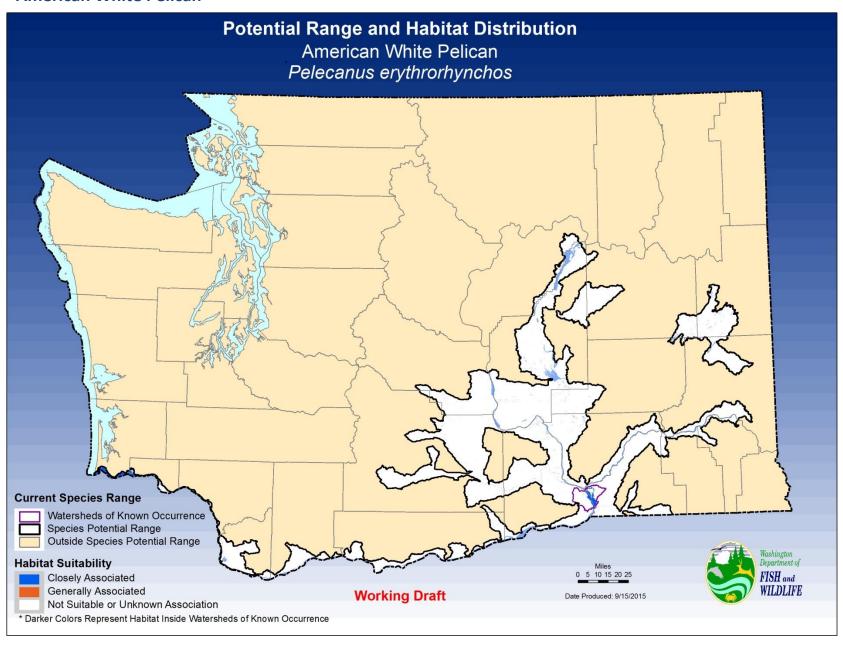

Spotted Bat

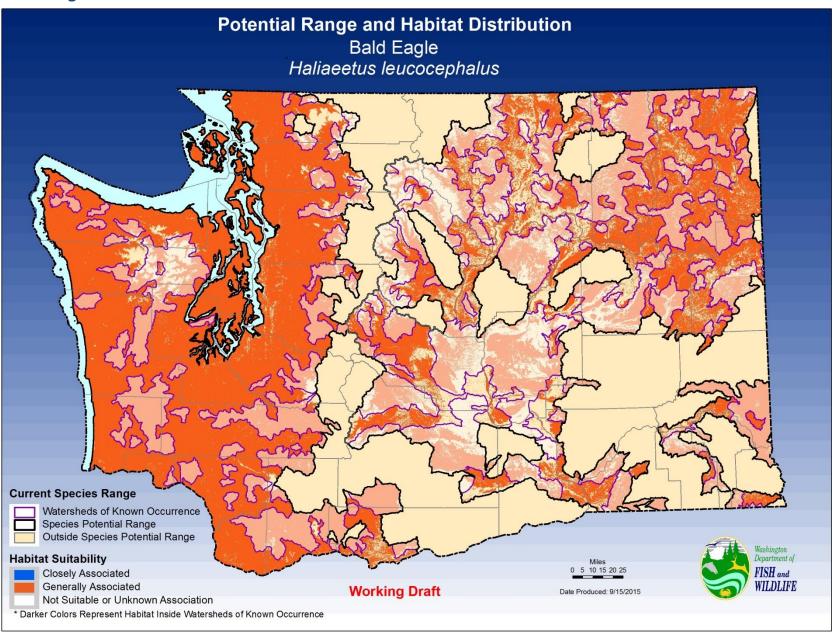

Townsend's Big-eared Bat

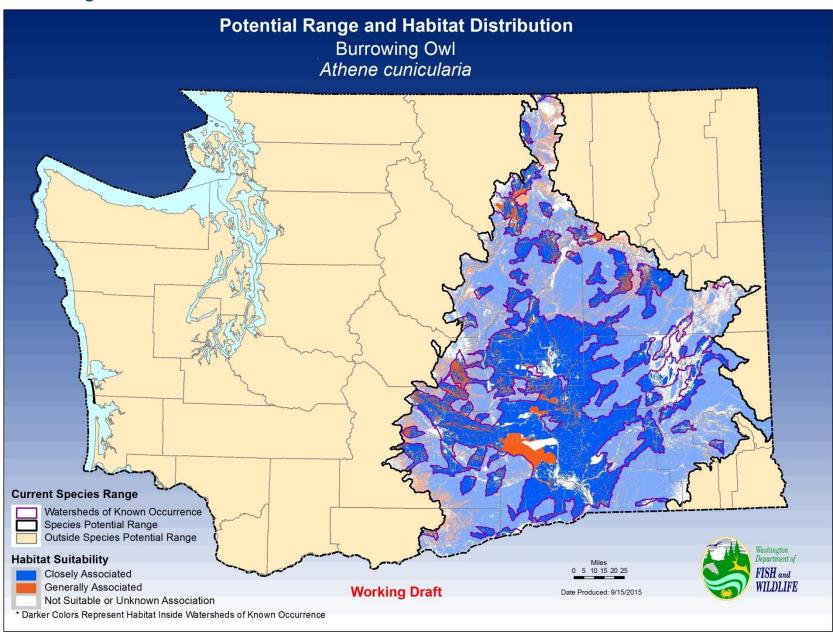

Washington Ground Squirrel

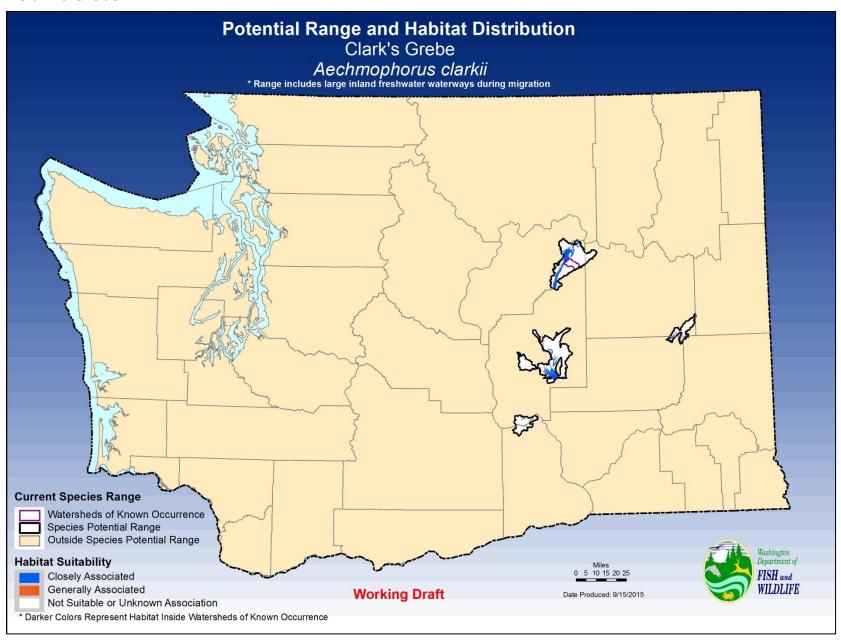

Western Gray Squirrel

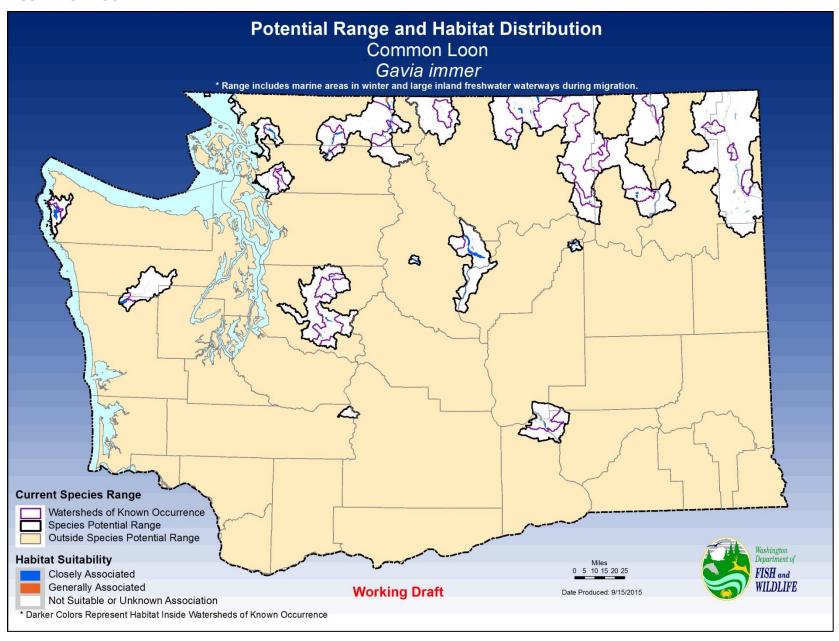

White-tailed Jackrabbit

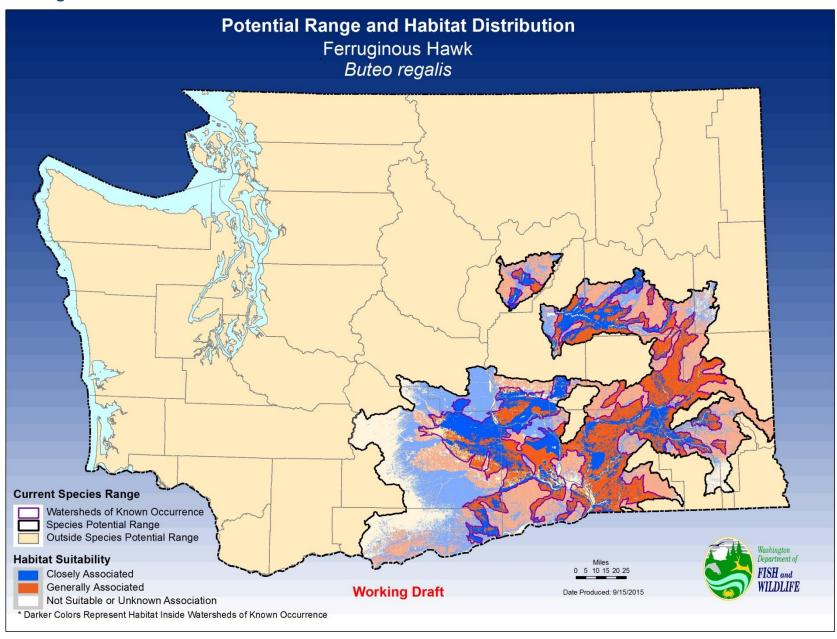

Wolverine

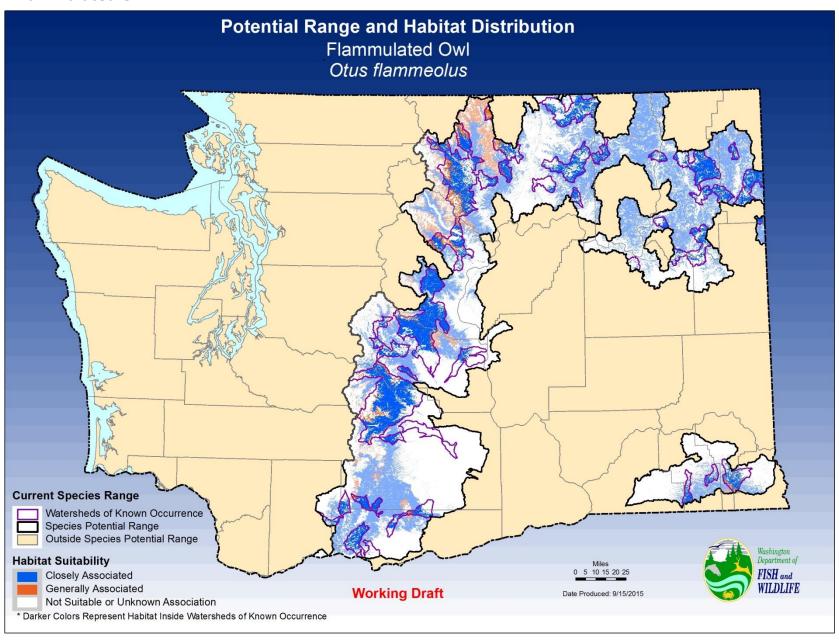

Woodland Caribou

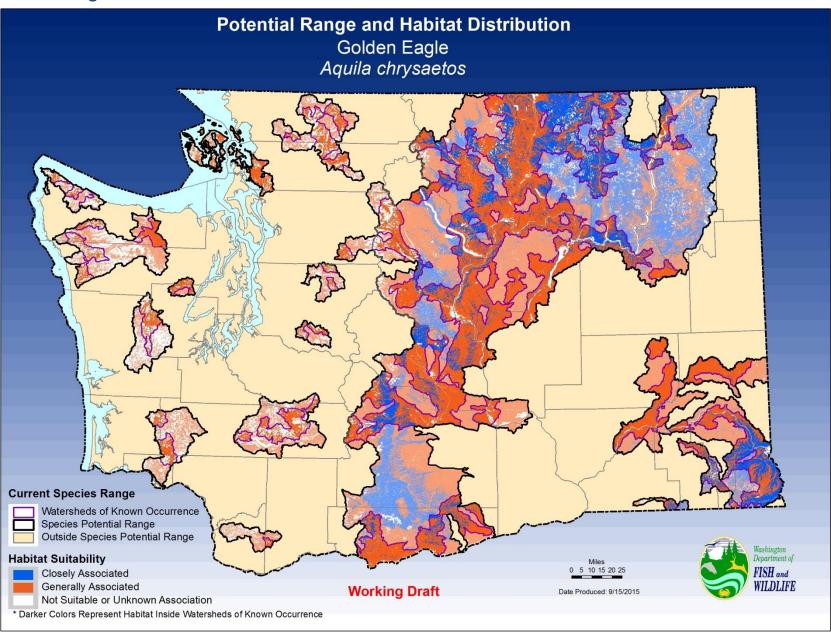

American White Pelican

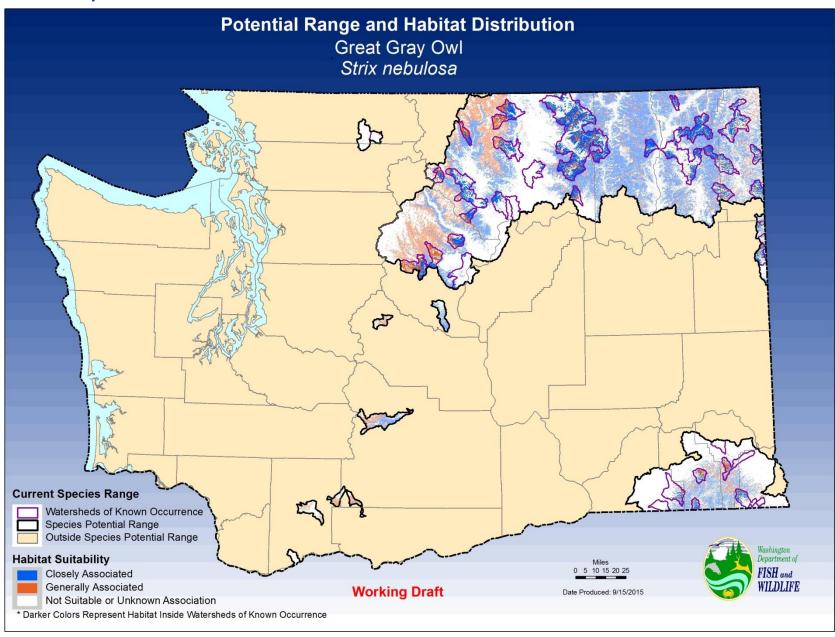

Bald Eagle

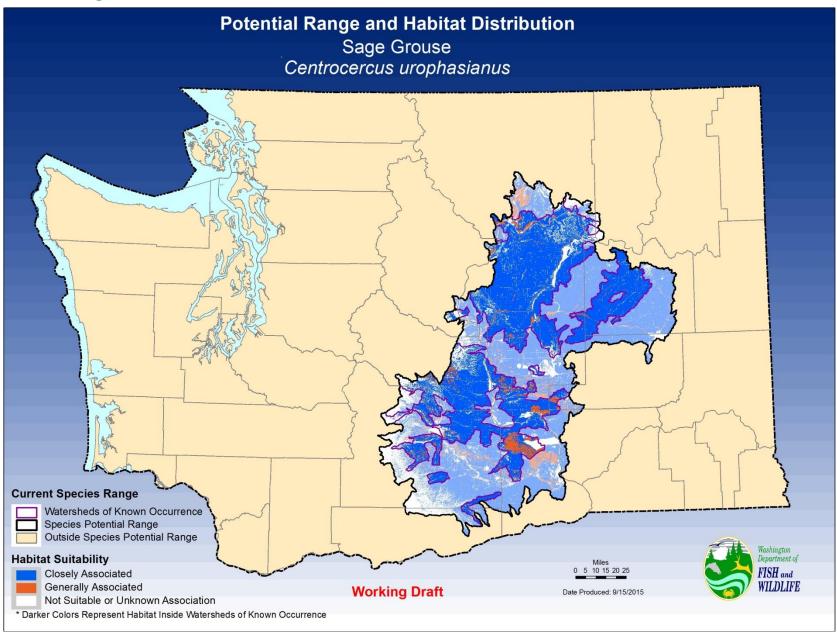

Burrowing Owl

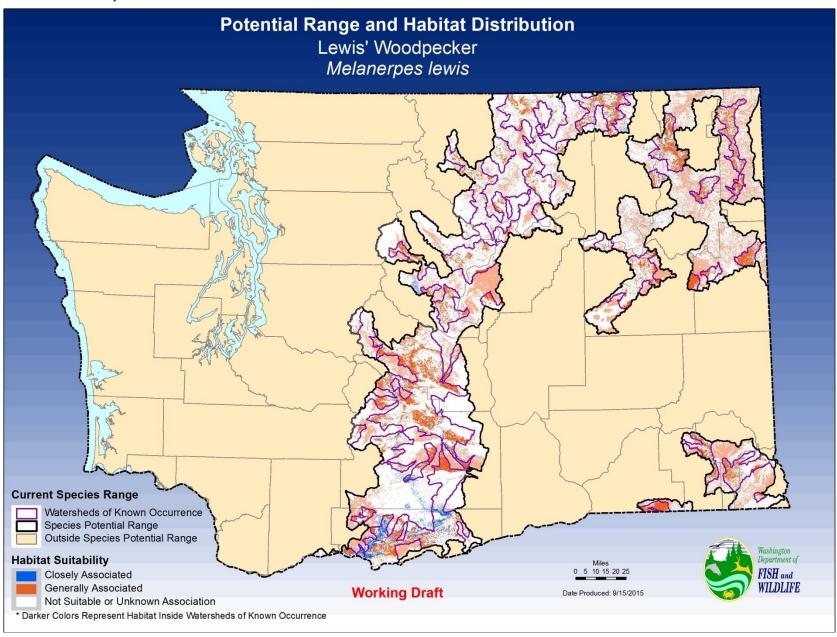

Clark's Grebe

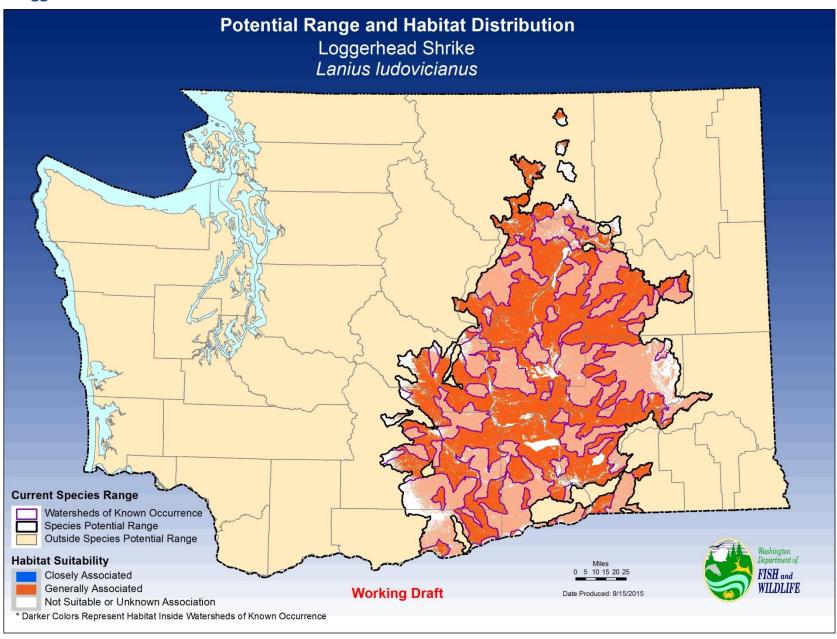

Common Loon

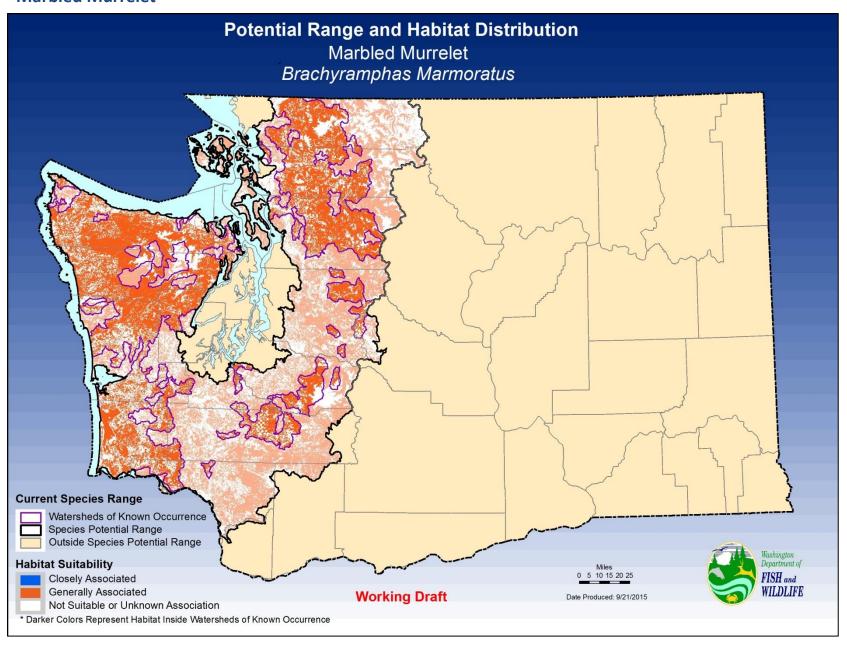

Ferruginous Hawk

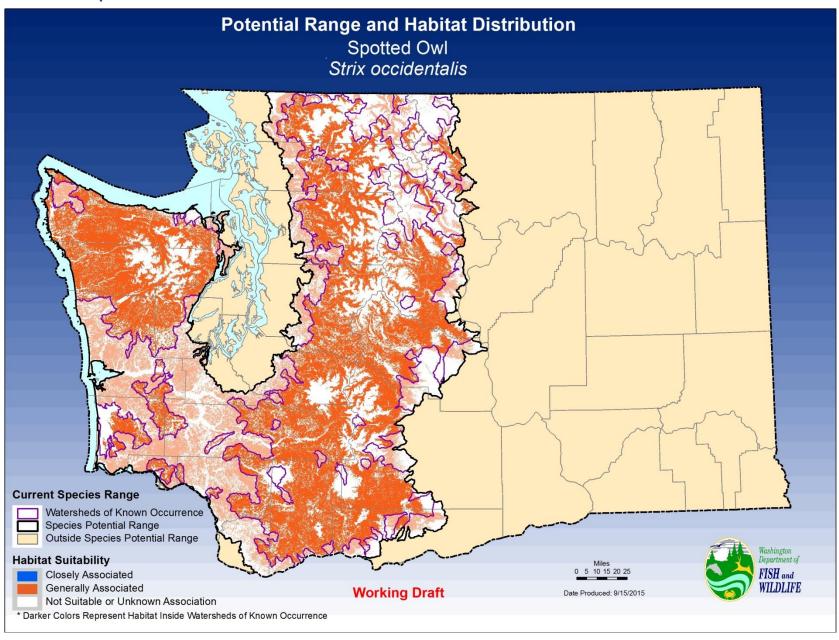

Flammulated Owl


Golden Eagle

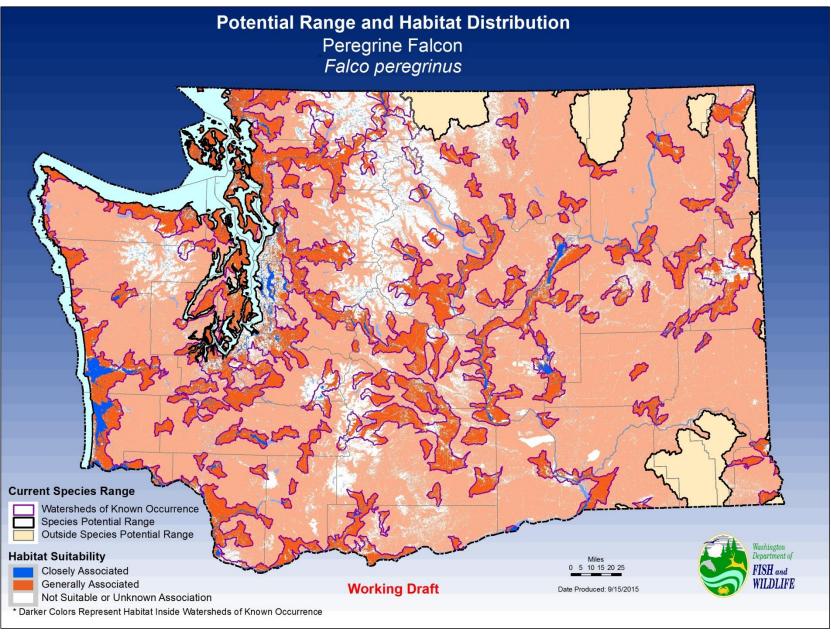

Great Gray Owl

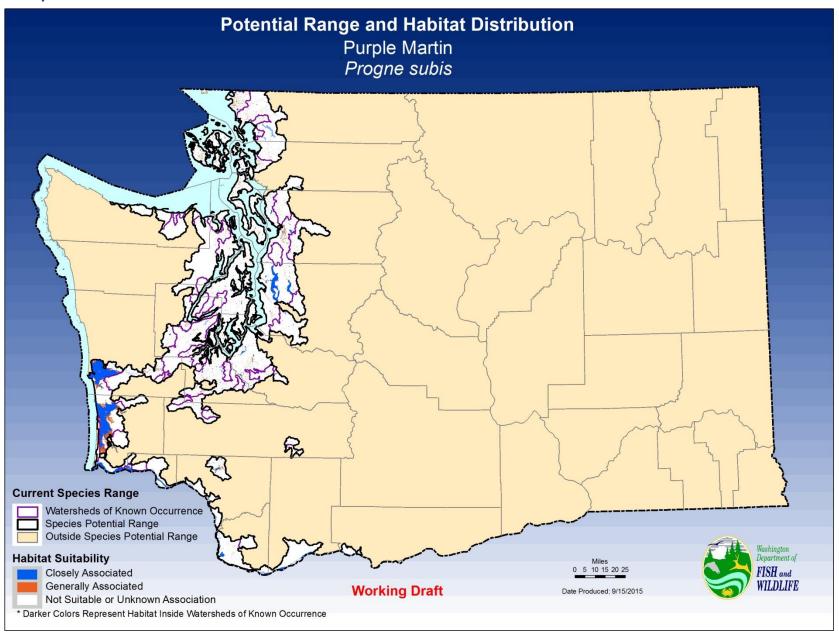

Greater Sage Grouse

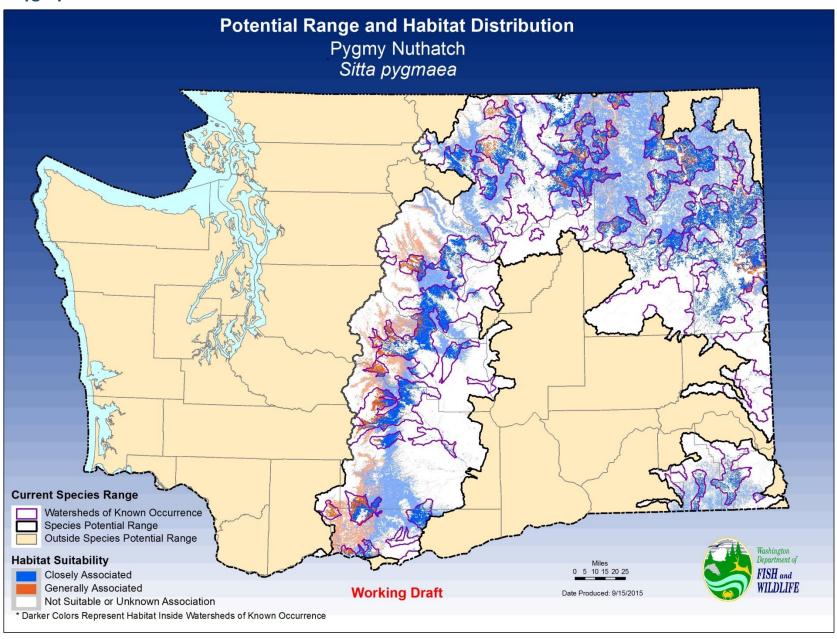

Lewis' Woodpecker

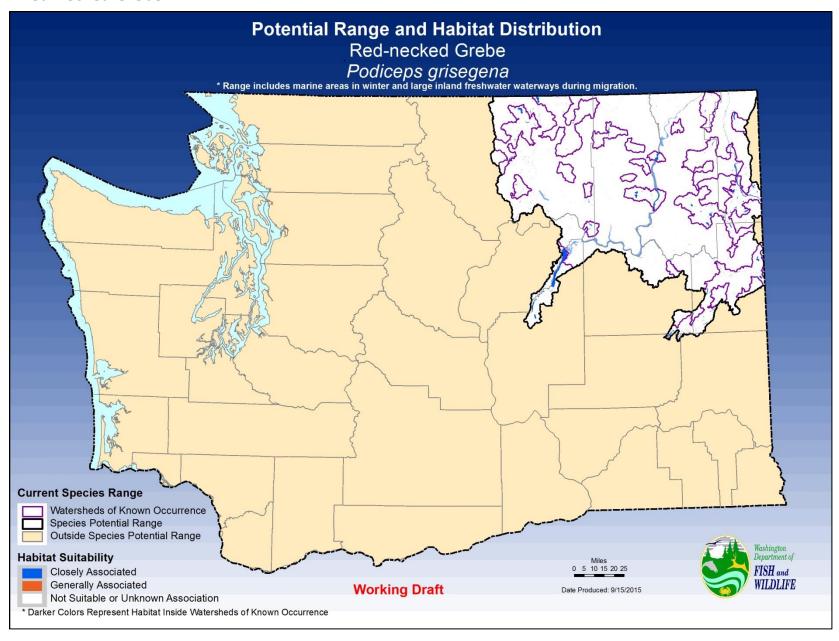

Loggerhead Shrike

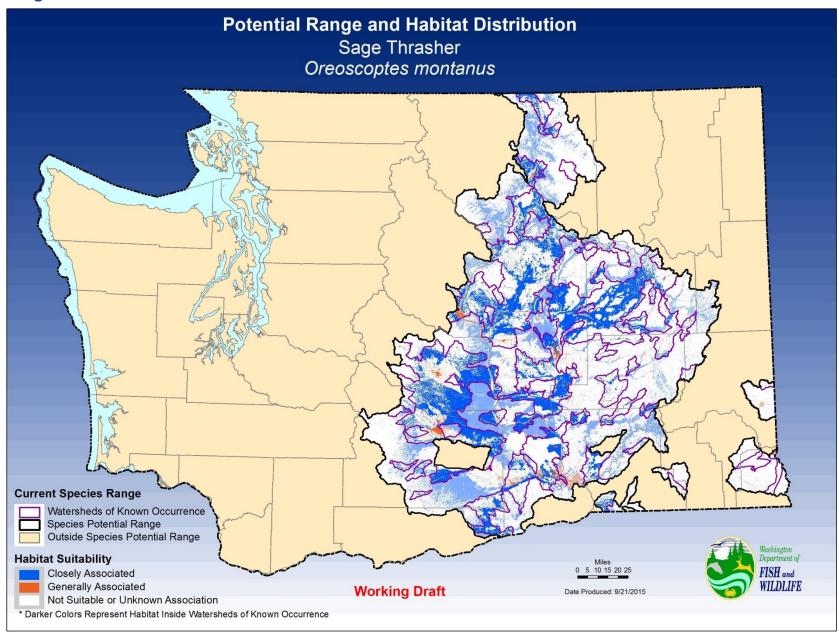
Marbled Murrelet

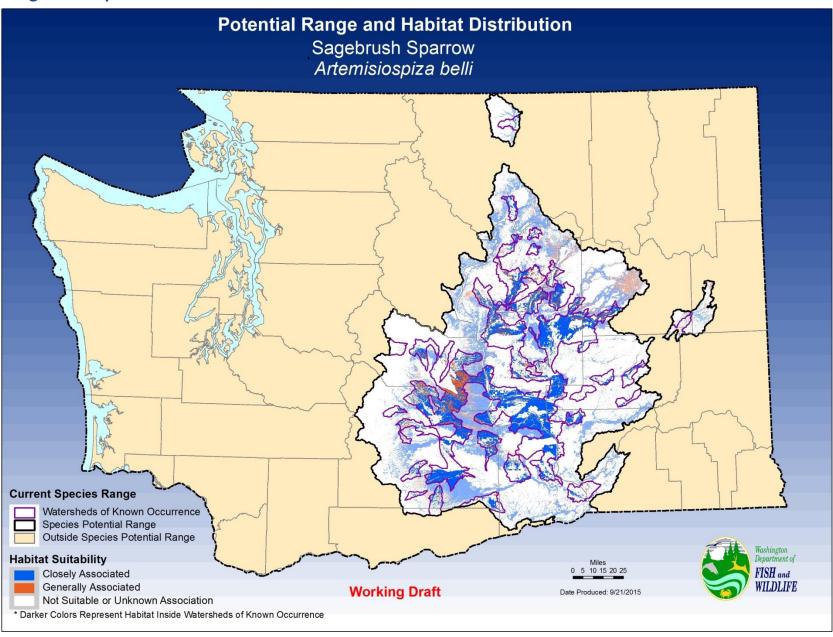

Northern Spotted Owl

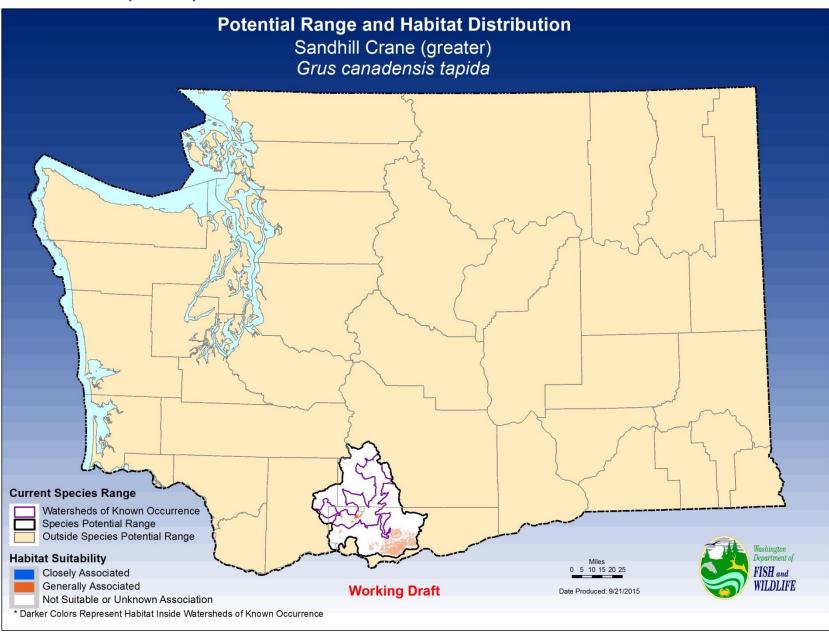

Oregon Vesper Sparrow

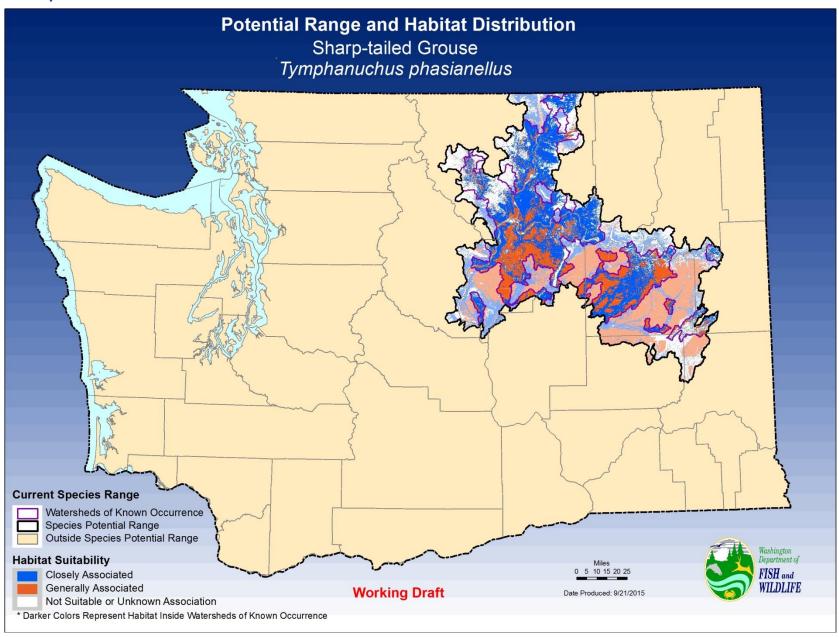

Peregrine Falcon

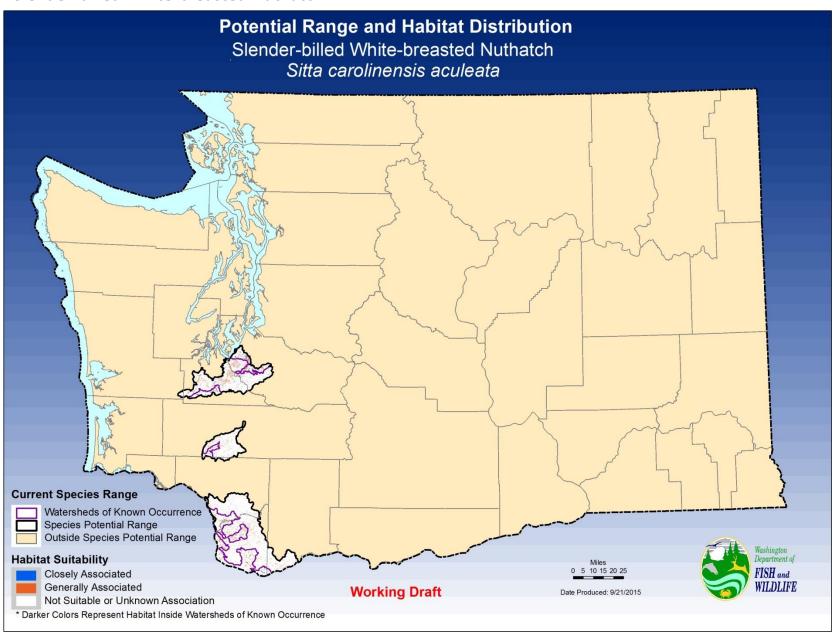

Purple Martin

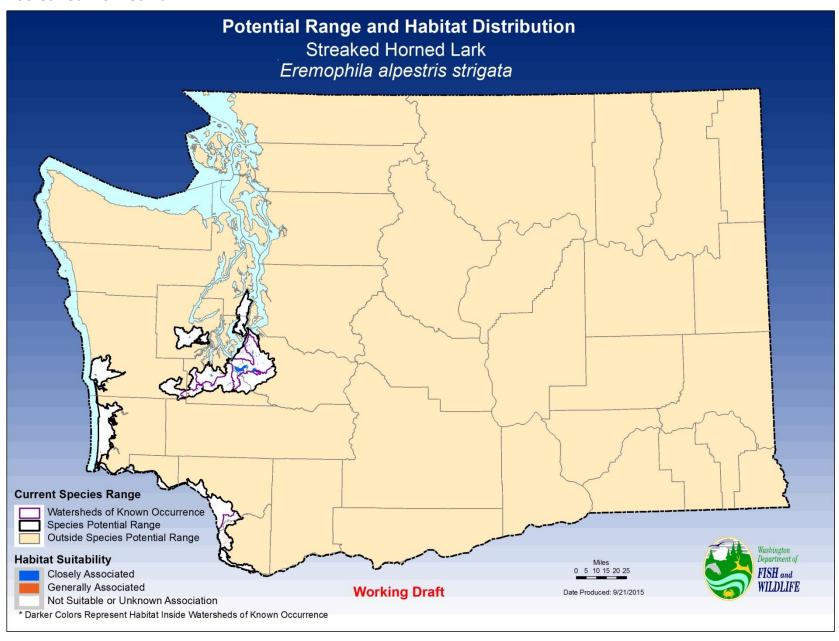

Pygmy Nuthatch

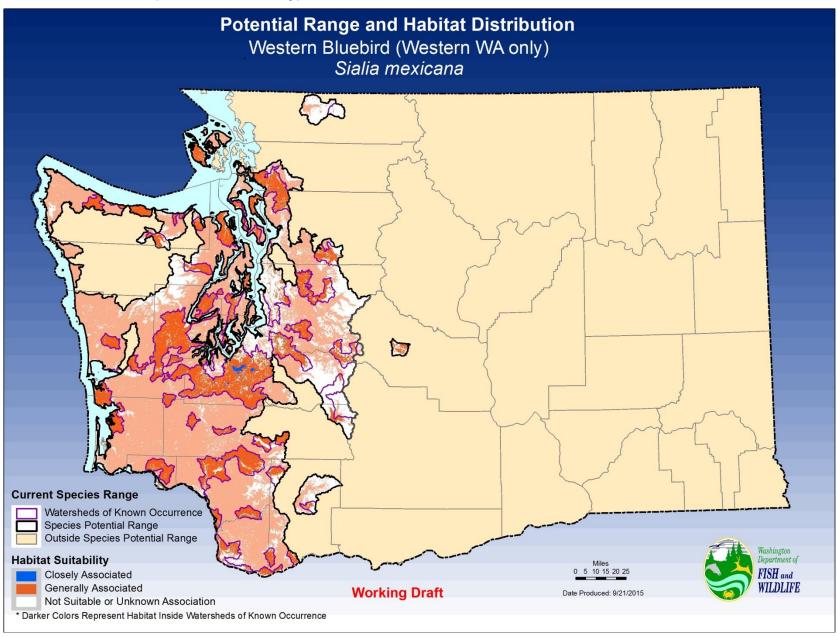

Red-necked Grebe


Sage Thrasher

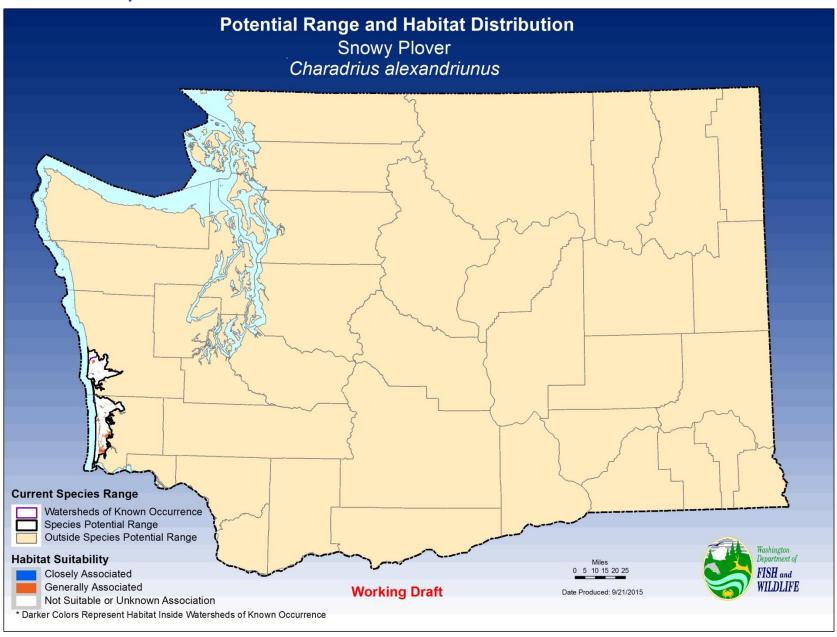

Sagebrush Sparrow

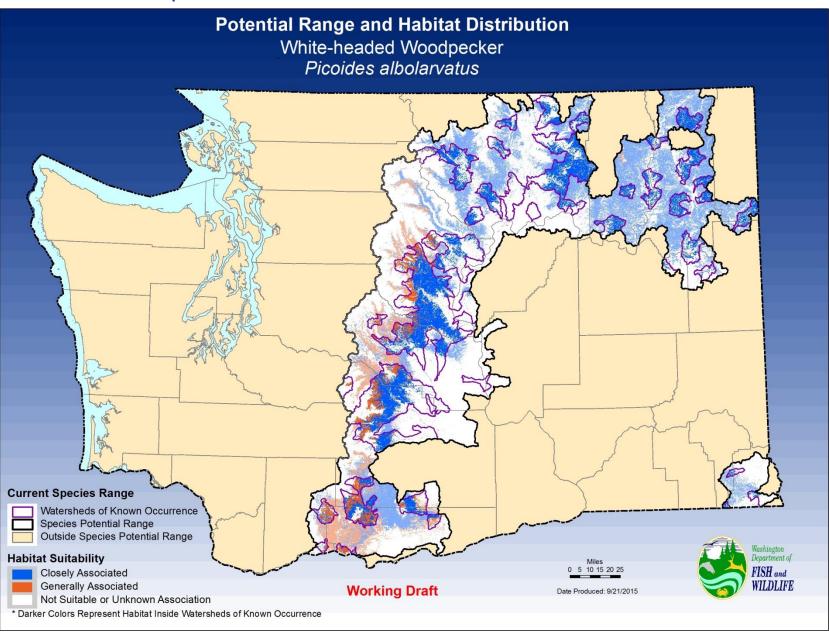

Sandhill Crane (Greater)

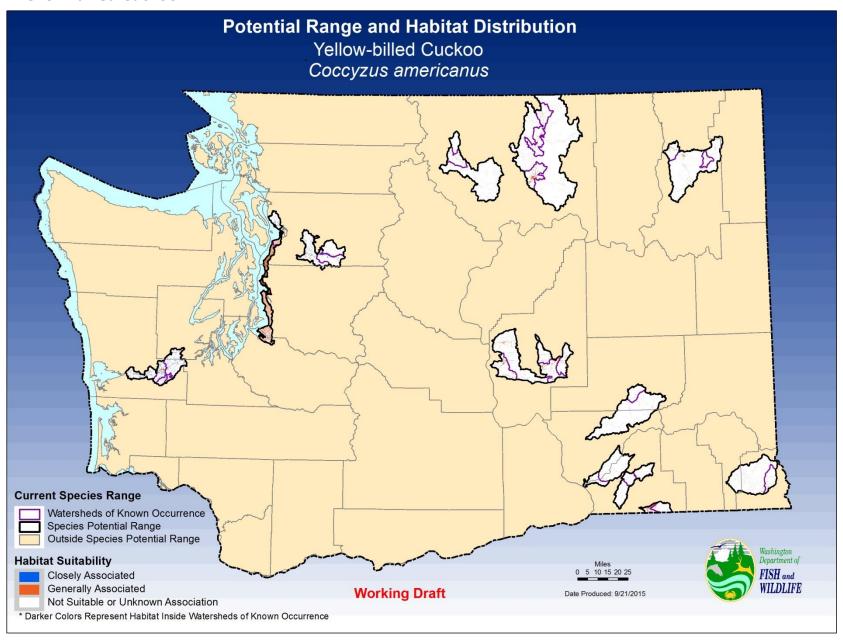

Sharp-tailed Grouse

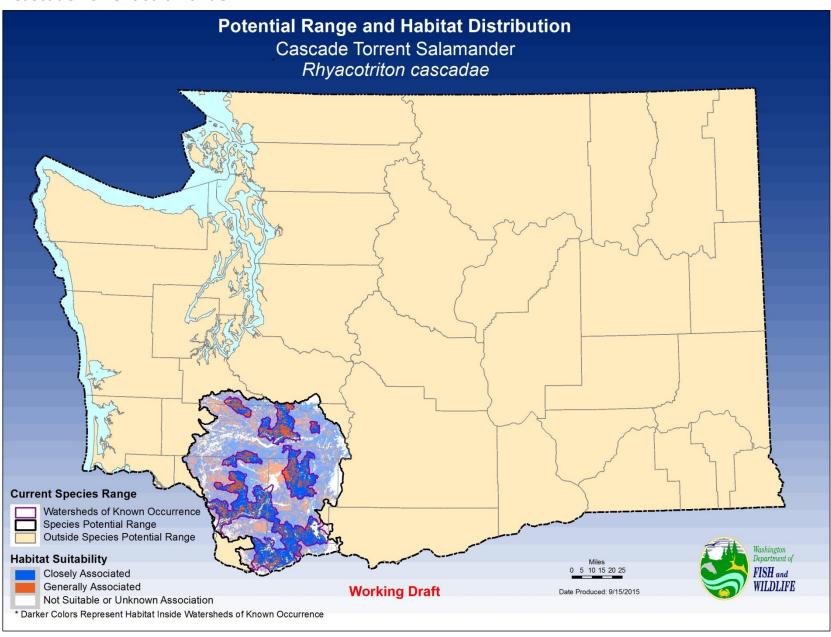

Slender-billed White-breasted Nuthatch

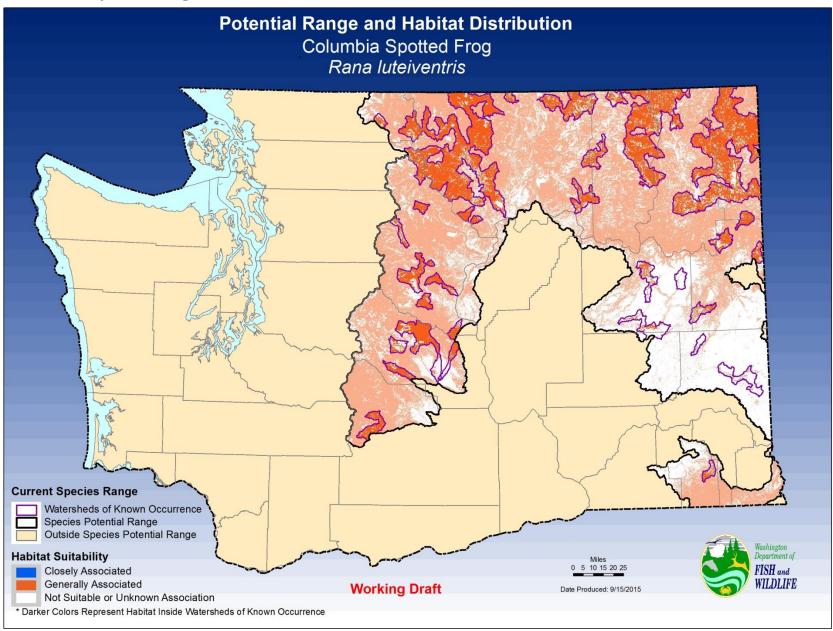

Streaked Horned Lark

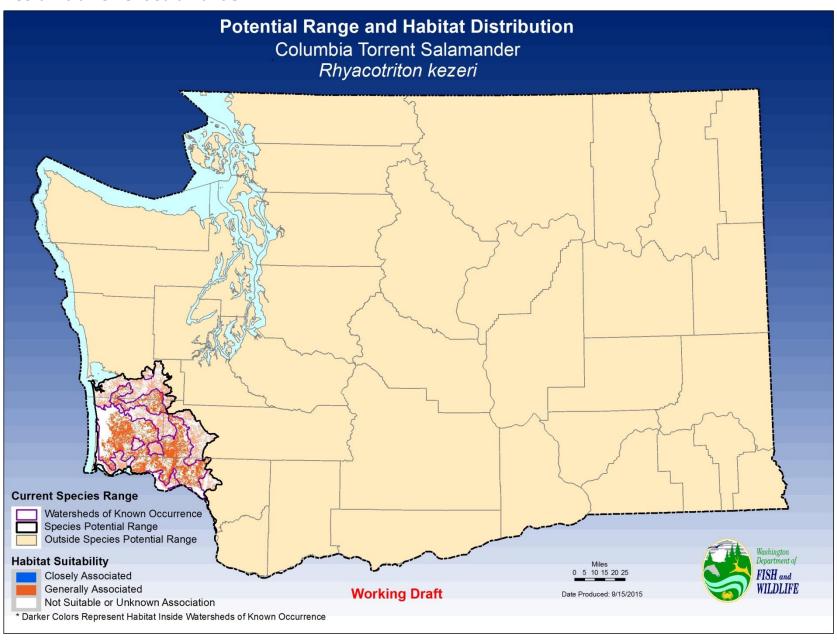

Western Bluebird (Western WA only)

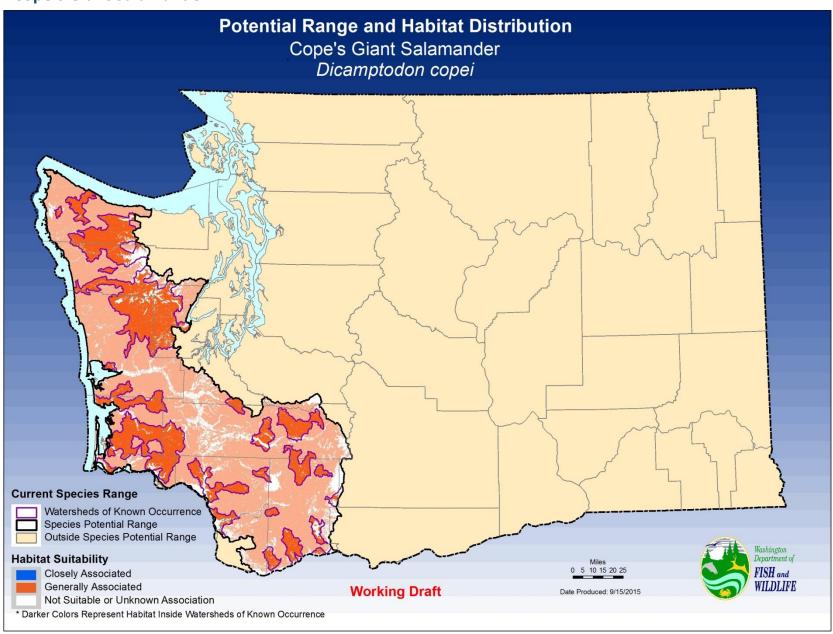

Western Grebe

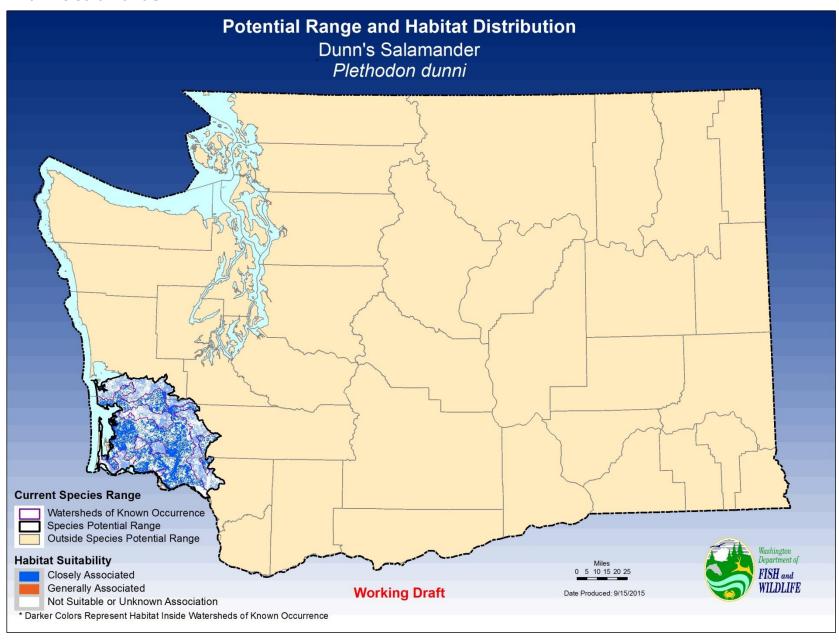

Western Snowy Plover

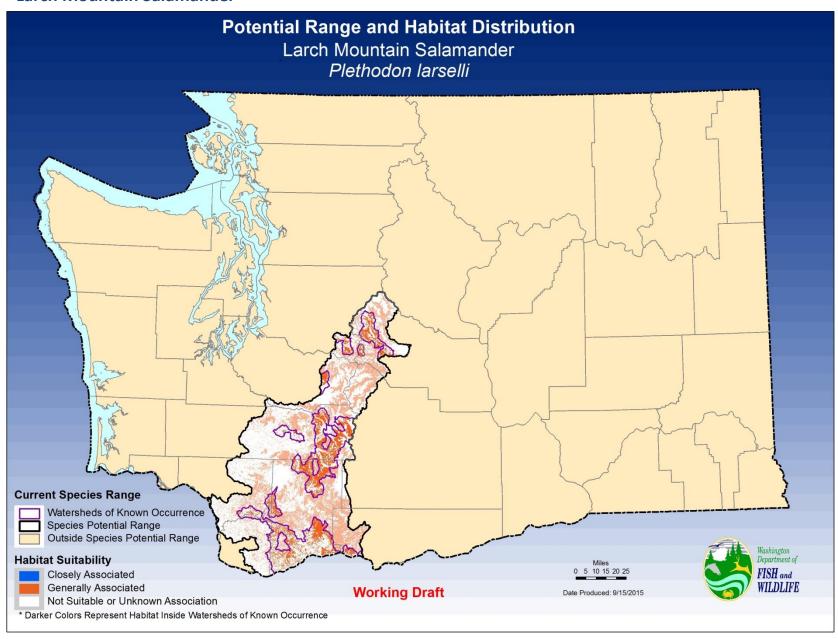

White-headed Woodpecker

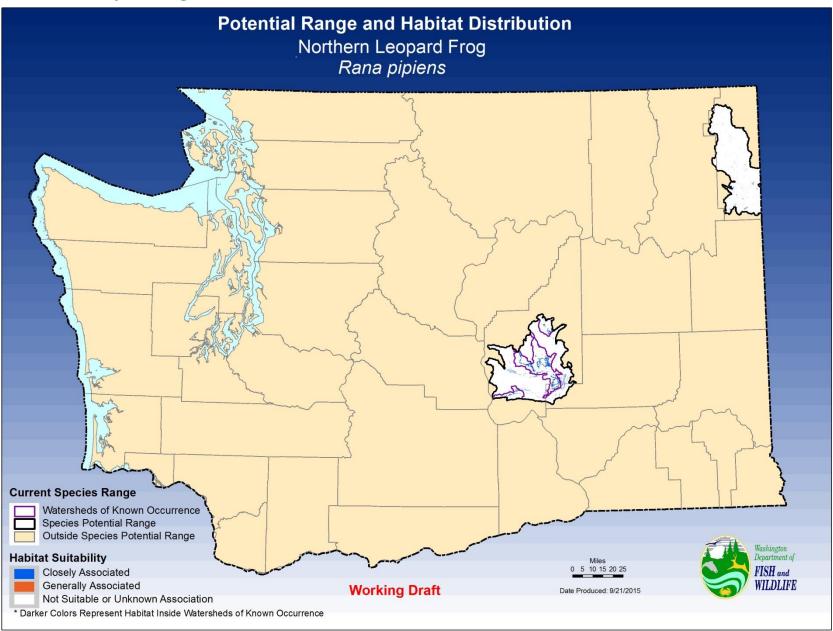

Yellow-billed Cuckoo

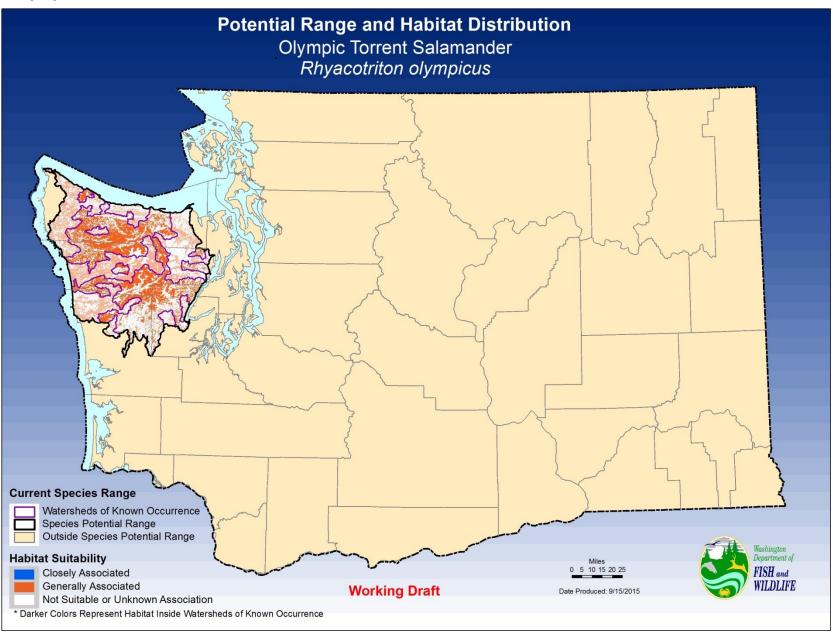

Cascade Torrent Salamander

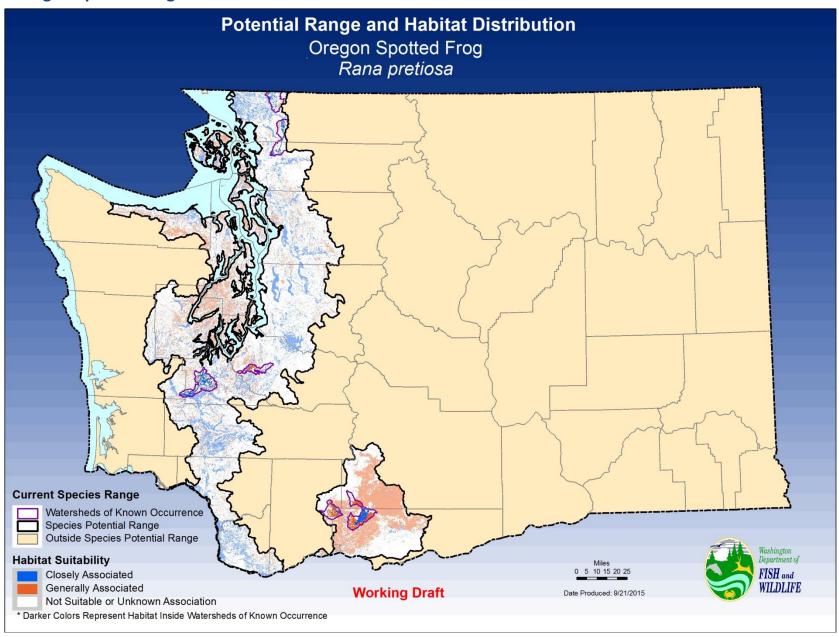

Columbia Spotted Frog

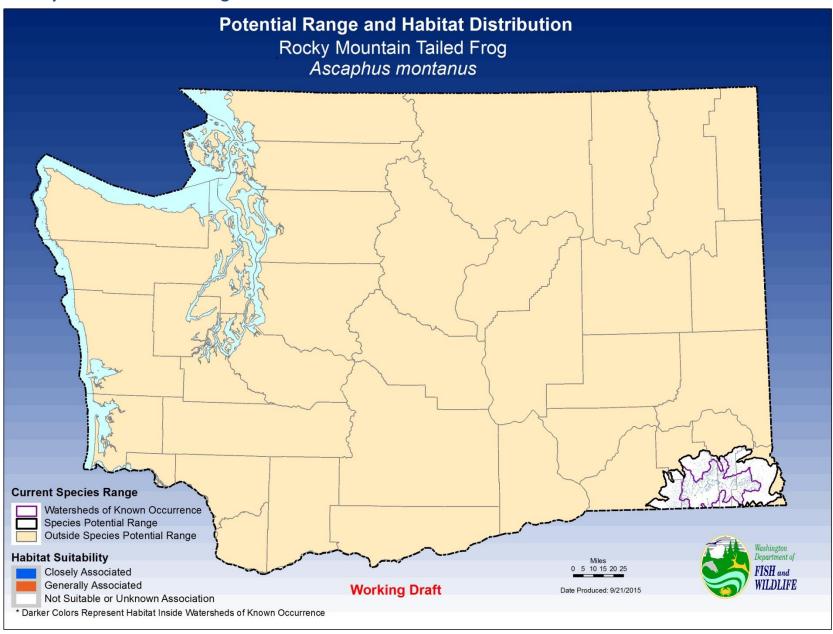

Columbia Torrent Salamander


Cope's Giant Salamander

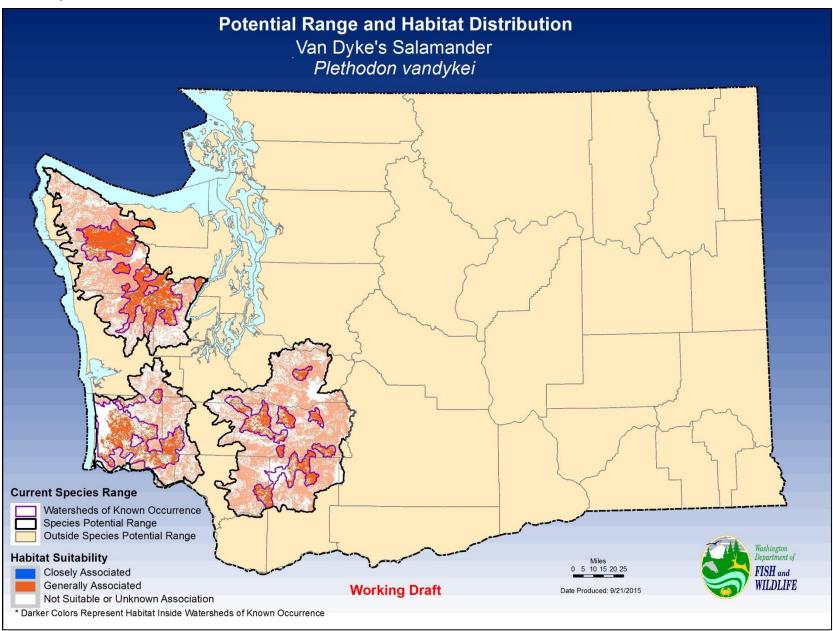

Dunn's Salamander

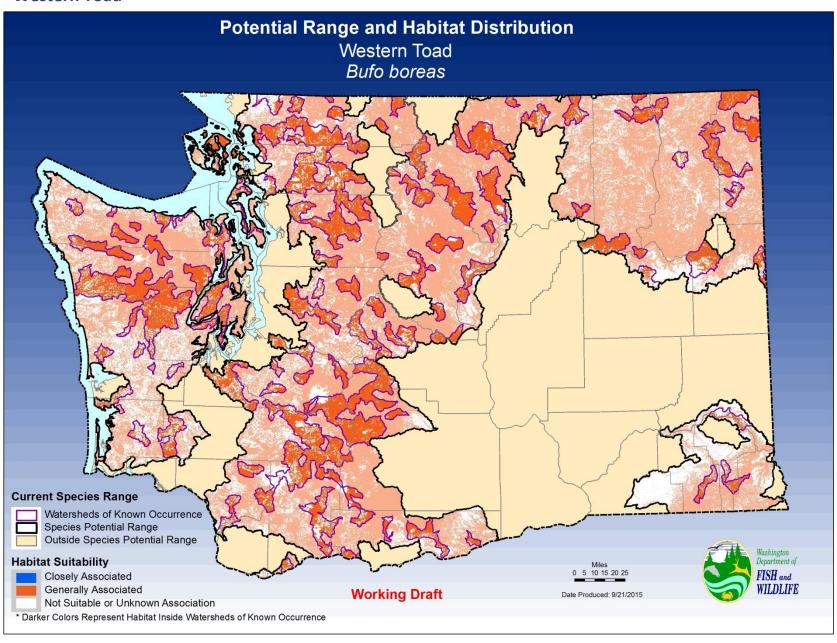

Larch Mountain Salamander

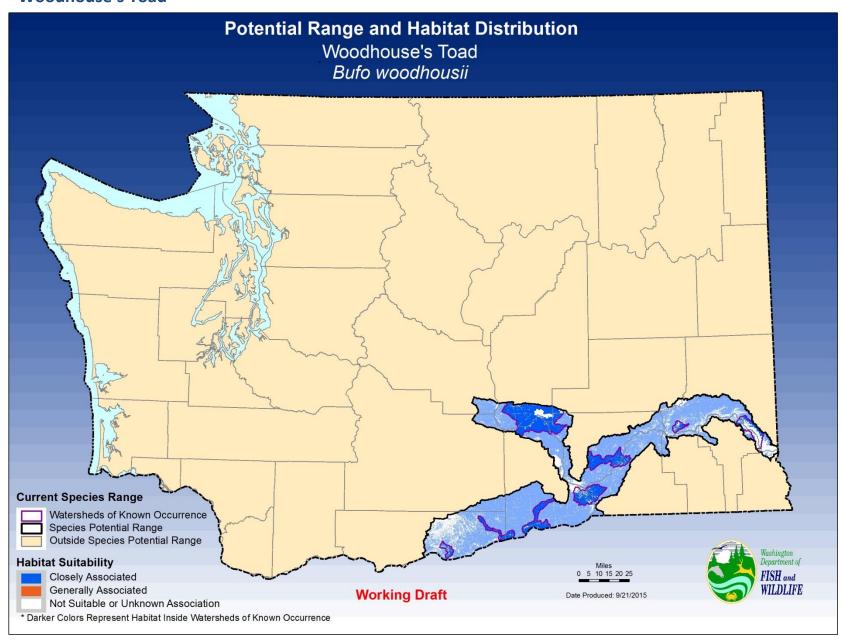

Northern Leopard Frog

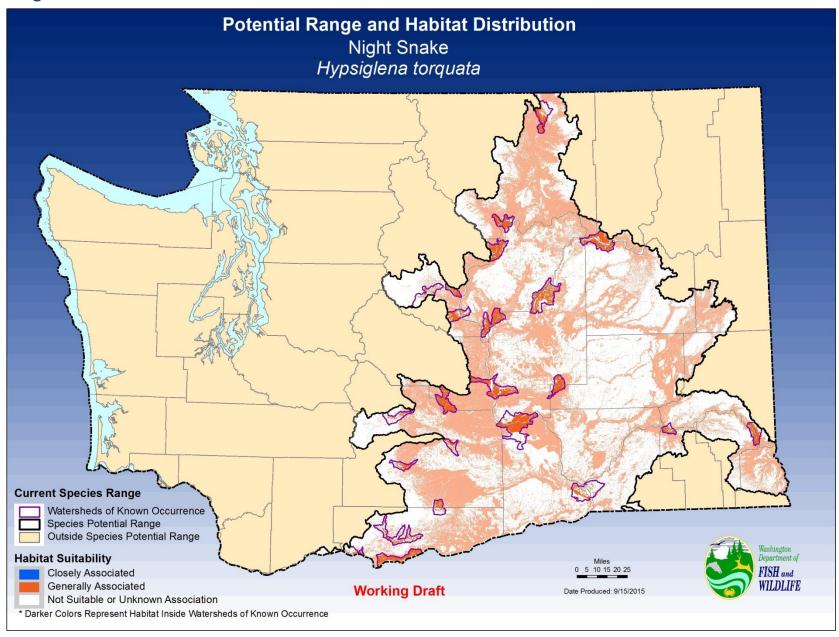

Olympic Torrent Salamander

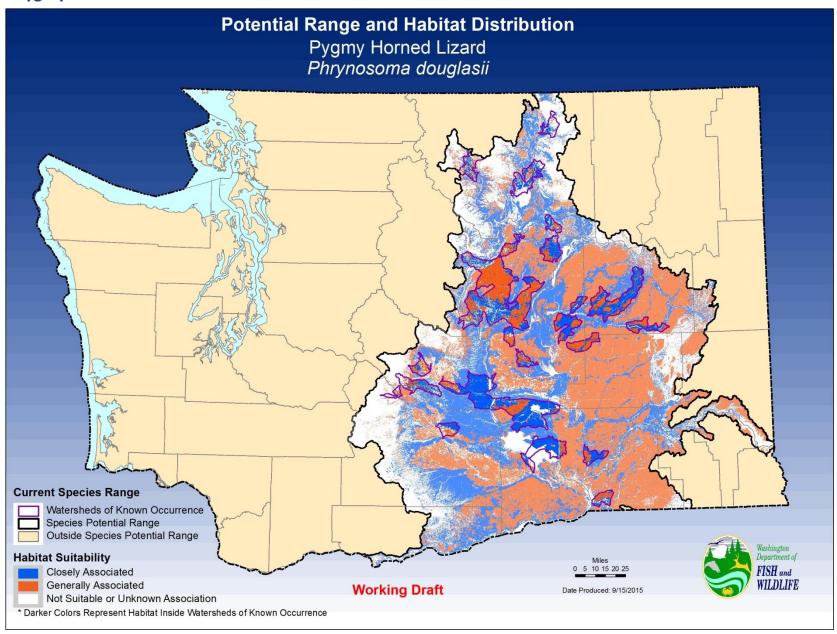
Oregon Spotted Frog

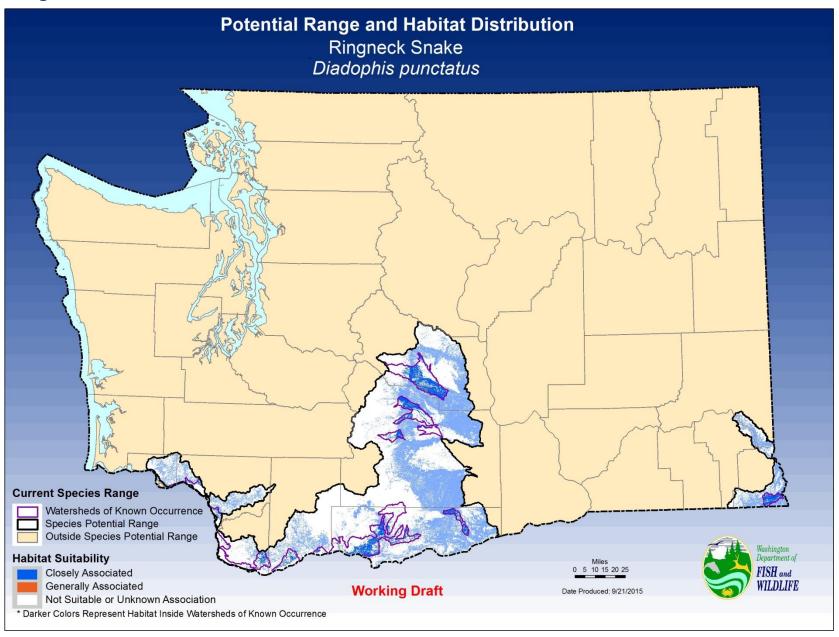

Rocky Mountain Tailed Frog

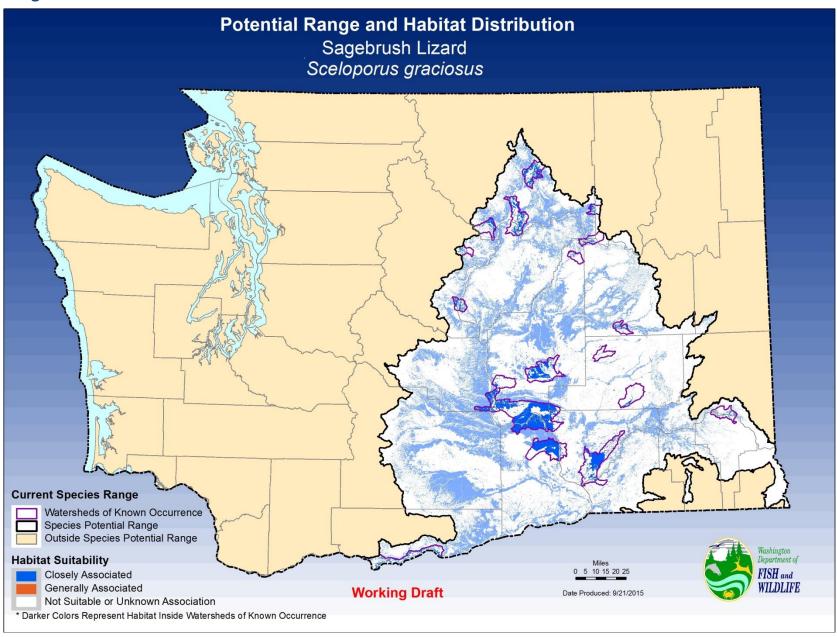

Tiger Salamander

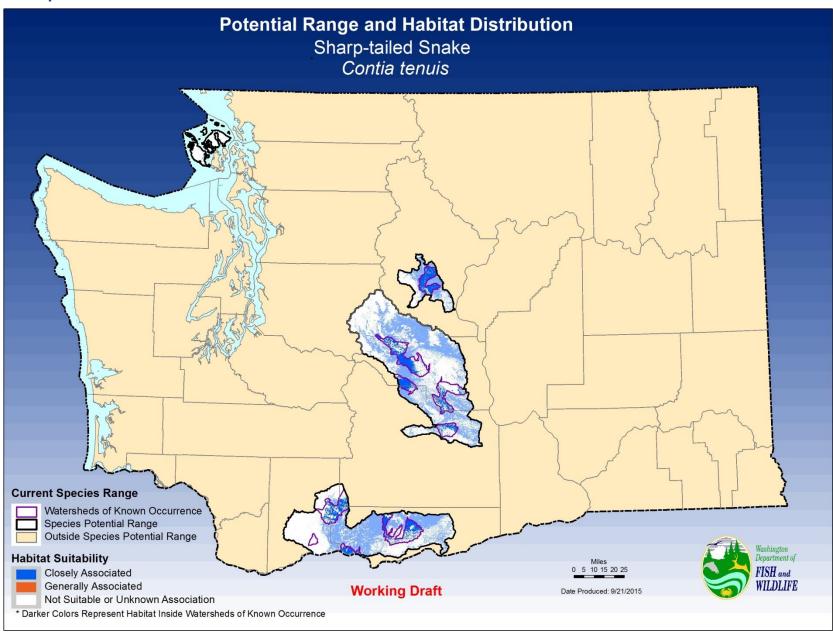

Van Dyke's Salamander

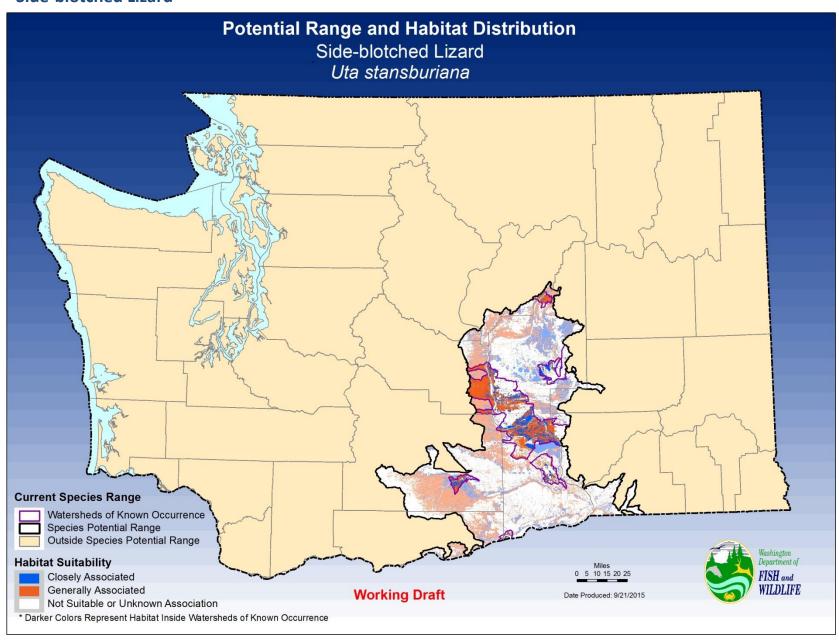

Western Toad

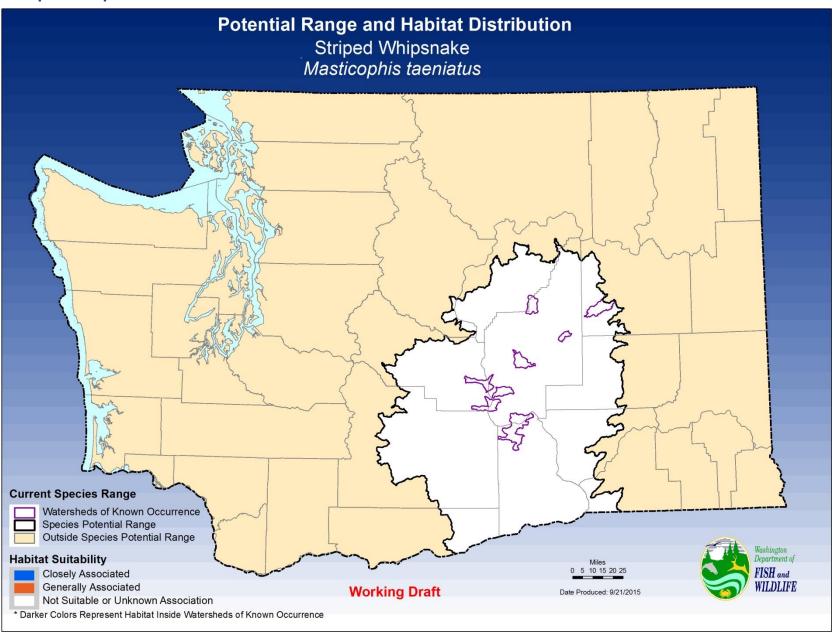

Woodhouse's Toad

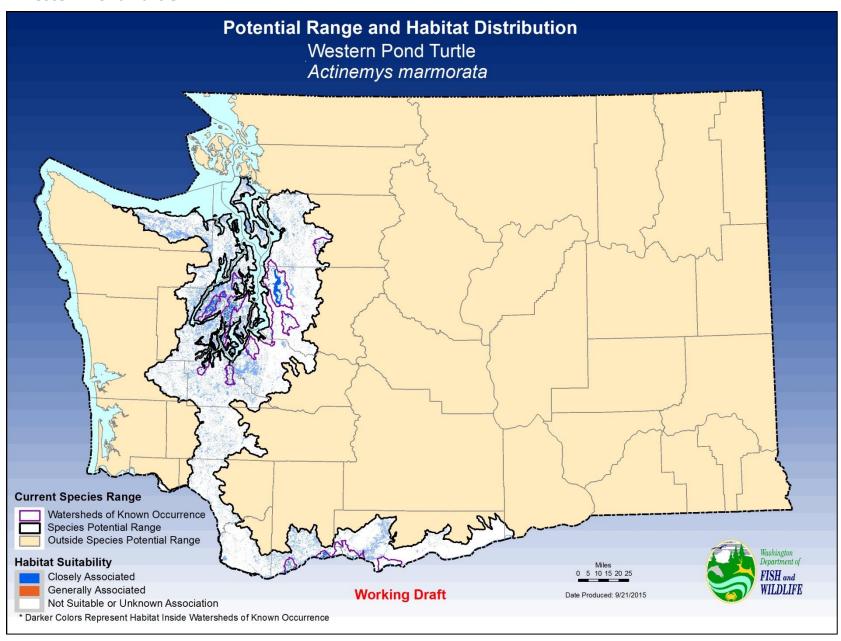

Night Snake


Pygmy Horned Lizard


Ringneck Snake

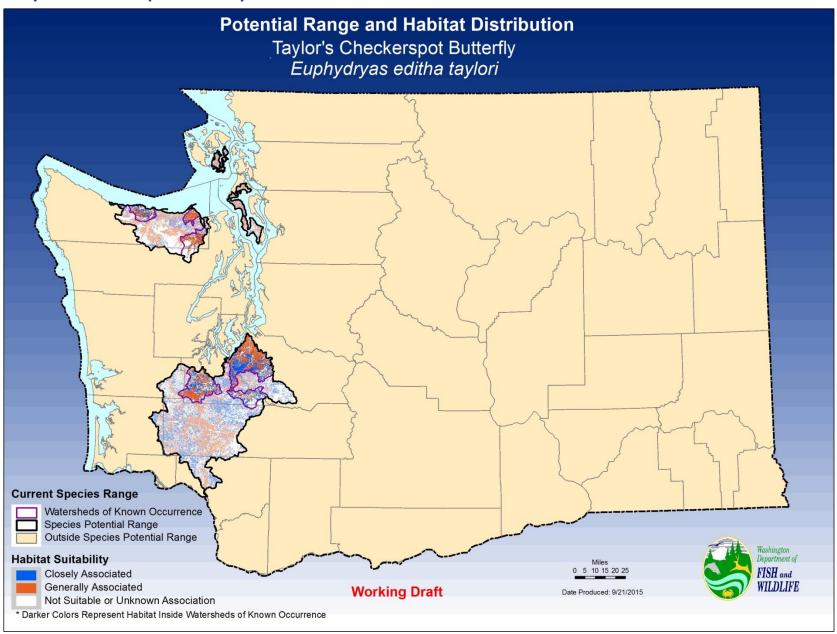

Sagebrush Lizard

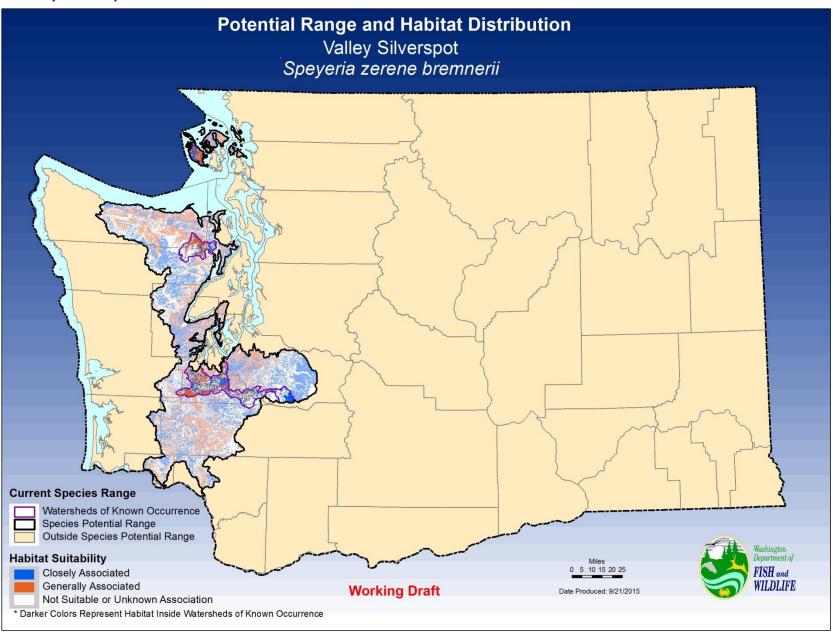

Sharp-tailed Snake


Side-blotched Lizard


Striped Whipsnake

Western Pond Turtle


Mardon Skipper


Oregon Silverspot

Taylor's Checkerspot Butterfly

Valley Silverspot

Appendix C

Climate Change: Supporting Information

Table of Contents

C.0	Introduction and Overview	1
C.1	Summary of Projected Climate Change in Washington State	1
	C.1.1 Climate Impacts of Concern	
	Air Temperature	1
	Examples of impacts of changes in air temperature on habitats and species	5
	Precipitation	5
	Examples of impacts of changes in precipitation on habitats and species	9
	Water Temperature	9
	Examples of impacts of warmer water temperatures on habitats and species	10
	Examples of impacts of changes in ocean temperature on habitats and species	12
	Sea Level	12
	Examples of impacts of sea level rise on habitats and species	13
	Water Chemistry	13
	Examples of impacts of changes in oxygen on habitats and species	14
	Examples of impacts of changes in pH on habitats and species	15
C.2	SGCN Vulnerability Rankings	20
	C.2.1 Mammal Vulnerability Rankings	
	C.2.2 Bird Vulnerability Rankings	34
	C.2.3 Reptile and Amphibian Vulnerability Rankings	49
	C.2.4 Fish Vulnerability Rankings	
	C.2.5 Invertebrate Vulnerability Rankings	99
C 3	References	130

LIST OF TABLES

Table C-1: Observed and projected trends of secondary impacts caused by warming temperature	2
Table C-2: Observed and projected changes of secondary impacts caused by precipitation changes	6
Table C-3: Historic behavior and future projected responses of various watershed types in Washingt	on
State	8
Table C-4: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	10
Table C-5: Observed and projected changes of secondary impacts caused by warming ocean	
temperatures	11
Table C-6: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	12
Table C-7: Observed and projected changes of secondary impacts caused by warming freshwater	
temperatures	14
Table C-8: Observed and projected changes of secondary impacts caused by changes in pH	14
Table C-9: Summary of key climate factors, trends, observed and projected changes, and compound	ing
factors in Washington State	16

Appendix C

Climate Change: Supporting Information

C.0 Introduction and Overview

This appendix contains background materials and additional information to support the summary of climate impacts and species and habitat vulnerability presented in Chapter 5. Two major items are included here: 1) a full summary of projected climate change in Washington State in a 30-50 year time frame, with a focus on how these changes will impact fish and wildlife species and their habitats, and 2) a complete list of the vulnerability rankings for all SGCN and Ecological systems of concern, with narrative explanations and references. A complete list of references is provided at the end of the appendix.

C.1 Summary of Projected Climate Change in Washington State

Climate in the Pacific Northwest has been changing significantly over the past century as a result of natural climate variability and greenhouse gas emissions, resulting in warmer air temperatures and variable precipitation patterns. Air temperatures are projected to continue increasing over the next century, while precipitation will remain variable but largely exhibit summer declines, leading to a future with significantly altered snowpack, streamflow patterns, water availability, wildfire risk, ocean pH, and sea levels. These changes will have various impacts on terrestrial, aquatic, and marine and coastal habitats and their associated species in Washington State, potentially contributing to range and phenological shifts, biodiversity threats, habitat degradation, species displacement, changes in important stressors (e.g., invasive species, disease), and other impacts.

This overview outlines priority climate change factors and impacts to consider for the Pacific Northwest, general anticipated changes amongst the various habitat types of Washington State, and the potential effects on Washington's fish, wildlife, and plant species. A table summarizing observed and projected changes can be found at the end of this narrative overview (Table C-9). Although this overview provides projections based on the most current available information, it is important to note that future greenhouse gas emissions will play a large role in determining the magnitude of projected changes. For example, emissions from the first years of the 21st century were higher than predicted by most climate models. In addition, climate shifts and associated impacts may be exacerbated or ameliorated by human activities and responses (e.g., habitat destruction vs. restoration treatments).

C.1.1 Climate Impacts of Concern

Air Temperature

Average annual air temperatures in the Pacific Northwest have been increasing over the past century, including increases in all seasons and in both maximum and minimum air temperatures (Table C-9). Temperatures are projected to continue increasing in all seasons through the end of this century (Table C-9) at rates between 0.1-0.6°C (0.2-1.0°F) per decade and exceeding the previous century's historic ranges of year-to-year variability. Summer temperatures are projected to warm more rapidly than

¹ Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., & Field, C. B. (2007). Global and regional drivers of accelerating CO₂ emissions. *Proceedings of the National Academy of Sciences, 104*(24), 10288-10293.

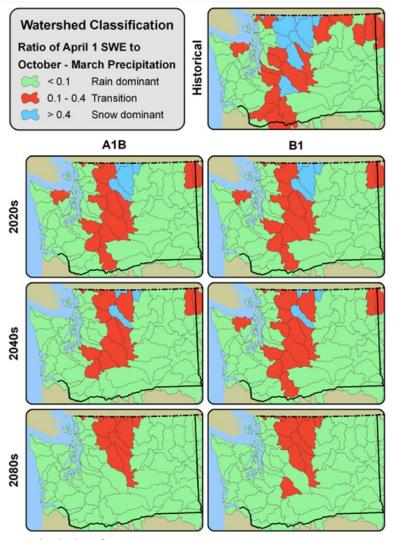
winter temperatures' and the interior of Washington State is projected to experience slightly greater warming than coastal areas. In addition, the number, mean duration, and maximum duration of extreme heat events are expected to increase, particularly in south central Washington and lowlands in western Washington.

Secondary impacts:² Temperature increases have already caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-1).

Table C-1: Observed and projected trends of secondary impacts caused by warming temperatures

Secondary Impact	Observed Change	Projected Change
Reduced snowpack	Snowpack declined significantly (average 25%) during the latter half of the 20 th century, and although there have been recent increases this is likely due to natural variability.	April 1 st snowpack is projected to continue decreasing significantly throughout this century (-53% to -65% by 2080) as warmer temperatures drive shifts from snow to rain. Snowpack losses will be greatest at lower elevations and more modest at higher elevation.
Earlier snowmelt	Snowmelt occurred 0-30 days earlier (depending on location) in the Cascade Mountains during the latter half of the 20 th century.	Snowmelt is projected to occur increasingly earlier by 2050, potentially three-four weeks earlier than 20 th century average.
Drought risk	The PNW has experienced several droughts over the last decade, some which are attributed to warmer temperatures, reduced water storage in snowpack, and elevated evaporation and evapotranspiration. ³	Enhanced drought stress as warmer temperatures drive increased evapotranspiration and reduced snowpack storage.
Hydrological shifts	Over the past half-century, snow-dominated watersheds have experienced earlier snowmelt runoff and reduced snowmelt contributions. All watersheds are experiencing reduced summer flows.	Future hydrological responses will largely vary by basin type (Table C-3), relative influence of groundwater input, elevation, aspect, and other factors. Warmer temperatures will likely drive shifts from snow-dominant to transient or rain-dominant basins (Figure C-1), and streamflow timing will likely occur earlier in snow-dominant and transient basins.

² Includes observed and projected physical, ecological, and biological changes.


³ Bumbaco, K. A., & Mote, P. W. (2010). Three recent flavors of drought in the Pacific Northwest. *Journal of Applied Meteorology and Climatology*, 49(9), 2058-2068.

Secondary Impact	Observed Change	Projected Change
Flood risk and erosion	20 th century warming caused no change in flood risk for raindominant basins, reduced flood risk in snow-dominant basins (due to reduced snowpack), and highly variable but generally elevated flood risk in transient basins. ⁴	Increasing flood risk and erosion in transient basins. Snowmelt and rain-dominant basins will see minimal or slight increases (Table C-3).
Soil moisture changes	Spring soil moisture recharge has been occurring earlier in the Pacific Northwest over the past half century (1943-2003). Over the same time period, July 1 soil moisture trends have been variable, and warmer areas (e.g., the Washington coast) have experienced declines.	July 1 soil moisture is largely projected to decline across Washington State (-15 to -18% by 2080) although directions and rates of change vary depending on location. For example, areas west of the Cascades are projected to experience decreased soil moisture.
Wildfire risk	Warmer temperatures have contributed to increasing wildfire frequency and extent in the Pacific Northwest since the 1970s.	Increased lightning activity and projected temperature increases will contribute to increased fire frequency, severity, intensity, and total area burned in the Pacific Northwest, although the magnitude of change will likely vary by eco-region and suppression efforts. Forested ecosystems are projected to experience a larger relative increase in area burned than non-forested, and western forests will likely experience larger increases in burn area and severity than eastern forests or forests of the Columbia Plateau.
Insect and disease risk	Warmer temperatures have contributed to more mountain pine beetle outbreaks and elevated disease exposure, increasing tree mortality.	Insects: range expansions upward in elevation, earlier arrival or emergence, and accelerated reproductive cycles. Disease: increased disease incidence.
Range shifts	Tree seedlings have already exhibited shifts to cooler locations than parent trees. 5	Continued northward or higher elevation shifts in species distributions.

⁴ Hamlet, A. F., & Lettenmaier, D. P. (2007). Effects of 20th century warming and climate variability on flood risk in the western US. *Water Resources Research*, *43*(6).

⁵ Monleon, V. J., & Lintz, H. E. (2015). Evidence of tree species' range shifts in a complex landscape. *PloS One, 10*(1), e0118069.

Secondary Impact	Observed Change	Projected Change
Pheno- logical shifts	Phenological changes have already been observed, including earlier flowering and leaf unfolding.	Continued shifts in phenological timing (e.g., earlier migration, earlier algal blooms, earlier plant bloom/senescence), which can affect habitat quality and/or desynchronize life history traits with key environmental conditions (e.g., outmigration of salmon and oceanic prey availability).

Figure C-1: Watershed Classification Maps

Watershed Classification Maps⁶ for simulated runoff in the historic period (1970-99), 2020s, 2040s,

6

⁶ Image from page 234 of Washington Climate Impacts Group. (2009). The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.

and 2080s in Washington State. Simulations using A1B emissions are in the lower three rows of the left column, while those using B1 emissions scenarios are in the lower three rows of the right column.

Examples of impacts of changes in air temperature on habitats and species

- Declines in certain vegetation types (e.g., pine forests, Douglas fir, subalpine forests, sagebrush steppe) and expansions in others (e.g., prairie) as suitable habitat ranges shift, driving alterations in wildlife habitat availability and species distributions.
- Changes in productivity amongst many vegetation types (e.g., increases in higher elevation forests due to lengthened growing season, decreases in lower elevation forests due to heat and moisture stress).
- Shifts in phenology, affecting plant reproduction and/or productivity and animal life histories, survival, reproduction, and growth.
- Increases in wildfire frequency due to reduced fuel moisture, affecting plant survival and composition and forest-dependent wildlife species.
- Altered flow regimes (e.g., low summer flows), affecting salmon and steelhead migration, reproductive success, and habitat availability.
- Increases in forest disease risk and mortality due to exacerbated moisture stress.
- Changes in the frequency and severity of flood risk, affecting riparian vegetation community composition and structure.
- Increases in mountain pine beetle vulnerability (short-term) as beetles shift upward in elevation and trees experience increased moisture stress, with declines in vulnerability (long-term) as temperatures exceed insect thermal tolerance.
- Alterations in invasive species pressure; some species may expand, while some may decline.

Precipitation

Separated by the Cascade Mountains, eastern and western Washington feature distinct precipitation regimes, with western zones receiving significantly more rainfall than eastern zones. There has been no significant trend in precipitation over the past century (Table C-9), as this region experiences high natural variability. Precipitation projections are highly variable, and may include either increases or decreases in annual precipitation over the next century (Table C-9); these changes are small when compared to ranges of natural variability in the Pacific Northwest. There is higher certainty regarding seasonal precipitation trends; by the end of the century, winters will likely be wetter and summers will likely be drier. Precipitation intensity may also increase, particularly in the North Cascades and northeastern Washington.

Secondary impacts: ⁷ Shifts in precipitation timing, amount, and form have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-2).

⁷ Includes observed and projected physical, ecological, and biological changes.

Table C-2: Observed and projected changes of secondary impacts caused by precipitation changes

Secondary Impact	Observed Change	Projected Change
Snowpack changes	Snowpack declined significantly (average -25%) during the latter half of the 20 th century.	High elevation areas may potentially experience increased snowfall as a result of increasing winter precipitation. Basins with low elevation snow may experiences snowpack declines as more precipitation falls as rain.
Hydrological shifts	Declining summer streamflows have been recorded in all basin types since 1950.	Streamflow: winter streamflows will likely increase in all basins, while summer flows will likely decrease as a result of reduced summer precipitation and shifts in snowpack. Runoff: mean annual runoff is projected to increase over the course of the century due to increased winter precipitation, with winter streamflow increases and summer streamflow decreases. Individual stream response will largely depend on basin classification (Table C-3), elevation, aspect,
		and groundwater influx, among other factors
Flood risk and erosion	Variability in 20 th century cool season precipitation increased flood risk in rain-dominant and transient basins.	Increases in extreme precipitation and winter precipitation could increase flood risk and erosion significantly in transient basins, with slight increases possible raindominant basins (Table C-3).
Drought risk	The Pacific Northwest has experienced several droughts over the last decade, some of which are attributed to reduced winter and/or summer precipitation.8	Declines in summer precipitation will likely exacerbate drought stress caused by increasing temperatures and evapotranspiration.

⁸ Bumbaco, K. A., & Mote, P. W. (2010). Three recent flavors of drought in the Pacific Northwest. *Journal of Applied Meteorology and Climatology, 49*(9), 2058-2068.

Secondary Impact	Observed Change	Projected Change
Soil moisture changes	July 1 soil moisture trends have been variable from 1943-2003, and warmer areas (e.g., the Washington coast) have experienced declines.	July 1 soil moisture is largely projected to decline across Washington State (-15 to - 18% by 2080) although directions and rates of change vary depending on location. For example, areas west of the Cascades are projected to experience decreased soil moisture, while some areas east of the Cascades will experience soil moisture increases as increased winter precipitation/snowpack at the highest elevations recharges moisture in deep soil horizons.
Wildfire risk	Drier conditions have contributed to increasing wildfire frequency and extent in the Pacific Northwest since the 1970s.	Precipitation variability (particularly drier summers) and water-deficit increases over the next century will likely contribute to increasing fire frequency, severity, intensity, and total area burned in the Pacific Northwest, although the magnitude of change will likely vary by eco-region, vegetation type, and suppression effort.
Insect and disease risk	Moisture stress has contributed to higher forest vulnerability and mortality from insects and disease.	Insect and disease risk will likely increase with drier conditions.

Table C-3: Historic behavior and future projected responses of various watershed types in Washington State

Modified from Elsner et al. (2009, pgs. 70, 92) and Climate Impacts Group (2012, pg. 5)

Watershed		
classification	Historic characteristics	Future projected responses
Rain	Peak streamflow in winter with	 Slightly increased winter streamflows
dominant	peak precipitation (November-	and flood risk
	January)	 Decreased summer low flows
	 Low summer streamflow 	
Snowmelt	Peak streamflow with	 Slightly increased winter and spring
dominant	spring/early summer snowmelt	streamflows
	(May-July)	Minimal shifts in flood risk
	Low winter streamflow	Earlier and reduced summer peak and
		low flows
		May transition to transient classification
Transient	• Two streamflow peaks, one with	Larger and more consistent winter
	peak precipitation (winter) and	streamflows
	one with snowmelt (spring/early	Increased flood risk
	summer)	 Earlier and reduced and/or loss of
		snowmelt-associated summer
		streamflows, decreased low flows
		May transition to rain dominant
		classification

Examples of impacts of changes in precipitation on habitats and species

- Shifts in soil moisture and nutrient and energy fluxes may contribute to changes in habitat distributions (e.g., declines in pine forests, Douglas fir, subalpine forests, sagebrush steppe due to moisture stress; prairie expansions due to tolerance of xeric conditions), driving shifts in wildlife habitat availability and species distributions.
- Shifts in vegetation productivity (e.g., moisture and nutrient deficits can undermine productivity).
- Increased nutrient loss due to increasing extreme precipitation events and elevated runoff.
- Decreased fuel moisture content may increase wildfire risk, affecting vegetation distribution and composition and forest-dependent wildlife species.
- Reduced annual low flows may increase aquatic organism vulnerability to water pollution and heat stress, and affect salmon and steelhead migration and reproductive success.
- Changes in frequency and severity of flood risk, affecting riparian vegetation community composition and structure, fish habitat (e.g., bull trout), and aquatic organism exposure to water pollution (e.g., sediments, pathogens, and pollutants).
- Increases in mountain pine beetle vulnerability and forest disease susceptibility due to moisture stress.

Water Temperature

Freshwater temperature

Stream temperatures in the northwest United States experienced a net increase from 1980-2009 largely as a result of increasing air temperatures, with rates of summer warming of 0.22°C per decade. Spring and summer stream temperatures are projected to continue increasing across the state, including increases in the frequency and duration of unfavorable temperature events (periods with water temperatures >21°C). These trends will be particularly pronounced in eastern Washington (Yakima River), the Columba River (near Bonneville Dam), the Lower Snake River, and in western Washington (Stillaguamish River, Lake Washington, Lake Union). Similar to streamflow, stream temperature changes will vary according to location, groundwater input, topography, and other factors.

Secondary impacts:¹² Shifts in freshwater temperature have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table C-4).

⁹ Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. *Climatic Change, 113*(2), 499-524. ¹⁰ Beer, W., & Anderson, J. (2011). Sensitivity of juvenile salmonid growth to future climate trends. *River Research and Applications, 27*(5), 663-669.

¹¹ Mantua, N., Tohver, I., & Hamlet, A. (2010). Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. *Climatic Change*, 102(1-2), 187-223.

¹² Includes observed and projected physical, ecological, and biological changes.

Table C-4: Observed and projected changes of secondary impacts caused by warming freshwater temperatures

Secondary Impact	Observed Change	Projected Change
Stratification and	Lake and reservoir stratification is	Enhanced spring/summer lake
hypoxia	occurring earlier as a result of warmer	stratification, reduced primary
	water temperatures, extending the length	productivity, and reduced
	of summer stratification. Stratification	oxygen solubility, contributing
	causes lower dissolved oxygen levels and	to increasing incidence of
	stresses aquatic species. 13	hypoxia.
Algal blooms	Longer algal growing seasons observed	Increased likelihood of lake
	with warmer temperatures.	algal blooms.
Range shifts	Bull trout have exhibited range	Cool- and cold-water habitats
	contractions to higher, cooler refugia in the	will likely shift further
	Rocky Mountains in response to warmer	upstream. The range of warm-
	temperatures. ¹⁴	adapted aquatic invaders will
		likely expand.
Phenological	Fish migration (e.g., lamprey) has been	Continued or exacerbated
shifts	documented to occur earlier in years with	behavioral changes, affecting
	warmer and lower streamflow. Predator-	migration, spawning timing,
	prey mismatch has caused mortality and	and/or foraging success and
	population declines of some freshwater	survival.
	species.	

Examples of impacts of warmer water temperatures on habitats and species

- Declines in suitable aquatic habitat and prey availability, and exceed fish thermal limits, contributing to increased fish kills, undermined fish health (e.g., enhanced disease susceptibility), altered reproductive success, and/or inhibited migration.
- Upstream shift in suitable stream habitat for many aquatic species, potentially reducing overall habitat availability. These shifts will be largest in flat rivers and smallest in steeper streams, and most pronounced in transient river basins.
- Enhanced vulnerability to aquatic invasive species, which can displace, compete with, or prey upon native aquatic biota.
- Increased fish metabolic and growth rates provided enough food and oxygen is available.

¹³ Mantua, N., Tohver, I., & Hamlet, A. (2009). Impacts of climate change on key aspects of freshwater salmon habitat in Washington State. *Washington Climate Change Impacts Assessment: Evaluating Washington's future in a changing climate. Climate Impacts Group, University of Washington, Seattle, Washington.*

¹⁴ Eby, L. A., Helmy, O., Holsinger, L. M., & Young, M. K. (2014). Evidence of climate-induced range contractions in Bull Trout Salvelinus confluentus in a Rocky Mountain watershed, USA. *PloS one*, *9*(6), e98812.

Ocean temperature

Global sea surface temperatures have increased 0.6°C (1.1°F) since 1950, but no significant ocean warming offshore of North America was observed between 1900-2008, except in localized areas (e.g., west of Vancouver Island). However, northwest ocean temperatures are projected to increase 1.22°C (2.2°F) by the 2040s. Projections for coastal ocean temperatures are less clear due to high natural variability and upwelling influence.

Secondary impacts: ¹⁵ Shifts in ocean temperature have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 5).

Table C-5: Observed and projected changes of secondary impacts caused by warming ocean temperatures

Secondary	Observed Change	Projected Change
Impact		
Stratification and	Increased stratification, reducing	Further stratification and altered
altered ocean	vertical mixing and affecting	ocean mixing, affecting primary
circulation	primary productivity.	productivity. Shifts in upwelling also
		expected as temperatures gradients
		between land and sea change.
Algal blooms	Highest bloom activity with	More frequent, earlier and longer
	warmer water temperatures in	algal blooms. ¹⁸
	Puget Sound. 16 Prolonged growth.	
	season and enhanced competitive	
	advantage for dinoflagellate algal	
	blooms, increasing bloom duration	
	and toxicity. ¹⁷	
Lower dissolved	Reduced oxygen delivery to deeper	Decreased oxygen levels in the open
oxygen	waters.	ocean and coastal waters.
Reduced primary	Reductions in primary productivity,	Potential reductions in primary
productivity	expansion in surface water area	productivity, leading to hypoxic
	with low phytoplankton biomass.	conditions and marine food web
		alterations.

¹⁵ Includes observed and projected physical, ecological, and biological changes.

¹⁶Moore, S. K., Mantua, N. J., Hickey, B. M., & Trainer, V. L. (2009). Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. *Harmful Algae*, 8(3), 463-477.

¹⁷ Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., & Fleming, L. E. (2008). Impacts of climate variability and future climate change on harmful algal blooms and human health. *Environmental Health*, 7(2), S4.

Examples of impacts of changes in ocean temperature on habitats and species

- Altered abundance, distribution, and composition of marine and coastal species (e.g., reduced salmon and squid abundance, northward shift of sardines).
- Altered prey availability (e.g., reduced surface prey for foraging seabirds).
- Phenological shifts, including developmental changes, age to sexual maturity, growth, and spawning changes.
- Enhanced disease risk and invasive species spread.

Sea Level

Global sea levels rose 1.8 (+/- 5) mm/yr between 1961-2003, with rates accelerating to 3.1 (+/- 0.7) mm/yr in the last decade of observation. In the Pacific Northwest, sea levels are largely increasing, although some areas are experiencing decreases. Rates of sea level rise are projected to continue increasing globally over the next century, ¹⁸ and Washington State could experience increases of +4 to +56 inches by 2100 (relative to 2000). However, there will be high local variability caused by vertical land deformation (i.e., uplift and subsidence), seasonal ocean elevation change (i.e., wind-enhanced sea level rise during winters and El Niño events), and other factors (e.g., groundwater withdrawal). For example, Puget Sound is projected to keep pace with global sea level rise and experience the most sea level rise by the end of the century (Table 2). The northwest Olympic Peninsula, which is experiencing significant uplift (>2 mm/yr), will see much lower increases and/or declines in sea level by 2100. The central and southern coasts, which may be experiencing moderate uplift (0-2 mm/yr), will likely experience sea level increases with magnitudes in between the other two regions during the same time period. Across the state, these general trends will fluctuate depending on changes in atmospheric circulation and wind patterns, short- and long-term land deformation events, and ice loss rates in Greenland and Antarctica. For example, sea levels can fluctuate up to 12 inches according to the El Niño Southern Oscillation or the Pacific Decadal Oscillation.

Secondary impacts: ¹⁹ Shifts in sea level have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 6).

Table C-6: Observed and projected changes of secondary impacts caused by warming freshwater temperatures

Secondary Impact	Observed Change	Projected Change
Shoreline erosion/loss	Erosion rate varies by location.	Higher sea levels will generally increase erosion and/or expose new areas to erosion, contributing to shoreline loss and forced inland migration of coastal habitats.
Saltwater	Aquifer saltwater intrusion	More frequent saltwater intrusion into
intrusion	already occurring in some	coastal aquifers and wetlands may

¹⁸ Projected rates of global sea level rise vary, but many studies project that global sea levels will rise somewhere between 2-4 ft during the 21st century.

18

¹⁹ Includes observed and projected physical, ecological, and biological changes.

	locations (e.g., Whidbey Island). ²⁰	compromise water quality and force habitat conversion to more salt-tolerant
		species.
Storm surge	Increased beach erosion with	Higher sea levels could allow storm
	winter storms and larger wave	surges to reach new areas, causing more
	heights.	frequent inundation and erosion.

Examples of impacts of sea level rise on habitats and species

- Shifts in coastal habitat extent and quality as a result of increased inundation and erosion (e.g., beaches, tidal flats, coastal wetlands may decline, marshes may expand).
- Habitat or breeding ground loss for some species (e.g., shorebirds), habitat increases for other species (e.g., marsh associates).
- Shifts in species composition and biodiversity in coastal habitats, as well as shifts in species interactions.
- Larger marine food webs may be affected if important food species or habitat (e.g., estuarine nursery) is lost.
- Increases in salinity associated with sea level rise may facilitate invasive species spread in estuaries and/or stress freshwater coastal species.

Water Chemistry

Oxygen

The coastal waters of Washington State have been experiencing seasonal hypoxic conditions since at least 1950,²¹ and feature the lowest recorded dissolved oxygen (DO) levels of the California Current System.²² Hypoxic conditions are most common during the upwelling season (May-October), with DO levels fluctuating according to the DO content of upwelled waters, runoff nutrient input, and primary productivity.¹⁹ Coastal hypoxia episodes may increase as a result of climate change due to warmer sea surface temperatures, which affect oxygen solubility, and intensified upwelling as a result of shifting wind patterns.²³

Secondary impacts:²⁴ Shifts in oxygen availability have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 7).

²⁰ Huppert, D. D., Moore, A., & Dyson, K. (2009). Impacts of climate change on the coasts of Washington State. *Washington Climate Change Impacts Assessment: Evaluating Washington's Future in a Changing Climate*, 285-309.

²¹ Connolly, T., Hickey, B., Geier, S., & Cochlan, W. (2010). Processes influencing seasonal hypoxia in the northern California Current System. *Journal of Geophysical Research: Oceans (1978–2012), 115*(C3).

²² Peterson, J. O., Morgan, C. A., Peterson, W. T., & Lorenzo, E. D. (2013). Seasonal and interannual variation in the extent of hypoxia in the northern California Current from 1998–2012. *Limnology and Oceanography*, *58*(6), 2279-2292.

²³ Morgan, E., & Siemann, D. (2010). Climate Change Effects on Marine and Coastal Habitats in Washington State *Prepared for the Ecosystems, Species, and Habitats Topic Advisory Group*. Available at:

 $http://dfwwbolyhq01.dfw.wa.gov/conservation/climate_change/publications/marine_coastal_climate_science_summary.pdf$

²⁴ Includes observed and projected physical, ecological, and biological changes.

Table C-7: Observed and projected changes of secondary impacts caused by warming freshwater temperatures

Secondary Impact	Observed Change	Projected Change
Dead zones	Increasing frequency and prevalence of hypoxic dead zones in coastal areas since 1960. ²⁵	More frequent and persistent low oxygen conditions due to warming and elevated stratification, with potential expansion into shallower waters. This is especially a concern in Hood Canal.

Examples of impacts of changes in oxygen on habitats and species

- Altered aquatic organism behavior, health, growth, reproductive success, and survival.
- Altered aquatic organism distribution and composition; sessile organisms may be less able to migrate in response to changing hypoxic conditions.
- Impaired biological, ecological, and biogeochemical processes.
- Altered prey availability.
- Reduced oxygen availability due to increased algal blooms, further contributing to hypoxic conditions.
- Increased sensitivity to pollutants and contaminants.

Acidity (pH)

Global ocean surface pH has declined 0.1 units since 1750, with rates of -0.02 units/yr in the past two decades. ²⁶ Since 1800, outer coastal water acidity in Washington State has increased 10-40%, translating to a pH decline of -0.05 to -0.15. Global ocean surface pH, as well as pH in the North Pacific, is projected to decline an additional -0.2 to -0.3 units by 2100, translating to a 100-150% increase in ocean acidity. ²⁷

Secondary impacts:²⁸ Shifts in acidity have caused significant changes in other environmental variables, and will likely continue to alter these factors in the future (Table 8).

Table C-8: Observed and projected changes of secondary impacts caused by changes in pH

Secondary Impact	Observed Change	Projected Change
Dead zones	Increasing frequency and prevalence of hypoxic dead	pH decreases will contribute to the formation of dead zones.

²⁵ Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. *Science*, *321*(5891), 926-929.

Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: present conditions and future changes in a high-CO2 world. *Oceanography*, 22(4), 37-47.

²⁷ Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., . . . Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. *Estuarine, Coastal and Shelf Science*, 88(4), 442-449.

²⁸ Includes observed and projected physical, ecological, and biological changes.

	zones in coastal areas since 1960; ²⁹ exacerbates and exacerbated by acidification. ³⁰	
Algal blooms	Increased growth and/or toxicity of algal blooms observed in more acidic waters. 31	Increased acidity may contribute to more algal blooms. ³²
Nutrient and metal solubility	Lowered calcium-carbonate saturation states.	pH can change the quantity of available nutrients; too many nutrients may cause plant overgrowth and as the plants decompose, dissolved oxygen levels lower even further. More acidic water typically increases the solubility of heavy metals, making these metals more toxic to species.

Examples of impacts of changes in pH on habitats and species

- Reduced shellfish populations due to calcium carbonate declines.
- Reduced ability for plankton to form calcium carbonate shells, significantly affecting marine food webs and the survival, growth, and reproductive capacity of fish populations.
- Increased growth rates of seagrass.
- Increased risk of invasive species establishment.

²⁹ Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. *Science*, *321*(5891), 926-929.

³⁰ Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., . . . Wang, Y. (2011). Acidification of subsurface coastal waters enhanced by eutrophication. *Nature Geoscience*, *4*(11), 766-770. Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., . . . Wang, Y. (2011). Acidification of subsurface coastal waters enhanced by eutrophication. *Nature Geoscience*, *4*(11), 766-770.

³¹ Moore, S. K., Mantua, N. J., Hickey, B. M., & Trainer, V. L. (2009). Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. *Harmful Algae, 8*(3), 463-477.

Table C-9: Summary of key climate factors, trends, observed and projected changes, and compounding factors in Washington State

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors ************************************
Air temperature	Increasing	+0.13°F/decade (1895-2011) Pacific Northwest (1920-2000): • Annual: +0.91°C (1.64°F) • Summer: +1.07°C (1.93°F) • Winter: +1.83°C (3.3°F) • Spring: +0.57°C (1.03°F) • Fall: +0.18°C (0.32°F)	Increases, with warming most severe in summer Pacific Northwest (relative to 1970-99): 2020s • Annual: +1.1°C (2.0°F) • Summer: +1.3-1.7°C (2.3-3.1°F) • Winter: +1.1-1.2°C (2.0-2.2°F) • Spring: +1.0°C (1.8°F) • Fall: +1.0-1.1°C (1.8-2.0°F) 2040s • Annual: +0.91°C (1.64°F) • Summer: +1.9-2.7°C (3.4-4.9°F) • Winter: +1.6-1.9°C (2.9-3.4°F) • Spring: +1.4-1.7°C (2.5-3.1°F) • Fall: +1.5-2.0°C (2.7-3.6°F) 2080s • Annual: +3.0°C (5.3°F)	Natural climatic patterns, such as the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) Increasing electrical demand for cooling and water demand for irrigation Human development
			 Summer: +3.0-4.5°C (5.4-8.1°F) Winter: +2.7-3.3°C (4.9-5.9°F) Spring: +2.1-2.8°C (3.8-5.0°F) Fall: +2.4-3.4°C (4.3-6.1°F) 	
Precipitation	Variable	No significant trend	Annual precipitation will be variable, but there will be declines in summer precipitation Pacific Northwest (relative to 1970-99) 2020s • Annual: +1% (-9 to +12%) • Winter: +2% (-14 to +23%)	ENSO/PDO Increasing electrical demand for cooling and water demand for irrigation

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors ************************************
Snowpack	→	Pacific Northwest: Significant declines (average -25%) during latter	 Summer: -6% (-30 to +12%) 2040s Annual: +2% (-11 to +12%) Winter: +3% (-13 to +27%) Summer: -8% (-30 to +17%) 2080s Annual: +4% (-10 to +20%) Winter: +8% (-11 to +42%) Summer: -13% (-38% to +14%) Further declines (-53% to -65% by 2080). Snowpack losses will be greatest at lower about interest and more modest at higher 	• ENSO/PDO
		half of 20 th century. Recent increases likely due to natural variability.	elevations and more modest at higher elevations.	
Snowmelt	Earlier	Cascade Mountains: occurred 0-30 days earlier (depending on location) during latter half of 20 th century.	Will occur increasingly earlier by 2050.	• ENSO/PDO
Drought	increasing	Pacific Northwest: experienced several droughts since 2001. Droughts attributed to several causes including: warmer temperatures, reduced snowpack and earlier snowmelt, and reduced winter and/or summer precipitation.	Increasing across the state, particularly in summer, even with potential increases in winter precipitation.	 Water withdrawals Changes in land use and land cover
Streamflow/ru noff	Variable	Snow-dominant and transient basins: earlier snowmelt runoff, leading to lower summer base flows. Rain-dominant: variable depending on annual precipitation.	Earlier streamflow timing in snow-dominant and transient basins. Annual runoff is projected to increase slightly, with increases in winter streamflow and declines in summer streamflows. Potential shifts from snow-dominant to transient or rain-dominant basins.	 ENSO/PDO Groundwater and soil moisture influence Topography Adjacent land use Water resources

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
				infrastructure •
Wildfire risk	increasing	Wildfire frequency and extent have been increasing in the Pacific Northwest since the 1970s.	Increased fire frequency, severity, intensity, and total area burned. Magnitude of change will likely vary by eco-region, vegetation type, and suppression effort.	 ENSO/PDO Fire suppression Drought stress Invasive species and disease compromising tree/vegetation health
Freshwater temperature	↑	Net increase from 1980-2009; summer warming rate increased 0.22°C per decade	Increasing across the state, including increases in frequency and duration of unfavorable temperature events (periods with water temperatures >21°C)	 Low streamflows (caused by climate and/or water withdrawals) Water resources infrastructure (e.g., dams) Changes in land use and land cover
Ocean temperature	↑	Global: increased 0.6°C (1.1°F) since 1950 North America: no significant trends (1900-2008); some warming in localized areas (e.g., west of Vancouver Island)	Northwest ocean temperatures to increase 1.22°C (2.2°F) by the 2040s	 ENSO/PDO Changes in land use and land cover
Sea level	↑, some areas ↓	Global: increased 1.8 (±0.5) mm/yr between 1961-2003; rates accelerated to 3.1 (±0.7) mm/yr from 1993-2001 Washington: • Friday Harbor: +0.4 in/decade • Neah Bay: -0.7 in/decade (1934-2008) • Seattle: +0.8 in/decade (1900-2008)	Continued increases, although some areas will experience decreases Washington: +4 to +56 in by 2100 - Northwest Olympic Peninsula: • 2050: 0 in (-5 to +14 in) • 2100: +2 in (-9 to +35 in) - Central & Southern Coast • 2050: +5 in (+1 to +18 in) • 2100: +11 in (+2 to +43 in) - Puget Sound • 2050: +6 in (+3 to +22 in)	 Habitat degradation of existing coastal habitat via dredging, development, pollution, and coastal modifications Sediment supply changes Development and natural barriers Land subsidence Storm wave heights ENSO/PDO

Climate Factor	General Trend	Observed Changes	Projected Changes	Compounding Factors
			• 2100: +13 in (+6 to +50 in)	
Oxygen concentrations	\	Seasonal hypoxia since at least 1950 during upwelling periods (May-October)	Increase due to warmer sea surface temperatures/decreased oxygen solubility and intensified upwelling	 Nutrient runoff (e.g., nitrogen) Freshwater input Reduced upwelling Stratification Removal of vegetation
рН	\	Ocean surface pH declined 0.1 units since 1750; outer coastal acidity increased 10-40%	Decrease an additional -0.2 to -0.3 units by 2100	Nutrient inputs from runoffFishing pressureHabitat destruction

C.2 SGCN Vulnerability Rankings

C.2.1 Mammal Vulnerability Rankings

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
American	Moderate	Low	Moderate	Moderate	> Increased	Overall, there is a lack of information about the sensitivity of the
Badger					temperatures	American Badger to climate change. In general, sensitivity of this species
					> Changes in	appears to be driven by prey and habitat specialization. It occurs in
					precipitation	shrub-steppe, grassland, and semi-desert habitats, requires friable soils
					> Reduced soil	for burrows, and preys primarily on ground squirrels and pocket
					moisture	gophers. Warmer, drier conditions that harden soils may negatively
					> Altered fire	affect the American Badger or its prey species' ability to burrow.
					regimes	Warmer and drier conditions may allow grassland expansion, creating
					> Increased	more habitat for this species. However, warmer, drier conditions that
					invasive weeds	lead to more frequent and hotter fires and/or encourage the growth of
						invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for
						this species. Altered fire regimes in the Columbia Basin will likely
						negatively impact some prey species such as ground squirrels.
American	High	High	High	Moderate-	> Increased	The American Pika displays high sensitivity because of its preferred
Pika				High	temperatures	habitat type and condition, very low reproductive rate, and limited
					> Reduced	dispersal ability. The American Pika requires a moderate amount of
					snowpack	snowpack in order to provide insulation during the winter months;
					> Shifts from	decreasing snowpack because of rising temperatures and shifting
					snow to rain	precipitation patterns with more rain than snow will negatively impact
						this species. American Pika have high energetic demands, partly because
						they do not hibernate; increasing temperatures and extreme heat
						events may affect this species' ability to forage during the day. In
						addition, climate change will likely alter the composition of vegetation in
						montane habitats; this shift may be to plant species less suited to the
						species' nutritional needs.
Bighorn	Moderate	High	Moderate	Moderate	> Increased	Warmer temperatures may reinforce thermoregulatory behavior of
Sheep					temperatures	Bighorn Sheep in order to minimize heat stress (e.g. foraging on
					> Reduced	northern and easterly slopes). Warmer temperatures, reduced
					snowpack	snowpack and earlier snowmelt may increase foraging opportunities by
					> Earlier	extending the growing and foraging season and increasing the upper
					snowmelt	limits of plant growth (e.g. grass); increased foraging opportunities

MAMMALS	NAMMALS									
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity				
					> Altered fire regimes	could potentially increase lamb survival. However, reduced snowpack and earlier snowmelt may also increase predation risk by allowing earlier predator access to subalpine/alpine habitats and/or by increasing predator cover via tree encroachment. Fire may moderate tree encroachment, thereby maintaining forage habitat and reducing predator risk.				
Black-tailed Jackrabbit	Moderate	Moderate	Moderate	Moderate	> Altered fire regimes > Changes in wind > Increased invasive weeds > Increased disease outbreaks	The Black-tailed Jackrabbit occupies habitats with a wide temperature range and minimal moisture levels (e.g. grassland, scrub, desert); they are highly capable of thermoregulating and conserving water. They are sensitive to disturbance regimes, such as fire and wind; widespread fires can remove vegetation that provides nesting and thermal cover and foraging species, while wind has been shown to affect this species feeding behavior. Increased invasive weeds (e.g. cheatgrass) have little to no forage value for this species and may contribute to increased fire, further eliminating important sagebrush habitat. Climate change may amplify effects of disease and parasites on this species.				
Blue Whale	Low- Moderate	High	Low- Moderate	Moderate	> Increased ocean temperatures > Altered circulation and/or upwelling patterns > Declines in pH	Due to their migratory patterns and the wide range of ocean conditions they experience, Blue Whales are unlikely to have physiological sensitivity to climate-induced ocean changes (e.g. increased sea surface temperature, decreased pH). Their overall sensitivity will be higher due to potential changes in their primary prey, euphausiids. Blue Whales require large aggregations of euphausiids for optimal foraging, and euphausiid conditions are strongly linked with oceanographic variability. Cooler, upwelling waters support high primary production and thus euphausiid biomass, while warmer waters like those found during positive Pacific Decadal Oscillations cycles or strong El Niño lead to lower primary productivity and decreased euphausiid abundance. Therefore, increases in sea surface temperature or changes in ocean circulation, as well as declines in pH, could lead to declines in euphausiid abundance and limited prey availability for Blue Whales. Additionally, changes in peak primary productivity and euphausiid abundance could lead to alterations in Blue Whale migration timing.				
Brush Prairie Pocket Gopher	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Increased temperatures > Changes in	There is no information on the sensitivity of the Brush Prairie Pocket Gopher to climate change. There is some evidence that pocket gophers in general may be sensitive to changes in temperature and precipitation				

MAMMALS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					precipitation > Reduced soil moisture	that affect soil moisture and hardness, which impacts pocket gopher digging activity (i.e. burrows include foraging tunnels and chambers for nesting and food caching).
Cascade Red Fox	High	High	High	Moderate- High	> Increased temperatures > Reduced snowpack > Altered fire regimes	The Cascade Red Fox is presumably adapted to colder climates, and is restricted to alpine and subalpine ecosystems and high elevation meadows. The overall sensitivity of this species to climate change is likely driven by their dependence on these colder, high elevation habitats. Warmer temperatures and reduced snowpack may negatively impact this species by further contracting suitable habitat ranges and/or facilitating movement of Coyotes (potential competitor and predator) into the range of Cascade Red Foxes. Altered fire regimes that degrade or eliminate alpine and subalpine habitat is also likely to negatively impact this species.
Columbian White-tailed Deer	Moderate	Moderate	Moderate	Moderate	> Increased flooding > Sea level rise > Increased extreme precipitation events > Increased disease outbreaks	Occupying riparian habitats, bottomlands, and tidelands, Columbian White-tailed Deer are vulnerable to periodic habitat loss and subsequent population declines due to flooding. Past flood events have caused significant population reductions, followed by slow recovery. Consistent or consecutive yearly flooding and inundation as a result of sea level rise and/or shifting storm frequencies and intensities could significantly threaten the persistence of various populations, potentially forcing migration to marginal habitat areas. However, current efforts to translocate deer and establish new populations along the lower Columbia River increases overall population resilience to flooding and inundation impacts. Sea level rise and shifts in precipitation that elevate groundwater tables may also affect available forage by extending the range of relatively unpalatable reed canary grass. Reduced habitat or forage quality as a result of climate change could also increase deer vulnerability to various diseases.
Destruction Island Shrew	Low- Moderate	Low	Moderate	Low- Moderate	> Reduced soil moisture > Increased extreme events	Limited information is available regarding the biology and ecology of Destruction Island Shrews and their potential response to climate change. This species is likely sensitive to climate-driven changes in prey availability (e.g. insects, spiders, worms, centipedes) and habitat suitability (e.g. vegetation cover). For example, soil moisture may affect burrowing and/or suitability and availability of grassland habitat. In addition, as this species is endemic to Destruction Island, it is likely

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						vulnerable to extirpation during extreme events and/or unfavorable climatic periods.
Fin Whale	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased ocean temperatures > Declines in pH	Fin Whales are likely to have low sensitivity to changes in ocean temperature and other changing oceanographic conditions (e.g. pH, salinity) due to their migratory patterns and exposure to varying ocean conditions. However, the prey they feed on, such as euphausiids and copepods, may experience population declines as a result of increases in ocean temperature and decreases in pH. Limited prey availability could lead to decreased Fin Whale fecundity and population declines, though they may be able to adapt by switching target prey species (e.g. feeding more on small finfish as opposed to krill) depending on abundance.
Fisher	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Reduced snowpack > Altered fire regimes > Increased insect and disease outbreaks	Fishers exhibit some physiological sensitivity to temperature, as they behaviorally avoid extreme daily high temperatures by foraging during cooler periods of the day and seeking cooler habitats (e.g. dense canopies, riparian areas). Fishers also appear sensitive to snowpack; deep snow limits fisher movement, particularly juvenile dispersal. Reductions in snowpack could increase successful juvenile winter dispersal, alter competitive interactions (e.g. with Pacific Marten), or enhance predatory success. Warmer, drier conditions as well as altered fire regimes and insect and disease outbreaks that affect habitat extent and structural complexity influence the sensitivity of this species. Some disturbance (e.g. wind, fire, insects & disease) helps to create important habitat structures (e.g. snags, downed logs, den sites) while disturbances outside the natural range of variability may negatively impact this species.
Gray Whale	Moderate	High	Moderate	Moderate	> Increased ocean temperatures > Declines in pH	Due to their migratory patterns and broad range of habitat, Gray Whales are unlikely to be sensitive to changes in ocean temperature or chemistry. However, their sensitivity will be increased by potential changes in prey abundance. Decreases in pH could lead to declines in small invertebrates that Gray Whales feed on. Additionally, temperature increases could also lead to declines in invertebrate prey. For Atlantic Gray Whale populations, increases in sea surface temperature were thought to cause declines in amphipods, a primary prey for Gray Whales, leading to decreases in Gray Whale survival. At the northern end of their range in Alaska, Gray Whales may also experience

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						disruptions in timing and distribution of food sources due to earlier season sea ice melt and increases in sea surface temperature. Gray Whales may also be sensitive to losses in key breeding habitat, like coastal lagoons in Mexico, due to sea level rise.
Gray Wolf	Low- Moderate	Moderate	Low- Moderate	Moderate	> Altered fire regimes > Increased insect and disease outbreaks	The Gray Wolf is a habitat and diet generalist. This species can thrive in a variety of habitats at different elevations, including forests, tundra, deserts, swamps, mountains, and prairies, where they feed mainly on a wide range of ungulate prey (small mammals, fish, and livestock are only a small portion of prey for most wolves). They require large, contiguous habitats and are therefore somewhat vulnerable to habitat fragmentation that restricts connectivity or brings them into great contact with people. Gray Wolves also display high reproductive and dispersal capacity. Their sensitivity to climate change will depend largely on the vulnerability of ungulate prey to disturbance regimes such as fire and disease; prey abundance may decline with larger and more intense fires and/or forest die off from insects as well as timber harvest.
Gray-tailed Vole	N/A	N/A	Unknown	N/A	None known	There is no information on the sensitivity of Gray-tailed Voles to climate change.
Grizzly Bear	Moderate	High	Moderate	Moderate	> Increased temperatures > Earlier snowmelt > Changes in precipitation timing	Grizzly Bears are diet generalists, feeding on a variety of food items, which may decrease overall sensitivity of this species. However, where and how food sources change could potentially exacerbate human/bear conflict and mortality. Additionally, warmer temperatures, delayed snowfall, and earlier snowmelt may alter the timing of den entry and exit, which could increase the potential for bear/human conflicts in spring and fall. Altered fire regimes may remove important habitat but could also open up new areas.
Hoary Bat	Low- Moderate	Low	Low- Moderate	Moderate	> Altered fire regimes > Changes in precipitation	The Hoary Bat displays low physiological sensitivity with a generalist's diet and a broad geographic distribution in both coniferous and deciduous forests across a wide temperature gradient from 32 to 71°F at elevations from 0 to 5315 feet in the Pacific Northwest. It is moderately sensitive to disturbance regimes, including fire and disease (e.g. white-nose syndrome). In general, climate changes that affect roosting and foraging habitat could negatively impact this species. For example, altered fire regimes could degrade or eliminate roosting habitats. Warmer, drier conditions as well as altered fire regimes and

MAMMALS						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Humpback Whale	Low- Moderate	High	Low- Moderate	Moderate	> Increased ocean temperatures > Declines in pH	increased invasive weeds may affect the availability of foraging resources to Hoary Bats. Changes in precipitation and/or water availability near maternity sites could affect reproductive output. Humpback Whales migrate over great distances and occupy a broad range of ocean conditions; they are thus unlikely to have high physiological sensitivity to changes in ocean conditions. However, they are likely to have increased sensitivity due to potential declines in preferred food sources, such as small krill like euphausiids. Humpback Whale populations have been shown to be found in areas with high euphausiid production, thus any changes or declines in this food source (e.g. declining pH or increasing ocean temperatures) could have negative impacts on Humpback Whales such as decreased reproductive success and lower fecundity. Additionally, Humpback Whales often use shallow coastal lagoons for breeding; thus, sea level rise and potential
Keen's Myotis	Moderate- High	High	Moderate- High	Moderate	> Increased temperatures	loss of coastal habitat could also negatively influence this species. Keen's Myotis has a specialist's diet and its sensitivity is therefore tightly linked to both the timing and abundance of its prey. This species does not migrate, which makes it very sensitive to changes in microclimate, especially during winter hibernation; changes in temperature that drive the timing and length of winter hibernation could result in a mismatch in timing of insect prey availability and emergence from hibernation. It has a small geographic distribution; however, field identification of this species is difficult because of strong similarities with the western longeared myotis, making statements about distribution, population size, and trends less certain. Cooler temperatures may energetically stress this species.
Killer Whale	Southern residents: Moderate- High; Transient/ Offshore: Low- Moderate	High	Southern residents: Moderate Transient/ Offshore: Low- Moderate	Southern residents: Moderate- High; Transient/ Offshore: Moderate	> Increased ocean and fresh water temperatures > Increased precipitation > Increased runoff > Declines in	Some Killer Whale populations occupy a wide temperature range; thus these are unlikely to experience physiological sensitivity to increasing ocean temperatures. However, their overall climate sensitivity is much higher due to potential declines in prey abundance. For the southern resident populations in particular, since they feed primarily on Chinook salmon, declines in Chinook abundance (stemming from a number of climate factors, such as increases in sea surface and fresh water temperature or higher levels of precipitation and runoff) could lead to decreases in survival and fecundity of southern resident Killer Whales.

MAMMALS						
Connection of	Overall	Overall	Sensitivity	Exposure	Summary of	Community of Committee in
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					рН	The transient population feeds on other marine mammals and has a
						larger variety of targeted prey and thus may be less sensitive; however,
						climate-induced changes in marine food webs (e.g. declines in small
						crustaceans that other marine mammals feed on due to acidification)
						could lead to declines in prey availability for transients. The offshore
						population is thought to feed mainly on sharks and other fish, but better
						dietary information is needed to draw firmer conclusions on impacts.
Kincaid	Low-	Low	Low-	Moderate	> Increased	There is no information on the sensitivity of Kincaid Meadow Voles to
Meadow Vole	Moderate		Moderate		temperatures	climate change. In general, this species likely does not exhibit much
					> Changes in	physiological sensitivity to climate change. Their association with damp
					precipitation	meadows, marshy areas along creeks, and around lakes in the Columbia
						Basin seems likely to increase this subspecies' sensitivity if warmer and
		_				drier conditions degrade or eliminate these habitats in this region.
Lynx	High	High	High	High	> Increased	Lynx exhibit sensitivity to warming temperatures, decreased snowpack
					temperatures	and earlier snowmelt, and altered fire regimes. Lynx are reliant on
					> Reduced	consistent snowpack during winter months for hunting, which provides
					snowpack	them a competitive advantage over other predators. Lynx are usually
					> Earlier	considered hare specialists; increasingly variable timing of the arrival
					snowmelt	and melting periods of snowpack may lead to local extirpations of
					> Altered fire	Snowshoe Hares, potentially affecting Lynx survivorship and recruitment. However, Lynx have been known to switch prey items
					regimes > Increased	when hares are limited. Altered fire regimes, insect and disease
					insect and	outbreaks that reduce mature stands, early seral-stage coniferous
					disease	stands and/or dense understory cover further increases the sensitivity
					outbreaks	of this species.
Mazama	Low-	Moderate	Low-	Moderate	> Increased	There is little to no information on the sensitivity of the Mazama Pocket
Pocket	Moderate	Moderate	Moderate	Wioderate	temperatures	Gopher to climate change. Mazama Pocket Gophers may exhibit some
Gopher	Wioderate		Wioderate		> Reduced soil	sensitivity to warmer, drier soil moisture conditions that make
					moisture	burrowing more challenging. Sensitivity of this species may be enhanced
					> Increased	if invasive species such as Scotch broom increase under future climate
					invasive	conditions. However, prairie and grassland habitats may expand under
					species	future climate conditions (e.g. altered fire regimes that prevent conifer
					> Altered fire	encroachment and/or adaptations to warmer, drier conditions),
					regimes	potentially benefitting this species.
Merriam's	Low-	Low	Low-	Moderate	> Drought	Merriam's Shrews likely have low physiological sensitivity to climate

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Shrew	Moderate		Moderate		> Increased flooding > Altered fire regimes	change, but may be sensitive to climate-driven changes in prey (e.g. small invertebrates) and habitat (e.g. arid shrub, shrub-steppe, and grasslands) availability. This species inhabits drier habitats than other shrew species, but may be sensitive to shifts in habitat availability due to drought, flooding, and fire, as well as habitat conversion (e.g. for agriculture).
Minke Whale	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased ocean temperatures > Declines in pH	Though limited information is available regarding the sensitivity to climate change of Minke Whales in the North Pacific, given their migration patterns and the wide range of conditions they experience, they are unlikely to have direct physiological sensitivity to climate-induced changes in ocean conditions. Their sensitivity will be higher due to potential fluctuations in preferred prey availability, like forage fish (e.g. Pacific Herring) and krill. Though warmer ocean temperatures could lead to declines in herring availability, studies have shown that Minke Whales are generalists and easily switch between different types of prey depending on abundance, which allows them to adjust well to seasonal variability in prey. Potential declines in krill abundance (e.g. declines in pH) could also increase sensitivity of Minke Whales.
North Pacific Right Whale	Moderate	Moderate	Moderate	Moderate	> Declines in pH > Altered circulation and/or upwelling patterns	Limited information is available regarding the sensitivity of North Pacific Right Whales to climate change. In general, their overall sensitivity is likely due to changes in abundance of their primary prey, copepods. Because North Pacific Right Whales are limited in the type of prey they can consume and require large aggregations of copepods for optimal feeding, declines in copepod production that could be triggered by changing ocean circulation or potential decreases in pH could greatly impact North Pacific Right Whales. Decreases in copepod abundance could lead to decreased calf and adult survival.
Northern Bog Lemming	Moderate- High	High	Moderate- High	Moderate- High	> Increased temperatures > Changes in precipitation > Drought > Altered fire regimes	The Northern Bog Lemming's physiological sensitivity to climate is likely moderate-high, as populations may have historically been reduced in size and number when the climate was warmer and the species is moderately restricted to relatively cool or cold environments in most of its range. Additionally, Washington is at the very southern edge of the species' geographic range, which may increase sensitivity to warming temperatures. The overall sensitivity of this species is likely driven by their dependence on cold, moist habitats such as peatlands and

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						sphagnum moss, which are sensitive to changes in temperature and precipitation that lead to reduced moisture. Altered fire regimes that degrade or eliminate habitat may also impact this species.
Olympic Marmot	Moderate- High	High	Moderate- High	Moderate- High	> Increased temperatures > Reduced snowpack > Altered fire regimes	Olympic Marmots' sensitivity to climate is likely driven by their association with subalpine meadows that are vulnerable to increasing temperatures and reduced snowpack that result in habitat alterations (e.g. increased forest encroachment into meadows). Altered fire regimes may benefit subalpine meadows by preventing conifer encroachment. Olympic Marmots are also indirectly sensitive to climate change through effects on their primary predator, Coyotes. Warmer winters and lower snowpack are thought to allow Coyotes to persist at higher elevations than they could otherwise, increasing their predation on Olympic Marmots. Some evidence suggests that Olympic Marmots may also be directly sensitive to changes in snowpack; prolonged spring snow cover may be detrimental to survival and reproduction while sparse winter snow cover increases winter mortality.
Pacific Marten (Coastal population)	Moderate- High	High	Moderate- High	Moderate- High	> Reduced snowpack > Altered fire regimes > Drought	Sensitivity of the Pacific Marten to climate change will likely be driven by its habitat specificity and reliance on deep snowpack. Altered fire regimes and/or drought that result in reductions in the distribution and connectivity of important habitat features (e.g. large diameter tree stands with high canopy cover) may negatively impact this species. Pacific Martens rely on deep and persistent snowpack to exclude predators, provide high-quality hunting conditions, and provide winter resting and denning sites. Future reductions in snowpack may affect both the Pacific Marten and its prey species due to creation of more thermally variable subnivean space, and may alter Pacific Marten spatial distributions and/or competition with Fishers.
Preble's Shrew	Low- Moderate	Low	Low- Moderate	Moderate	> Changes in precipitation > Altered fire regimes > Increased invasive weeds	Limited information is available regarding the biology and ecology of Preble's Shrews and their potential response to climate change. Preble's Shrews appear to occupy a variety of habitat types throughout their range, but may be vulnerable to climate changes (e.g. precipitation, fire) that affect occupied habitat in Washington and/or prey availability (e.g. insects). Further expansion of cheatgrass could be detrimental to this species.
Pygmy Rabbit	Moderate-	Moderate	Moderate-	Moderate	> Altered fire	The Pygmy Rabbit is sensitive to changes in fire regimes such as extent

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	High		High		regimes > Increased invasive weeds	and frequency, especially fire-driven spread of the invasive cheatgrass that degrades the species' primary habitat and food source, sagebrush. Climate change will cause more frequent, intense, and larger wildfires. There are documented declines in Pygmy Rabbit populations with climate-driven changes in sagebrush habitat over the last 4,000 years.
Sea Otter	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased ocean temperatures > Declines in pH > Increased winter storm intensity and high surf conditions	Limited information is available regarding the response of Sea Otters to climate change. Their sensitivity will be primarily due to changes in prey abundance (e.g. Red Urchins, clams, bivalves), particularly since Sea Otters require large amounts of prey (approximately 30% of their body mass per day) to meet their metabolic requirements. Sea Otter prey may be sensitive to decreases in pH, and declines in prey abundance could impact Sea Otters, though their sensitivity may not be as high due to their ability to switch between prey species. Additionally, increasing temperatures could promote survival of marine bacterial pathogens that infect Sea Otters and cause mortality, though there are high levels of uncertainty regarding the level of increase in and potential effects of bacterial pathogens on sea otters. Sea Otters may also be sensitive to increased winter storm intensity and resulting high surf conditions that could result in higher mortality.
Sei Whale	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Increased ocean temperatures > Altered circulation and/or upwelling patterns	Though very limited information is available regarding the sensitivity of Sei Whales to climate change, it is likely that their main sensitivity will be due to any changes in their preferred prey species (zooplankton [e.g. copepods], squid, and small schooling fish). Sei Whales feed primarily on zooplankton and are found in areas with high zooplankton concentrations; thus, any changes in zooplankton abundance, which could be caused by increases in sea surface temperature or changes in ocean circulation patterns, could limit prey availability for Sei Whales. However, because Sei Whales are able to target multiple types of prey, they may be less sensitive to changes in zooplankton abundance and may be able to switch to other prey species (e.g. small forage fish).
Shaw Island Townsend's Vole	N/A	N/A	Unknown	N/A	None known	There is no information on the sensitivity of Shaw Island Townsend's Voles to climate change.
Silver-haired Bat	Low- Moderate	Low	Low	Moderate	> Altered fire regimes	The Silver-haired Bat has a broad geographic distribution throughout North America and displays a preference for old-growth forests and

MAMMALS						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	· · ·
						riparian areas between 0 to 6000 feet in elevation, although they also use caves and abandoned mines. There are both migratory individuals and year-round residents in Washington; during spring migration, there has been documented mortality at wind energy facilities. In general, climate changes that affect roosting and foraging habitat could negatively impact this species. For example, altered fire regimes that degrade or eliminate tree-roosting habitats such as large trees and snags may affect the Silver-haired Bat.
Sperm Whale	Low- Moderate	Moderate	Low- Moderate	Low- Moderate	> Increased ocean temperatures > Altered circulation and/or upwelling patterns	Though limited information is available regarding the sensitivity of Sperm Whales to climate change, their overall sensitivity is likely to be influenced by changes in the availability of their primary prey, squid. For Sperm Whales in the Gulf of California, abundance was linked to distribution and abundance of squid, and in the North Sea, higher sea surface temperatures and declines in squid abundance were thought to have potential links to increased Sperm Whale strandings. Thus, potential declines in squid populations (which could be prompted by changes in sea surface temperature or ocean circulation) could impact Sperm Whale populations. Given that males and females tend to occupy different habitats and ranges (with females preferring warmer, more southerly waters and males having a broader range), male and female Sperm Whales may exhibit different levels of sensitivity.
Spotted Bat	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Changes in precipitation > Altered fire regimes	The Spotted Bat occupies a wide range of habitats in Washington from forests (e.g. ponderosa pine, Douglas-fir) and shrub-steppe to cliffs and water sources (e.g. marshes, open water, riparian areas) from 1000 to 2800 feet in elevation. There is limited information about this species' population size and trends and reproductive and wintering behavior, although there is some evidence that the Spotted Bat moves to lower elevations to overwinter. They appear to roost almost exclusively in the crevices of steep cliffs, which may make them vulnerable to recreational rock climbing or other manmade or natural destruction of cliff habitat (e.g. road construction, rockslides). Changes in precipitation that limit water availability directly or result in a decrease of prey could negatively affect this species. Increased fire and shrub-steppe degradation in the Columbia Basin could reduce habitat quality for this species.
Townsend's	Moderate-	Moderate	Moderate-	Moderate	> Increased	Townsend's Big-eared Bats are found throughout much of the western

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Big-eared Bat	High		High		temperatures > Changes in precipitation > Altered fire regimes > Drought	United States; the species' distribution appears to be tightly linked to the presence of suitable roosting habitat and hibernacula located near foraging habitat. Roosting habitat selection is driven by temperatures within structures; in Washington, this habitat includes lava tube caves, mines, old buildings, bridges, and concrete bunkers. Increased temperatures may therefore reduce the availability of suitable hibernacula, forcing this species to move out of its current range to higher elevations or latitudes. Approximately 90% of the Townsend's Big-eared Bat's diet is composed of moths, making this species sensitive to prey availability (e.g. pesticides used to control outbreaks of moths). Altered disturbance regimes such as fire and drought that can destroy habitat will likely negatively impact this species. Changes in precipitation that limit water availability directly or result in a decrease of prey could negatively affect this species. In arid regions, periods of drought near maternity sites could affect reproductive output.
Townsend's Ground Squirrel	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Drought > Altered fire regimes > Increased invasive species	Sensitivity of Townsend's Ground Squirrel is likely driven by their association with shrub-steppe, sagebrush, and grassland habitats. Warmer temperatures and changes in precipitation, including drought, could alter the phenology of important food plants, affecting the Townsend's Ground Squirrel's ability to accumulate adequate fat reserves before hibernation. Warmer, drier conditions that lead to more frequent and hotter fires and/or encourage the growth of invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for this species. Some evidence suggests that those individuals occurring in sagebrush habitat may be less sensitive to the impacts of drought (e.g. less decline in persistence and density, produce young) than those occurring in grassland habitats.
Washington Ground Squirrel	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Drought > Altered fire regimes > Increased	Similar to Townsend's Ground Squirrel, sensitivity of Washington Ground Squirrels is likely driven by their association with shrub-steppe and grassland habitats, although they are able to inhabit a number of habitat subtypes which may decrease sensitivity. Warmer temperatures and changes in precipitation, including drought, could alter the quality and quantity of important forage plants, affecting juvenile survival as well as the ability to accumulate adequate fat reserves before hibernation. A series of drought years reduced the occurrence of

MAMMALS	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					invasive species	Washington Ground Squirrels in 1994. Warmer, drier conditions that lead to more frequent and hotter fires and/or encourage the growth of invasive weeds (e.g. cheatgrass) may degrade or alter natural habitat for this species.
Western Gray Squirrel	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes > Increased disease outbreaks	Sensitivity of the Western Gray Squirrel in Washington is partially driven by their association with Oregon white oak habitats. Habitat quality in Washington is generally thought to be relatively poor due to a lower number of large-seeded, mast-bearing tree species, affecting Western Gray Squirrel population numbers. However, Oregon white oak habitats are projected to expand under warmer, drier conditions and may benefit Western Gray Squirrels in Washington. Altered fire regimes that further degrade habitat quality increase the sensitivity of this species. For example, the large Carlton Complex fire in the Okanogan in 2014 destroyed Western Gray Squirrel habitat and caused direct mortality to the species. Additionally, this species is sensitive to disease outbreaks (e.g. mange, Western equine encephalitis virus), which could become more frequent with warmer temperatures.
Western Spotted Skunk	Low	Low	Low	N/A	None known	There is little to no information on the sensitivity of the Western Spotted Skunk to climate change. Overall, it appears that this species exhibits low sensitivity due to its generalist diet and ability to occupy different habitats (e.g. wooded areas, tallgrass prairies, rocky canyons).
White-tailed Jackrabbit	Moderate	Moderate	Moderate	Moderate	> Drought > Altered fire regimes	The White-tailed Jackrabbit appears to be fairly tolerant of a wide temperature range in a variety of habitats within a broad range of elevations from 130 to 14000 feet, including prairie grassland, shrubland steppe, and montane shrublands. In areas in which populations of the White-tailed and Black-tailed Jackrabbits overlap and compete, the White-tailed Jackrabbit tends to move to higher elevations. Drought conditions that alter foraging habitats (e.g. bunchgrasses, rabbitbrush) may negatively impact this species. Altered fire regimes in the Columbia Basin could negatively affect this species.
Wolverine	Moderate- High	High	High	Moderate	> Increased temperatures > Reduced snowpack	Wolverines exhibit sensitivity to temperature and declines in snowpack. Wolverines are obligatorily associated with persistent spring snow cover, which provides critical thermal advantages such as predator refugia for denning females and young, preventing competition with other scavengers, and important prey caching/refrigeration areas.

MAMMALS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Temperature appears to play a role in fine-scale habitat selection, and may affect prey caching success. Warming temperatures and declines in snowpack could lead to decreased habitat patch size, quality, and connectivity; reduced success of caching/refrigeration of carrion prey with subsequent impacts on survivorship and recruitment; limited den sites and/or loss of thermal refugia important for juvenile survival; and/or increased dispersal costs.
Woodland Caribou	High	High	High	High	> Increased temperatures > Changes in precipitation > Altered fire regimes > Reduced snowpack > Earlier snowmelt > Increased insect and disease outbreaks	Woodland Caribou occupy higher elevations and rely on old-growth Engelmann spruce/subalpine fir and western red cedar/western hemlock forests that support arboreal lichens, which constitute a large portion of the Woodland Caribou diet. In combination with fire, warmer temperatures, precipitation changes, climate-driven increases in forest disease and insect mortality, and reduced snowpack and earlier snowmelt are likely to alter suitable habitat and predation risk for Woodland Caribou. Fire creates younger-age stands and edge habitat that attract deer, elk, and Moose; higher ungulate densities increases associated predator density, and these predators (e.g. bears, Gray Wolves, Cougars) prey opportunistically on Woodland Caribou. Woodland Caribou require deep, consolidated snow for movement at higher elevations during winter. Reduced snowpack and earlier snowmelt will affect the seasonal movements of Woodland Caribou and other ungulates, likely increasing predation risk by extending the length of time Woodland Caribou share habitat with other ungulates. In general, warmer and drier conditions will favor the expansion of deer, elk, and Moose by increasing overwinter survival, exacerbating predation risk and shifts in Woodland Caribou habitat.

Please be in touch if you'd like to view the excel spreadsheet.

C.2.2 Bird Vulnerability Rankings

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
American White Pelican	Low	Moderate	Low	Low	> Increases in precipitation that lead to flooding	American White Pelicans may be sensitive to climate change through changes to their breeding habitat. Increases in precipitation could affect flooding regimes in lakes and potentially limit nesting areas, although this species is highly adapted to take advantage of changing situations. Sensitivity may be increased by direct physiological responses to increases in temperature, such as potential vulnerability of chicks and juveniles to higher temperatures and earlier migration timing of adults, although this is highly uncertain.
Bald Eagle	Low- Moderate	Moderate	Low- Moderate	Moderate	> Altered fire regimes > High wind events > Increased temperatures > Changes in precipitation/ Altered hydrology	Bald Eagles may experience some sensitivity due to habitat and foraging requirements. Nest sites may be affected by altered disturbance regimes (e.g. fire and wind) while warmer temperatures and changes in precipitation could limit food availability and quality (i.e. salmon carcasses). However, Bald Eagles are opportunistic foragers and may be able to switch prey species.
Band-tailed Pigeon	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes > This species is considered "climate threatened" (i.e. projected to lose >50% of current global range	Very little information exists regarding sensitivity of Band-tailed Pigeons to climate change. In general, this species may exhibit some sensitivity due to habitat requirements. Warmer temperatures and changes in precipitation that lead to declines in water levels may adversely affect this species. Similarly, altered fire regimes that lead to loss of forested habitat could negatively impact the species.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					by 2080) in the Audubon Birds and Climate Change Report.	
Barrow's Goldeneye	Moderate- High	Moderate	Moderate -High	Moderate -High	> Altered fire regimes > Declines in pH and dissolved oxygen > Reduced snowpack	Barrow's Goldeneye dependence on specific nesting, breeding, and wintering sites significantly increases this species' sensitivity to climate change. Disturbances such as fire could result in nesting tree loss, and changes in water chemistry (e.g. dissolved oxygen, pH) or temperature may lead to declines in food availability (e.g. mussels, aquatic insects, crustaceans, clams, etc.). Diminished snowpack that leads to wetland drying could also impact this species.
Black Scoter	Moderate	Low	Moderate	Moderate	> Increased ocean temperatures > Declines in pH, salinity, and/or dissolved oxygen	Very limited information is available regarding sensitivity of Black Scoter to climate change, particularly in Washington. Generally, this species appears to exhibit some sensitivity to climate change due to potential impacts on food availability. For example, changes in sea surface temperature, oxygen, salinity, and/or pH could lead to declines in marine forage (e.g. Pacific Herring, mussels).
Brown Pelican	Low- Moderate	Moderate	Low- Moderate	Moderate	> Sea level rise > Increased ocean temperatures > Altered circulation and/or upwelling patterns	Brown Pelicans are likely to have low physiological sensitivity to climate change. Their sensitivity may be increased by disturbances to coastal roosting sites from rising sea levels (e.g. sandbars and sand spits), which could limit availability of preferred roosting sites and force Brown Pelicans to select lower-quality roosting sites further away from foraging areas, though Brown Pelicans have been shown to adapt well to habitat disturbances. Sensitivity will also be affected by changes in preferred prey availability (e.g. Pacific Sardines, mackerel), which are likely to shift depending on ocean circulation patterns, such as El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Warmer ocean temperatures and decreases in coastal upwelling could lead to declines in small forage fish, and thus limited prey availability for Brown Pelicans.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Burrowing Owl	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Increased temperatures > Changes in precipitation	Burrowing Owls may exhibit low to moderate sensitivity due to climatic effects on breeding ranges, and decreasing habitat availability from land development pressures. Temperature-driven changes may cause this species to lose up to 77% of its existing breeding range and alter its winter range with only 33% remaining intact by 2080. Although temperature and precipitation changes may affect the availability of its preferred prey (insects), the Burrowing Owl has a generalist's diet, including other birds, small mammals (e.g. mice, voles), frogs, salamanders, and snakes. This species also depends upon other species such as American Badgers, prairie dogs and ground squirrels to create its nesting burrows.
Cinnamon Teal	Moderate	Low	Moderate	Moderate	> Increased temperatures > Reduced snowpack > Altered hydrology	Very limited information is available regarding sensitivity of Cinnamon Teal to climate change, particularly in Washington. Generally, their overall sensitivity is likely due to potential impacts on habitat availability and quality. Habitat factors such as amount of food and floods (i.e. spring floods and American Beavers) have been linked to breeding success. Declines in snowpack or altered flow regimes that affect these habitat factors could impact the number of Cinnamon Teal broods. If this species exhibits low phenotypic plasticity in terms of timing of breeding (i.e. less able to track environmental change), climate warming could also affect its breeding success due to timing mismatch.
Clark's Grebe	Moderate	Low	Moderate	Moderate	> Declines in pH > Changes in water level (e.g. water drawdowns or declines in precipitation)	Though there is limited information available regarding the sensitivity of Clark's Grebe to climate change, their primary sensitivity will occur through potential changes in small fish and invertebrate prey species that they target. Declines in pH could lead to declines in invertebrate prey and changes in water level in lakes and marshes could also lead to declines in available prey. This species also exhibits some sensitivity to fluctuating water level (high or low), which could lead to loss of eggs and nesting sites. In Washington, greater water drawdowns in reservoirs (i.e. because of expanded agricultural irrigation caused by climate change) may lead to increased nest loss.
Columbian Sharp-tailed Grouse	Moderate	Moderate	Moderate	Moderate	> Increases in spring precipitation	Columbian Sharp-tailed Grouse may exhibit some physiological sensitivity as young chicks may experience mortality due to prolonged wet spring weather. Overall sensitivity of this species is likely driven by

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Altered fire regimes > Changes in precipitation overall > Increased invasive weeds	habitat specialization (e.g. grassland or shrub-steppe). Habitat suitability for this species could decrease or shift in response to altered fire regimes, invasive species spread (i.e. cheatgrass), and/or changes in precipitation.
Common Loon	Low- Moderate	Low	Moderate	Low- Moderate	> Increased temperatures (air and ocean) > Altered global climate patterns (i.e. El Niño)	Though limited information is available regarding the sensitivity of Common Loons to climate change, they may experience some direct sensitivity to climate change through northward contractions of their range with increasing temperatures and altered migration timing. Their sensitivity may be increased by changes to their prey and habitat. For instance, Pacific Herring, a primary food source for Common Loons, have previously experienced declines during El Niño years, leading to high mortality for Common Loons. More frequent and stronger El Niño conditions could lead to greatly decreased food supply for Common Loons.
Dusky Canada Goose	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Uncertain. Loss of agricultural foraging habitats is primary threat. Winter wheat production is likely to increase in the short-term.	The physiological sensitivity of this species is likely low. However, their overall sensitivity may be slightly higher due to their winter habitat and foraging requirements. Changes in food abundance and availability on wintering grounds such as agricultural crop lands could affect mortality and survival rates, although impacts of climate change on these habitats is unclear.
Ferruginous Hawk	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Drought > Increased storminess and winds	Little to no information exists regarding Ferruginous Hawk physiological sensitivity to temperature and precipitation. Overall sensitivity of this species may be enhanced due to prey specialization (i.e. jackrabbits, cottontail rabbits, ground squirrels, prairie dogs, pocket gophers) and habitat requirements (i.e. grasslands). Droughts that lead to declines in prey may adversely affect this species. Warmer

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						temperatures may benefit this species due to grassland expansion. Increased extreme weather events (e.g. heavy rain and high winds) may affect hawk reproduction and survival.
Flammulated Owl	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	Flammulated Owls may be sensitive to temperature and moisture; upper limits of Flammulated Owl occupancy may be set by low nocturnal temperatures or high humidity, while lower limits may be set by high diurnal temperatures or high humidity. In addition, changes in temperature may alter the availability of primary prey species (e.g. insects), which may influence their distribution. Flammulated Owls are habitat specialists, requiring old-growth ponderosa pine and/or Douglas-fir stands, making them vulnerable to changes in habitat extent and quality due to shifting wildfire regimes, precipitation changes, and habitat loss or degradation.
Golden Eagle	Moderate	High	Moderate	Moderate	> Increased temperatures > Altered fire regimes	Golden Eagles may experience some sensitivity to warmer temperatures. For example, nest success and brood size is inversely related to days with temperatures >90°F. Sensitivity of this species is also influenced by foraging requirements (e.g. prey abundance and habitat), which can affect nest success and ability to lay eggs. Golden Eagles prey on hares, rabbits, ground squirrels, prairie dogs, and marmots, among others, and their ability to forage can be negatively affected when prey habitat is lost (e.g. wildfires) and/or prey abundance declines.
Great Gray Owl	Moderate	Low	Moderate	Moderate	> Increased temperatures > Altered fire regimes > High wind events	The plumage of Great Gray Owls may make this species somewhat sensitive to warmer temperatures, although featherless portions of the Great Gray Owl's underwing may help dissipate heat. Great Gray Owls may also exhibit some sensitivity to disturbance regimes such as fire and wind that destroy suitable habitat.
Greater Sage- grouse	Moderate- High	Moderate	Moderate -High	Moderate	> Drought and/or moisture stress > Increased	Greater Sage-grouse may exhibit some physiological sensitivity to drought conditions, which could result in decreased nest success and/or reduced chick survival. However, their overall sensitivity will be higher due to habitat and foraging requirements. Changes that reduce the availability and quality of sagebrush habitat (e.g. increased

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					temperatures > Altered fire regimes	temperatures, drought and/or moisture stress, altered fire regimes), which Greater Sage-grouse depend on for forage, nesting, and brood-rearing, will adversely impact this species.
Harlequin Duck	Moderate- High	Low	Moderate -High	Moderate -High	> Changes in precipitation (timing and amount) > Earlier snowmelt > Increased flood events > Increased water temperatures > Declines in pH	The overall sensitivity of this species is likely moderate-high due to habitat (i.e. inland freshwater areas for breeding and coastal areas for wintering) and forage (i.e. aquatic invertebrates, Pacific Herring spawn) specialization. Breeding habitats and success as well as forage could be altered by flood events, while changes in temperature and pH could affect availability of key forage species. Additionally, earlier snowmelt can result in phenological mismatch with Harlequin Duck breeding ecology.
Lewis' Woodpecker	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased temperatures > Altered fire regimes	Warmer temperatures and precipitation changes influence sensitivity of Lewis' Woodpecker by affecting prey availability and habitat extent. Warmer temperatures are linked with higher surface-bark insect abundance and enhanced forage opportunities, which are thought to control the timing of Lewis' woodpecker breeding more than photoperiod. Altered wildfire regimes may affect habitat extent, although this species is often classified as a specialist in burned pine forest habitat.
Loggerhead Shrike	Low	Moderate	Low	Low- Moderate	> Increased temperatures > Drought > Increased storminess and/or high wind events	Loggerhead Shrikes likely exhibit low physiological sensitivity to climate change, although very little information currently exists on this topic. They are more sensitive to changes in prey abundance, habitat availability, and competition as a result of climate change. Loggerhead Shrikes prey on insects, reptiles, and small mammals and birds; insect prey, in particular, may vary in availability in response to temperature and drought. Loggerhead Shrikes favor open habitats with low-stature vegetation and available trees and shrubs for nesting; prairie/grassland habitats may expand with climate change, benefitting this species. They also successfully inhabit many altered systems (e.g. agricultural

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						fields). Wind, drought, and/or cold/wet weather events may contribute to nest or brood loss from nest damage or shifts in prey availability.
Long-tailed Duck	Low- Moderate	Low	Low- Moderate	Moderate	> Increased ocean temperatures > Sea level rise > Declines in dissolved oxygen and pH	Very limited information is available regarding sensitivity of Long-tailed Ducks to climate change, particularly in Washington. Generally, Long-tailed Ducks may exhibit some sensitivity to climate change due to potential impacts on food availability. Increases in temperature or sea level as well as changes in water chemistry that affect food sources such as Pacific Herring, crustaceans, mussels, etc. could impact this species.
Marbled Godwit	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Sea level rise	Marbled Godwits may experience some phenological sensitivity to increases in air temperature, as warmer temperatures could alter their migration timing and length of overwintering season in Washington. Temperature-induced alterations in migration timing may also affect breeding season timing and productivity. Overall sensitivity will be higher due to their dependence on intertidal sand and mudflats as foraging sites, which may decrease in extent due to sea level rise and coastal inundation. Because of their long legs, Marbled Godwits may be able to withstand coastal sea level changes by foraging in deeper waters.
Marbled Murrelet	Moderate	Moderate	Moderate	Moderate	> Increased ocean temperatures > Increased storminess and winds > Altered fire regimes	The main sensitivities of Marbled Murrelets to climate change will likely be due to potential changes in prey availability and habitat. Increasing sea surface temperatures could lead to declines in target prey abundance (e.g. Pacific Herring, Pacific Sand Lance, crustaceans) and declines in Marbled Murrelet productivity, though their ability to target multiple types of prey may help this species adapt to shifts in prey abundance. Alterations in nesting habitat, which occurs in inland mature and old growth forests, could also lead to declines in populations. Potential increased storminess and higher winds could impact nesting sites, as could drier, warmer conditions that lead to increased fires and more fragmented habitat for nesting.
Mountain Quail (Eastern WA only)	Moderate	Low	Moderate	Moderate	> Increased temperatures > Changes in precipitation	Mountain Quail inhabit dry areas and are dependent upon surface and preformed water availability. They exhibit sensitivity to increased temperatures or changes in precipitation that limit water supply. Increased fire severity and frequency that results in the conversion of

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Altered fire regimes	suitable habitat also increases the overall sensitivity of this species.
Northern Spotted Owl	Moderate- High	Moderate	Moderate -High	West- side: Moderate East-side: Moderate -High	> Increased temperatures > Altered fire regimes > Increased insect outbreaks	This species exhibits some sensitivity to increased temperatures both directly (i.e. physiologically) and indirectly through effects on prey availability. This species also exhibits some sensitivity to altered disturbance regimes (i.e. fire and insect outbreaks) that lead to habitat changes. For example, in the eastern Cascades in Oregon, high severity wildfire has reduced the number of Northern Spotted Owls pairs in a USFS Ranger Unit. However, it appears that dense old forests may be relatively stable on the west side of the Cascades, while more active management may help address fire risk in dry east-side forests.
Oregon Vesper Sparrow	Low- Moderate	Low	Moderate	Low- Moderate	> Temperature changes (increase or decrease) > Changes in precipitation > Altered fire regimes	Oregon Vesper Sparrow sensitivity is largely driven by their dependence on open habitats, seeds, and insects. They nest and forage on the ground in open habitats (e.g. grasslands or shrublands with patchy vegetation and some bare ground). Increasing fire frequency, temperatures, and more variable precipitation may decrease habitat availability, quality and connectivity and/or alter foraging opportunities. They may have some physiological sensitivity; for example, low temperatures can undermine nestling growth by increasing thermoregulatory costs and/or decreasing insect prey availability.
Peregrine Falcon	Low	High	Low	Low	> No specific climate factors identified as it is a generalist	Overall sensitivity of Peregrine Falcons is likely low as this species utilizes a variety of habitat types and forages on a diversity of species.
Purple Martin	Low- Moderate	Low	Moderate	Low	> Changes in precipitation > Drought > Increased temperatures (possibly)	Purple Martins are sensitive to climate-driven changes in habitat and prey availability. Low temperature periods, particularly in conjunction with precipitation, limit foraging opportunities and are the largest contributor to Purple Martin mortality. Drought can also affect food availability. Warming temperatures are causing earlier spring insect availability peaks, but Purple Martins are long-distance migrants, and have not yet shown adaptive response in migration timing in response

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						to earlier spring food availability, at least in eastern U.S. populations. This mismatch between spring arrival and peak food availability contributes to undermined reproductive success and mortality; further studies are needed to see if selective pressures will advance migration timing for this species. Purple Martins nest in snags in secondary cavities formed by woodpeckers in montane areas and the Pacific lowlands; high habitat specificity makes them more vulnerable to climate change, although increasing fire frequency may increase habitat in burned forests.
Pygmy Nuthatch	Moderate	Moderate	Moderate	Moderate	> Altered fire regimes > Increased temperatures	Pygmy Nuthatches likely exhibit physiological sensitivity to cold temperatures, but utilize controlled hypothermia, communal roosting, and sheltered roosting cavities to survive cold periods. Pygmy Nuthatches are likely more sensitive to climate changes that affect foraging and nesting opportunities. Low- and moderate-severity, high-frequency fire helps maintain mature, open ponderosa pine habitat preferred by this species, but severe fire can destroy habitat in the short-term and inhibit ponderosa pine regeneration. Warming temperatures and xeric conditions may facilitate habitat expansion to higher elevations and into previously mesic areas, but can also lead to mortality of mature ponderosa pine individuals, affecting foraging and nesting opportunities. Warmer temperatures will likely increase insect foraging opportunities.
Red Knot	Moderate- High	Moderate	Moderate	Moderate -High	> Timing mismatches in favorable food, habitat, and weather conditions > Sea level rise > Declines in pH > Increased storminess	Red Knots are unlikely to have direct physiological sensitivity to changes in climate during their migration through Washington. However, their overall sensitivity will be higher due to their habitat and foraging requirements. Prime foraging areas, like mudflats, may decline due to sea level rise and coastal flooding of these habitats. Additionally bivalve populations, a major source of prey, may experience declines due to ocean acidification as well as changes in period of tide flat exposure and area of tide flat exposure. Preferred roosting sites such as sand islands and marshes may also become more limited due to rising sea level and/or increased storminess. In particular, changes in temperature leading to migration timing mismatches (i.e. timing of departure and arrival to coincide with favorable food, habitat and weather conditions) will negatively affect

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	_				-	this species.
Red-necked Grebe	Low- Moderate	Low	Moderate	Low- Moderate	> Sea level rise > Increased storminess > Declines in pH	Very limited information is available regarding the sensitivity of Rednecked Grebes to climate change, particularly in Washington. Though Red-necked Grebes are unlikely to have direct physiological sensitivity to climate change, their sensitivity may be increased by climate-related changes in nesting and roosting habitat and prey availability. Sea level rise and coastal erosion could lead to declines in protected winter habitat. Increased storminess or wind may enhance vulnerability of nests. Additionally, juveniles feed mainly on invertebrates (e.g. crustaceans, mollusks); thus, any declines in these populations due to ocean acidification could limit prey availability for juvenile Red-necked Grebes.
Rock Sandpiper	Low- Moderate	Moderate	Low- Moderate	Moderate	> Sea level rise > Increases in wave action	Rock Sandpipers are likely to have low physiological sensitivity to increases in air temperature. However, their overall sensitivity will be higher due to their dependence on habitats that may be negatively impacted by climate change. Rising sea levels and increased wave action may disturb prime foraging area and lead to declines in food sources (e.g. intertidal mussels). Additionally, during their Alaskan breeding season, declines in sea ice due to rising air and ocean temperatures could limit breeding and roosting habitat.
Sage Thrasher	Moderate- High	Moderate	Moderate -High	Moderate	> Increased invasive weeds > Altered fire regimes > Increased temperatures > Changes in precipitation > Drought	As sagebrush obligates, Sage Thrashers are sensitive to climate changes that affect the extent of sagebrush habitat. Increasing fire frequencies, which are perpetuated by invasive species (e.g. cheatgrass), may reduce breeding habitat. Invasive species also degrade foraging opportunities in the sagebrush understory. Warming temperatures, precipitation variability, and drought are also likely to contribute to reductions in sagebrush habitat, negatively affecting Sage Thrasher reproduction and foraging.
Sagebrush Sparrow	Moderate- High	Low	Moderate -High	Moderate	> Increased invasive weeds > Altered fire regimes > Increased	Very limited information is available regarding sensitivity of Sagebrush Sparrows to climate change, particularly in Washington, and particularly due to recent taxonomic separation from Bell's Sparrow. However, as sagebrush obligates that require relatively intact and undisturbed sage for breeding, Sagebrush Sparrows are likely

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					temperatures > Changes in precipitation > Drought	vulnerable to any climate changes that affect the extent, quality, and connectivity of sagebrush habitats. Increasing fire frequencies (due to climate change and perpetuated by invasive species, e.g. cheatgrass), warming temperatures, precipitation variability, and drought are likely to contribute to reductions in sagebrush habitat, negatively affecting this species. Sagebrush Sparrows may also be physiologically sensitive to warming temperatures; they avoid nesting on hot southwest aspects, and position nests to maintain airflow (which is hypothesized to ameliorate high temperatures during nesting periods).
Sandhill Crane (Greater)	Moderate	Low	Moderate	Moderate	> Drought > Altered hydrology	Sandhill Cranes appear to have low physiological sensitivity to changes in climate, although very little information currently exists on this topic. Sandhill Cranes generally require wetlands for nesting and some feeding, and prefer open water with little emergent vegetation for roosting. They are likely more sensitive to drought, low flows, or flooding that decrease available nesting, foraging, or roosting habitat.
Short-eared Owl (Western WA only)	Low	Low	Low- Moderate	Low	> No specific climate factors identified, although changes prey availability will negatively impact this species.	The Short-eared Owl has low physiological sensitivity due to its wide geographic distribution throughout North America, South America, Eurasia, and Africa; temperature does not appear to be a limiting factor for this species. Barn Owls may be direct competitors in some locations and displace Short-eared Owl populations. Variation in Short-eared Owl population size has been attributed to variations in small mammal abundance, thus this species is sensitive to changes in prey availability.
Short-tailed Albatross	Low	Low	Low- Moderate	Low	> Altered circulation and upwelling patterns	Although Short-tailed Albatross are unlikely to have physiological sensitivity to climate change and their breeding habitat is also unlikely to be affected by climate change, their sensitivity will be increased by potential shifts in prey availability. Given that Short-tailed Albatross primarily forage in areas with strong upwelling and high oceanic productivity along the continental shelf, potential shifts in ocean circulation could limit the availability of prey (e.g. squid, crustaceans, flying fish). Additionally, potential northward shifts of primary prey species like squid could result in a northward shift in Short-tailed Albatross populations.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Slender-billed White- breasted Nuthatch	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	This species likely has low physiological sensitivity to climate change, but little information is available. As a near-obligate of oak woodlands, this species is likely more sensitive to changes in mature oak woodland nesting and foraging habitat as a result of climate change. Snags and large, mature trees provide superior forage grounds and more space for nesting cavities, which are created by woodpeckers. Increased fire frequencies may help restore more open, mature oak habitat by reducing oak density and conifer encroachment. Fire and wind events may also create important edge openings preferred by this species. Temperature increases and precipitation changes may affect insect prey availability. Any reductions in oak habitat in response to climate change would likely negatively affect this species, for although they will nest in mixed deciduous-coniferous woodlands, past oak woodland loss has been associated with species extirpation from portions of Washington (e.g. Puget Sound).
Spruce Grouse	High	High	Moderate -High	High	> Altered fire regimes > Increased insect and disease outbreaks	Sensitivity of Spruce Grouse appears to be driven by their dependence on high elevation conifer forests. Spruce Grouse prefer relatively young successional stands of dense conifers, and populations appear to fluctuate over time in response to the degree of maturation of post-fire regrowth. Altered fire regimes and insect and disease outbreaks that lead to habitat degradation increase the sensitivity of Spruce Grouse to climate change.
Streaked Horned Lark	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Altered hydrology > Altered sediment accretion and erosion patterns (coastal)	Streaked Horned Larks likely exhibit physiological sensitivity to warmer temperatures; they have been documented to alter behavior during warm periods (e.g. forage in shade, use wings to shade nests) and heat events have interrupted breeding season in other states. Streaked Horned Larks prefer open habitats with ample bare ground and very sparse, low stature vegetation. Populations in grassland areas may benefit from increasing fire frequencies that reduce vegetative cover and shrub/tree encroachment. Populations nesting on the banks of the Columbia River may be vulnerable to shifting flow regimes and flood peaks. Populations in beach/dune habitats along the Washington coast are vulnerable to changing sediment accretion and erosion patterns, which can change in response to hydrological shifts, current changes, changing precipitation patterns, and human management practices.

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Surf Scoter	Moderate- High	Moderate	Moderate -High	Moderate	> Increased ocean temperature > Sea level rise > Declines in dissolved oxygen and pH	Surf Scoter ducklings may exhibit some physiological sensitivity to climate change, as local weather conditions can affect survival. However, the overall sensitivity of Surf Scoters is primarily due to dependencies on specific breeding and foraging habitats that could be affected by climate change. Increases in temperature or sea level as well as changes in water chemistry may alter prey species composition and Pacific Herring spawn as well as alter subtidal foraging habitats. Surf Scoters are a late-nesting species and may also exhibit reduced flexibility in their timing of breeding, increasing their overall sensitivity to climate change.
Tufted Puffin	Moderate	Moderate	Moderate	Moderate	> Increased ocean temperatures > Increased storminess > Sea level rise	The main ways in which Tufted Puffins will be sensitive to climate change are through alterations to their breeding habitat and food supply. Predicted increases in sea surface temperature could lead to declines in abundance of zooplankton and small forage fish that this species preys upon. During breeding season Tufted Puffins stay close to their young and forage very close to breeding sites; thus, local declines in prey availability could lead to slower growth rates and reproductive failure, since adults will not be able to travel long distances to find alternate food sources. Additionally, sea level rise could impact breeding and foraging habitat for Tufted Puffins by altering the intertidal and subtidal areas where they deposit eggs and forage. Nesting habitat (i.e. burrowing sites) could also be impacted by increased storm frequency, which could result in damage and destruction of nesting areas.
Upland Sandpiper	Moderate	Low	Moderate	Moderate	> Increased temperatures > Changes in precipitation	Very limited information is available regarding the sensitivity of Upland Sandpipers to climate change, particularly in Washington. In the Midwest, Upland Sandpipers have exhibited some sensitivity to increasing temperatures, with earlier spring migration arrival positively correlated with increasing temperature. Declines in their preferred grassland and wet meadow habitat have already contributed to possible extirpation of the Upland Sandpiper in Washington; climate changes such as altered precipitation patterns that lead to further habitat loss will negatively impact this species. Altered fire regimes that remove shrubs and promote grasses may benefit this species.
Western	Low-	Low	Low-	Low-	>	Significant historical declines of Western Bluebird populations in

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Bluebird (Western WA only)	Moderate		Moderate	Moderate	Colder/wetter spring conditions > Increased storminess (frequency or intensity)	western Washington are linked with wet conditions that affected prey availability, as well as habitat loss due to human activity. This species likely exhibits physiological sensitivity to temperature (particularly cold temperatures); adults elevationally migrate in response to shifting temperatures, and nestlings may become hypothermic during cold, wet periods. In addition, insect foraging opportunities decline during inclement weather, contributing to nestling mortality via starvation. Western Bluebirds nest in snag and tree cavities, and wildfire likely maintains preferred open woodland-prairie habitat and snag nesting opportunities, although it can eliminate specific nesting trees. Open woodland-prairie habitat in the Northwest may expand with drier conditions.
Western Grebe	Moderate	Low	Moderate	Moderate	> Changes in water level (e.g. increased water drawdowns or changes in precipitation) > Increased temperatures (air and ocean)	Disturbances to nesting habitats and declines in prey availability are the primary pathways through which Western Grebes will exhibit sensitivity to climate change. This species also exhibits some sensitivity to fluctuating water level (high or low), which could lead to declines in nesting habitats. In Washington, increased nest loss due to greater water drawdowns in reservoirs could occur due to the need for expanded agricultural irrigation caused by climate change. Also, damage associated with increased declines in preferred forage fish prey (primarily Pacific Herring) during the non-breeding season are thought to have led to a southern shift of the species to California, and further decreases in Pacific Herring (e.g. warmer ocean temperatures) could lead to additional Western Grebe population declines. Increases in air temperature could also prompt shifts in Western Grebe migration timing.
Western High Arctic Brant	Moderate	Moderate	Moderate	Moderate	> Sea level rise > Increased ocean temperatures > Increased storminess > Changes in salinity	This species likely exhibits moderate sensitivity to climate due to its habitat and foraging requirements. In particular, food abundance at wintering areas appears to have a direct effect on population reproduction. Key foraging areas such as eelgrass beds may decrease or increase due to changes in temperature or salinity, or sea level rise. Extreme events (e.g. severe winter weather) that reduce food abundance and availability could also affect this species (e.g. mortality).
Western	Moderate	Low	Moderate	Moderate	> Increased	Western Screech Owls may exhibit some physiological sensitivity to

BIRDS						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Screech Owl					temperatures > Changes in precipitation timing > Drought > Altered fire regimes > Increased insect outbreaks	increased drought, as Western Screech Owl populations in southwestern Arizona declined 70% in three years during a drought. Changes in the timing of precipitation and warmer temperatures may alter timing of prey availability and abundance, with potential impacts on Western Screech Owl fecundity. Similar to the Northern Spotted Owl, this species may be sensitive to altered disturbance regimes (i.e. fire and insect outbreaks) that lead to habitat changes.
Western Snowy Plover	Moderate- High	Moderate	High	Moderate	> Sea level rise > Increased coastal erosion > Increased storminess/sto rm surge	The dependence of Western Snowy Plovers on coastal beaches and marshes as habitat for breeding and nesting increases their sensitivity to climate change. Sea level rise, beach erosion, and storm surges may cause declines in suitable habitat and decreases in local carrying capacity. Additionally, increased rainfall and storms could lead to declines in nesting success.
White-headed Woodpecker	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased temperatures > Altered fire regimes > Changes in precipitation	Sensitivity of White-headed Woodpeckers is influenced by warmer temperatures and precipitation changes that affect prey availability and habitat extent. Warmer temperatures are linked with higher surface bark insect abundance and enhanced forage opportunities. White-headed Woodpeckers require montane coniferous forests dominated by pines, which may be sensitive to precipitation changes and altered wildfire regimes, although these impacts could benefit the species (e.g. by providing more snags). Higher nesting and incubation success has been associated with warmer temperatures.
White-tailed Ptarmigan	High	High	High	High	> Increases in winter minimum temperatures > Increased temperatures overall	Physiological sensitivity of White-tailed Ptarmigan is likely low-moderate as this species is well-adapted to high altitude climatic variation and harsh conditions, although it has been shown that high winter minimum temperatures can retard population growth rates. The sensitivity of this species will primarily be driven by its dependence on high elevation habitats likely to be affected by or shrink in response to climate change, as well as its dependence on willow for foraging.

BIRDS						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
эрссісэ	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Schistericy
					> Reduced	
					snowpack	
White-winged	Moderate	Moderate	Moderate	Moderate	> Increased	Sensitivity of White-winged Scoters to climate change is primarily
Scoter					ocean	driven by their dependence on coastal estuaries, bays, and open
					temperature	coastlines with shallow water over shellfish beds and/or sand or gravel
					> Sea level rise	bottoms for foraging. Changes in ocean temperature, water chemistry,
					> Declines in	or sea level rise that affect food supply or foraging habitats could
					dissolved	impact this species. White-winged Scoters are a late-nesting species
					oxygen and pH	and may also exhibit reduced flexibility in breeding timing, increasing
						their overall sensitivity to climate change.
Yellow-billed	Low-	Low	Low-	Moderate	> Increased	In Washington, Yellow-billed Cuckoos are likely sensitive to climate
Cuckoo	Moderate		Moderate		temperatures	change through impacts in the availability of food resources. Warming
					> Increased	temperatures may decrease the availability of food resources such as
					drought	lepidopterans and/or lead to earlier spring peaks in food abundance
					and/or	which Yellow-billed Cuckoos may miss. Changes in precipitation or
					temperature	temperature may affect the peak timing of insect emergence or the
					change.	timing of Yellow-billed Cuckoo arrival from wintering grounds,
						resulting in reduced food availability and possible impacts to breeding
						success.

C.2.3 Reptile and Amphibian Vulnerability Rankings

REPTILES AND A	REPTILES AND AMPHIBIANS									
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity				
California Mountain Kingsnake	Low- Moderate	Low	Moderate	Low- Moderate	> Changes in precipitation > Altered fire regimes	No information exists regarding the sensitivity of this species to climate change. Due to its occurrence in moist microhabitats in Oregon white oak-ponderosa pine forest, this species may have some sensitivity to altered precipitation and fire regimes that result in habitat loss or degradation. In Washington, species distribution is extremely small (around 20 miles) and is at the northern extent of the range, and occurrence is isolated and disjunct from the rest of the range by 200 miles.				
Cascade	High	High	High	High	> Increased	Cascade Torrent Salamanders are likely highly sensitive to climate				

REPTILES AND				_		
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Torrent Salamander					temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from snow to rain > Earlier snowmelt	change due to their inability to tolerate desiccation and specialized habitat requirements. Declines in water availability and timing (e.g. reduced snowpack and earlier snow melt), as well as increased sedimentation (e.g. shifts from snow to rain), could decrease suitable headwater habitat for this species. This species may also be physiologically limited by high temperatures.
Columbia Spotted Frog (Columbia Basin only)	Moderate- High	Moderate	Moderate -High	Moderate	> Changes in precipitation (rain and snow) > Altered hydrology	Though there is very limited information available regarding the sensitivity of the Columbia Spotted Frog to climate change, their main sensitivity is likely to stem from any climate-induced changes in their pond and stream breeding habitat. If streams and ponds become drier, this could limit available breeding and juvenile habitat for this species, particularly for juveniles who are unable to travel long distances to more suitable habitat. Changes in precipitation patterns could also affect the Columbia Spotted Frog through alterations in breeding timing, egg survival, and availability of prey. However, predicted increases in temperature and milder winters may positively impact this species, as studies have shown that warmer and less severe winters are linked to increases in survival and breeding probability.
Columbia Torrent Salamander	Moderate- High	Moderate	High	Moderate -High	> Increased temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from snow to rain > Earlier snowmelt	Similar to Cascade Torrent Salamanders, Columbia Torrent Salamanders are likely highly sensitive to climate change due to their inability to tolerate desiccation and specialized habitat requirements. Declines in water availability and timing (e.g. reduced snowpack and earlier snow melt), as well as increased sedimentation (e.g. shifts from snow to rain), could decrease suitable headwater habitat for this species. This species appears to prefer north-facing, steep slopes, suggesting that this species may be sensitive to higher water temperatures and drier microclimates.

REPTILES AND	AMPHIBIANS					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Cope's Giant Salamander	Moderate- High	Moderate	Moderate -High	Moderate -High	> Increased temperatures > Changes in precipitation > Shifts from snow to rain	Cope's Giant Salamanders appear sensitive to temperature and precipitation factors that cause microhabitat desiccation as well as high flow events that degrade aquatic habitat. Elevated temperatures (although one study has shown these salamanders may tolerate a wider temperature range), increased solar radiation, and moisture loss, as well as declines in stream flow that reduce aquatic habitats, will likely negatively affect this species. Additionally, the species' occurrence in rain-on-snow transient zones makes it particularly sensitive to rain-on-snow events that result in high flow events and increased sedimentation. Range contractions are projected for the southern Cascades ecoregion, with possible expansions in the northern Cascades and/or low-mid elevation southern coastal streams.
Dunn's Salamander	Moderate- High	Low	Moderate -High	Moderate	> Increased temperatures > Changes in precipitation > Reduced snowpack > Earlier snowmelt	Little to no information exists regarding sensitivity of the Dunn's Salamander to climate change. This species may exhibit some sensitivity to warmer temperatures; however, its overall sensitivity is likely driven by its dependence on moist microhabitats that could be lost or degraded due to changes in snowpack amount and runoff timing.
Green Sea Turtle	Moderate	Moderate	Moderate -High	Low- Moderate	> Increased temperatures (air and ocean) > Declines in pH	Green Sea Turtles will be sensitive to climate change through a number of pathways. The species may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns, nesting and hatch timing, and prompt mismatches between Green Sea Turtle abundance and prey availability. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and decreases in pH could lead to alterations of macroalgal species that Green Sea Turtles prey upon and limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Green Sea Turtles may allow them to search out different suitable nesting habitat,

REPTILES AND	AMPHIBIANS					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					-	although nesting occurs outside of Washington.
Larch Mountain Salamander	Moderate- High	Moderate	High	Moderate	> Increased temperatures > Changes in precipitation	Sensitivity of Larch Mountain Salamanders to climate change is likely driven by its specialized habitat requirements; it prefers forested talus environments. This species also exhibits physiological sensitivity to temperature and precipitation, seeking out suitable microclimates (e.g. active at the surface during periods of high humidity and moderate temperature) as needed. Warmer and drier conditions could negatively affect this species through loss of suitable habitat, population isolation due to inability to disperse, and/or direct mortality because they depend on moist skin surfaces for oxygen uptake.
Leatherback Sea Turtle	Moderate	Moderate	Moderate -High	Low- Moderate	> Increased temperatures (air and ocean) > Changes in upwelling/circ ulation	Leatherback Sea Turtles will be sensitive to climate change through a number of pathways. They may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns, northward species shift, and alterations in nesting and hatch timing, which could prompt mismatches between Leatherback Sea Turtle abundance and prey availability. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and potential changes in upwelling and ocean circulation could affect the jellyfish that Leatherback Sea Turtles tend to prey upon and limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Leatherback Sea Turtles may allow them to search out different suitable nesting habitat; they have low nest-site fidelity and thus may be able to switch nesting sites depending on conditions, although nesting occurs outside of Washington.
Loggerhead Sea Turtle	Moderate- High	Moderate	Moderate -High	Moderate	> Increased temperatures (air and ocean) > Declines in pH	Loggerhead Sea Turtles will be sensitive to climate change through a number of pathways. They may respond directly to increases in temperature by shifts in sex ratios; warmer temperatures promote higher levels of female young. Increases in sea surface temperature could also lead to changes in migration patterns and alterations in nesting and hatch timing, which could prompt mismatches between turtle abundance and prey availability; Loggerhead Sea Turtles were

REPTILES AND	EPTILES AND AMPHIBIANS										
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity					
						found to have decreased nesting abundance with warmer sea surface temperature. Increases in sand temperature could lead to higher levels of hatchling mortality. Indirectly, increases in sea surface temperature and decreases in pH could affect invertebrates (e.g. crabs, crustaceans, mollusks) that Loggerhead Sea Turtles prey on and potentially limit prey availability. Nesting habitat may also be impacted by sea level rise, increased storms, and coastal inundation, which could lead to lower reproductive success. The broad migratory range of Loggerhead Sea Turtles may allow them to search out different suitable nesting habitat, although nesting does not generally occur in Washington.					
Night Snake	N/A	N/A	Unknown	Moderate	> Altered fire regimes > Increased invasive weeds	No information exists regarding the sensitivity of this species to climate change. Due to a lack of information on status and distribution in Washington, it is also difficult to estimate habitat sensitivities to climate change. In general, individuals associated with shrub-steppe vegetation are sensitive to altered fire regimes and invasive weeds that degrade or eliminate habitat.					
Northern Leopard Frog	Moderate- High	Moderate	Moderate -High	Moderate	> Increased temperatures > Changes in precipitation > Altered hydrology	There is very limited information available regarding the sensitivity of Northern Leopard Frogs to climate change. They may experience some sensitivity to potential increases in temperature, which could lead to earlier timing of mating and breeding. Their sensitivity will be increased by potential climate-induced changes in their pond habitat. Adults need deep water, seasonal ponds, and wetlands for breeding habitat, and potential warmer and drier conditions could lead to declines in available breeding habitat. Drier conditions could even lead to localized population extinctions if breeding ponds become too shallow or disappear completely.					
Olympic Torrent Salamander	High	High	High	Moderate -High	> Increased temperatures (air and water) > Changes in precipitation > Reduced snowpack > Shifts from	Overall sensitivity of this species is likely high due to high physiological sensitivity and specific habitat requirements—they are associated with permanent, high elevation, silt-free cold water sources with steep gradients. Increasing water temperatures and moisture loss will negatively impact this species, as it is desiccation-intolerant and cannot survive where water temperatures are too high. Reduced snowpack and shifts from snow to rain that lead to high flow events, erosion and scouring could reduce headwater riparian habitat for the Olympic Torrent Salamander.					

REPTILES AND A	AMPHIBIANS					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	vullierability	Connuence	Italik	Naiik	snow to rain	
Oregon Spotted Frog	Moderate- High	Low	Moderate -High	Moderate	> Increased temperatures > Changes in precipitation > Altered hydrology	Very limited information is available regarding the sensitivity of the Oregon Spotted Frog to climate change. Its main sensitivity is likely to be due to changes in pond and wetland habitat. This species prefers shallow water ponds and vegetated pools for breeding and tadpole development. Potential warmer and drier conditions could lead to alterations in or disappearance of shallow ponds and changes in vegetation, which could impact breeding and tadpole survival. Additionally, warmer temperatures could lead to increases in invasive warm water predators that prey upon Oregon Spotted Frogs, like American Bullfrogs and some invasive fish species, thus leading to potential population declines.
Pygmy Horned Lizard	Moderate	Low	Moderate	Moderate	> Increased temperatures > Altered fire regimes > Increased invasive weeds	Little to no information exists regarding sensitivity of the Pygmy Horned Lizard to climate change. Physiological sensitivity of this species may be low to moderate, as it is inactive during cold weather or extended periods of heat. It appears to exhibit behavioral thermoregulation and burrows when inactive. Its inability to disperse long distances may increase sensitivity of this species. Overall sensitivity of this species is likely driven by its occurrence in shrubsteppe habitats, which are sensitive to altered fire regimes and invasive weeds.
Ring-necked Snake	Low- Moderate	Low	Low- Moderate	Moderate	> Changes in precipitation (rain and snow) > Altered fire regimes	Overall, there is a lack of information regarding sensitivity of the Ringnecked Snake to climate change. Individuals that occur in shrub-steppe habitats are often associated with riparian areas, and may have higher sensitivity due to drying habitat or altered fire regimes that degrade or eliminate habitat.
Rocky Mountain Tailed Frog	Moderate- High	Moderate	Moderate -High	Moderate -High	> Increased stream temperatures > Changes in precipitation > Altered fire regimes > Altered	Though there is limited information available regarding the sensitivity of the Rocky Mountain Tailed Frog to climate change, particularly for Washington populations, this species may exhibit some sensitivity to predicted increases in stream temperature with climate change. Rocky Mountain Tailed Frogs breed in streams and tadpoles spend many summers in stream habitat. Increases in stream temperature during the summer could lead to declines in tadpoles and adults. Both adults and juveniles may be able to avoid summer increases by migrating to

REPTILES AND		0	Camaini ii	- F		
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					hydrology (i.e. increased flooding)	areas of the stream with cooler water, and some studies have shown an ability to withstand increases in stream temperature. Additionally, potential warmer and drier conditions and increases in wildfires could alter this species' preferred forest habitat and lead to reductions in population size. Increases in winter and spring precipitation could also lead to increased flooding events, disturbing available habitat for juveniles.
Sagebrush Lizard	Moderate- High	Low	Moderate -High	Moderate	> Altered fire regimes > Increased invasive weeds	Little to no information exists regarding sensitivity of the Sagebrush Lizard to climate change. It is likely that their overall sensitivity is greater since they are vegetated sand dune specialists. This habitat is vulnerable to invasive grasses or altered fire regimes that eliminate habitat.
Sharp-tailed Snake	Moderate	Low	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	Overall, there is a lack of information regarding sensitivity of the Sharptailed Snake to climate change. Sensitivity of this species may be influenced by its occurrence along edges of coniferous or open hardwood forest, which are sensitive to warming temperatures, moisture stress, and changing fire patterns. This species may also exhibit some sensitivity to warmer temperatures and changes in precipitation since they are often associated with moist habitats.
Side-blotched Lizard	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes > Increased invasive weeds	Side-blotched Lizards appear to exhibit low reproductive sensitivity to climate, as warming temperatures (particularly warmer nights during breeding season) may increase reproductive output and subsequent survival. Further, Side-blotched Lizards appear to select specific temperature microhabitats, indicating behavioral thermoregulation. However, this species may exhibit some physiological sensitivity to changes in precipitation and warming winter temperatures (e.g. if warmer temperatures increase energetic demands). Overall sensitivity of this species is somewhat higher due to its association with shrubsteppe habitats, which are sensitive to altered fire regimes and invasive weeds that degrade or eliminate habitat.
Striped Whipsnake	Low- Moderate	Low	Low- Moderate	Moderate	> Changes in precipitation > Increased invasive weeds	Overall, there is a lack of information regarding sensitivity of the Striped Whipsnake to climate change. Sensitivity of this species may be influenced by its occurrence in shrub-steppe habitats, which are sensitive to changes in precipitation, invasive weeds, and altered fire regimes.

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	, , , , , ,		-	-	> Altered fire	
					regimes	
Tiger Salamander	Moderate- High	High	High	Moderate	> Increased temperatures > Changes in precipitation and/or reduced snowpack > Drought	Little information exists regarding sensitivity of the Tiger Salamander to climate change, particularly in Washington. This species likely exhibits sensitivity to warmer and drier conditions that reduce aquatic breeding habitat, lead to desiccation, and/or result in an inability to move. Warmer temperatures and a decrease in total annual precipitation (including snow), as well as an increase in drought, has led to wetland desiccation and significant population declines in Yellowstone National Park. Timing of reproduction may also be affected by increasing
Van Dyke's Salamander	Moderate- High	Moderate	High	Moderate	> Increased temperatures > Changes in precipitation > Reduced snowpack	temperatures. Van Dyke's Salamanders are physiologically sensitive to heat and desiccation; this sensitivity to temperature and moisture changes is driven by respiration requirements; they depend on moist skin surfaces for oxygen uptake, although they can behaviorally regulate exposure by moving underground during times of higher temperatures and less precipitation. Sensitivity of this species is further increased due to their requirement of cool, forested stream habitat. Changes in hydrology (e.g. declines in snowpack or precipitation) that reduce seeps and springs habitat could negatively impact this species.
Western Pond Turtle	Low- Moderate	Low	Low- Moderate	Moderate	> Increased temperatures > Changes in precipitation (rain and snow) > Altered hydrology > Increased invasive weeds	Overall, there is a lack of information regarding sensitivity of the Western Pond Turtle to climate change. Sensitivity of this species may be affected by warming temperatures that influence offspring sex ratios, increasing the number of females even with small increases in temperature (<3°F). However, it is possible that warming could benefit this species by providing more warm days for developing embryos, as Western Pond Turtles in Puget Sound are at the northern extreme of their range. Their dependence on aquatic habitats increases sensitivity of this species, as these habitats are likely to be affected by increasing temperatures and altered hydrology. Invasive weeds that overgrow nesting areas further increase sensitivity of this species.
Western Toad (W WA only)	Moderate	Moderate	Moderate to Moderate -High w/	Moderate	> Changes in precipitation (rain and snow)	Sensitivity of the Western Toad to climate change is primarily driven by its dependence on intermittent and permanent aquatic habitats (e.g. streams, seeps, wetlands, ponds, etc.) that may be lost or degraded due to changes in precipitation and altered hydrology. Desiccation of

REPTILES AND	EPTILES AND AMPHIBIANS										
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity					
			synergistic impacts		> Altered hydrology	streams and pools along dispersal routes may create barriers to movement. Synergistic impacts such as climate changes combined with disease outbreaks increases sensitivity of this species. Physiological sensitivity of this species is unclear—some references cite sensitivities to temperature and moisture conditions, while others cite high adaptability to changes in these conditions. Greatest impacts to montane wetland-reliant taxa will most likely occur when landscapes primarily contain shallow wetlands at high risk of drying and are composed of multiple wetland types but deeper habitats are unsuitable (e.g. presence of introduced fish)					
Woodhouse's Toad	Moderate- High	Moderate	Moderate -High	Moderate	> Increased temperatures > Changes in precipitation > Increased invasive weeds > Altered fire regimes	Juvenile toads avoid high temperatures and prefer lower temperatures when food is limited or under dry conditions. Tadpoles may be sensitive to low pH levels. Woodhouse's Toad may be better adapted to warmer, drier conditions due to their dry, leathery skin and ability to burrow to reduce exposure to high temperatures, although they need friable soils to burrow. Sensitivity of Woodhouse's Toad is greater due to their shrubland habitat specialization and dependence on wetlands and ponds for breeding, as well as low ability to disperse. Declines in shrub-steppe and wetland habitats due to climate change (i.e. changes in precipitation, invasive weeds, altered fire regimes) negatively affect this species.					

C.2.4 Fish Vulnerability Rankings

FISH	FISH									
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity				
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity				
Bluntnose	Low-	High	Low-	Moderate	> Increased	Though limited information is available regarding the sensitivity of				
Sixgill Shark	Moderate		Moderate		ocean	Bluntnose Sixgill Sharks to climate change (particularly in Washington),				
					temperatures	there are a number of ways in which this species may be sensitive to				
					> Decreased	changing ocean conditions. In general, increases in temperature may				
					oxygen	affect movement and migration patterns. The use of Puget Sound by				
						juvenile Bluntnose Sixgill Sharks and their high site fidelity within Puget				

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Sound could make them sensitive to climate-related changes, such as increases in temperature or potential decreases in oxygen, which could potentially lead to declines in prey availability (e.g. other sharks and rays, fish). Because they are scavengers that target a wide range of prey, they may be able to shift prey species due to changes in abundance, but the high site fidelity of juveniles within Puget Sound, as well as their life history characteristics (slow growth, long generation times, low fecundity) may increase their sensitivity to climate-induced changes in Puget Sound. However, it appears Puget Sound Bluntnose Sixgill Sharks are part of a larger, much more broadly distributed population, suggesting possible resilience to climate impacts.
Bocaccio (Puget Sound/Georgi a Basin DPS)	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Bocaccio to climate change is likely to stem from changes to their prey base and resultant reductions in the likelihood of successful recruitment events. Warmer ocean conditions could lead to decreases in prey (e.g. krill, copepods) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Warmer waters could also lead to decreased success of recruitment events. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult Bocaccio use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Bocaccio, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Broadnose Sevengill Shark	Moderate	Moderate	Moderate	Moderate	> Increased ocean temperatures > Altered circulation patterns > Decreased	Though limited information is available regarding the sensitivity of Broadnose Sevengill Sharks to climate change (particularly in Washington), there are a number of ways in which this species may be sensitive to changing ocean conditions. In general, increases in temperature may affect movement and migration patterns of sharks. Currently the warmer summer waters of Willapa Bay, where most Broadnose Sevengill Sharks are found, are thought to have foraging and

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					oxygen	reproductive benefits for sharks, but shifts in temperature, changes in ocean circulation that lead to decreased productivity, or decreases in oxygen and resulting declines in prey availability could make this area less optimal. Because Broadnose Sevengill Sharks target a broad range of prey, they may be more adaptable to shifts in prey composition, but their high site fidelity to particular areas in Willapa Bay, as well as their life history characteristics (slow growth, long generation times, low fecundity) may increase their sensitivity to any climate-induced changes in habitat conditions. Overall, the generalist nature of their diet, ability to migrate to and from California and use diverse estuaries, and general hardiness suggest limited climate-related impacts.
Brown Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Brown Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Brown Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Bull Trout - Coastal Recovery Unit	Moderate- High	High	Moderate- High	Moderate	> Increased water temperatures > Altered runoff timing > Increased winter/spring flood events > Lower	Sensitivity of Bull Trout is primarily driven by water temperature. Bull Trout are the southernmost species of Western North American char and have lower thermal tolerance than other salmonids they co-occur with. The upper incipient lethal temperature for Bull Trout was found to be 70°F, whereas the optimal temperatures for growth were in the range of 50-59°F. Thus Bull Trout have a similar thermal optima to the salmonids they co-occur with, yet a lower thermal tolerance, indicating they have a narrower thermal niche and higher sensitivity to temperature. Indeed the geographic distribution of Bull Trout, and the

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					summer flows	persistence of populations during contemporary warming has been most strongly related to maximum water temperature. The ability of Bull Trout to persist in sub-optimally warm temperatures likely depends on food abundance. As temperature increases metabolic costs, the extent to which Bull Trout can maintain positive energy balance depends on its ability to find food. Bull Trout historically relied heavily on salmon as a food resource and may be less resilient to temperatures in areas where foraging opportunities of salmon eggs and juveniles have declined. Invasive chars (Brook and Lake Trout) now reside in many headwater streams and lakes, and may exclude Bull Trout from these potential coldwater refuges, increasing their sensitivity to warming. Bull Trout sensitivity to flows is likely to occur during two critical periods: 1) direct effects of altered runoff timing and magnitude on emerging fry in late winter/spring, and 2) indirect effects of low summer flows on all life phases of Bull Trout by mediating the duration and magnitude of thermal stress events.
Bull Trout - Mid-Columbia Recovery Unit	Moderate- High	High	Moderate- High	Moderate	> Increased water temperatures > Altered runoff timing > Increased winter/spring flood events > Lower summer flows	Sensitivity of Bull Trout is primarily driven by water temperature. Bull Trout are the southernmost species of Western North American char and have lower thermal tolerance than other salmonids they co-occur with. The upper incipient lethal temperature for Bull Trout was found to be 70°F, whereas the optimal temperatures for growth were in the range of 50-59°F. Thus Bull Trout have a similar thermal optima to the salmonids they co-occur with, yet a lower thermal tolerance, indicating they have a narrower thermal niche and higher sensitivity to temperature. Indeed the geographic distribution of Bull Trout, and the persistence of populations during contemporary warming has been most strongly related to maximum water temperature. The ability of Bull Trout to persist in sub-optimally warm temperatures likely depends on food abundance. As temperature increases metabolic costs, the extent to which Bull Trout can maintain positive energy balance depends on its ability to find food. Bull Trout historically relied heavily on salmon as a food resource and may be less resilient to temperatures in areas where foraging opportunities of salmon eggs and juveniles have declined. Invasive chars (Brook and Lake trout) now reside in many headwater streams and lakes, and may exclude Bull Trout from these

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						potential coldwater refuges, increasing their sensitivity to warming. Bull Trout sensitivity to flows is likely to occur during two critical periods: 1) direct effects of altered runoff timing and magnitude on emerging fry in late winter/spring, and 2) indirect effects of low summer flows on all life phases of Bull Trout by mediating the duration and magnitude of thermal stress events.
Burbot	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Altered flow regimes	Burbot is a cold-adapted species whose distribution, behavior, and physiology is limited by warmer water temperatures. Warmer water temperatures limit dispersal to more southerly locations and influence behavior and physiology in current habitat. Burbot have been documented to seek out cool-water thermal refugia near lake inflows, and warmer water temperatures have been documented to decrease survival and have variable impacts on growth of hatchery-raised individuals. Shifts in streamflow may affect spawning migrations and/or spawning synchrony of this winter-spawning species. For example, reduced streamflows and lake/reservoir levels can reduce or degrade spawning and rearing habitat, while high winter flows may impede upstream movements of adult Burbot.
Canary Rockfish (Puget Sound/Georgi a Basin DPS)	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Canary Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods, crustaceans, euphausiid eggs) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Canary Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
China Rockfish	Moderate-	Moderate	Moderate	Moderate-	> Increased	The main sensitivity of China Rockfish to climate change is likely to stem

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	High			High	ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on China Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Columbia River Chum Salmon ESU	Moderate	High	Moderate	Moderate	> Increased water temperatures (freshwater and sea surface) > Increased winter/spring flood events	Washington is near the southern extent of the geographic range for chum salmon, which suggests they may be sensitive to increases in water temperature (freshwater and ocean). Chum salmon incubate embryos in freshwater, but juveniles migrate to estuaries as age-zeros, typically during the spring; the spawning migrations of adult fish typically occur in late fall. Thus Columbia River chum salmon are unlikely to be exposed to thermal stress in the freshwater phase of their life history. However, altered freshwater thermal regimes could affect chum salmon by altering their phenology and potentially creating mismatch between arrival in estuaries and the timing of ideal ecological conditions in estuarine habitats. Chum salmon will likely be most sensitive to changes in marine thermal regimes. In general, Pacific salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. However, recent evidence suggests that chum salmon may be less sensitive to SST at the southern extent of their range compared with pink and sockeye. Chum salmon spawn in late fall at southern latitudes and their embryos are vulnerable to flood events that can scour redds or bury them in silt. Chum may be vulnerable to altered flow regimes that include increased flood severity, particularly in watersheds where land use has enhanced stream flashiness.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Copper Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Copper Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Copper Rockfish, leading to higher levels of mortality across various life stages; in the past, Copper Rockfish have exhibited high mortality rates during extreme hypoxic events. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Eulachon (southern DPS)	Moderate- High	Moderate	High	Moderate	> Altered runoff timing and magnitude > Increased water temperatures (fresh and ocean)	Eulachon are vulnerable to climate-driven changes in both their oceanic rearing and freshwater spawning habitat. Eulachon exhibit site fidelity to specific spawning rivers, limiting the opportunity for adults and juveniles to move in response to changing nearshore-rearing and spawning habitat conditions. Eulachon spawn prior to the spring freshet, and egg hatch is correlated with peak spring flows to facilitate emigration. Precipitation changes, reduced snowpack, and earlier snowmelt all contribute to shifts in streamflow timing and magnitude, which could alter Eulachon spawning time and/or cause earlier emigration. Early emigration could contribute to oceanic prey mismatch and Eulachon mortality if larvae/juveniles arrive to marine rearing habitat prior to coastal upwelling initiation, which is projected to occur later in response to warmer ocean temperatures. Warming ocean temperatures may also affect eulachon forage opportunities and marine survival by affecting the abundance and composition of copepod communities, key prey for larval eulachon. Warming ocean temperatures have also facilitated the expansion of Pacific Hake, which prey upon and compete with Eulachon.
Green	Low-	Low	Low-	Moderate	> Increased	Limited information is available regarding the sensitivity of Green

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Sturgeon (southern DPS)	Moderate		Moderate		ocean temperatures > Declines in pH	Sturgeon to climate change (particularly in Washington). Green Sturgeon are wide-ranging migrants, spawning in California and appearing in Washington's coastal waters, estuaries and watersheds in late summer. Although they may be sensitive to hydrological and temperature shifts in their natal watersheds, vulnerability to climate change in Washington is likely linked with changes in the marine environment. In general, water temperatures influence fish distribution, physiology, and biology. Green Sturgeon likely exhibit some physiological sensitivity to water temperature increases. A study in the Klamath and Rogue River basins found that bioenergetic performance peaked at water temperatures between 59-66°F. A separate study theorized that Green Sturgeon utilize warmer estuarine habitats in Washington during summer to maximize growth potential. Climate change impacts (e.g. decreased pH) may also affect Green Sturgeon prey (e.g. benthic organisms such as shrimp, amphipods, small fish, mollusks).
Greenstriped Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Decreased oxygen	The main sensitivity of Greenstriped Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods, larger crustaceans and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. As Greenstriped Rockfish tend to prefer soft sediment and muddy, sandy areas as habitat, they will be less sensitive to loss of deepwater coral habitat due to decreased pH than other rockfish species. Decreased oxygen levels may have direct physiological effects on Greenstriped Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Hood Canal	Moderate-	High	Moderate-	Moderate-	> Increased	Washington is near the southern extent of the geographic range for
Summer	High		High	High	water	chum salmon, which suggests they may be sensitive to increases in

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Chum Salmon ESU					temperatures (freshwater and sea surface) > Increased winter/spring flood events > Lower summer flows	water temperature (freshwater and ocean). Chum salmon incubate embryos in freshwater, but juveniles migrate to estuaries as age-zeros, typically during the spring; the spawning migrations of adult fish typically occur in early fall. Thus Chum Salmon may be sensitive to lower summer flows during adult migration to spawning areas. Altered freshwater thermal regimes could affect chum salmon by altering their phenology and potentially creating mismatch between arrival in estuaries and the timing of ideal ecological conditions in estuarine habitats. Chum Salmon will likely be most sensitive to changes in marine thermal regimes. In general, Pacific Salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. However, recent evidence suggests that Chum Salmon may be less sensitive to SST at the southern extent of their range compared with Pink and Sockeye. Chum Salmon embryos are vulnerable to flood events that can scour redds or bury them in silt. Chum may be vulnerable to altered flow regimes that include increased flood severity, particularly in watersheds where land use has enhanced stream flashiness.
Inland Redband Trout (landlocked populations)	Moderate- High	Low	Moderate	Moderate- High	> Increased water temperatures > Altered timing/magni tude of spring runoff > Lower summer flows	In general, there is little information on Inland Redband Trout sensitivity to climate change. Inland Redband Trout are likely sensitive to increasing water temperatures and altered flow regimes. While Inland Redband Trout can persist in desert streams that often exceed 68°F through what appears to be local physiological adaptation, increased water temperatures pose a threat to this species because though their thermal optima is higher than other salmonids, their thermal maxima is similar. Further, warming temperatures may lead to increased nonnative species invasion or competition with native "cool water" fishes such as cyprinids and catostomids. Inland Redband Trout spawn in the spring, thus their embryos and recently emerged fry may be sensitive to changes in the timing and magnitude of spring runoff. Lower summer flows may decrease habitat volume and access to headwater reaches for this species. Inland Redband Trout exhibit broad phenotypic (e.g. age at maturity, frequency and timing of spawning, temperature tolerance, etc.) and life history diversity, which may decrease overall sensitivity of this species.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Lake Chub	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Altered flow regimes > Increased sedimentatio n	Although little information regarding the sensitivity of Lake Chub to climate change is available for Washington, analyses from other regions (e.g. Wyoming, South Dakota, Colorado) indicate that this species may be vulnerable to changes in water temperature, water levels, and turbidity. Lake Chub occupy cool, clear water, spawn in stream or lake margins, and are obligatory sight feeders. Water temperatures affect developmental rates and likely influence spawning timing. Shifting flow regimes (including low flows and flood frequency/ magnitudes), drought conditions, and warming temperatures could affect rearing success and adult survival, particularly for fragmented or isolated populations. In addition, post-wildfire sedimentation could affect water turbidity and affect foraging success.
Leopard Dace	Moderate- High	Low	Moderate	Moderate- High	> Increased water temperatures > Lower summer flows > Altered timing/magni tude of spring floods	Although little information is available regarding the sensitivity of Leopard Dace to climate change (particularly in Washington), as a coolwater associate, this species is likely sensitive to increasing water temperatures (upper lethal limit is 73°F). As a summer spawning species that occupies creeks, shallow lacustrine habitats, and low- to mediumsized rivers, Leopard Dace may also be vulnerable to decreasing summer streamflows, particularly if they exacerbate temperature increases. Increasing temperatures and shifting flow and flood regimes may also affect prey availability (e.g. aquatic insect larvae, earthworms). For example, spring floods were found to be a key delivery mechanism of earthworms, which constitute a large portion of Leopard Dace spring diet.
Lower Columbia Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	
					•	adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors.
						Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to 3 years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures.
						The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	Exposure	
	vullerability	Communice	Nain	Kalik	LAPOSUIE	metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type individuals migrate during the cooler months of the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in late summer and fall, but spawn immediately afterward and therefore spend much less time running negative energy budgets in freshwater. Thus stream-type adults are relatively more vulnerable to heat stress and energy demands during summer residence, whereas ocean-type adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example,

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
эрссісэ	Vulnerability	Confidence	Rank	Rank	Exposure	
						floods has been linked to decreased egg-to-fry survival in Washington.
						Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean—this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Lower Columbia	Moderate- High	High	Moderate- High	Moderate- High	> Increased water	In general, Coho Salmon likely exhibit sensitivity to warmer water temperatures (freshwater and ocean) and lower summer flows.
Coho ESU	5		J	J	temperatures (freshwater and sea surface) > Lower summer	Freshwater temperature and flow regimes: Central California represents the southern extent of the range for Coho Salmon, suggesting that they may be less sensitive to increases in water temperature than other species of Pacific Salmon (i.e. pink, chum, and sockeye). However, due to their reliance on streams for freshwater rearing, Coho are likely

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					flows	sensitive to both altered flow and thermal regimes. Juveniles prefer low-velocity habitat often in off-channel areas; reduced summer flows may increase the likelihood that such off-channel habitats become inaccessible, thermally stressful, or hypoxic.
						Early run timing individuals might be more sensitive to fall flood events, which are projected to increase in Washington, and may also be more sensitive to warmer water temperatures and lower flows during peak migration timing (i.e. mid-August to September). Later run timing individuals should be less sensitive because they migrate as adults during cooler periods of the year and their embryos are not yet buried in the gravel during late fall flooding. However, late run individuals may be more likely to have embryos or recently emerged fry threatened by spring flooding that is predicted to increase in severity and frequency.
						In general, Coho Salmon populations may be less resilient to episodic mortality events caused by climate stressors, because they exhibit only moderate levels of life history diversity and do not have as much variation in age at maturity as do Sockeye Salmon and Chinook Salmon.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Coho Salmon, while warm PDO cycles coincided with declines in salmon numbers. Cooler SSTs during the winter prior to and after smolt migration have also been linked to higher Coho survival. In general, changes in coastal ocean habitat quality and productivity could negatively impact Coho Salmon.
Lower Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	Vullerability	Confidence	Kalik	RdIIK	nitude > Increased water temperatures > Lower summer flows	Steelhead may also exhibit some sensitivity to warming water temperatures. Direct measures of Oncorhynchus mykiss thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause Steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids—Steelhead occur in Southern California, farther south than any Pacific Salmon. Further, the resident life history form of steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology. Similar to Chinook Salmon, steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of Steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run Steelhead during the several months that they hold in streams prior to spawning.
						The existence of a resident life history form likely buffers Steelhead

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Margined Sculpin	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures	Little information is available regarding the sensitivity of Margined Sculpin to climate change. Margined Sculpin likely prefer aquatic habitat with water temperatures below 68°F; they can withstand short exposure to 77°F water temperatures, but experience mortality at and above 80°F. Margined Sculpin are largely associated with pools and deeper habitats, although more recent studies indicate they may exhibit broader habitat usage than previously thought. However, a limited distribution (they are found in only a few drainages in Washington) likely limits their ability to move in response to climate change and human land use impacts (e.g. sedimentation, channelization, and water pollution related to logging, agriculture, development, and grazing).
Middle Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate	> Altered spring runoff timing and amount/mag nitude > Increased water temperatures > Lower summer flows	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not predicted to negatively affect steelhead. Steelhead may also exhibit some sensitivity to warming water temperatures. Direct measures of <i>Steelhead</i> thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to
						use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids—Steelhead occur in Southern California, farther south than any Pacific

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
эресіез	Vulnerability	Confidence	Rank	Rank	Exposure	· · ·
						Salmon. Further, the resident life history form of Steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology. Similar to Chinook Salmon, steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of Steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run Steelhead during the several months that they hold in streams prior to spawning. The existence of a resident life history form likely buffers Steelhead from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while
						they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Mountain Sucker	Low- Moderate	Low	Low- Moderate	Moderate	> Increased water temperatures > Altered flow regimes	Little information is available regarding the sensitivity of Mountain Sucker to climate change. Spawning typically occurs during mid- to late-summer during stable low flows and in water temperatures between 52-66°F. Warming water temperatures may affect spawning timing and other physiological and life history components of Mountain Sucker, including length of egg incubation. Floods, droughts, and altered streamflow volume likely impact egg and juvenile survival, availability of spawning habitat, and/or food availability (i.e. algae). Wildfires and resultant effects on stream temperatures, turbidity, and flow volumes may affect the quality and availability of mountain sucker habitat, but further information is needed.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Olympic Mudminnow	Moderate	Low	Moderate	Moderate	> Increased high flood events	Olympic Mudminnows occupy slow-moving streams, ponds, and freshwater wetlands at lower elevations with minimal water flow and ample aquatic vegetation. This species appears to be fairly tolerant of temperature and oxygen fluctuations, but has been documented to seek out cooler water temperatures and shaded areas during summer temperature peaks. Relative intolerance of swift water limits Olympic Mudminnow distribution to lowland areas, and in combination with salinity intolerance, may make them vulnerable to sea level rise and saltwater intrusion in current wetland habitat, although no studies examining this risk have been conducted. This species is likely to be sensitive to any hydrological shifts (e.g. low flows, flood timing and magnitude, altered sediment delivery) that affect freshwater wetland availability, function, and composition.
Ozette Sockeye ESU	Moderate	Low	Moderate	Moderate	> Increased water temperatures (freshwater and sea surface) > Increased winter/spring flood events	In general, sockeye salmon likely exhibit sensitivity to warmer water temperatures (freshwater and sea surface) and increased severity or frequency of winter/spring flood events. Washington is near the southern extent of the range for Sockeye Salmon, suggesting that they will be sensitive to increases in water temperature (freshwater and ocean). For example, even at the northern extent of their range in Alaska, sockeye salmon in shallow, non-stratified lakes may be thermally stressed in the summer. In Washington, Sockeye generally rear in deep, thermally stratified lakes and can move below the thermocline if surface waters become thermally unsuitable. This suggests that Sockeye may be less sensitive to temperature during the freshwater phase of their life history, as they are able to behaviorally thermoregulate. Additionally, sockeye may be somewhat more buffered from metabolic stresses associated with warmer water temperatures because lake food webs are generally more productive than that of streams. In general, Pacific salmon survival is positively related to sea surface temperatures (SST) at the northern extent of their distribution, and negatively related at the southern extent. Indeed, recent research suggests that survival rates of sockeye salmon are strongly affected by variations in regional SST during early ocean life, with lower survival rates during years with warm SST anomalies (however, the mechanisms driving this trend may be upwelling and marine productivity rather than temperature per se).

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. Sockeye Salmon are also likely sensitive to winter flood events that can scour substrates or move gravel and silts to bury embryos. Increased severity of winter floods has been linked to decreased egg-to-fry survival in fall-spawning Pacific salmon of Washington.
Pacific Cod (Salish Sea population)	High	High	High	Moderate- High	> Increased ocean temperatures	Though limited information is available regarding the sensitivity of the Salish Sea population of Pacific Cod to climate change, their main sensitivity will be due to potential increases in sea surface temperature. Pacific Cod spawning and recruitment are strongly linked to temperature, with colder water supporting larger hatch size and maximizing growth performance. Cooler waters also support higher abundance of zooplankton prey (e.g. copepods), which is thought to be linked to increased recruitment. Temperature over 45°F appear to be associated with poor spawning success and limited recruitment. For Atlantic Cod, declines in recruitment with increasing temperature were particularly high for cod at the limits of their distribution. Pacific Cod in Washington are already at the upper end of their thermal preference, which is likely to increase their sensitivity to any increases in temperature and could lead to northward population shifts.
Pacific Hake (Georgia Basin DPS)	Low- Moderate	Moderate	Low- Moderate	Moderate	> Increased ocean temperatures > Altered upwelling patterns	Pacific Hake are unlikely to experience direct physiological sensitivity to climate change. However, increases in sea surface temperature, changes in upwelling patterns, and the associated changes that these trigger in zooplankton abundance will increase their sensitivity. Pacific Hake have already been documented as moving northward into Canadian waters; this shift is thought to be linked to higher food abundance in more northerly waters. Pacific Hake primarily target euphausiids, which often decline in abundance with warmer water conditions. Potential increases in water temperature could lead to decreases in euphausiid prey, declines in recruitment, and further northward shifts of Pacific Hake.
Pacific Herring (Georgia Basin	Moderate- High	High	Moderate	Moderate- High	> Increased ocean	A main way in which Pacific Herring will be sensitive to climate change is through change in their prey availability and the distribution of

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
DPS)					temperatures > Altered upwelling patterns > Changes in salinity > Saltwater intrusion in estuarine habitat	appropriate spawning habitat. Primary and secondary productivity are strongly linked to juvenile abundance, as juveniles tend to prey on zooplankton (e.g. copepods). Predicted increases in sea surface temperature and changes in upwelling, such as delayed and shorter upwelling seasons, could affect the timing and abundance of available prey for juveniles, though the magnitude of these effects is uncertain. In Washington, Pacific Herring populations have already shown northward movement for spawning and smaller juvenile cohorts, and these patterns could increase with predicted increases in sea surface temperature. Increased temperatures could also lead to northward shifts and increased abundance of Pacific Hake, which prey upon Pacific Herring and could thus lead to population declines through increased predation. Pacific Herring will also be sensitive to potential changes in nearshore and estuarine spawning habitat, such as increased salinity due to sea level rise and saltwater intrusion in estuaries, which could create suboptimal conditions for spawning and larval growth. Additionally, the suite of vegetative species used by this species as spawning substrate could change with long-term variation in water temperature and acidity. The prevalence and composition of this algal mat could result in degradation of spawning habitat to a degree that ultimately reduces incubation success.
Pacific Lamprey	Moderate- High	Moderate	Moderate- High	Moderate- High	> Increased water temperatures > Lower summer/fall flows > Increased winter flood events > Altered fire regimes	Pacific Lamprey exhibit physiological sensitivity to warming water temperatures. Egg and ammocoete survival is lowest and larval deformations most common at 72°F relative to lower water temperatures. Warmer summer water temperatures (>68°F) have also been found to compound adult body size reductions and accelerate sexual maturation and post-spawning death the following spring. All life stages of Pacific Lamprey are likely vulnerable to shifting flow regimes due to reduced snowpack, earlier snowmelt, and shifting precipitation regimes. Warmer water temperatures and low summer and fall flows can affect adult spawning migration timing (i.e. migration occurs earlier in warmer, lower flow years) and/or inhibit adult migrations upriver by constricting channels or causing thermal barriers. Reduced streamflows can also limit or degrade floodplain habitat for spawning and rearing by elevating water temperatures and/or contributing to juvenile and nest

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Pacific Sand	Moderate-	Moderate	Moderate	Moderate-	> Increased	stranding and desiccation. Juvenile Pacific Lamprey, which occupy low velocity stream margins, and Pacific Lamprey nests, which are found in low gradient stream reaches, may also be vulnerable to scouring via winter flood events. Wildfire may also affect survival and rearing by reducing stream shading; high shade is correlated with higher Pacific Lamprey ammocoete abundance. Climate-driven changes in the marine environment may also affect Pacific Lamprey, but little is known about this part of their life stage. Though there is limited information regarding the sensitivity of Pacific
Lance	High	Moderate	Noderate	High	air and ocean temperatures > Decreased oxygen > Sea level rise > Increased coastal erosion	Sand Lance to climate change, their sensitivity is likely to stem from climate-induced changes in their intertidal spawning habitat and changes in prey distribution and abundance. Increasing air and sea surface temperatures could lead to suboptimal sediment temperature and lower oxygen conditions in sediments where Pacific Sand Lance prefer to burrow, forcing them to emerge from the sediment and making them more susceptible to predation. Pacific Sand Lance tend to return to the same burrowing sediment habitat interannual, so changes in nearshore habitat (e.g. due to rising sea level or coastal erosion from increased storms) could limit burrowing and spawning habitat availability. Increasing sea surface temperature could also lead to declines and changes in distribution in zooplankton, limited prey availability for sand lance, and decreased recruitment.
Puget Sound Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	· · ·
						time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. Puget Sound Chinook Salmon may be more sensitive to warmer summer temperatures and lower flows, as their spawning migration encounters the warmest part of the watershed (the downstream portion) during the warmer part of the year (later summer and early fall). Cool tributaries may provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures.
						Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Puget Sound Chinook Salmon rear in streams for up to 1 year, they may be vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run
						Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (stream-

FISH						
Cassias	Overall	Overall	Sensitivity	Exposure	Summary of	Common of Consistivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington. Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Puget Sound Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag nitude > Increased water temperatures > Increased flood events and associated sedimentatio	In general, Steelhead appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows (particularly summer and early fall) can reduce the probability of survival in rearing juveniles. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Steelhead may be able to shift the timing of a life stage transition to reduce the probability of exposure to changes in temperature or flow through phenotypic plasticity. Similar to Chinook Salmon, Steelhead exhibit alternative life histories in
					sedimentatio n and/or scour > Lower summer	regards to Chinook Salmon, Steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					flows	during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run steelhead during the several months that they hold in streams prior to spawning. The existence of a resident life history form likely buffers Steelhead from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes. Temperature: Steelhead may exhibit some sensitivity to warming water temperatures. Direct measures of steelhead thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of redband rainbow trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, Steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of Steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids—Steelhead occur in Southern California, farther south than any Pacific Salmon. Further, the resident life history form of Steelhead can persist in desert streams that often exceed 68°C through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology.
						fry may be sensitive to the timing and magnitude of spring runoff rather

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not predicted to negatively affect Steelhead. Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids.
Pygmy Whitefish	Low- Moderate	Low	Low- Moderate	Moderate	> Increased water temperatures > Altered fire regimes	Pygmy Whitefish occupy cool lakes and streams with temperatures below 50°F, and are likely adapted to cold and low-productivity environments (i.e. small size, early maturation), making them sensitive to increasing water temperatures. Warmer water temperatures may have direct physiological effects, allow upstream expansion of some populations (provided no barriers exist) and/or affect ecological interactions by expanding the range of potential predators or competitors. Wildfires that remove stream- or lakeside vegetation may exacerbate temperature increases and/or contribute to sedimentation, which can affect spawning habitat.
Quillback Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Quillback Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods for juveniles, larger crustaceans, small fish, and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Quillback Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.

FISH			_			
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Redstripe Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Redstripe Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. copepods for juveniles, larger crustaceans, small fish, and cephalopods for adults) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Redstripe Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
River Lamprey	Moderate- High	Low	Moderate- High	Moderate	> Increased water temperatures (fresh and ocean) > Lower summer/fall flows > Increased winter flood events	Little is known about River Lamprey vulnerability to climate change (particularly in Washington), but they likely have similar vulnerability to Pacific Lamprey because they exhibit similar life history stages (spawning, rearing, and migration), although they typically occupy larger rivers at lower elevations. Rearing individuals may be vulnerable to shifts in flow regimes (e.g. desiccation or stranding due to low flows, enhanced scouring from high flows) and water quality (e.g. temperature increases), and adult River Lamprey may also be vulnerable to temperature and migration barriers resulting from reduced streamflows. Changes in the marine and estuarine environment that affect River Lamprey hosts (e.g. Pacific Herring, Surf Smelt) will likely affect the marine survival of this species.
Salish Sucker	Moderate- High	Moderate	Moderate	Moderate- High	> Lower summer flows > Increased high flood events (frequency	Salish Suckers occupy lakes and pools of headwater streams, spawn in riffles, and prefer long/deep pools with slower water velocities that are adjacent to shallow habitat with abundant vegetation (i.e. in-stream and over-stream cover). They are likely sensitive to climate-driven changes in habitat availability and quality. Declining summer and spring streamflows may affect pool length and depth, availability of spawning areas, and/or habitat connectivity. Altered riparian cover due to wildfire

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and magnitude) > Decreased oxygen	and land use changes can affect rearing habitat availability and quality and exacerbate increasing water temperatures. Altered flood frequencies or magnitudes may also affect this species, particularly if off-channel refugia is not available. Salish Suckers appear to be fairly tolerant of various water temperatures; spawning typically begins around 45-46°F, but has been documented in water temperatures up to 68°F. However, sublethal effects of warmer water temperatures are unknown (e.g. impacts on growth, fecundity, disease incidence). Hypoxic conditions are increasingly threatening this species, and are exacerbated by warmer water temperatures and streamflow reductions.
Snake River Spring/Summ er Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration.
						Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors.
						Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures.
						The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type individuals migrate during the cooler months of

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in late summer and fall, but spawn immediately afterward and therefore spend much less time running negative energy budgets in freshwater. Thus stream-type adults are relatively more vulnerable to heat stress and energy demands during summer residence, whereas ocean-type adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams
						migrating adults. Mass mortality events in both fall and spring-run Chinook Salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (streamtype) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington.
						Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean—this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Snake River Basin Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag nitude > Increased water temperatures > Lower summer flows	In general, Steelhead appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows (particularly summer and early fall) can reduce the probability of survival in rearing juveniles. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Steelhead may be able to shift the timing of a life stage transition to reduce the probability of exposure to changes in temperature or flow through phenotypic plasticity.
						Similar to Chinook Salmon, Steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run Steelhead during the

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
			_	-	=	several months that they hold in streams prior to spawning. The existence of a resident life history form likely buffers steelhead from environmental stochasticity and may make populations less vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes. Temperature: Steelhead may exhibit some sensitivity to warming water temperatures. Direct measures of Steelhead thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, Steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of Steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids—steelhead occur in Southern California, farther south than any Pacific salmon. Further, the resident life history form of steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology. Flow regimes: The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather
						than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not predicted to negatively affect Steelhead.
						Marine: Increases in ocean and estuarine temperature, increased

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids.
Snake River Fall Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased freshwater temperatures > Lower summer flows > Increased winter/spring flood events	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can
						have negative effects even when temperatures are not near the thermal

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	Vulnerability	Confidence	капк	капк	Exposure	maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality events such as extreme flows or temperatures. The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type individuals migrate during the cooler months of the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in la
						Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related strein tributary streams. However, ocean-type individuals migrate to a smaller size (typically age-zero fry) and may be more vulnerable energetic impacts of warmer temperatures in lower rivers and es As adults, stream-type individuals migrate during the cooler mon the year in spring and then reside upriver before spawning in the whereas ocean-type fish migrate during the warmest part of the late summer and fall, but spawn immediately afterward and then

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	Vulnerability	Confidence	капк	капк	Exposure	adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and fall may be stressful for migrating adults. Mass mortality events in both fall and spring-run Chinook salmon have been linked to high temperatures due to low flows. Some salmon populations may also depend on high flows to allow passage to upstream spawning areas. For example, spring-run (stream-type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington. Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean—this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity an

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Surf Smelt	Moderate- High	High	Moderate- High	Moderate- High	> Increased air temperatures > Altered upwelling patterns > Sea level rise > Increased storminess	timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon. The primary presumed threat to Surf Smelt as a result of climate change is a reduction in spawning habitat due to sea level rise, acting in concert with shoreline armoring — a situation known as the "coastal squeeze." Because Surf Smelt utilize intertidal beaches for spawning, and the backshores of these beaches tend to be armored with bulkheads and other structures, rising sea level will effectively eliminate these habitats. Surf Smelt may also experience some physiological sensitivity to climate change since warmer and drier beach conditions have been shown to lead to higher levels of egg mortality. Surf Smelt sensitivity will be increased by potential changes in zooplankton prey availability. Predicted delayed and shorter upwelling systems could affect the timing and abundance of prey and lead to declines in prey availability, particularly for juveniles, though the magnitude of these impacts is uncertain. Additionally, since Washington Surf Smelt tend to use a small number of beaches for spawning, changes in beach habitat due to sea level rise and stronger and increased storms could lead to declines in available spawning area.
Tiger Rockfish	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures > Sea level rise > Declines in pH > Decreased oxygen	The main sensitivity of Tiger Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. zooplankton) for both juveniles and adults, prompting decreases in adult fecundity and juvenile survival. Additionally, nearshore habitat loss due to sea level rise could impact juvenile survival, as juveniles tend to use nearshore habitat as nursery and foraging area. Deepwater coral habitat, which many adult rockfish use, may also decrease due to acidification, further reducing available habitat. Decreased oxygen levels may have direct physiological effects on Tiger Rockfish, leading to higher levels of mortality across various life stages. Due to their long life cycles and generation times, adults may be

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						able to persist through short term pulses of negative ocean conditions (e.g. years with warmer sea surface temperature), though conversely, their low productivity could make it difficult for populations to recover from climate-related declines.
Tui Chub	Low- Moderate	Low	Low- Moderate	Moderate	> Increased water temperatures > Altered flow regimes > Altered fire regimes	Little information is available regarding the sensitivity of Tui Chub to climate change. Tui Chub inhabit lakes and slow-moving pools in riverine environments, spawning and rearing in shallow areas in spring and summer. Similar to other minnow species, they are likely sensitive to climate-driven shifts in rearing and spawning habitat near stream and lake margins (e.g. reduced habitat due to reduced spring/summer low flows or lake water levels caused by reduced snowpack, earlier snowmelt, shifting precipitation regimes and/or drought). Wildfire may also affect streamside vegetative cover and rearing habitat, as young Tui Chub are typically found close to shore in areas with heavy vegetation. Tui Chub are also likely sensitive to increasing water temperatures, as yearly spring temperature increases cue spawning timing.
Umatilla Dace	Moderate	Low	Low- Moderate	Moderate- High	> Lower stream flows	Little information is available regarding the sensitivity of Umatilla Dace to climate change. Umatilla Dace may benefit from increasing water temperatures, as they are currently restricted to warmer habitat areas (e.g. mainstem and downstream areas), preferring zones with slightly warmer water temperatures (64-68°F). They are also found in cooler habitats, although they may exhibit reduced mobility and retreat to interstitial spaces at cooler temperatures. Umatilla Dace is likely sensitive to reduced streamflows resulting from reduced snowpack, earlier snowmelt, and drought, particularly if streamflow declines are exacerbated by shifts in human water use. Juveniles and young-of-theyear occupy stream margins, making them vulnerable to stranding as streamflows decline.
Upper Columbia River Spring Chinook Salmon ESU	Moderate- High	High	Moderate- High	Moderate- High	> Increased freshwater temperatures > Lower summer flows > Increased	In general, Chinook Salmon appear sensitive to warmer water temperatures, low flows, and high flows. Warmer water temperatures can affect physiological performance and energy budgets, as well as developmental rates and the timing of key lifecycle transitions (i.e. phenology). Lower stream flows have been linked to mass mortality events of Chinook Salmon. Extreme high flows can reduce the likelihood of egg survival during incubation, and both low and high flows can affect

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					winter/spring flood events	adult migration. Temperature: Chinook Salmon appear sensitive to elevated freshwater temperatures both as juveniles rearing in tributary streams and as adults migrating up river networks to spawn. Water temperatures positively affect metabolic costs, so warming reduces the amount of time a spawning adult can persist in freshwater and decreases the total distance a fish can migrate on a given level of energy stores. Indeed, Chinook Salmon that migrate slower, and accrue more energy loss, have higher mortality rates in the Columbia River. In addition to energetic effects, temperatures in excess of ~63°F (the approximate temperature at which the maximum rate of physiological processes is observed for Chinook Salmon) begin to thermally stress individuals, making them more vulnerable to pathogens and other health issues. Episodes of high water temperature have led to large mortality events in several river systems within or adjacent to the Columbia River Basin. In the Columbia River, cool tributaries provide refuge from heat stress for migratory Chinook Salmon, and may reduce the sensitivity of this species to warming temperatures. However, time spent in thermal refugia can come at a price, such as increased exposure to angling pressure, later arrival at spawning grounds, and other factors. Warming temperatures in the streams where Chinook Salmon rear can have negative effects even when temperatures are not near the thermal maxima of the species. For example, the strength of density dependence in fish growth was positively related to water temperature, which corroborates the mechanistic predictions of bioenergetics models. This suggests warming temperatures decrease the carrying capacity of streams for rearing juvenile salmonids. Because Chinook Salmon rear in streams for up to three years, they are vulnerable to heat stress during low flow periods of late summer and fall. However, the life history diversity of this species (particularly the diversity in age at maturity) likely enhances resilience to mortality eve

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
opec.es	Vulnerability	Confidence	Rank	Rank	Exposure	
						The variation in sensitivity among Chinook Salmon populations and life histories is difficult to predict. Upriver populations are potentially more sensitive to water temperature and/or low flows because of their increased cumulative exposure to thermal stress and the higher metabolic demands of a longer migration. However, these populations are likely better adapted to deal with thermal and energetic stress compared to lower Columbia River populations. For example, lower river populations (particularly ocean-type/fall run stocks) have lower energy stores and may be just as vulnerable to temperature-induced increases in metabolic costs as are upriver populations. In terms of run timing, stream- and ocean-type life histories (i.e. spring and fall runs, respectively) each have their own unique sensitivities to temperature. Stream-type fish rear longer in freshwater, and thus have greater cumulative exposure to potential water temperature-related stressors in tributary streams. However, ocean-type individuals migrate to sea at a smaller size (typically age-zero fry) and may be more vulnerable to any energetic impacts of warmer temperatures in lower rivers and estuaries. As adults, stream-type individuals migrate during the cooler months of the year in spring and then reside upriver before spawning in the fall; whereas ocean-type fish migrate during the warmest part of the year in late summer and fall, but spawn immediately afterward and therefore spend much less time running negative energy budgets in freshwater. Thus stream-type adults are relatively more vulnerable to heat stress and energy demands during summer residence, whereas ocean-type adults are more vulnerable to stress during migration itself. Assessing how each life history has responded to contemporary variation in climate is challenging because of confounding factors: stream-type populations are located higher in river systems and have been heavily affected by their increased cumulative exposure to dams Flow regimes: Low flows during the summer and f

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						type) Chinook often migrate to spawning grounds during the high flows that occur from late-winter through early-summer. However, high flow events during the fall and winter can scour the gravels where embryos incubate, reducing egg-to-fry survival. Increased severity of winter floods has been linked to decreased egg-to-fry survival in Washington. Snowmelt and the resulting runoff in spring may be important for aiding the seaward migration of salmon smolts. Reduced flows during the spring have both direct and indirect effects on smolt migrations. The reduced stream velocities increase the travel time required for smolts to reach the ocean—this in turn increases the time of exposure to predators. Low flows may also make smolts more vulnerable to predators per unit of time exposed. With warming, species such as Smallmouth Bass, Walleye, and Northern Pikeminnow will almost
						certainly become more effective predators on salmon smolts. Spring-run Chinook are particularly vulnerable to predation because they originate higher in river networks and have longer migrations to sea. However, although fall-run Chinook have shorter seaward migrations, many populations emigrate as age-zero fry, which makes them vulnerable to broader size-spectra of predators, likely increasing their predation risk per unit time of migration.
						Marine: Increases in ocean and estuarine temperature, increased stratification of the water column, and/or changes in the intensity and timing of coastal upwelling may alter primary and secondary productivity, with potential impacts on growth, productivity, survival, and migrations of salmonids. For example, cool Pacific-Decadal Oscillation (PDO) years have historically coincided with high returns of Chinook Salmon, while warm PDO cycles coincided with declines in salmon numbers. In general, changes in coastal ocean habitat quality and productivity could negatively impact Chinook Salmon.
Upper Columbia Steelhead DPS	Moderate- High	High	Moderate- High	Moderate- High	> Altered spring runoff timing and amount/mag	The survival of Steelhead embryos or recently emerged fry may be sensitive to the timing and magnitude of spring runoff rather than the fall and winter aspects of flow regimes. For example, high winter flows that threaten the egg-to-fry survival of fall-spawning salmonids are not

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Cummany of Consistivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Species			-	-	-	predicted to negatively affect Steelhead. Steelhead may also exhibit some sensitivity to warming water temperatures. Direct measures of Steelhead thermal physiology suggest many parameters do not differ significantly from those of other salmonids (except in locally adapted populations of Redband Rainbow Trout in desert streams). In addition, contemporary temperature regimes in the Columbia River cause steelhead and Chinook Salmon to use the same thermal refuges during spawning migrations. Similar to Chinook Salmon, Steelhead are vulnerable to high angling pressure when seeking refuge in cold refugia such as tributary junctions; thus warmer temperatures can have indirect effects on mortality. However, the geographic distribution of Steelhead suggests they may be less sensitive to warm temperatures than other anadromous salmonids—Steelhead occur in Southern California, farther south than any Pacific salmon. Further, the resident life history form of steelhead can persist in desert streams that often exceed 68°F through what appears to be local adaptation. Whether Steelhead populations from warmer streams exhibit higher thermal tolerance is poorly understood, as is the potential rate of evolution in attributes of thermal physiology. Similar to Chinook Salmon, steelhead exhibit alternative life histories in regards to run-timing, which confer different sensitivities to climate. Summer-run Steelhead migrate higher in river networks, entering freshwater between late spring and fall, and overwinter before spawning the following spring. In contrast, winter-run Steelhead migrate during winter or early spring and spawn immediately. Because they spend more time in freshwater, summer-run populations of steelhead may be more sensitive to changes in flow and temperature regimes across river networks. For example, higher temperatures will increase the metabolic costs accrued by summer-run steelhead during the
						several months that they hold in streams prior to spawning. The existence of a resident life history form likely buffers Steelhead from environmental stochasticity and may make populations less

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						vulnerable to extirpation. For example, anadromous individuals can survive ephemeral periods of unsuitability in their natal streams while they are away at the ocean, whereas residents can survive in years where conditions are poor along migratory routes.
Walleye Pollock (South Puget Sound)	Moderate	High	Moderate	Moderate	> Increased ocean temperatures	Walleye Pollock are likely to be sensitive to increases in sea surface temperature, particularly since Puget Sound is the southern limit of their range. Cooler waters support higher levels of Walleye Pollock recruitment and larval survival because cooler waters promote increased production of primary prey species for pollock (e.g. copepods, euphausiids, other zooplankton). For Walleye Pollock in the Bering Sea, it was found that though warmer spring conditions during spawning season enhanced early survival of larvae, continued higher temperatures led to poor feeding conditions and reduced recruitment the following year. Thus, predicted warming could result in decreases in prey abundance and declines in recruitment, larval survival, and productivity and potential northward range shifts of Walleye Pollock.
Westslope Cutthroat Trout	Low- Moderate	Low	Low- Moderate	Moderate	> Increased spring flood events > Altered runoff timing and amount > Increased water temperatures > Lower summer flows	Westslope Cutthroat Trout spawn in the spring and are thus sensitive to the timing and magnitude of snowmelt and the accompanying flood pulse. Winter floods do not pose a risk to Westslope Cutthroat Trout embryos, but it is possible that increased severity of fall and winter floods could negatively affect overwintering juveniles (although quality data on this topic are lacking due to the challenge of monitoring survival in flood prone systems). Like many stream rearing salmonids, Westslope Cutthroat Trout can be vulnerable to sub-optimally warm temperatures during base flow periods in late summer and fall. During these low flow periods, terrestrial subsidies typically comprise the dominant food source for this species, and may be critical for enabling fish to offset the elevated metabolic costs caused by higher water temperatures. Factors that mediate the magnitude of terrestrial subsidies, such as land use practices in riparian areas, can in turn mediate the sensitivity of trout to altered thermal regimes.

FISH						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						may be constrained by cold, rather than warm, summer temperatures. Warming may have some positive effects by increasing the amount of high elevation habitat capable of rearing juveniles. The primary source of decline for Westslope Cutthroat Trout has been hybridization with Rainbow Trout. A key uncertainty is how climate
						conditions might facilitate hybridization. Genetically pure Westslope Cutthroat Trout often exist in cold tributary streams and show subtle signs of being better adapted to cold temperatures than Rainbow Trout when studied in the laboratory. This suggests warming temperatures could increase hybridization by allowing Rainbow Trout to invade cold headwater streams. However, in an analysis across a large watershed, environmental factors were not as important as demographic factors in determining levels of hybridization.
						Westslope Cutthroat Trout are unique among the cutthroat subspecies in that they exhibit an anadromous, coastal-roaming ecotype. Populations with this life history may be less sensitive to altered flow and thermal regimes in freshwater because there is less cumulative exposure to freshwater conditions and individuals at sea can survive ephemeral climate-related disturbance such as thermal stress events or periods of low flow.
White Sturgeon (Columbia River)	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Lower summer flows	White Sturgeon likely exhibit physiological sensitivity to warmer water temperatures, and increasing temperatures may reduce spawning success and/or increase disease risk and mortality. White Sturgeon are also sensitive to declining spring and summer streamflows, which reduce spawning habitat and annual recruitment; loss of spawning habitat and reduced recruitment associated with lower streamflows is a particular concern for impounded portions of the Columbia River. Shifts in ocean conditions may also affect prey availability for young White Sturgeon in estuarine environments, and reduced prey availability has been linked with undermined White Sturgeon growth.
Yelloweye Rockfish (Puget	Moderate- High	Moderate	Moderate	Moderate- High	> Increased ocean temperatures	The main sensitivity of Yelloweye Rockfish to climate change is likely to stem from changes to their prey base. Warmer ocean conditions could lead to decreases in prey (e.g. small fish, crabs, gastropods) for both

FISH						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
•	Vulnerability	Confidence	Rank	Rank	Exposure	, ,
Sound/Georgi					> Sea level	juveniles and adults, prompting decreases in adult fecundity and growth
a Basin DPS)					rise	and juvenile survival. Additionally, nearshore habitat loss due to sea
					> Declines in	level rise could impact juvenile survival, as juveniles tend to use
					pН	nearshore habitat as nursery and foraging area. Deepwater coral
					> Decreased	habitat, which is particularly preferred by Yelloweye Rockfish, may also
					oxygen	decrease due to acidification, further reducing available habitat.
						Decreased oxygen levels may have direct physiological effects on
						Yelloweye Rockfish, leading to higher levels of mortality across various
						life stages. Due to their long life cycles and generation times, adults may
						be able to persist through short term pulses of negative ocean
						conditions (e.g. years with warmer sea surface temperature), though
						conversely, their low productivity could make it difficult for populations
						to recover from climate-related declines.

C.2.5 Invertebrate Vulnerability Rankings

INVERTEBRATES	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
A Caddisfly (Allomyia Acanthis)	High	Moderate	High	Moderate- High	> Increased air and water temperatures > Low summer flows > Increased sedimentatio n and erosion	Allomyia Acanthis is an uncommon species of caddisfly found in only a few locations in the Cascade regions of Washington and Oregon. Although little is known about this species, caddisflies in the genus Allomyia are restricted to high-elevation coldwater streams in the larval and pupae stages, where they build protective cases of silk and small pieces of rock. Climate sensitivity for this species is likely tied primarily to their specialized habitat, which is particularly vulnerable to warming air and water temperatures, low summer flows, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are particularly vulnerable to changes in their habitat.
A Caddisfly (Goereilla	High	High	High	Moderate- High	> Increased air and water	Goereilla Baumanni is a species of caddisfly found only in few sites and always in very low numbers in Washington, Idaho, and Montana. They

INVERTEBRATES	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Baumanni)					temperatures > Drought and/or changes in precipitation > Low summer flows > Increased sedimentatio n and erosion	are restricted to headwater springs and seepage in high-elevation forested areas during their larval and pupae stages, and within this habitat are associated with the surrounding muck comprised of decomposing organic materials. Sensitivity for this species is likely tied primarily to their specialized habitat, which is particularly vulnerable to warming air and water temperatures, low summer flows, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). The close association of <i>Goereilla Baumanni</i> to organic muck may make this species particularly sensitive to high temperatures, drought, and precipitation changes which may make these areas more likely to dry out. Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are particularly vulnerable to changes in their habitat.
A Caddisfly (Limnephilus Flavastellus)	Moderate- High	Low	Moderate	Moderate- High	> Increased air and water temperatures > Drought and/or changes in precipitation > Increased sedimentatio n and erosion	Little information is available on the caddisfly species <i>Limnephilus Flavastellus</i> , which can be found in mountainous areas of Washington, Oregon, and British Columbia. Their habitat can include coldwater ponds in forested areas, where they live in the water throughout their larval and pupae stages. This species is likely less sensitive than caddisflies that are restricted only to coldwater streams, as they can tolerate the slightly larger range of conditions found in ponds. Sensitivity for this species is likely tied primarily to their specialized habitat, which is vulnerable to warming air and water temperatures, drought and changing precipitation patterns, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Psychoglypha Browni)	Moderate- High	Moderate	Moderate- High	Moderate- High	> Increased air and water temperatures > Drought and/or changes in precipitation	Psychoglypha Browni is an uncommon species of caddisfly found only in the Cascades region of Washington and Oregon. Little is known about this species, though the genus Psychoglypha is restricted to coldwater aquatic habitats such as streams, small rivers, and ponds in highelevation forested areas. Sensitivity for this species is likely tied primarily to their specialized habitat, which is vulnerable to warming air and water temperatures, drought and changing precipitation patterns,

INVERTEBRATE	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
эрсонов	Vulnerability	Confidence	Rank	Rank	Exposure	
					> Low summer flows > Increased sedimentatio n and erosion	sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Rhyacophila Pichaca)	Moderate	Low	Moderate	Moderate	> Changes in precipitation > Drought > Low summer flows	Rhyacophila Pichaca is an uncommon species of caddisfly found in only a few locations in Washington and Oregon. Little is known about this species, but caddisflies in the genus Rhyacophila are fairly large and are free-living in their larval stage (i.e. they do not build cases until the pupae stage), making them particularly vulnerable to predation. All species in this genus are restricted to streams or rivers in the larval and pupae stages, though no information is available on whether this species is restricted to cold water or high-elevation areas. Given that they are dependent on running water, it is likely that drought, changes in precipitation patterns, and low summer flows contribute to this species' sensitivity. Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are may be vulnerable to changes in their habitat.
A Caddisfly (Rhyacophila Vetina)	High	Moderate	High	Moderate- High	> Increased air and water temperatures > Low summer flows > Increased sedimentatio n and erosion	Little information is available on <i>Rhyacophila Vetina</i> , an uncommon species of caddisfly reported in only a few high-elevation locations in the High Cascades region. Little is known about this species, but caddisflies in the genus <i>Rhyacophila</i> are fairly large and are free-living in their larval stage (i.e. they do not build cases until the pupae stage), making them particularly vulnerable to predation. All species in this genus are restricted to streams or rivers in the larval and pupae stages, and given that <i>Rhyacophila Vetina</i> only occurs in high-elevation streams, it is likely tied to coldwater conditions as well. Climate sensitivity for this species is likely tied primarily to this specialized habitat, which is particularly vulnerable to warming air and water temperatures, low summer flows, sedimentation from upstream erosion, and habitat fragmentation from nearby human activity (i.e. forestry practices and road construction). Caddisflies in general are often considered an indicator of high-quality streams, suggesting that they are particularly vulnerable to changes in their habitat.

INVERTEBRATES	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
A Mayfly (Cinygmula Gartrelli)	Low- Moderate	Low	Low- Moderate	Moderate	> Increased water temperatures > Changes in precipitation and/or drought > Low summer	Little is known about <i>Cinygmula Gartrelli</i> , a species of mayfly which has been located in California, Oregon, Washington, Montana, and British Columbia. All mayflies require aquatic habitats for nymph survival, and this species was located in a river in at least one of the records. Sensitivity likely is tied to this requirement, and the species could be affected by drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Paraleptophle bia Falcula)	Low- Moderate	Low	Low- Moderate	Moderate	flows > Increased water temperatures > Changes in precipitation and/or drought > Low summer flows	Little is known about <i>Paraleptophle bia Falcula</i> , a species of mayfly which has been located in rivers in Washington, Oregon, and Idaho. All mayflies require aquatic habitats for nymph survival, so sensitivity likely is tied to this requirement. This species could be affected by changes in hydrology including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Paraleptophle bia Jenseni)	Low- Moderate	Low	Low- Moderate	Moderate	> Increased water temperatures > Changes in precipitation and/or drought > Low summer flows	Little is known about <i>Paraleptophlebia Jenseni</i> , a species of mayfly which has been located in Washington and a single site in Idaho. All mayflies require aquatic habitats for nymph survival, so sensitivity likely is tied to this requirement. This species could be affected by changes in hydrology including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Mayfly (Siphlonurus Autumnalis)	Low	Low	Low	Low- Moderate	> Increased water temperatures > Changes in precipitation	Siphlonarus Autumnalis is found along medium and large rivers in the Pacific Northwest. It usually inhabits quiet edgewaters along the rivers, particularly in rocky areas. However, it has also been found along small spring brooks, floodplain ponds, and small lakes. Although, like all mayflies, S. Autumnalis requires aquatic habitats for nymph survival, the

INVERTEBRATES	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					and/or drought > Low summer flows	wide range of habitats in which it can survive decreases the vulnerability of this species. Sensitivity is likely tied to changes in the hydrology of these aquatic habitats, including drought, precipitation changes, and summer low flows. Mayflies tend to be sensitive to changes in streambed substrate, water temperature, and water quality as well.
A Noctuid Moth (Copablepharo n Columbia)	Moderate	Low	Low- Moderate	Moderate- High	> Changes in precipitation and/or drought > Increased invasive species	There is limited information on the sensitivity of <i>Copablepharon Columbia</i> to climate change. This species occupies open (i.e., active) Columbia Basin sand dune habitats, but has been observed at only one dune site. This species is likely sensitive to sand dune stabilization, which typically leads to a loss of native vegetation and prevents formation of new dune areas. Sand dune stabilization is enhanced by high plant cover, which is facilitated during years of high precipitation and may also occur as a result of longer growing seasons due to climate change. Invasive species can also increase rates of dune stabilization. Drought may favor higher dune activity, which could enhance habitat quality and/or increase overall habitat for this moth, but could also impact its food plants (unknown at this time). For more information on habitat sensitivity, see Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
A Noctuid Moth (Copablepharo n Mutans)	Moderate	Low	Low- Moderate	Moderate- High	> Changes in precipitation and/or drought > Increased invasive species	There is limited information on the sensitivity of <i>Copablepharon Mutans</i> to climate change. Similar to <i>Copablepharon Columbia</i> , it is likely sensitive to sand dune stabilization which typically leads to a loss of native vegetation and prevents formation of new dune areas. Sand dune stabilization is enhanced by high plant cover, which is facilitated during years of high precipitation and may also occur as a result of longer growing seasons due to climate change. Invasive species can also increase rates of dune stabilization. Drought may favor higher dune activity, which could enhance habitat quality and/or increase overall habitat for this moth, but could also impact its food plants (unknown at this time). For more information on habitat sensitivity, see Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
A Noctuid Moth (Copablepharo n Viridisparsa	Moderate	Low	Low- Moderate	Moderate- High	> Changes in precipitation and/or drought	There is limited information on the sensitivity of <i>Copablepharon Viridisparsa Hopfingeri</i> to climate change. Similar to <i>Copablepharon Columbia</i> , it is likely sensitive to sand dune stabilization which typically leads to a loss of native vegetation and prevents formation of new dune

INVERTEBRATES	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	Exposure	
Hopfingeri)					> Increased	areas. Sand dune stabilization is enhanced by high plant cover, which is
					invasive	facilitated during years of high precipitation and may also occur as a
					species	result of longer growing seasons due to climate change. Invasive species
						can also increase rates of dune stabilization. Drought may favor higher
						dune activity, which could enhance habitat quality and/or increase
						overall habitat for this moth, but could also impact its food plants
						(unknown at this time). For more information on habitat sensitivity, see
						Inter-Mountain Basins Active and Stabilized Dune habitat assessment.
Ashy	Moderate	Low	Low-	Moderate-	> Altered	There is limited information on the sensitivity of the Ashy Pebblesnail to
Pebblesnail			Moderate	High	flow regimes	climate change. This species displays very similar traits and habitat
					> Reduced	requirements to the Olympia Pebblesnail. The Ashy Pebblesnail's habitat
					oxygen	range is believed to be restricted to the Columbia River Basin's rivers,
					> Increased water	streams, and creeks, although its historic range encompassed Washington, Oregon, and Idaho. The Ashy Pebblesnail requires clear,
						cold, highly oxygenated streams, and therefore may be sensitive to
					temperatures	changes in flow regimes and increases in water temperature that
						negatively impact dissolved oxygen levels and chemical and biological
						processes. Changes in flow regimes that increase nutrient runoff may
						cause dense algae blooms that impair or prevent the Ashy Pebblesnail's
						access to important food resources (e.g., lithophytes). The invasive New
						Zealand Mudsnail (<i>Potamopyrgus Antipodarum</i>) may be a direct
						competitor for food and habitat.
Barren Juga	Moderate-	Low	Moderate-	Moderate-	> Altered	There is limited information on the sensitivity of this species to climate
Darren Jaga	High		High	High	flow regimes	change. The Barren Juga's habitat range includes small- to medium-sized
	6		6	18	> Reduced	creeks and low elevation springs in the Columbia River Gorge area. This
					oxygen	species requires cold, highly oxygenated water, and therefore may be
					> Increased	sensitive to changes in flow regimes and increases in water temperature
					water	that negatively impact dissolved oxygen levels and chemical and
					temperatures	biological processes.
Beller's	Moderate-	`	Moderate	Moderate-	> Changes in	Beller's Ground Beetle inhabits sphagnum bogs or sphagnum moss in
Ground Beetle	High			High	precipitation	other wet areas (e.g., near springs), preferring the wettest sites
					(snow and	available. This species' sensitivity to climate change will largely be driven
					rain)	by shifts in habitat availability. Reduced water availability and quality
					> Increased	(i.e., due to precipitation shifts, reduced snowpack, earlier snowmelt)
					amount	can affect bog water levels, seasonal bog duration, and rates of

INVERTEBRAT	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					and/or duration of flooding > Drought	succession to meadow or other adjacent vegetation, potentially reducing or degrading habitat for this beetle. This species is likely sensitive to both bog drying and prolonged inundation from flooding. Without flight capabilities, this species has limited ability to move in response to climate change (i.e., refugia would have to be contiguous and accessible by ground). Warmer temperatures may increase beetle activity; Beller's Ground Beetles have historically been found in highest numbers during hot periods.
Bluegray Taildropper	Low- Moderate	Low	Low- Moderate	Moderate	> Increased temperatures > Reduced soil moisture and/or changes in precipitation > Altered fire regimes	There is limited information regarding the sensitivity of Bluegray Taildroppers to climate change. Their main sensitivity is likely to be driven by changes in their preferred habitat – older, late successional, forests with moist ground and a mixture of hardwood and conifer trees. Increases in temperature and decreases in summer rainfall are likely to lead to increased risk of severe fires, which would destroy habitat for this species. Declines in habitat quality could also lead to fragmentation of populations, particularly since slugs are not very mobile, and eventual population declines. Additionally, decreased summer rainfall and increased droughts could lead to changes in soil moisture and availability of fungal populations that this species feeds on.
Brown Juga	Moderate- High	Low	Moderate- High	Moderate	> Altered flow regimes > Reduced oxygen > Increased water temperatures	There is limited information on the sensitivity of this species to climate change. The Brown Juga's habitat includes shallow, small streams and springs. This species requires cold, highly oxygenated water, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes.
California Floater	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures > Altered flow regimes > Drought	There is limited information regarding the sensitivity of California Floaters to climate change. This species, which has already experienced significant declines over the past few decades, is generally found in shallow pools of freshwater streams and reservoirs with good water quality and a sufficient abundance of small fish who serve as hosts for mussels during their transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance,

INVERTEBRATES	1			_		
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
•	Vulnerability	Confidence	Rank	Rank	Exposure	· · · · · · · · · · · · · · · · · · ·
						increased intensity of winter storms could lead to higher flow in rivers
						and increased nutrient runoff, both of which would degrade and reduce
						available mussel habitat. Additionally, increases in water temperature
						could lead to altered abundance of host fish for larval stage mussels,
						thus leading to declines in abundance. This species may also be sensitive
						to summer droughts, which could lead to shallower water levels in the
						pools that serve as mussel habitat, and potential air exposure and
						mortality, particularly since mussels have limited mobility and thus
<u> </u>						limited ability to respond to changes in habitat.
Cascades	Moderate-	Low	Moderate-	Moderate	> Increased	The Cascades Needlefly is a rare species limited to very few sites in
Needlefly	High		High		water	Washington, Oregon, Idaho, and Montana. The larvae are restricted to
					temperatures	seeps, springs, and spring-fed streams, and the genus <i>Megaleuctra</i> is
					> Changes in	dependent on coldwater habitats that do not dry out, as well as high
					precipitation	water quality. The sensitivity of this species is likely closely tied to their
					and/or	specialized habitat requirements. Changes in flow patterns due to
					drought > Altered	drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the
					flow regimes	sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Chelan	Low-	Low	Low	Moderate-	> Altered fire	There is limited information on the sensitivity of this species to climate
Mountainsnail	Moderate	LOW	LOW	High	regimes	change. The Chelan Mountainsnail is typically found in schist talus
Mountainsnaii	Moderate			півіі	regimes	habitat and in detritus or under shrubs with pinegrass or elk sedge
						understory at elevations ranging from 1197 to 2625 feet. This species
						may exhibit sensitivity to disturbances including wildfire, landslides, and
						habitat alterations that may shift the temperature and moisture regimes
						of preferred habitat types.
Chinquapin	Moderate-	Low	Moderate	Moderate-	> Increased	Climate sensitivity of this species is likely driven by temperature,
Hairstreak	High	2000	Wioderate	High	temperatures	moisture declines, and fire. Like most insects, butterfly emergence and
Trail Streak	111611			111611	> Reduced	activity is influenced by temperature, and warmer temperatures may
					soil moisture	enhance emergence timing and/or lengthen daily flight activity. This
					and/or	species may be sensitive to moisture declines, as it obtains salt from
					changes in	moist soil and recently dried puddles. Increasing fire frequency may
					precipitation	affect distribution of golden chinquapin, the larval host plant for this
					> Altered fire	species. Golden chinquapin is shade-intolerant and regenerates quickly
	1			1	1	after fire and other disturbance, and more frequent fires could

INVERTEBRATI						
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
ореспез	Vulnerability	Confidence	Rank	Rank	Exposure	
						potentially increase chinquapin establishment opportunities and overall
						habitat for this butterfly. However, this butterfly requires established
						chinquapin canopy and exists only in a few locations in Washington,
						making it vulnerable to extirpation if fire occurs in its current habitat
						distribution during key adult and larval periods (June-September), kills
						its current host trees, or significantly reduces available forage (nectar
6 1 1:						plants).
Columbia	Moderate-	Low	Moderate-	Moderate-	> Increased	Although very little information is available, Columbia Clubtail sensitivity
Clubtail	High		High	High	air and water	is likely driven by water temperature, air temperature, and altered flow
					temperatures > Altered	regimes (summer low flows and winter flooding). Eggs are laid in water,
					flow regimes	and after hatching, larvae burrow and overwinter in river mud. Water temperature influences emergence timing, while warmer air
					(low summer	temperatures influence adult flight times, affecting foraging and energy
					flows and	demands. Reduced summer streamflow can exacerbate increasing
					increased	water temperatures and effects on clubtail aquatic eggs and larvae. In
					winter	addition, lower streamflows may strand eggs or larvae, causing
					flooding)	mortality via desiccation. Increased winter flooding that enhances scour
						and/or that causes significant sedimentation may reduce larval survival.
Columbia	Moderate-	Low	Moderate-	Moderate-	> Increased	There is limited information on the sensitivity of the Columbia
Oregonian	High		High	High	temperatures	Oregonian to climate change. This species is found in low-elevation
					> Reduced	seeps and streams of the Columbia River Gorge as well as mid-elevation
					soil moisture	upland habitats (2565 to 3280 feet) in hemlock forests. In each of these
					and/or	locations, the species finds cover provided by herbaceous riparian
					drought	vegetation in aquatic environments and large woody debris in forests.
					> Altered fire	Loss of these refugia would likely alter the temperature and moisture
					regimes	regimes – low temperature and moderate to high humidity – upon
						which this species relies.
Columbia	Moderate	Moderate	Moderate	Moderate	> Increased	The Columbia River Tiger Beetle occupies stable river sandbars and
River Tiger					amount	riparian sand dunes. They are likely sensitive to flooding, soil moisture,
Beetle					and/or	and temperature. Soil moisture and temperature may affect larval
					duration of	development, as larvae grow and molt in sand/soil burrows that draw
					flooding	moisture from adjacent rivers/streams. Flooding or prolonged
						inundation can cause larval mortality by washing away larval burrows
						and/or causing suffocation via submersion, although they can survive up
						to 3 weeks of inundation. Sandbars occupied by this species are typically

INVERTEBRAT	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						large enough (extend more than 300 feet away from river) to avoid complete inundation during spring floods. Backwater flooding resulting from dam construction is thought to have extirpated all Washington populations.
Crowned Tightcoil	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of the Crowned Tightcoil to climate change, and very limited information on this species' life history, although it is associated with riparian and old growth habitat. Its abundance is closely correlated with cool, moist conditions. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Dalles Hesperian	Moderate- High	Low	Moderate- High	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of the Dalles Hesperian to climate change. This terrestrial species seeks refugia in locations with high humidity and relatively constant temperature (e.g., rock talus, under moist vegetation, deep in cracks in mud). Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Dalles Juga	Moderate- High	Low	Moderate- High	Moderate	> Altered flow regimes > Reduced oxygen > Increased water temperatures	There is limited information on the sensitivity of the Dalles Juga to climate change and very limited information on this species' life history. The Dalles Juga is found at low-elevation springs and streams in cool, clean, highly oxygenated water. This species may therefore be sensitive to changes in flow regimes and water temperatures that negatively impact dissolved oxygen levels and chemical and biological processes
Dalles Sideband	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire	There is limited information on the sensitivity of this species to climate change. This species is frequently found in cool, moist talus habitat and upland forest areas that are near riparian corridors. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.

INVERTEBRATE	S					
	Overall	Overall	Sensitivity	Exposure	Summary of	60 111 11
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					regimes	
Dry Land Forestsnail	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of this species to climate change. Its habitat includes talus and rocky riparian areas. Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Giant Palouse Earthworm	Low- Moderate	Low	Low	Moderate- High	> Increased temperatures > Reduced soil moisture	There is little information on the sensitivity of the Giant Palouse Earthworm (GPE) to climate change, largely due to the fact that very little is known about this species in general. The GPE likely exhibits sensitivity to temperature; it can experience mortality from high soil temperatures, and utilizes deep burrows to survive hot, dry summer periods. Increasing temperatures and increasingly xeric conditions may reinforce this behavior. The GPE may also be sensitive to precipitation shifts and fire, as these regimes affect vegetative cover and can modify microhabitat and soil conditions, but links between precipitation, disturbance, vegetation, and GPE abundance are not clear at this time.
Great Arctic	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is no information regarding the sensitivity of this species to climate change, and very little known regarding its life history. As an occupant of forest openings and meadow edges, it may benefit from more frequent fire which contributes to the creation of these habitat characteristics. However, larvae are thought to develop on grasses, and could be killed by fire. Small population sizes and limited distribution in Washington make it vulnerable to extirpation.
Hatch's Click Beetle	Moderate- High	Low	Moderate	Moderate- High	> Changes in precipitation (snow and rain) > Increased amount and/or duration of flooding	Hatch's Click Beetle occupies low elevation sphagnum bogs, and its climate sensitivity is likely driven by changes in habitat availability. Reduced water availability and quality (i.e., due to precipitation shifts, reduced snowpack, earlier snowmelt) can affect bog water levels and seasonal bog duration, potentially altering habitat extent. This species is likely sensitive to both bog drying and prolonged inundation from flooding. Adults feed primarily on flowering shrubs, although they may also prey upon invertebrates. Shifts in abundance and flower timing (i.e., phenology) of flowering shrubs in response to climate change may

INVERTEBRATES	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Drought > Increased temperatures	affect Hatch's Click Beetle foraging and fitness, particularly since adult beetles are only active for short periods in the early spring. Warmer temperatures may increase beetle activity; Hatch's Click Beetles have historically been most active on hot days.
Hoary Elfin	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is no information regarding the physiological sensitivity of this species to climate change, but it may be limited by temperature, as it currently appears only in lower elevation areas of Washington, even though its host plant exists at higher elevations. Hoary Elfin is likely sensitive to climate-driven changes in its larval host plant, kinnikinnick. Kinnikinnick is resilient to dry conditions. Fire maintains the open, high sunlight environments preferred by kinnikinnick and occupied by the Hoary Elfin (e.g., prairies, forest opening balds), but kinnikinnick may be sensitive to increasing fire frequencies and severities, as it appears to be adapted to low severity fire and to exhibit moderate survival and recovery post-fire.
Hoder's Mountainsnail	Low- Moderate	Low	Low	Moderate- High	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of this species to climate change. It is known to occur in grasslands and along timber edges including <i>Eriogonum</i> sp. and <i>Balsamorrhiza Sagitta</i> . Activities or events that alter conditions, such as moisture levels, shade, and temperature, may make this species vulnerable.
Hoko Vertigo	Low- Moderate	Low	Low	Moderate	> Increased disease outbreaks > Altered fire regimes	There is limited information on the sensitivity of the Hoko Vertigo to climate change. This species is only found at two sites on the Hoko River in the northwestern Olympic Mountains, although its range may extend into British Columbia. These two known locations are low elevation, old growth riparian areas. Because this species is so rare, it may be acutely vulnerable to fire, disease, or other events causing mass mortality as they may not be able to quickly rebuild populations.
Idaho Vertigo	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture	There is limited information on the sensitivity of this species to climate change. It is found in a mid-elevation grass and sedge meadow with springs, seeps, bogs and fens. Activities or events that alter conditions, such as moisture levels and temperature, may make this species

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	,				and/or drought > Altered fire regimes	vulnerable.
Island Marble	Moderate- High	Low	Moderate- High	Moderate	> Increased temperatures > Changes in precipitation > Sea level rise and storm surges > Altered fire regimes	Island Marble sensitivity is likely driven by temperature, precipitation, sea level rise, storm surges, and fire. Cool, wet spring conditions appear to limit Island Marble flight periods and fecundity, and recovery during warm, dry years is not guaranteed due to other habitat stressors. Shifts in temperature and precipitation may also affect larval foraging and survival by causing a mismatch between host plant phenology and larval emergence. Sea level rise paired with storm surges and windy conditions can inundate or cause significant sediment alteration in coastal habitats of Island Marble (e.g., among dunes and backing lagoons). Storm events and sea level rise can cause larval and pupal mortality and contribute to temporary or permanent habitat loss due to inundation, burial of host and forage plants, and loss of anchoring substrate and woody debris required for vegetation establishment. Island Marble is associated with a variety of grassland species (e.g., native and non-native mustards) that excel at colonizing disturbed sites, so population recovery post-storm is possible if host plants are able to re-establish. Due to its association with disturbance-adapted host plants, increasing fire frequencies may expand habitat for island marble and/or help maintain existing habitat by preventing grassland succession to shrub or forest types. However, large, high intensity fires occurring in current habitat areas could extirpate local island marble populations.
Johnson's Hairstreak	Moderate- High	Low	Moderate- High	Moderate	> Changes in precipitation > Altered fire regimes	Johnson's Hairstreak likely exhibits some physiological sensitivity to temperature and precipitation, with inclement weather delaying emergence and reducing diurnal activity. This butterfly may also be sensitive to moisture declines, as it has been documented drinking from puddles. This species is also likely sensitive to climate-driven changes in its larval host plant, dwarf mistletoe, which is a parasitic plant in conifer forests (e.g., western larch), particularly old growth. Increasing fire frequency, intensity, and severity may reduce dwarf mistletoe abundance in the short term, reducing habitat availability for Johnson's

INVERTEBRATES		Overell	Consistivity	Eveneurs	Cuma ma a mu a f	
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	Exposure	
	_		_	_		Hairstreak.
Juniper Hairstreak	Moderate	Low	Moderate	Moderate	> Altered fire regimes	Temperature and precipitation likely affect larval forage periods. The sensitivity of Juniper Hairstreak is likely largely driven by climate-driven shifts in its larval host plant, western juniper. Western juniper is shade-intolerant, and fire helps prevent succession to conifer forest types in juniper stands. However, western juniper is also fire-intolerant, typically experiencing high fire mortality but still able to recolonize post-fire. Increasing fire frequency and severity may help maintain Juniper Hairstreak habitat by preventing succession, but can also lead to short-term habitat loss if fire burns in current habitat areas. Warmer and more xeric conditions may favor the expansion of western juniper woodland habitats, potentially benefitting Juniper Hairstreak.
Leschi's Millipede	N/A	N/A	N/A	N/A	N/A	This species was only classified in 2004 in Washington. There is almost no information available about its life history characteristics and no
						information available regarding it sensitivity to climate change.
Limestone Point Mountainsnail	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of this species to climate change. It is closely associated with mid-elevations on limestone outcrops and talus. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Mad River Mountainsnail	Low- Moderate	Low	Low	Moderate- High	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of this species to climate change. It is found in talus under black cottonwood and bigleaf maple. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Makah Copper	Moderate- High	Low	Moderate- High	Moderate	> Changes in precipitation (snow and rain)	There is no information on the physiological sensitivity of this species to climate change. However, Makah Copper is likely sensitive to climate-driven changes in its larval host plant, bog cranberry, which occupies very wet and moist fens and bogs. Bog cranberry is not widely

INVERTEBRATES	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Increased amount and/or duration of flooding > Drought	distributed, and drier conditions paired with increased winter flooding may affect the hydrology, formation and extent of bog habitat (see habitat sensitivity summary), potentially leading to habitat reductions for both bog cranberry and Makah Copper. Although bog habitats rarely burn, bog cranberry typically benefits from fire, increasing in abundance. It is unknown how Makah Copper responds to fire, however.
Mann's Mollusk- eating Ground Beetle	Moderate- High	Low	Moderate	Moderate- High	> Increased temperatures > Drought > Increased amount and/or duration of flooding	Very limited sensitivity information is available for this species. This species is thought to occupy riparian sections of lowland river canyons, and to seek out shaded, moist areas during the daytime. Its micro- and macrohabitat preferences likely make it sensitive to flooding, increasingly xeric conditions, and temperature increases.
Mardon Skipper	Moderate- High	Low	High	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	Climate sensitivity of this species is likely influenced by temperature, precipitation, and fire. Population numbers vary annually in response to variable weather because Mardon Skippers exhibit physiological and indirect (i.e., habitat) sensitivity to temperature and precipitation. Temperature influences butterfly behavior (e.g., foraging time), adult life span, and larval development. Warming temperature may also affect phenological timing between Mardon Skipper and key plant species (host and nectar plants) and cause desiccation of larval forage, leading to larval and/or adult starvation. In higher elevation sites, warming temperatures leading to reduced snowpack/earlier snowmelt may also expose Mardon Skipper larvae to novel environmental conditions, which could increase mortality. Precipitation also affects adult behavior, and extreme precipitation can cause adult mortality (i.e., by preventing foraging) and/or drown larvae. Moist conditions can also contribute to fungal development. Mardon Skippers are also vulnerable to fire. Fire helps maintain open grassland habitat used by the Mardon Skipper by preventing conifer encroachment, but Mardon Skippers are not very mobile, and fire can cause direct mortality of all life stages. Increasing fire frequencies may expand overall habitat area available for Mardon

INVERTEBRATE	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	- Tumeraumey	Communication	- Nam	- Num	LAPOSUIC	Skipper, but could contribute to population extirpation if fire occurs in current habitat areas.
Masked Duskysnail	Low- Moderate	Low	Low- Moderate	Moderate	> Altered flow regimes leading to increased nutrient runoff > Reduced oxygen > Increased water temperatures > Increased disease outbreaks	There is limited information on the sensitivity of the Masked Duskysnail to climate change. This species displays very similar traits, habitat requirements, and global distributions to the Washington Duskysnail. The Masked Duskysnail's range is restricted to two large kettle lakes in eastern Washington – Curlew Lake in Ferry County and Fish Lake in Wenatchee National Forest. This species is considered to be a mud specialist, living on soft bottom substrates in highly oxygenated, cool lakes (preferring temperatures below 64°F); changes in water temperature and flow regimes that affect dissolved oxygen levels and stratification may therefore negatively affect the Masked Duskysnail. Changes in flow regimes that increase nutrient runoff may cause dense filamentous algae blooms that impair or prevent access to important food resources. This species occurs in low densities in isolated populations and therefore may be acutely vulnerable to diseases or other disturbance regimes causing mass mortality because they may not be able to quickly rebuild populations.
Meadow Fritillary	Low- Moderate	Low	Low- Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	There is almost no information regarding the sensitivity of this species to climate change, particularly in Washington. Similar to other butterflies, it is likely physiologically sensitive to changes in precipitation and temperature, which may affect larval development and adult behavior. Increasing fire frequency may help maintain and prevent succession of its meadow and forest opening habitat. Riparian habitat may be affected by increasing flood frequencies, as well as fire (see habitat summaries).
Mission Creek Oregonian	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Monarch	Moderate	Moderate	Moderate	Moderate	> Increased temperatures > Changes in precipitation and/or drought	Monarch climate sensitivity is likely influenced by temperature, precipitation, and drought. Monarchs breed and migrate through Washington, and warmer temperatures may accelerate Monarch larval development and enhance adult reproductive activity, potentially expanding suitable breeding ranges northward where they may have historically been limited by cold temperatures. Warmer temperatures and shifts in winter precipitation at overwintering sites (e.g., California)

INVERTEBRATE	S					
	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						may also cause earlier flight times and arrival of migrants from southern overwintering grounds. Shifts in temperature and precipitation are also likely to influence milkweed abundance and distribution, which will impact Monarch distribution, migratory pathways and reproductive success. Drought reduces milkweed survival, germination, growth and seed production, and may make milkweed less palatable, affecting Monarch larval growth and survival.
Morrison's	Moderate	Low	Moderate	Moderate	> Increased	There is almost no information regarding the sensitivity of this species
Bumble Bee					temperatures > Changes in precipitation and/or soil moisture	to climate change, particularly in Washington. It may be sensitive to climate-driven changes in dry scrub habitat (e.g., due to increasing fire, altered precipitation and soil moisture), particularly if disturbance events affect ground nests or foraging opportunities in spring and summer.
						In general, bumble bees are likely sensitive to climate-driven changes in nesting, foraging, and overwintering habitat, but detailed information is currently lacking. Shifts in temperature, precipitation, and snowpack may affect bumble bee distribution and life history, potentially forcing them into unfavorable habitats, to emerge at non-optimal times (i.e., mismatch with vegetation), and/or affecting energy demands during overwintering periods. These climate-driven changes may also affect habitat quality and availability. One of the primary concerns for bumble bee species is a shift in the abundance, distribution, and/or phenological synchrony of key forage flowering vegetation, as pollen and nectar availability influences reproduction and overwintering success of queens.
Nimapuna Tigersnail	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Northern	High	High	High	Moderate-	> Increased	The Northern Forestfly is a species of stonefly with only one currently
Forestfly			_	High	water	known location in the northern Cascades. It is associated with a high-
				_	temperatures	elevation spring and stream which flows into an alpine lake, and in fact
					> Reduced	all three species in the <i>Lednia</i> genus are restricted to alpine or subalpine
					glacier size	springs and glacial streams (the proposed name for the genus is
					and	"Meltwater Stoneflies"). This species is extremely sensitive to climate
					increased	change because of its dependence on coldwater habitats, which are

INVERTEBRAT	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					glacier melting	likely to warm significantly along with disappearing glaciers.
Olympia Oyster	High	High	High	Moderate- High	> Declines in salinity > Decreased oxygen and pH	Olympia Oysters are likely to be sensitive to a number of climate factors, including declines in salinity, oxygen, and pH. Olympia Oysters are sensitive to low salinity levels, and potential increased precipitation (particularly during winter and spring) can lead to lower salinity levels and potential juvenile mortality, as juveniles have a more sensitive salinity threshold. Additionally, increases in extent and time of hypoxic conditions could limit oyster growth. Predicted declines in ocean pH in Washington are also likely to lead to decreases in growth, weight, and metamorphic success of oyster larvae, which could also trigger increased mortality at later life stages. The effects of acidification on oyster larvae could be more severe if low pH conditions are coupled with decreases in phytoplankton food availability.
Olympia Pebblesnail	Low- Moderate	Low	Low- Moderate	Moderate	> Altered flow regimes > Reduced oxygen > Increased water temperatures	There is limited information on the sensitivity of the Olympia Pebblesnail to climate change. This species displays very similar traits and habitat requirements to the Ashy Pebblesnail. The Olympia Pebblesnail's habitat range is believed to include Columbia River Basin's rivers, streams, and creeks, as well as some sites in the Olympic Mountains and San Juan Islands and the Willamette River system in Oregon. The Olympia Pebblesnail requires clear, cold, highly oxygenated streams, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes. Changes in flow regimes that increase nutrient runoff may cause dense algae blooms that impair or prevent the Olympia Pebblesnail's access to important food resources (e.g., lithophytes). The invasive New Zealand Mudsnail (<i>Potamopyrgus antipodarum</i>) may be a direct competitor for food and habitat.
One-band Juga	Moderate- High	Low	Moderate- High	Moderate	> Altered flow regimes > Reduced oxygen > Increased water	There is limited information on the sensitivity of this species to climate change. Its habitat includes low- to mid-elevation streams and springs with cold, highly oxygenated water, and therefore may be sensitive to changes in flow regimes and increases in water temperature that negatively impact dissolved oxygen levels and chemical and biological processes.

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
			-	-	temperatures	
Oregon Branded Skipper	Moderate	Low	Moderate	Moderate	> Increased temperatures > Changes in precipitation > Altered fire regimes	There is no information on the physiological sensitivity of this species to climate change, however, similar to other butterflies, larval development and adult activity are likely affected by temperature and precipitation. Climate sensitivity of Oregon Branded Skipper is also likely affected by fire. Increasing fire frequency may help maintain glacier outwash prairie habitat by preventing conifer or shrub encroachment, as well as create bare ground patches utilized by this skipper. However, more frequent fire may facilitate invasive species establishment, which could degrade Oregon Branded Skipper habitat (e.g., by occupying bare ground zones).
Oregon Megomphix	Low- Moderate	Low	Low	Moderate	> Altered fire regimes > Increased temperatures > Reduced soil moisture > Increased wind disturbance	There is limited information on the sensitivity of the Oregon Megomphix to climate change. This rare species is found at low elevations (below 490 feet) on well-shaded slopes near streams in Washington. Its distribution is closely associated with the bigleaf maple—the more bigleaf canopy cover, the more likely Oregon Megomphix is present. Activities or events that disturb canopy cover and litter composition, such as wind and fire, may therefore negatively affect the temperature and moisture levels at which this species is best suited.
Oregon Silverspot	Moderate	Low	Moderate	Moderate	> Increased temperatures > Drought	Oregon Silverspot exhibits some physiological sensitivity to temperature and precipitation, as larval development, pupation, and adult emergence timing vary each year according to weather, and adults exhibit thermoregulatory behavior during cold, windy conditions (e.g., shelter in warmer adjacent forest edges). Warmer temperatures may increase adult activity (i.e., less basking time) and/or accelerate larval development. Oregon Silverspot is also sensitive to climate-driven changes in habitat availability and quality. Increasing fire frequencies may help maintain the low stature coastal grassland this species requires and help prevent succession to forest or shrub ecotypes. Increasing fire frequency will likely also facilitate reproduction and germination of early blue violet, the larval host plant for Oregon Silverspot. Early blue violet is a shade-intolerant species that reproduces and germinates best in early successional coastal grasslands with bare soil or low, sparse grass cover. Early blue violet is also tolerant of hot,

INVERTEBRATES						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	,				Para	dry periods, which will help maintain long-term Oregon Silverspot habitat areas under a warmer, drier climatic regime. However, dry years may cause early senescence of early blue violets, which can cause larval mortality.
Pacific Clubtail	Moderate- High	Low	Moderate- High	Moderate- High	> Increased air and water temperatures > Altered flow regimes (low summer flows and increased winter flooding) > Altered fire regimes	There is little information on the sensitivity of Pacific Clubtail to climate change. However, Pacific Clubtail sensitivity is likely influenced by air temperature, water temperature, and shifting flow regimes. Temperature is known to influence the phenology, development, behavior and other characteristics of dragonflies, and warming temperatures (both air and water) will likely impact this species during various life stages. Hydrological changes (e.g., reduced stream flows) and drought may degrade or reduce aquatic habitat available for this species and/or compound increases in water temperature. Pacific Clubtail is also likely sensitive to disturbance events (e.g., fire, floods) that reduce riparian vegetation, which eliminates stream shade and foraging and roosting sites for adults, and/or that increase siltation, which can kill larvae.
Pacific Needlefly	Moderate- High	Low	Moderate- High	Moderate	> Increased water temperatures > Changes in precipitation and/or drought > Altered flow regimes	The Pacific Needlefly is an uncommon species found only in mountainous regions of Oregon, Washington, and northern California. Little is known about this species, whose larvae are found only in seeps, springs, and small spring-fed streams. The genus <i>Megaleuctra</i> is dependent on coldwater habitats that do not dry out, as well as high water quality. The sensitivity of this species is likely closely tied to their specialized habitat requirements. Changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Pacific Vertigo	Low- Moderate	Low	Low	Moderate	> Increased disease outbreaks > Altered fire regimes	There is limited information on the sensitivity of the Pacific Vertigo to climate change. Typical Vertigo habitat includes moist riparian zones as well as dry forests; the Pacific Vertigo is closely associated with primarily deciduous and occasionally coniferous trees and bushes. This species is believed to be very rare in the region. Because this species is so rare, it may be acutely vulnerable to fire, disease, or other events causing mass mortality as they may not be able to quickly rebuild populations.

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Pinto Abalone	Moderate- High	Moderate	Moderate- high	Moderate- High	> Decreased pH > Increased ocean temperatures	The main sensitivity of Pinto Abalone to climate change is likely to be from direct physiological responses to predicted decreases in pH. In laboratory experiments, elevated carbon dioxide levels led to decreased larval survival and increased shell abnormalities in Pinto Abalone. In other abalone species, simulated ocean acidification conditions have also resulted in decreased hatching rates and reduced larvae survival. Potential climate-related changes in preferred habitat of kelp beds with coralline algae could increase the sensitivity of this species, as these habitats may be sensitive to increasing sea surface temperature and could experience declines, thus limiting potential abalone habitat. Increases in sea surface temperature could also lead to decreased abalone reproduction and increased mortality. Given the current low population densities and recruitment levels of Pinto Abalone, any future threats from lower pH or increasing temperature could have an even greater impact on this species.
Poplar Oregonian	Low	Low	Low	N/A	N/A	There is limited information on the sensitivity of the Poplar Oregonian to climate change, and very limited information on this species' life history. Populations are found in moderately dry and cool, low elevation talus habitats in river basins. This species appears to be well adapted to drier habitats than other terrestrial snails, and therefore may be less susceptible to changes in moisture levels.
Propertius' Duskywing	Moderate	Low	Moderate	Moderate	> Increased temperatures	Propertius' Duskywing sensitivity is likely driven by temperature. This species exhibits some physiological sensitivity to warming temperatures, as well as indirect sensitivity to temperature via habitat changes. A study of Canadian populations found that adult flight phenology varied according to daily temperature, although larval development did not vary with temperature directly. A separate study found that warmer winter temperatures (+40°F higher than average) enhanced energetic drain on overwintering larvae and caused sublethal effects, and that increasing winter temperatures are likely to enhance desiccation stress for this species. Warming temperatures are also likely to affect the timing and distribution of key larval and adult food resources. As a specialist on certain oak species, phenology mismatches with host plants could affect adult and larval survival, but an extended growing season could enhance larval growth prior to overwintering. Further, a

INVERTEBRATE	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	vullerability	Confidence	Nank	Kalik	LXPOSUIE	lag between Propertius' Duskywing and oak polar migration in response to warming temperatures is predicted, which will likely limit this species' dispersal potential in response to climate change.
Puget (Blackmore's) Blue	Alpine populations - High Low elevation populations - Low- Moderate	Moderate	Alpine population s - High Low elevation population s - Moderate	Olympics: Moderate- High South Puget Sound: Low- Moderate	> Increased temperatures > Reduced snowpack > Altered fire regimes	Sensitivity of this species is mainly driven by habitat. Populations associated with alpine meadows in the Olympic Mountains are likely very sensitive to climate-driven changes in habitat availability, as alpine habitats are projected to decline in extent due to warming temperatures, reduced snowpack, drought, and other drivers. Populations associated with lower elevation prairies are likely sensitive to fire. Lupine, the larval host plant of the Puget Blue as well as an adult nectar source, appears to thrive post-fire, and fire also helps prevent prairie succession to forest or shrub habitats. However, fire can also lead to direct mortality of Puget Blue adults and larvae, and/or facilitate the expansion of Scot's broom and other invasive plants, which can displace lupine. In addition, it is unknown how shifting fire regimes (e.g., seasonality, intensity) will impact this species and its host plant.
Puget Oregonian	Low- Moderate	Low	Low	Moderate	> Increased temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the Puget Oregonian to climate change. This species is found in cool, moist conifer forests at low to moderate elevations, especially under large woody debris and leaf litter. This shade provides refugia from moderate fluctuations in temperature and moisture; changes in canopy cover may therefore negatively impact this species.
Puget Sound Fritillary	Low- Moderate	Low	Low- Moderate	Moderate	> Altered fire regimes	There is limited information on the sensitivity of the Puget Sound Fritillary to climate change. Similar to other butterflies that occupy prairie and forest glade habitats, the Puget Sound Fritillary is likely sensitive to fire, which can help prevent grassland succession to shrub or forest habitat, but can likely cause direct butterfly mortality and/or facilitate invasion and spread of invasive species.
Rainier Roachfly	Moderate- High	High	Moderate- High	Moderate- High	> Increased water temperatures > Reduced glacier size	The Rainier Roachfly has only been documented within Mt. Rainier National Park (mostly on the west side). It is found in seeps, springs, and small spring-fed streams. Climate sensitivity for this species is tied to melting glaciers and an associated rise in stream temperatures. Relatively little is known about this species, but stoneflies as a whole are

INVERTEBRATES	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
	Vulnerability	Confidence	Rank	Rank	and increased glacier melting > Changes in precipitation and/or drought > Altered flow regimes	sensitive to drought or precipitation changes that may affect seep moisture, springs, and stream flow. Decreased water quality, habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Ranne's Mountainsnail	Low	Low	Low	N/A	N/A	There is limited information on the sensitivity of this species to climate change. It is known to occur on only one site in Chelan County in grassland including <i>Eriogonum</i> sp. and <i>Balsamorrhiza Sagitta</i> .
Salmon River Pebblesnail	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Sand Verbena Moth	Moderate- High	Moderate	Moderate- High	Moderate	> Increased invasive species > Sea level rise > Increased coastal erosion > Drought	The Sand Verbena Moth is primarily threatened by the loss of its host plant and open sandy coastal habitat as a result of encroaching vegetation, including invasive species. However, it may also exhibit sensitivity to a variety of climate and climate-driven changes, including enhanced coastal erosion, sea level rise and drought. Disturbance is the primary driver in maintaining open sandy habitat preferred by the Sand Verbena Moth's host plant, yellow sand verbena. Enhanced coastal erosion could create more open sandy habitat (i.e., through increased deposition of eroded cliff material) or decrease current moth habitat through loss of established host plants, which occur close to the shoreline. Substantial sea level rise could inundate Sand Verbena Moth habitat, but projected rates of rise through mid-century will likely not be enough to inundate current habitat areas. Drought could lead to early senescence of yellow sand verbena, which would decrease food availability for both adults and larvae and affect annual population numbers. Yellow sand verbena is adapted to dry conditions, however, and can likely survive drought periods, so overall habitat area is not likely to decrease in response to drought.
Sasquatch	Moderate	Low	Moderate	Moderate	> Increased	The Sasquatch Snowfly has been found in British Columbia and
Snowfly					water	Washington, and is associated with high elevation creeks and small to

INVERTEBRATES	<u> </u>					
	Overall	Overall	Sensitivity	Exposure	Summary of	60 111 11
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
Shortface Lanx	Moderate	Low	Low- Moderate	Moderate- High	temperatures > Changes in precipitation and/or drought > Altered flow regimes > Altered flow regimes > Reduced oxygen > Increased	medium rivers. Little else is known about this species, which was recently separated from the nearly identical <i>Bolshecapnia Missiona</i> . Sensitivity for this species likely tied to habitat requirements. Like all other stoneflies, changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat. There is limited information on the sensitivity of this species to climate change. This species is found in cold, perennial, highly oxygenated rivers and streams, and may therefore be sensitive to changes in flow regimes and water temperatures that negatively impact dissolved oxygen levels and chemical and biological processes. This species occurs in low
					water temperatures > Increased disease outbreaks	densities in isolated populations and therefore may be acutely vulnerable to diseases or other regimes causing mass mortality because they may not be able to quickly rebuild populations.
Silver- bordered Fritillary	Moderate- High	Moderate	Moderate- High	Moderate- High	> Increased temperatures > Reduced snowpack > Altered flow regimes > Altered fire regimes	Climate sensitivity of Silver-bordered Fritillary is likely driven by habitat changes resulting from drying, altered hydrology, and fire. Warmer temperatures and precipitation shifts that drive reduced snowpack and altered flow regimes can lead to drying of bog, marsh and riparian habitats used by this species. Forest succession can also degrade habitat by reducing abundance of violet, its larval host plant. Increasing fire frequency and increasing winter flood risk may help maintain early successional habitat and the high violet abundance required by the Silver-bordered Fritillary. However, fire may cause adult and/or larval mortality.
Siuslaw Sand Tiger Beetle	Moderate- High	Low	Moderate	Moderate- High	> Reduced stream flow > Drought and/or reduced soil moisture	Siuslaw Sand Tiger Beetle occupies sandy beaches at the interface of river mouths and the Pacific Ocean. This species is likely sensitive to drought, reduced streamflow, and increasingly xeric conditions, as larvae have narrow moisture requirements and burrows are located adjacent to surface water or in areas with persistent soil moisture.
Sonora	Low-	Low	Low-	Low-	> Altered fire	There is limited information on the sensitivity of the Sonora Skipper to

INVERTEBRATE	s					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
Skipper	Moderate		Moderate	Moderate	regimes	climate change. As an occupant of forest edges, prairies, meadows and other open sites, this species may exhibit sensitivity to fire, which can help maintain open habitat conditions. However, similar to other prairie butterflies, fire may cause adult and/or larval mortality. It likely exhibits some physiological sensitivity to climate conditions, as population numbers fluctuate yearly, but more information is needed.
Spotted Taildropper	Low- Moderate	Low	Low- Moderate	Moderate	> Increased temperatures > Reduced soil moisture and/or changes in precipitation > Altered fire regimes	There is very limited information regarding the sensitivity of Spotted Taildropper to climate change and limited information available regarding its life history characteristics. Their main sensitivity is likely to be driven by changes in their preferred habitat – mature conifer forests with moist ground. Increases in temperature and decreases in summer rainfall are likely to lead to increased risk of severe fires, which would destroy habitat for this species. Declines in habitat quality could also lead to fragmentation of populations and eventual population declines, particularly because documented populations of this species are already very small.
Straits Acmon Blue	Moderate- High	Moderate	N/A	Moderate- High	> Sea level rise > Increased storm frequency and intensity	There is no information on the sensitivity of the Straits Acmon Blue to climate change. As an occupant of sand spits and beaches, it may be vulnerable to climate-driven shifts in habitat and host plant availability caused by sea level rise, increased storm frequency and intensity, and erosion, but no information is available. (See scrub and herb coastal vegetation habitat assessments for more information on potential habitat sensitivity to climate change.)
Subarctic Bluet	Moderate- High	Low	High	Moderate	> Altered flow regimes > Drought > Increased air and water temperatures > Reduced snowpack and/or changes in precipitation	The Subarctic Bluet is likely sensitive to drought, increasingly dry conditions (e.g., reduced snowpack, shifts from snow to rain), and altered hydrology (e.g., reduced flows and larger floods) that can lead to drying, habitat contraction and/or altered water quality in its fen and bog habitat. Subarctic Bluet larvae are aquatic and depend on aquatic vegetation for foraging, making them sensitive to climate-driven habitat drying that may facilitate shifts toward more xeric vegetation. There are only a few populations of this species in Washington, representing the southern end of this species' range, so any significant alteration in bog habitat as a result of climate change could lead to loss of this species in the state. Similar to other Odonates, Subarctic Bluet is likely also sensitive to increasing temperatures (air and water) in a variety of ways:

INVERTEBRATES	S					
Species	Overall	Overall	Sensitivity	Exposure	Summary of	Summary of Sensitivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
						warmer temperatures may affect development, phenology, behavior,
						and other characteristics of this species.
Suckley	Moderate	Low	Moderate	Moderate	> Increased	There is no information regarding the sensitivity of this species to
Cuckoo					temperatures	climate change. In general, bumble bees are likely sensitive to climate-
Bumble Bee					> Changes in	driven changes in nesting, foraging, and overwintering habitat, but
					precipitation	detailed information is currently lacking. Shifts in temperature,
					and/or soil	precipitation, and snowpack may affect bumble bee distribution and life
					moisture	history, potentially forcing them into unfavorable habitats, to emerge at
						non-optimal times (i.e., mismatch with vegetation), and/or affecting energy demands during overwintering periods. These climate-driven
						changes may also affect habitat quality and availability. One of the
						primary concerns for bumble bee species is a shift in the abundance,
						distribution, and/or phenological synchrony of key forage flowering
						vegetation, as pollen and nectar availability influences reproduction and
						overwintering success of queens.
Talol Springfly	Moderate	Low	Moderate	Moderate	> Increased	The Talol Snowfly was described in 2004 from a single collection taken
					water	from Mt. Rainier National Park. The sample was found in a medium-
					temperatures	sized river, but nothing else is known about the ecology of this species.
					> Changes in	Like all other stoneflies, it is likely dependent on flowing water for
					precipitation	nymph survival, making it sensitive to changes in flow patterns due to
					and/or	drought or changing patterns of precipitation. Stoneflies are also
					drought	typically sensitive to changes in water temperature and water quality, as
					> Altered	well as habitat fragmentation and nearby development which may alter
		_			flow regimes	the quality and availability of suitable habitat.
Taylor's	Moderate-	Moderate	Moderate-	Moderate-	> Increased	Taylor's Checkerspot sensitivity is likely driven by temperature,
Checkerspot	High		High	High	temperatures	precipitation, and fire. Warming temperatures may accelerate larval
					> Drought	development, affect larval feeding period duration, increase activity
					> Extreme	periods by reducing basking requirements, and increase total habitat
					precipitation events	use at the microsite level. However, increasingly xeric conditions may
					> Altered fire	reduce the palatability of grassland larval host plants and/or cause earlier host plant senescence, contributing to larval starvation and
					regimes	mortality. Increasing drought frequency and severity may also require
					> Increased	Taylor's Checkerspot to obtain moisture from puddles during spring,
					invasive	creating previously unneeded microhabitat requirements. Taylor's
					weeds	Checkerspot is also sensitive to rain, and extreme downpours could
		l		L	WCCUS	Checkerspot is also sensitive to rain, and extreme downpours could

INVERTEBRATE	S					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
	vunierasinty	Comidence	Nank	Name	Exposure	cause severe population declines by washing away eggs and larvae and limiting adult flight. Low severity fire helps maintain the native vegetation used by Taylor's Checkerspot, but fire can also kill all butterfly age stages, potentially extirpate local populations if fires are large enough. Thus, increasing fire frequencies and severities may affect butterfly survival and habitat availability for Taylor's Checkerspot.
Three-band Juga	Moderate- High	Low	Moderate- High	Moderate	> Increased water temperatures > Reduced soil moisture and/or drought > Altered fire regimes	There is limited information on the sensitivity of this species to climate change. This species is found in shallow, slow-flowing springs and seeps and is sometimes associated with talus. Activities or events that alter conditions, such as moisture levels and temperature, may make this species vulnerable.
Unnamed Oregonian (Cryptomastix mullani hemphilli)	N/A	N/A	N/A	N/A	N/A	There is no information on the sensitivity of this species to climate change.
Valley Silverspot	Low- Moderate	Low	Low- Moderate	Low- Moderate	> Altered fire regimes	There is limited information on Valley Silverspot sensitivity to climate change, but it is likely sensitive to fire. Valley Silverspot prefers open grassland habitat, and its host plant, early blue violet, thrives in early successional landscapes; fire likely helps maintain open grassland habitat by preventing forest succession. However, increasing fire frequency may facilitate the expansion of Scot's broom and other invasive plants, which can outcompete violets, reducing host plant availability.
Washington Duskysnail	Low- Moderate	Low	Low- Moderate	Moderate	> Altered flow regimes > Reduced oxygen > Increased water temperatures	There is limited information on the sensitivity of the Washington Duskysnail to climate change. This species displays very similar traits, habitat requirements, and global distributions to the Masked Duskysnail. The Washington Duskysnail occurs in Washington and Montana; in Washington, their habitat includes two large kettle lakes in eastern Washington – Curlew Lake in Ferry County and Fish Lake in Wenatchee National Forest. This species is considered to be a mud

INVERTEBRATI	ES					
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
					> Increased disease outbreaks	specialist, living on soft bottom substrates in highly oxygenated lakes; changes in water temperature and flow regimes that affect dissolved oxygen levels and stratification may therefore negatively affect the Washington Duskysnail. Changes in flow regimes that increase nutrient runoff may cause dense filamentous algae blooms that impair or prevent access to important food resources. This species occurs in low densities in isolated populations and therefore may be acutely vulnerable to diseases or other regimes causing mass mortality because they may not be able to quickly rebuild populations.
Wenatchee Forestfly	Moderate- High	Low	Moderate	Moderate- High	> Increased water temperatures > Changes in precipitation and/or drought > Altered flow regimes	The Wenatchee Forestfly is a type of stonefly which has been found only in springs which flow into Lake Wenatchee, Washington. Little else is known about this species, but sensitivity probably is tied to specialized habitat requirements. Like all other stoneflies, changes in flow patterns due to drought or changing patterns of precipitation, changes in water temperature, and decreased water quality are all likely to increase the sensitivity of the species. Habitat fragmentation and nearby development also alter the quality and availability of suitable habitat.
Western Bumble Bee	Moderate- High	Low	Moderate- High	Moderate- High	> Increased temperatures > Reduced snowpack > Earlier snowmelt > Altered fire regimes	Climate sensitivity of the Western Bumble Bee is likely driven by temperature increases, reduced snowpack and earlier snowmelt, and fire. In Washington, this species occupies primarily higher elevations; temperature increases, reduced snowpack, and earlier snowmelt may be contributing to phenological mismatches between this species and key forage plants. Temperatures may also affect the distribution of this species, as it appears to prefer cooler environments. Increasing fire frequencies may help maintain bumble bee foraging habitat by preventing conifer encroachment on meadows with abundant flowers. In general, bumble bees are likely sensitive to climate-driven changes in nesting, foraging, and overwintering habitat, but detailed information is currently lacking. Shifts in temperature, precipitation, and snowpack may affect bumble bee distribution and life history, potentially forcing them into unfavorable habitats, to emerge at non-optimal times (i.e., mismatch with vegetation), and/or affecting energy demands during overwintering periods. These climate-driven changes may also affect

INVERTEBRATES						
Species	Overall Vulnerability	Overall Confidence	Sensitivity Rank	Exposure Rank	Summary of Exposure	Summary of Sensitivity
						habitat quality and availability. One of the primary concerns for bumble bee species is a shift in the abundance, distribution, and/or phenological synchrony of key forage flowering vegetation, as pollen and nectar availability influences reproduction and overwintering success of queens.
Western Pearlshell	Moderate	Low	Moderate	Moderate	> Increased water temperatures > Altered flow regimes	Western Pearlshell is a very long-lived species with a lifespan of up to 100 years and it has experienced significant declines over the past few decades. This species is generally found in shallow pools of freshwater streams and reservoirs with good water quality and a sufficient abundance of small fish who serve as hosts for Western Pearlshell during its transition from the larval to juvenile stage. Therefore, main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. For this species, high levels of river discharge have been found to result in decreased recruitment, and higher nutrient levels have been associated with decreased juvenile growth and increased mortality. Additionally, increases in water temperature and nutrient runoff could lead to altered abundance of host fish (e.g., juvenile salmon) for the larval stage, thus leading to declines in abundance. The long generation times of this species is likely to make response and recovery to adverse climate conditions more difficult.
Western Ridged Mussel	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures > Altered flow regimes	There is limited information regarding the sensitivity of the Western Ridged Mussel to climate change. This species is generally found in shallow pools of freshwater creeks and streams and with good water quality and a sufficient abundance of small fish (e.g., sculpin and perch) who serve as hosts for Western Ridged Mussel during their transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. Additionally, increases in water temperature could lead to altered abundance of host fish for the larval stage, thus triggering declines in abundance, particularly since this

	Overall	Overall	Sensitivity	Exposure	Summary of	
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
	,				·	species appears to be a specialist in terms of preferred host fish species. Western Ridged Mussels may also be sensitive to increasing water temperature in streams and creeks; increased temperatures could lead to decreased recruitment and increased mortality of the larval stage.
White-belted Ringtail	Moderate- High	Low	Moderate- High	Moderate	> Increased air and water temperatures > Altered flow regimes (low summer flows and increased winter flooding) > Altered fire regimes	There is little information on the sensitivity of this species to climate change, but similar to the Pacific Clubtail, it is likely influenced by air temperature, water temperature, and shifting flow regimes. Temperature is known to influence the phenology, development, behavior and other characteristics of dragonflies, and warming temperatures (both air and water) will likely impact this species during various life stages. Hydrological changes (e.g., reduced stream flows) and drought may degrade or reduce aquatic habitat available for this species and/or compound increases in water temperature. White-belted Ringtail is also likely sensitive to disturbance events (e.g., fire, floods) that reduce riparian vegetation, which eliminates stream shade and foraging and roosting sites for adults, and/or that increase siltation, which can kill larvae.
Winged Floater	Moderate	Low	Low- Moderate	Moderate- High	> Increased water temperatures > Altered flow regimes	There is limited information regarding the sensitivity of Winged Floater to climate change. This species is generally found in lakes, reservoirs, and slow-moving streams with good water quality and a sufficient abundance of small fish (e.g., sculpin, perch, hardhead) who serve as hosts for the species during its transition from the larval to juvenile stage. Therefore, their main sensitivity is likely to stem from climate-induced changes in water quality and host fish abundance. For instance, increased intensity of winter storms could lead to higher flow in rivers and increased nutrient runoff, both of which would degrade and reduce available habitat. Additionally, increases in water temperature could lead to altered abundance of host fish for larval stage, thus leading to declines in abundance. Winged Floater may also be sensitive to increasing water temperature in streams and lakes; increased temperatures could lead to decreased recruitment and increased mortality of the larval stage.
Yosemite Springfly	High	Low	High	Moderate- High	> Increased water temperatures	The Yosemite Springfly is rare, found only in high elevation glacier-fed streams within Washington, Oregon, and California. Little else is known about this species, but sensitivity probably is tied to specialized habitat

2015 STATE WILDLIFE ACTION PLAN C-128

INVERTEBRATES	S					
Cassias	Overall	Overall	Sensitivity	Exposure	Summary of	Commence of Consistivity
Species	Vulnerability	Confidence	Rank	Rank	Exposure	Summary of Sensitivity
					> Reduced glacier size and increased glacier melting > Changes in precipitation and/or drought > Altered flow regimes	requirements, which will be affected by melting glaciers and an associated rise in stream temperatures. Like all other stoneflies, changes in flow patterns due to drought or changing patterns of precipitation and decreased water quality are also likely to increase the sensitivity of the species, as well as habitat fragmentation and nearby development which may alter the quality and availability of suitable habitat.
Yuma Skipper	Moderate	Moderate	Moderate	Moderate	> Altered flow regimes > Prolonged drought	Yuma Skipper occupies reed beds around freshwater marshes, wetlands, streams, and other wet areas, and is likely sensitive to increasingly dry conditions that may affect the distribution and persistence of its larval host plant, the common reed. However common reed is fairly resilient, as it is able to persist for several years in dried-out wetlands; therefore, habitat for Yuma Skipper may be resilient to short-term drought, but could be vulnerable to long-term drought and/or significant shifts in surface water delivery to wetland areas. Further, the extremely limited distribution of Yuma Skipper in Washington makes it vulnerable to local extirpation.

2015 STATE WILDLIFE ACTION PLAN C-129

C.3 References

SPECIES VULNERABILITY

References for species vulnerability can be found in Appendix F, under Climate Change Vulnerability.

CLIMATE IMPACTS OVERVIEW

The information in the climate impacts overview was compiled from various synthesis reports on climate change projections and impacts for the Pacific Northwest region. Specific citations for information not derived from these reports can be found in-text. Otherwise, primary literature sources can be found within the following synthesis reports:

- Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.
- Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach, and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. *Climate Change Impacts in the United States: The Third National Climate Assessment*, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 557-578. doi:10.7930/J0RF5RZW.
- Gregg, R. M., K. M. Feifel, J.M. Kershner, and J.L. Hitt. 2012. The State of Climate Change Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.
- Gregg, R.M., L. J. Hansen, K.M. Feifel, J.L. Hitt, J.M. Kershner, A. Score, and J.R. Hoffman. 2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. EcoAdapt, Bainbridge Island, WA.
- Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi, and S. Reeder. 2014. Ch. 21: Northwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 487-513. doi:10.7930/J04Q7RWX.
- Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby, and I. Tohver. 2013. Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers. State of Knowledge Report prepared for the Washington State Department of Ecology. Climate Impacts Group, University of Washington, Seattle.
- State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate: Washington States Integrated Climate Response Strategy. Publication No. 12-01-004. Olympia, WA.
- Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats, and Species: A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems Final-Report NPLCC-NWF online-size.pdf
- Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf
- Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine-Report/NPLCC_Marine_Climate-Effects_Final.pdf

Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington Connected Landscapes Project: Statewide Analysis. Washington Departments of Fish and Wildlife, and Transportation

Appendix D

Stakeholder Engagement and Outreach

Table of Contents

D.0	Introd	luction and Overview	1
D.1	Devel	opment and Implementation of an Outreach Plan	1
		Use of the WDFW website for outreach	
		Developing an interested persons list	
		Survey to determine how the SWAP could add value to conservation actions of other	
		organizations	2
	D.1.4	Presentations and briefings to key conservation partners	
	D.1.5	In-person workshops and webinars	4
	D.1.6	Targeted Outreach	4
D.2	Refere	ences Section	5
		Wildlife Diversity Advisory Council	
		Goals and Objectives of the SWAP Outreach Plan (adopted in August, 2014)	
		Survey Monkey	

Appendix D Stakeholder Engagement and Outreach

D.0 Introduction and Overview

The development process of the original Comprehensive Wildlife Conservation Strategy (CWCS) included significant outreach to the public and WDFW's stakeholders, all of which is detailed in the 2005 plan, available on the SWAP website – http://wdfw.wa.gov/conservation/cwcs/. The following chapter summarizes our approach to engage stakeholders in the review and revision of the CWCS and the development of the State Wildlife Action Plan (SWAP) Revision. In general, we aimed for a strategic and leveraged approach to engaging external partners. One of the guiding principles adopted early in the SWAP Revision process encouraged us to "be efficient – conduct the SWAP revision in a manner that matches the available resources for planning and implementation." With limited resources available for this revision, we focused on how to get the best value from stakeholder and public outreach efforts. An Outreach Plan, located near the end of this appendix, was developed to guide our efforts, and specific components of that plan are discussed in the next section.

Our overall approach was to provide several opportunities for feedback from our stakeholders and conservation partners throughout the SWAP Revision process, recognizing that input early in the process would be more effective at shaping the scope and content. We worked with the Wildlife Diversity Advisory Council (WDAC), a standing committee convened by WDFW and representing a range of interests as our primary stakeholder committee. During this period, the WDAC consisted of 18 members from across the state. We provided periodic updates to WDAC on the process for the SWAP Update and worked with a subcommittee early in the process for feedback on our content and focus areas, including feedback on the SGCN list and approach to identifying habitats of concern. Each member of the WDAC was encouraged to reach out to the people and organizations they interact with outside of WDFW to provide input during the revision.

Using the tools described below, we cast a wide net beyond the WDAC to identify and invite other individuals and organizations who might be interested in being involved in the development process, and then focused in on working with those who indicated interest. We made use of the WDFW website, email announcements, in person workshops, webinars and presentations, and briefings to small groups to announce the SWAP Update project and invite comments during the development process.

D.1 Development and Implementation of an Outreach Plan

We worked with members of the WDFW Cross Program Advisory Team¹ to develop an Outreach Plan which addressed both outreach to interested parties external to WDFW and also in-reach, activities to engage the expertise of staff within the agency. The Outreach Plan was then reviewed by members of the Wildlife Diversity Advisory Council, and after discussion, the plan was adopted (see References Section for the goals and objectives of the plan).

¹ The Cross Program Advisory Team included managers from across the agency and met monthly beginning in July 2013 to provide guidance and input on the development of the State Wildlife Action Plan Update.

A few of the key activities outlined in the plan are discussed below.

D.1.1 Use of the WDFW website for outreach

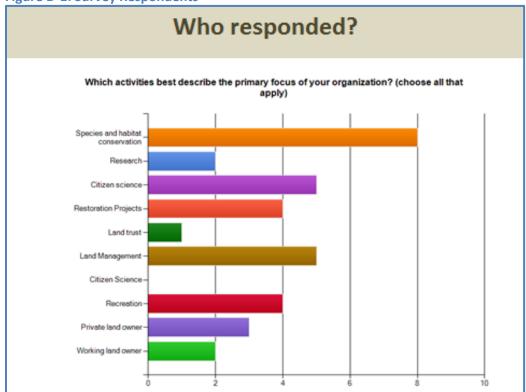
In early 2014, we updated the WDFW website to announce that the 2005 CWCS was being reviewed and revised as a State Wildlife Action Plan Update. We provided basic information about the update process and timeline and encouraged interested parties to contact the SWAP Coordinator for more information and to be on a list for future updates.

March 2015: SGCN list and supporting information

In early March we published our draft SGCN list on the website and provided information about the list, the criteria used, differences from 2005 and the implications of being included on the SGCN list. We also published fact sheets for each of the SGCN, including information on conservation status, conservation concern, distribution, population trends, habitat needs, key stressors and actions. Any visitor to the website was encouraged to review and submit comments on these documents, or the list itself.

July 2015: Full draft (content review only)

The full draft SWAP was posted on the website in late July for a general public review period. This draft was intended for content review only.


D.1.2 Developing an interested persons list

Early in the process we reviewed existing lists from within WDFW to identify individuals, tribes and organizations potentially interested in conservation issues or having specialized expertise or knowledge to contribute. An introductory email was sent to approximately 250 individuals and organizations, announcing the SWAP Update and our goal of developing a list of people interested in being involved in or kept informed of the process for updating the plan. We provided a brief overview of the purpose and intent of the SWAP Revision.

D.1.3 Survey to determine how the SWAP could add value to conservation actions of other organizations

We developed a survey, located near the end of this appendix, to find out generally how the State Wildlife Action Plan could add value to other organizations, and identify specific opportunities to contribute to shared conservation goals or strategies. The survey asked respondents to identify the top priority initiatives or objectives related to habitat or species conservation in a three to five year timeline, so that WDFW could assess how the agency, and specifically the SWAP, could contribute towards those objectives. We also provided a list of options for respondents to indicate how WDFW could assist in furthering shared goals related to species and habitat conservation. Finally, we included an open ended question specifically asking for ideas on how the SWAP itself could add value to their respective conservation efforts.

While the number of those who responded was relatively low (approximately 20), respondents represented a diverse group of interests and organizations, and the results were informative from that perspective. The following figures summarize the diversity of those who responded.

Figure D-1: Survey Respondents

Sample responses to "How the SWAP could add value to your work"

- Promote on the ground actions to conserve habitat, and access to habitat, especially given threat
 of climate change.
- Incentive for private landowners; facilitate private incentives for species recovery.
- Serve as a road map for private landowners to help them coordinate incentive based habitat plans with appropriate agencies and tribes.
- Be responsive to needs of agricultural community.
- Provide grant opportunities for land protection and public education projects.
- Promote citizen science at every age level (databases and field experts).
- Communicate to the public about species conservation and climate change
- Integrated/collaborative planning.
- Provide predictability about natural resources management issues; identify management actions that could become Army conservation projects.
- Incorporate priorities set by Pacific Coast Joint Venture Scientists.
- Help to set priorities for partners, and inform updates of national bird plans.

While the resources available for the SWAP Update and the focus of our revision did not allow us to address all the comments, the exercise provided good feedback to the agency and emphasized the importance of using a full conservation toolbox when considering appropriate actions to improve status of SGCN or Ecological Systems of Concern (ESOC), including technical assistance, transparent and clear communication, incentives for private landowners, increased education and others. These conservation tools can be as important in some cases as research or survey and monitoring activities.

The feedback from the survey as well as other comments received through the website and at SWAP presentations encouraged us to post information on SGCN early in our review to ensure that to the extent possible, experts had ample opportunity to add any appropriate information. In identifying stressors and actions (in SGCN and ESOC fact sheets), we also identified potential partners and included a full range of conservation tools.

D.1.4 Presentations and briefings to key conservation partners

Throughout the SWAP Revision process, the SWAP Coordinator provided briefings and updates to both small and large groups. The purpose was generally to outline the update process, share products as they were available, and gather feedback. We held briefings with each of the following organizations:

- WDNR Natural Heritage Program staff
- Pacific Coast Joint Ventures quarterly meeting
- USFWS staff from Region 1
- Audubon Washington & Black Hills Audubon
- USFWS Surrogate species program lead identifying possible synergies
- USFS Region 6 TRACs program (purpose to identify possible synergies)
- Cascadia Partner Forum
- North Pacific Landscape Conservation Cooperative Steering Committee and staff
- Northwest Climate Science Center staff

D.1.5 In-person workshops and webinars

We scheduled three in-person workshops around the state and one webinar, and advertised these on our website and by email to interested persons. We timed the workshops to coincide with the release of the draft SGCN list on our website, and the availability of fact sheets for most of the species. The one to two-page fact sheets describe habitat, conservation status and need, stressors and actions (see Appendix A for updated versions of these fact sheets). The focus of the workshops was to provide an overview of all the elements of the update, but to focus particularly on the availability of the SGCN data on the web and encourage review of these draft products.

D.1.6 Targeted Outreach

After the draft SWAP was released for public review, we targeted outreach to key stakeholders that we wanted to be sure had an opportunity to provide comment. We offered webinars and in-person briefings to introduce the SWAP and tools that might be of interest. We reached out specifically to working landowner associations and tribes during August of 2015 to ensure they were aware of the public review draft of the SWAP and specific content that might be of interest to them. We were in phone contact with tribal representatives and sent announcements to tribal biologists through the Bureau of Indian Affairs as well as our own direct email lists.

Comments and responses to the Public Review Draft

We received 21 comments via email from external reviewers. Most of these comments were advocating that additional species be included as SGCN. A handful of other comments addressed specific issues in the SWAP or recommended clarifications. WDFW prepared edits in the SWAP itself in response to many of the comments and will prepare a full summary of comments and responses to post on the SWAP website.

D.2 References Section

D.2.1 Wildlife Diversity Advisory Council

Wildlife Diversity is a term commonly used to describe wildlife species that are not traditionally managed for harvest. Also known as "nongame", these species make up the majority of wildlife. The Wildlife Diversity Advisory Council (WDAC) was created to advise the Department on both keeping common species common and recovering listed wildlife species. The council also recommends approaches on how to develop and maintain the social, political, and resource support necessary to achieve conservation of wildlife diversity species in Washington.

Mission Statement

The purpose of the Wildlife Diversity Advisory Council (WDAC) is to advise the Department of Fish and Wildlife on matters pertaining to Wildlife Diversity (nongame species and habitat). At the Department's request, WDAC may focus on present or emerging issues as they relate to wildlife diversity.

D.2.2 Goals and Objectives of the SWAP Outreach Plan (adopted in August, 2014)

Goal

The purpose of this plan is to outline a set of meaningful and cost-effective outreach activities regarding WDFW's efforts to revise the SWAP. Our goal is to design and conduct these activities in such a way as to provide sufficient opportunities for interested parties to contribute to the content of the plan and/or provide substantive comments on specific elements before submission to the USFWS in September, 2015.

SPECIFIC OBJECTIVES (benchmarks)

- 1. Identify appropriate audience
 - Develop address and contact lists.
- 2. Develop outreach materials as necessary, to include a web page, fact sheet, PowerPoint presentations, email alerts to interested parties and materials to support interactive workshops.
- 3. Conduct outreach activities necessary to accomplish goal, to include at least two in person workshops and one webinar during development of the plan, and at least two webinars to introduce the final draft plan.
 - In person one-on-one meetings and calls, and presentations at appropriate events and workshops will be conducted as resources allow.
- 4. Ensure that the SWAP Revision timeline allows ample time for interested parties to participate in the process.
 - Schedule outreach activities to gather meaningful feedback and input.
 - Provide appropriate time for public review and comment on draft SWAP.

TARGET DELIVERABLES

- 1. Outreach materials: webpage, one-pager
- 2. Targeted audience presentations: 2-4
- 3. Public workshops/webinars: 3-5

D.2.3 Survey Monkey

Used to collect feedback on how the SWAP could add value to conservation work by WDFW conservation partners and others

STATE WILDLIFE ACTION PLAN

1. What is the name of your organization?

The purpose of this survey is to assess how the State Wildlife Action Plan could most effectively contribute to regional conservation needs and align with the priorities of organizations working on behalf of species and habitat conservation in Washington. We will use responses to help shape and prioritize key elements of the Plan. The SWAP is updated every 10 years and designed to be a blueprint to inform conservation planning within WDFW and also the broader conservation community in the State. Click this link (http://wdfw.wa.gov/conservation/cwcs/) for a one page overview.

Thank you in advance for taking the time to respond to this survey.


4	▼ <u> </u>
2. Yo	our name and your position title?
1	V
3. W	hat description best fits your organization?
	What description best fits your organization? Indian Tribe
	Non-governmental organization
	Coalition
	Public-private partnership
	State agency
	Local agency
	Federal agency
Othe	er (please specify)
4. W	hich activities best describe the primary focus of your organization? (choose all that apply)
	Research

	Citizen science
	Restoration Projects
	Land trust
	Land Management
	Citizen Science
	Recreation
	Private land owner
	Working land owner
Othe	er (please specify)

5. Please describe how the State Wildlife Action Plan could be value added to your organization. What would it need to do to support or enhance the work of your organization in a positive way?

6. Please indicate one to three priority intiatives or objectives of your organization (related to species or habitat conservation) in the next 3-5 year timeframe. Please be brief but specific enough so that we can assess how WDFW and the State Wildlife Action Plan might contribute to those objectives.

7. Please indicate which of the following are ways your organization either works with WDFW currently, o might in the future. Click all that apply.
Please indicate which of the following are ways your organization either works with WDFW currently, or might in the future. Click all that apply. Share information on priorities for species and habitat conservation
Use information in the State Wildlife Action Plan to develop joint projects on common priorities
Collaborate on citizen science projects
Collaborate on preparing outreach and education materials
Provide public testimony or other support for State Wildlife Grants Program (e.g., attend the annual Teaming with Wildlife Fly-in Days)
Contribute to landscape or regional conservation efforts (e.g. the Arid Lands Initiative)
Provide specific expertise as needed to advance conservation objectives
Other
8. What is your preferred way to comment or contribute to the development of the SWAP?
Track developments via web and comment when needed
Periodic email updates
2-3 hour workshops to engage with staff and explore SWAP content
Webinars to introduce elements of the SWAP and address questions
WDFW presentations at events or meetings of my organizations
Other (please specify)
9. Is there anything else you'd like to tell us?
Thank you for taking our survey!

Appendix E

Prioritization Matrix

Description of the WDFW Prioritization Tool

The prioritization tool uses 34 different criteria to rank an action for the purpose of informing planning discussions and decisions. This tool first attempts to identify actions that are either an absolute priority (the expectation is that it be done and justification is required if it will not occur), or non-priority (meaning there are sufficient reasons to not take an action and if an action is taken it should be justified). All actions can also be scored using both weighted and standard criteria that, if applicable to the action, add value to its relative priority. Finally, the status of the species or ecosystem (the Resource Score) may also be added to the equation to allow that value to influence the priority ranking.

Step by Step Instructions

The italicized instructions below are found on the "Instructions" tab on the Prioritization Tool and describe how to complete the Priority Scoring spreadsheet found on the "Scoring Tool" tab. Figures D-1 to D-5 provide screen shots of the various tabs for illustration purposes only.

The tool is intended to prioritize all types of actions (even those that are not similar; e.g. a planning activity vs. a habitat improvement project); however, it may be more useful when evaluating similar actions (e.g. one type of species survey vs. another species survey).

Scoring:

Step 1	Describe an Activity in Column A.
Step 2	Assign a Resource Score by determining Taxa or Ecological System Priority value (see
	Figure 5). If more than one applies, choose the highest ranking (lowest #).
Step 3	Record the value derived from Step 2 in Column AO of the ScoringTool tab
Step 4	Examine the ABSOLUTE PRIORITY, NON-PRIORITY, WEIGHTED PRIORITY, and STANDARD
	PRIORITY Columns in the ScoringTool tab; insert a "1" in all that apply. (See figures 1-4)

Interpreting the Results:

	5
Step 1	Consider the overall Total Absolute Priority Score (Column H).
Step 2	Any action with a positive value in the Total Absolute Priority column should be treated
	as a high priority and justification should be developed if the activity will not be
	conducted or completed.
Step 3	Consider the Total Non-Priority Score (Column N).
Step 4	Any action with a positive value in the Total Non-Priority column should be treated as a
	very low priority and justification should be developed if the activity is to be conducted.
Step 5	Examine the Total Priority Score (AN) and the Combined Priority Score (AO).
Step 6	The Combined Priority Score is the Actions final priority score and should be compared to
	scores from other activities being evaluated.
Step 7	When making decisions, it may be useful to also compare just the Total Priority Scores to
	understand how the Resource Score embedded into the Combined Priority Score
	affected that score.

Classifying Actions and Activities

This prioritization tool provides one means by which actions and activities that WDFW undertakes may be prioritized by scoring actions using the criteria described in the categories below.

Absolute Priority

If an action is linked to one or more absolute priority values, the action is assumed to be of highest priority and is required to be accomplished or justification must be provided for why it will not be accomplished.

- Statutory Requirement
- Legal Mandate (e.g. court order)
- Financial or Contract obligations (including match commitments for grants)
- Governor Priorities and Requests (e.g. Results Washington)
- Fish and Wildlife Commission Requests
- WDFW Director or Assistant Director Priorities and Requests (e.g. Conservation Initiative)

Figure E-1: Illustration of the Absolute Priority Scoring Tool

		ABSOLUTI	PRIORITY			TOTAL ABSOLUTE SCORE
Statutory Requirement	Legal mandate (e.g. court order)	Financial, or Contract Obligations (including Match commitments)	Governor Priorities and Requests (Results WA)	Requests	Director or Assistant Director Priorities and Requests (e.g. Conservation Initiative)	

Non-Priority

If an action or activity triggers one or more of these items it qualifies as a non-priority. In general, WDFW should not implement actions determined to be a non-priority without justification.

- Other entities will lead or are likely to conduct the actions with or without WDFW
- The cost of the project makes the action infeasible, including consideration of short- and longterm resource commitments
- The likelihood of success is so low that investing in the effort is not justifiable
- The action will result in significant risk to WDFW authorities or funding streams
- Action will result in higher priority conservation action not occurring

Figure E-2: Illustration of the Non-Priority Scoring Tool

	NC	ON-PRIORITY	(TOTAL NON- PRIORITY SCORE
Other entities (USFWS, NOAA, Federal Land Managers, non- profits, land trusts, Partnerships, Citizen Science)will lead or are likely to perform the conservation actions with or without WDFW	the action infeasible, including consideration of short- and long-	The likelihood of success is so low that investing in the effort is not justifiable	significant risk	Action will result in higher priority conservation action not occurring	

All actions, but in particular those that have not been found to be either an absolute or a non-priority, may then be scored to determine their relative priority by evaluating them against several weighted and standard criteria.

Weighted Priority

Weighted priority are criteria that are considered to be particularly important when determining an actions priority. (See Figure D-3)

- Achieves conservation outcome that contributes to species recovery
- Achieves conservation outcome that maintains or restores ecological integrity
- External interests could impact WDFWs regulatory authorities or funding if WDFW does not engage in the action
- Action is a state, regional, national or international priority that WDFW has committed to support (NABCI/AFWA/WAFWA priorities)
- Achieves conservation necessary to preclude the need for listing or support down-listing or delisting action at the Federal level, or mitigates the impacts of a listing (e.g. CCAA, SHA)
- Achieves conservation necessary to preclude the need for listing or support down-listing or delisting action at the state level
- WDFW participation is essential to address an urgent conservation need (imminent threat) that will result in unacceptable harm or loss to the species or habitat
- Action or project is likely to maintain or develop a funding source or mechanism for diversity species conservation
- WDFW participation would foster partnerships or help maintain project and/or social/political support for WDFW
- Action can be shown to have long-term values when evaluated in climate change projections

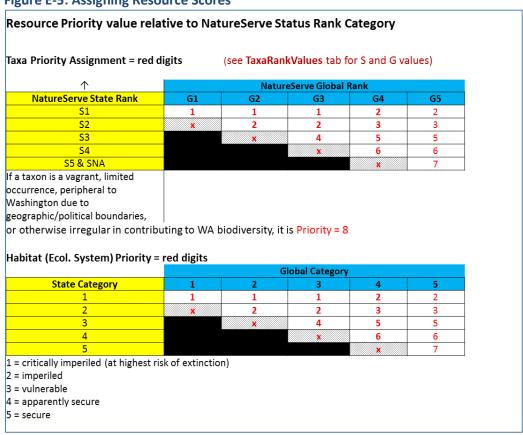
Figure E-3: Illustration of the Weighted Priority Scoring Tool

WEIGH	TED PR	IORITY (CH APPLICA E IN COLU		.; IT WILL	BE MULT	PLED BY	TOTAL WEIGHTED PRIORITY SCORE
on outcome that contribute s to species	conservati on outcome that maintains	could damage WDFWs regulatory authorities or funding if WDFW does not	national or internatio nal priority that WDFW has committed to support (NABCI/AF WA/WAF WA	necessary to preclude the need for Federal listing or likely to result in the species being listed (or	likely to result in the species being listed (or downlisted) as sensitive, threatened,	is essential to address a pressing conservation need (imminent threat) that will result in	to maintain or develop a long-term funding source or mechanism for diversity species conservation	would erode or prevent important partnerships or cause the collapse of a multi-partner or ongoing	term values when evaluated in climate change projections	
										0

Standard Priority

Criteria that contribute to an action's priority but have not been weighted (see figure 4).

- Fills an immediate or near-term critical information need
- Provides ecosystem, landscape level, or multiple SGCN species benefits
- Action will preclude the need for Critical Habitat designation on WDFW lands
- Action addresses a need in a Federal recovery plan
- Action addresses a need in a species-specific State management plan
- Action addresses a need in the SWAP
- Action maintains or develops a partnership or citizen science effort that will implement conservation actions and reduce future WDFW work load
- Yields expanded conservation capacity and/or significant reduction in conservation work load
- Action is likely to significantly inform the public on important species conservation and other diversity issues
- Facilitates special conservation agreements involving landowners (private or public)
- Contributes to conservation assessment and/or status review with a longer-term need
- Action will also meet other WDFW goals and objectives (e.g. recreation such as hunting, fishing, watchable wildlife; customer service; maintain workforce)


Figure E-4: Illustration of the Standard Priority Scoring Tool

Fills an immediate ecosystem, or near-term critical informatio n need in need	Sī	TANDARE		•			H APPLICAI N COLUMI		IT WILL I	BE	TOTAL STANDARE PRIORITY SCORE
workforce)	immediate or near- term critical informatio	ecosystem, landscape level, or multiple SGCN species benefits	preclude the need for Critical Habitat designation on WDFW lands (may not be needed due	addresses a need in a Federal recovery plan	addresses address a need in a species- specific State manageme nt plan (e.g. recovery, 2-year	addresses a need in the SWAP	maintains or develops a partnership or citizen science effort that will implement conservation actions and reduce future WDFW work	likely to significantly inform the public on important species conservatio n and other diversity issues	to conservatio n assessment and/or status review with a longer- term need or use horizon	also meet other WDFW goals and objectives (e.g. recreation such as hunting, fishing, watchable wildlife; customer service; maintain	

Scoring Totals

All actions are evaluated against all Weighted and Standard criteria, which generates a combined priority score (Figure D-6). Each score may be further refined by including the Resource Score in the analysis. Resource Scores are determined by comparing the NatureServe State and Global Ranks for species or ecosystem (See Figure D-5).

Figure E-5: Assigning Resource Scores

Figure E-6: Combined Priority Score

TOTAL STANDARD PRIORITY SCORE		RESOURCE SCORE	=	COMBINED PRIORITY SCORE
1				
Subtotal	Subtotal	Subtotal	=	TOTAL

Organization of References

References are organized first by chapter, and then alphabetically. The "CODE" column indicates the appropriate source category for the reference, as identified and required by RCW 34.05.271.

These codes are as follows:

- i. independent peer review; review is overseen by an independent third party
- ii. internal peer review; review by staff internal to WDFW
- iii. external peer review; review by persons that are external to and selected by WDFW
- iv. Open review; documented open public review process that is not limited to invited organizations or individuals
- v. Legal and policy document; documents related to the legal framework for WDFW, including but not limited to: (A) federal and state statutes, (B) court and hearings board decisions, (C) federal and state administrative rules and regulations; and (D) policy and regulatory documents adopted by local governments.
- vi. Data from pimary research, monitoring activities or other sources.
- vii. Records of best professional judgement of WDFW employees or other inidividuals
- viii. Other: sources of information that do not fit into one of the categories identified above.

REFERENCE	CHAPTER	CODE
Bailey, R. G. 1995. Description of the ecoregions of the United States: second edition. United States Department of Agriculture Forest Service Miscellaneous Publications No. 1391, Washington DC USA. 108 pp plus map (1:7,500,000).	Chapter 2	i
Bailey, R. G. 1998. Ecoregions map of North America: explanatory note. Misc. Pub. No. 1548. Washington, DC: USDA Forest Service. 10 pp., with separate map at 1:15,000,000, in cooperation with The Nature Conservancy and the US Geological Survey.	Chapter 2	i
Chappell, C., R. Crawford, J. Kagan and P. J. Doran. 1997. A vegetation, land use and habitat classification system for the terrestrial and aquatic systems of Oregon and Washington. Prepared for: Wildlife Habitats and Species Associations in Oregon and Washington – Building a Common Understanding for Management. Progress Report #3. Olympia, WA.	Chapter 2	İ
Franklin, J. F. and C. T. Dyrness. 1988. Natural vegetation of Oregon and Washington. Oregon State University Press. Corvallis, Oregon.	Chapter 2	i
Glick P., L. Helbrecht, J. Lawler and M. Case, 2013. Safeguarding Washington's Fish and Wildlife in an Era of Climate Change; A case study of partnerships in action, National Wildlife Federation, Seattle, WA.	Chapter 2	i,ii
NatureServe. 2005. NatureServe Explorer: An online encyclopedia of life [web application]. Version 4.4. NatureServe, Arlington, VA. Available at: http://www.natureserve.org/explorer	Chapter 2	vi
Washington Biodiversity Council. 2007. Washington's Biodiversity Status and Threats. Washington Recreation and Conservation Office. Olympia, Washington	Chapter 2	i
Washington Department of Fish and Wildlife (WDFW). 2014. Game management plan: 2015-2021. Wildlife Program. Olympia, WA.	Chapter 2	ii,iii,iv

REFERENCE	CHAPTER	CODE
Washington Department of Fish and Wildlife (WDFW). 1988. Draft nongame strategic plan. Wildlife Division	Chapter 2	ii,iii
Washington Department of Natural Resources (WDNR). 1998. Our changing nature: Natural resource trends in Washington State. Olympia, WA.	Chapter 2	i
Washington Department of Natural Resources (WDNR). 2000. Changing our water ways: Trends in Washington's water systems. Olympia, WA.	Chapter 2	i
Washington State Blue Ribbon Panel on Ocean Acidification (2012): Ocean Acidification: From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Chapter 2	i
Altman, B., M. Hayes, S. Janes and R. Forbes. 2001. Wildlife of westside grassland and chaparral habitats. Pages 261-291 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Block, W. M. and L. A. Brennan. 1993. The habitat concept in ornithology: theory and applications. Current Ornithology 11:35-91.	Chapter 4	i
Caplow, F. and J. Miller. 2004. Southwestern Washington prairies: using GIS to find rare plant habitat in historic prairies. Washington Department of Natural Resources, Olympia, Washington.	Chapter 4	i
Chappell, C. B. 2006. Plant Associations of Balds and Bluffs of western Washington. Washington Natural Heritage Program, Department of Natural Resources, Olympia, WA. Online: http://www1.dnr.wa.gov/nhp/refdesk/communities/index.html	Chapter 4	vi
Chappell, C. B. and J. Kagan. 2001. Westside riparian-wetlands. Pages 94-96 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Chappell, C. B., E. A. Alverson and W. R. Erickson. 2004. Ecologic and geographic variation in species composition of prairies, herbaceous balds and oak woodlands of the Willamette Valley-Puget Trough-Georgia Basin Ecoregion. Abstract: Ecological Society of America, August 1 - 6, 2004, Portland Convention Center, Oregon.	Chapter 4	vi
Crawford, R. C. and H. Hall. 1997. In Dunn, P.V. and K. Ewing. Ecology and Conservation of the South Puget Sound Prairie Landscape. The Nature Conservancy, Seattle, WA.	Chapter 4	i
Dahl, T. E. 1990. Wetland losses in the United States 1780's to 1980's. U. S. Fish and Wildlife Service, Washington, DC, USA.	Chapter 4	i
Easterly, R. T., D. L. Salstrom and C. B. Chappell. 2005. Wet prairie swales of the South Puget Sound, Washington. Report prepared for The Nature Conservancy, South Sound Office, Olympia, Washington.	Chapter 4	vi
Edelman, A. J. 2003. Marmota olympus. Mammalian Species 736: 1-5.	Chapter 4	i
Edge, W. D. 2001. Wildlife of Agriculture, Pastures and Mixed Environs. Pages 342-360 in D. H. Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Faber-Langendoen, D., J. Nichols, L. Master, K. Snow, A. Tomaino, R. Bittman, G. Hammerson, B. Heidel, L. Ramsay, A. Teucher and B. Young. 2012. NatureServe Conservation Status Assessments: Methodology for Assigning Ranks. NatureServe, Arlington VA.	Chapter 4	i
Federal Geographic Data Committee. 2008. National Vegetation Classification Standard, Version 2. FGDC-STD-005-2008.	Chapter 4	i
Federal Geographic Data Committee. 2012. Coastal and Marine Ecological Classification Standard. FGDC-STD-018-2012.	Chapter 4	i
Ferguson, H. L., K. Robinette, K. Stenberg. 2001. Wildlife of urban habitats. Pages 317-341 in D. H. Johnson and T. A. O'Neil, Managing Directors. Wildlife-habitat relationships in Oregon and Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i

REFERENCE	CHAPTER	CODE
Fresh K., M. Dethier, C. Simenstad, M. Logsdon, H. Shipman, C. Tanner, T. Leschine, T.	Chapter 4	i
Mumford, G. Gelfenbaum, R. Shuman and J. Newton. 2011. Implications of Observed		
Anthropogenic Changes to the Nearshore Ecosystems in Puget Sound. Prepared for the		
Puget Sound Nearshore Ecosystem Restoration Project. Technical Report 2011-03.		
Hallock, L. A. and K. R. McAllister. 2009. American Bullfrog. Washington Herp Atlas.	Chapter 4	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	-	
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation strategy for Washington	Chapter 4	i
State inland sand dunes. Natural Heritage Report 2007-05. Prepared for the Bureau of	•	
Land Management. Washington Department of Natural Resources. Olympia,		
Washington.		
Hultine, K. R., S. E. Bush and J. R. Ehleringer. 2010. Ecophysiology of riparian cottonwood and	Chapter 4	i
willow before, during and after two years of soil water removal. Ecological Applications	•	
20:347-361.		
Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in Oregon and Washington.	Chapter 4	i
Oregon State University Press, Corvallis, Oregon.		
Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating	Chapter 4	i
resource preference. Ecology 61:65-71.	ptc	•
Kauffman, J. B., A. S. Thorpe and E. N. J. Brookshire. 2004. Livestock exclusion and	Chapter 4	i
belowground ecosystem responses in riparian meadows of Eastern Oregon. Ecological	Chapter 4	•
Applications 14: 1671-1679.		
Kauffman, J. B., M. Mahrt, L. A. Mahrt and W. D. Edge. 2001. Wildlife of riparian habitats.	Chapter 4	i
Pages 361-388 in D. H. Johnson and T. A. O'Neil, editors. Wildlife-habitat relationships in	Chapter :	•
Oregon and Washington. Oregon State University Press, Corvallis, Oregon.		
Knutson, K. L. and V. L. Naef. 1997. Management recommendations for Washington's priority	Chapter 4	ii,iii
habitats: riparian. Washington Department of Fish and Wildlife, Olympia, Washington.	Chapter 4	"',""
Kovalchik, B. L. and R. R. Clausnitzer. 2004. Classification and management of aquatic, riparian	Chapter 4	i
and wetland sites on the national forests of eastern Washington: series description.	Chapter 4	'
USDA Forest Service General Technical Report PNW-GTR-593. Portland, Oregon.		
Linders, M. J., W. M. Vander Haegen, J. M. Azerrad, R. Dobson and T. Labbe. 2010.	Chapter 4	ii,iii
Management Recommendations for Washington's Priority Species: Western Gray	Спарсет 4	11,111
Squirrel. Washington Department of Fish and Wildlife, Olympia, Washington.		
	Chantar 1	i
MacKenzie, W. H. and J. R. Moran. 2004. Wetlands of British Columbia: a guide to	Chapter 4	I
identification. Research Branch, B.C. Ministry of Forestry, Victoria, British Columbia.	Clarata a A	•
Marcoe, K. and S. Pilson. 2012. Land cover change in the Lower Columbia River Estuary, 1880	Chapter 4	vi
– 2011. Poster presented at The Columbia River Estuary Conference. May 15 to 17,		
2012, Astoria, Oregon.	Cl + A	
Master, L., D. Faber-Langendoen, R. Bittman, G. A. Hammerson, B. Heidel, J. Nichols, L.	Chapter 4	i
Ramsay and A. Tomaino (2009). NatureServe conservation status assessments: factors		
for assessing extinction risk. NatureServe, Arlington, Virginia.	Clarata a A	
Mayor, S. J., D. C. Schneider, J.A. Schaefer and S.P. Mahoney. 2009. Habitat selection at	Chapter 4	i
multiple scales. Ecoscience 16:238-247.		
Perry, L. G., D. C. Andersen, L. V. Reynolds, S. M. Nelson and P. B. Shafroth. 2012.	Chapter 4	i
Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and		
semiarid western North America. Global Change Biology 18: 821-842.		
Poff, B. K., A. Karen, D. G. Neary and V. Henderson. 2011. Threats to Riparian Ecosystems in	Chapter 4	i
Western North America: An Analysis of Existing Literature. Journal of the American		
Water Resources Association 47:1241-1254.		
Pollock, M. M., T. J. Beechie and C. E. Jordan. 2007. Geomorphic changes upstream of beaver	Chapter 4	i
dams in Bridge Creek, an incised stream channel in the interior Columbia River basin,		
eastern Oregon. Earth Surface Processes and Landforms 32: 1174-1185.		

REFERENCE	CHAPTER	CODE
Rocchio, J. and R. Crawford. 2008. Draft Field Guide to Washington's Ecological Systems. Washington Department of Natural Resources.	Chapter 4	vi
Sarr, D. A. 2002. Riparian livestock exclosure research in the western United States: a critique and some recommendations. Environmental Management 30: 516-526.	Chapter 4	i
Schroeder, M. A. 2005. White-tailed ptarmigan. Page 68 in T. R. Wahl, B. Tweit and S. G. Mlodinow, editors. Birds of Washington. Oregon State University Press, Corvallis, Oregon.	Chapter 4	i
Schroeder, M. A. and W. M. Vander Haegen. 2011. Response of greater sage-grouse to the Conservation Reserve Program in Washington State. Studies in Avian Biology 38:517-529.	Chapter 4	i
Tisdale, E. W. 1986. Canyon grasslands and associated shrublands of west-central Idaho and adjacent areas. Bulletin No. 40. Forestry, Wildlife and Range Experiment Station, University of Idaho, Moscow.	Chapter 4	i
Trimble, S. W. and A. C. Mendel. 1995. The cow as a geomorphic agent: a critical review. Geomorphology 13: 233-253.	Chapter 4	i
Vander Haegen, W. M., M. A. Schroeder, W. Y. Chang and S. M. Knapp. 2015. Avian abundance and reproductive success in the intermountain west: Local-scale response to the conservation reserve program. Wildlife Society Bulletin (In Press).	Chapter 4	i
Washington Department of Fish and Wildlife (WDFW). 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.	Chapter 4	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2009. Wildlife in a developing landscape. Pages 1-1 to 1-3 in Landscape planning for Washington's wildlife: managing for biodiversity in developing areas. J. Azerrad, J. Carleton, J. Davis, T. Quinn, C. Sato, M. Tirhi, S. Tomassi and G. Wilhere, authors. Washington Department of Fish and Wildlife. Olympia, Washington.	Chapter 4	ii,iii
Washington Office of Financial Management (OFM). 2014. State of Washington forecast of the state population: November 2014 forecast.	Chapter 4	i
Wissmar, R. C. 2004. Riparian corridors of eastern Oregon and Washington: functions and sustainability along lowland-arid to mountain gradients. Aquatic Sciences 66: 373-387	Chapter 4	i
Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.	Chapter 5	i
Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. <i>Climate Change Impacts in the United States: The Third National Climate Assessment</i> , J. M. Melillo, Terese (T.C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 557-578. doi:10.7930/J0RF5RZW.	Chapter 5	i
Gregg, R. M., K. M. Feifel, J.M. Kershner and J.L. Hitt. 2012. The State of Climate Change Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.	Chapter 5	i
Gregg, R. M., L. J. Hansen, K. M. Feifel, J. L. Hitt, J. M. Kershner, A. Score and J. R. Hoffman. 2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of Emerging Ideas. EcoAdapt, Bainbridge Island, WA.	Chapter 5	i
Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi and S. Reeder. 2014. Ch. 21: Northwest. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T .C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 487-513. doi:10.7930/J04Q7RWX.	Chapter 5	i
Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby and I. Tohver. 2013. Climate Change Impacts and Adaptation in Washington State: Technical Summaries for Decision Makers. State of Knowledge Report prepared for the Washington State Department of Ecology. Climate Impacts Group, University of Washington, Seattle.	Chapter 5	i

REFERENCE	CHAPTER	CODE
State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate: Washington States Integrated Climate Response Strategy. Publication No. 12-01-004. Olympia, WA.	Chapter 5	i
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats and Species: A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global- Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems_Final-Report_NPLCC- NWF_online-size.pdf	Chapter 5	Vi
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf	Chapter 5	vi
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine-Report/NPLCC_Marine_Climate-Effects_Final.pdf	Chapter 5	Vİ
Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington Connected Landscapes Project: Statewide Analysis. Washington Departments of Fish and Wildlife and Transportation	Chapter 5	i,ii,iii
Akins, J. 2014. Cascades carnivore project: 2014 spring progress report. http://cascadescarnivoreproject.blogspot.com/	Appendix A - Mammals	vi
Allen, B. M. and R. P. Angliss. 2014. Alaska marine mammal stock assessments, 2013. NOAA Technical Memorandum NMFS-AFSC-277, Alaska Fisheries Science Center, Seattle, Washington.	Appendix A - Mammals	vi
Anderson, E. M. and M. J. Lovallo. 2003. Bobcat and Lynx. Pages 758-786 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Anderwald, P., P. G. H. Evans, R. Dyer, A. Dale, P. J. Wright and A. R. Hoelzel. 2012. Spatial scale and environmental determinants in minke whale habitat use and foraging. Marine Ecology Progress Series 450:259-274.	Appendix A - Mammals	i
Aubry, K. B. 1983. The Cascade red fox: distribution, morphology, zoogeography and ecology. Dissertation, University of Washington, Seattle, Washington.	Appendix A - Mammals	i
Aubry, K. B. and S. D. West. 1984. The status of native and introduced mammals on Destruction Island, Washington. Murrelet 65:80-83.	Appendix A - Mammals	i
Aubry, K. B., J. Rohrer, C. M. Raley and S. H. Fitkin. 2013. Wolverine distribution and ecology in the North Cascades Ecosystem, 2013 annual report. Pacific Northwest Research Station, US Forest Service. Olympia, Washington.	Appendix A - Mammals	ii,vi
Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the US west coast: 1991–2001. Administrative report LJ-03-03, Southwest Fisheries Science Center, La Jolla California.	Appendix A - Mammals	vi
Barlow, J., J. Calambokidis, E. A. Falcone, C. S. Baker, A M. Burdin, P. J. Clapham, J. K. B. Ford, C. M. Gabriele, R. LeDuc, D. K. Mattila, T. J. Quinn II, L. Rojas-Bracho, J. M. Straley, B. L. Taylor, J. Urbán R., P. Wade, D. Weller, B. H. Witteveen and M. Yamaguchi. 2011. Humpback whale abundance in the North Pacific estimated by photographic capture-recapture with bias correction from simulation studies. Marine Mammal Science 27:793–818.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
Becker, S. A., T. Roussin, G. Spence, E. Krausz, D. Martorello, S. Simek and K. Eaton. 2014. Washington gray wolf conservation and management 2013 annual report. Pages WAppendix A - Mammals to WAppendix A - Birds <i>in</i> US Fish and Wildlife Service Rocky Mountain Wolf Program 2013 Annual Report. US Fish and Wildlife Service, Helena, Montana.	Appendix A - Mammals	ii,∨i
Best, T. L. 1996. <i>Lepus californicus</i> . Mammalian Species 530:1-10.	Appendix A - Mammals	i
Bodkin, J. L. 2003. Sea otter. Pages 735-743 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Booth, E. S. 1947. Systematic review of the land mammals of Washington. Ph.D. Dissertation, State College of Washington, Pullman, Washington.	Appendix A - Mammals	i
Bruggeman, J. E. 2011. Factors affecting pika populations in the North Cascades National Park Service Complex. Final Report, to North Cascades National Park Service, 110 pp.	Appendix A - Mammals	vi
Calambokidis, J. 2013. Updated abundance estimates of blue and humpback whales off the US west coast incorporating photo-identifications from 2010 and 2011. Document PSRG-2013-13 presented to the Pacific Scientific Review Group, April 2013.	Appendix A - Mammals	vi
Calambokidis, J., E. Falcone, A. Douglas, L. Schlender and J. Huggins. 2009. Photographic identification of humpback and blue whales off the U.S. west coast: results and updated abundance estimates from 2008 field season. Final Report for Contract AB133F08SE2786 for the Southwest Fisheries Science Center, La Jolla, California.	Appendix A - Mammals	vi
Calambokidis, J., J. L. Laake and A. Klimek. 2012. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific Northwest, 1998-2010. Paper SC/M12/AWMP2-IWC Scientific Committee.	Appendix A - Mammals	vi
Carey, A. B. and J. E. Kershner. 1996. <i>Spilogale gracilis</i> in upland forests of western Washington and Oregon. Northwestern Naturalist 77:29–34.	Appendix A - Mammals	i
Carraway, L. N. and B. J. Verts. 1999. Records of reproduction in <i>Sorex preblei</i> . Northwestern Naturalist 80:115-116.	Appendix A - Mammals	i
Carretta, J. V., E. Oleson, D. W. Weller, A. R. Lang, K. A. Forney, J. Baker, B. Hanson, K. Martien, M. M. Muto, A. J. Orr, H. Huber, M. S. Lowry, J. Barlow, D. Lynch, L. Carswell, R.L. Brownell Jr. and D. K. Mattila. 2014. U.S. Pacific Marine Mammal Stock Assessments: 2013. NOAA Technical Memorandum, NOAA-TMNMFS-SWFSC-532. 406 p.	Appendix A - Mammals	vi
Chatwin, T. 2004. Keen's long-eared myotis. British Columbia Ministry of Water, Land & Air Protection, Surrey, B.C. http://wlapwww.gov.bc.ca/wld/identified/documents/Mammals/m_keensmyotis.pdf .	Appendix A - Mammals	vi
Copeland, J. P. and J. S. Whitman. 2003. Wolverine (<i>Gulo gulo</i>). Pages 672-682 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Cornely, J. E., L. N. Carraway and B. J. Verts. 1992. <i>Sorex preblei</i> . Mammalian Species 416:1-3.	Appendix A - Mammals	i
COSEWIC. 2003. COSEWIC assessment and update status report on Keen's long-eared bat Myotis keenii in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, Ontario.	Appendix A - Mammals	vi
Dalquest, W. W. 1948. Mammals of Washington. University of Kansas Publications, Museum of Natural History 2:1-444.	Appendix A - Mammals	i
Edelman, A. J. 2003. <i>Marmota olympus</i> . Mammalian Species 736:1-5.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
Finger, R., G. J. Wiles, J. Tabor and E. Cummins. 2007. Washington ground squirrel surveys in	Appendix A -	ii
Adams, Douglas and Grant Counties, Washington, 2004. Washington Department of Fish	Mammals	
and Wildlife, Olympia, Washington.		
Flinders, J. T. and J. A. Chapman. 2003. Black-tailed jackrabbit. Pp 126-146 in G. A. Feldhamer,	Appendix A -	i
B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America biology	Mammals	
management and conservation, 2 nd edition. Johns Hopkins University Press, Baltimore,		
Maryland.		
Frasier, T. R., S. M. Koroscil, B. N. White and J. D. Darling. 2011. Assessment of population	Appendix A -	i
substructure in relation to summer feeding ground use in the eastern North Pacific gray	Mammals	
whale. Endangered Species Research 14:39-48.		
Gitzen, R. A., J. E. Bradley, M. R. Kroeger and S. D. West. 2009. First record of Preble's Shrew	Appendix A -	i
(Sorex preblei) in the northern Columbia Basin, Washington. Northwestern Naturalist	Mammals	
90: 41-43.		
Gregory, S. C., W. M. Vander Haegen, W. Y. Chang and S. D. West. 2010. Nest site selection by	Appendix A -	i
western gray squirrels at their northern range terminus. Journal of Wildlife	Mammals	
Management 74:18-25.		
Griffin, S. C. 2007. Demography and ecology of a declining endemic: the Olympic Marmot.	Appendix A -	i
Ph.D. dissertation, University of Montana, Missoula.	Mammals	
Griffin, S. C., M. L. Taper, R. Hoffman and L. S. Mills. 2008. The case of the missing marmots:	Appendix A -	i
are metapopulation dynamics or range-wide declines responsible? Biological	Mammals	
Conservation 141:1293-1309.		
Gruver, J. C. and D. A. Keinath. 2006. Townsend's big-eared bat (Corynorhinus townsendii): a	Appendix A -	vi
technical conservation assessment. Rocky Mountain Region. USDA Forest Service,	Mammals	
Golden, Colorado.		
Hayes, G. and G. J. Wiles. 2013. Washington bat conservation plan. Washington Department	Appendix A -	ii,iii
of Fish and Wildlife, Olympia, Washington. 138+viii pp.	Mammals	,
Hayes, G. E. and J. C. Lewis. 2006. Washington state recovery plan for the fisher. Washington	Appendix A -	ii,iii
Department of Fish and Wildlife, Olympia, Washington.	Mammals	,
Hope, A. G., K. A. Speer, J. R. Demboski, S. L. Talbot and J. A. Cook. 2012. A climate for	Appendix A -	i
speciation: rapid spatial diversification within the <i>Sorex cinereus</i> complex of shrews.	Mammals	
Molecular Phylogenetics and Evolution 64: 671–684.		
Johnson, M. L. and C. W. Clanton. 1954. Natural history of <i>Sorex merriami</i> in Washington	Appendix A -	i
state. Murrelet 35:1- 4.	Mammals	-
Johnson, R. E. and K. M. Cassidy. 1997. Mammals of Washington state: location data and	Appendix A -	i
modeled distributions. Washington State GAP Analysis, Volume 3. Washington	Mammals	-
Cooperative Fish and Wildlife Research Unit, Seattle, Washington.		
Jones, T. and L. L. Melton 2014. Petition to list the northern bog lemming (Synaptomys	Appendix A -	i
borealis) under the U. S. Endangered Species Act. Wild Earth Guardians, Denver,	Mammals	
Colorado.		
Klug, B. J., D. A. Goldsmith and R. M. R. Barclay. 2012. Roost selection by the solitary, foliage-	Appendix A -	i
roosting hoary bat (<i>Lasiurus cinereus</i>) during lactation. Canadian Journal of Zoology	Mammals	•
90:239-336.	Widiffilliais	
Koehler, G. M., B. T. Maletzke, J. A. Von Kienast, K. B. Aubry, R. B. Wielgus and R. H. Naney.	Appendix A -	i
2008. Habitat fragmentation and the persistence of Lynx populations in Washington	Mammals	•
State. Journal of Wildlife Management 72:1518-1524.	···a···iiiais	
Laidre, K. L., R. J. Jameson, E. Gurarie, S. J. Jeffries and H. Allen. 2009. Spatial habitat use	Appendix A -	i
patterns of sea otters in coastal Washington. Journal of Mammalogy 90:906-917.	Mammals	•
Lance, M. M., S. A. Richardson and H. L. Allen. 2004. Washington state recovery plan for the	Appendix A -	ii,iii
sea otter. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	11,111
sea otter. washington bepartment of rish and whome, Olympia, washington.	÷	
Lim, B. K. 1987. Lepus townsendii. Mammalian Species 288:1-6.	Appendix A -	i

REFERENCE	CHAPTER	CODE
Linders, M. J. and D. W. Stinson. 2007. Washington state recovery plan for the western gray squirrel. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Lindzey, F. G. 2003. Badger (<i>Taxidea taxus</i>). Pages 683-691 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2 nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Lofroth, E. C., C. M. Raley, J. M. Higley, R. L. Truex, J. S. Yaeger, J. C. Lewis, et al. 2010. Conservation of fishers (<i>Martes pennanti</i>) in south-central British Columbia, western Washington, western Oregon and California–Volume I: conservation assessment. USDI Bureau of Land Management, Denver, Colorado.	Appendix A - Mammals	i
Luce, R. J. and D. Keinath. 2007. Spotted bat (<i>Euderma maculatum</i>): a technical conservation assessment. USDA Forest Service, Rocky Mountain Region, Golden, Colorado.	Appendix A - Mammals	i
MacDonald, S. O., J. A. Cook, G. L. Kirkland, Jr and E. Yensen. 1998. <i>Microtus pennsylvanicus</i> (Ord 1815) meadow vole. Pp. 99-100 in D. J. Hafner, E. Yensen and G. L. Kirkland, Jr. (compilers and editors). North American rodents: status survey and conservation action plan. IUCN/SSC Rodent Specialist Group, IUCN, Gland, Switzerland and Cambridge, United Kingdom.	Appendix A - Mammals	i
Moore, J. E. and J. P. Barlow. 2014. Improved abundance and trend estimates for sperm whales in the eastern North Pacific from Bayesian hierarchical modeling. Endangered Species Research 25:141-150.	Appendix A - Mammals	i
Nagorsen, D. W. and R. M. Brigham. 1993. The bats of British Columbia. UBC Press, Vancouver, British Columbia.	Appendix A - Mammals	i
National Marine Fisheries Service (NMFS). 2008. Recovery plan for southern resident killer whales (<i>Orcinus orca</i>). Northwest Region, National Marine Fisheries Service, Seattle, Washington.	Appendix A - Mammals	i,ii
National Marine Fisheries Service (NMFS). 2010. Recovery plan for the fin whale (Balaenoptera physalus). National Marine Fisheries Service, Silver Spring, Maryland.	Appendix A - Mammals	i
National Marine Fisheries Service (NMFS). 2011. Final recovery plan for the sei whale (Balaenoptera borealis). National Marine Fisheries Service, Silver Spring, Maryland.	Appendix A - Mammals	i
National Marine Fisheries Service (NMFS). 2013. Final recovery plan for the North Pacific right whale (Eubalaena japonica). National Marine Fisheries Service, Silver Spring, Maryland.	Appendix A - Mammals	i
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/finwhale.htm	Appendix A - Mammals	vi
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/bluewhale.htm	Appendix A - Mammals	vi
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/minkewhale.htm	Appendix A - Mammals	Vi
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/seiwhale.htm	Appendix A - Mammals	vi
National Oceanic and Atmospheric Administration (NOAA) Fisheries Office of Protected Resources. http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/spermwhale.htm	Appendix A - Mammals	vi
NatureServe. 2014. NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. http://explorer.natureserve.org (accessed November 24, 2014).	Appendix A - Mammals	vi
Orca Network. 2015. http://www.orcanetwork.org/Main/index.php?categories_file=Births%20and%20Deaths	Appendix A - Mammals	vi

REFERENCE	CHAPTER	CODE
Pierson, E. D., M. C. Wackenhut, J. S. Altenbach, P. Bradley, P. Call, D. L. Genter, C. E. Harris, B. L. Keller, B. Lengus, L. Lewis, B. Luce, K. W. Navo, J. M. Perkins, S. Smith and L. Welch. 1999. Species conservation assessment and strategy for Townsend's big-eared bat (<i>Corynorhinus townsendii townsendii</i> and <i>Corynorhinus townsendii pallascens</i>). Idaho Conservation Effort, Idaho Department of Fish and Game, Boise, Idaho.	Appendix A - Mammals	i
Powell, R. A., S. W. Buskirk and W. J. Zielinski. 2003. Fisher and marten. Pp. 635-649 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Rahme, A. H., A. S. Harestad and F. L. Bunnell. 1995. Status of the badger in British Columbia. Wildlife Working Report WR-72, Ministry of Environment, Lands and Parks (Wildlife Branch), Victoria, British Columbia.	Appendix A - Mammals	vi
Reichel, J. D. and J. G. Corn. 1997. Northern bog lemmings: survey, population parameters and population analysis. Unpublished report to the Kootenai National Forest, Montana Natural Heritage Program, Helena, Montana.	Appendix A - Mammals	vi
Reilly, S.B., J. L. Bannister, P. B. Best and M. Brown. 2008. <i>Balaenoptera acutorostrata</i> . The IUCN Red List of Threatened Species. Version 2014.2. http://www.iucnredlist.org/details/full/2474/0	Appendix A - Mammals	vi
Romain-Bondi, K. A., R. B. Wielgus, L. Waits, W. F. Kasworm, M. Austin and W. Wakkinen. 2004. Density and population size estimates for North Cascade grizzly bears using DNA hair-sampling techniques. Biological Conservation 117:417428.	Appendix A - Mammals	i
Rosatte, R. and S. Lariviere. 2003. Skunks. Pp. 692-707 in G. A. Feldhamer, B. C. Thompson and J. A. Chapman, editors. Wild mammals of North America: biology, management and conservation, 2nd edition. Johns Hopkins University Press, Baltimore, Maryland.	Appendix A - Mammals	i
Sacks, B. N., M. J, Statham, J. D. Perrine, S. M. Wisely and K. A. Aubry. 2010. North American montane red foxes: expansion, fragmentation and the origin of the Sacramento Valley red fox. Conservation Genetics 11:1523-1539.	Appendix A - Mammals	i
Sato, C. 2012. Appendix A.6 Habitat Connectivity for Washington Ground Squirrel (Urocitellus washingtoni) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group. 24 pp.	Appendix A - Mammals	i,ii,iii
Sato, C. L. 2012. Habitat connectivity for Townsend's ground squirrel (Urocitellus townsendii) in the Columbia Plateau Ecoregion. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	i,ii,iii
Scarff, J. 2013. Records of North Pacific right whales along the coasts of California, Baja, Oregon and Washington. http://www.sfcelticmusic.com/js/RTWHALES/WestCoast_sightings.htm	Appendix A - Mammals	vi
Smith, A. T. and M. L. Weston. 1990. Ochotona princeps. Mammalian Species 352:1-8.	Appendix A - Mammals	i
Stinson, D. W. 2001. Washington state recovery plan for the Lynx. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Stinson, D. W. 2013. Draft Mazama pocket gopher status update and Washington state recovery plan. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Mammals	ii,iii
Straley, J. M., G. S. Schorr, A. M. Thode, J. Calambokidis, C. R. Lunsford, E. M. Chinoweth, V. M. O'Connell and R. D. Andrews. 2014. Depredating sperm whales in the Gulf of Alaska: local habitat use and long distance movements across putative population boundaries. Endangered Species Research 24:125-135.	Appendix A - Mammals	i
Thomas, P. 2014. 'Astonishing' North Pacific right whale sighting only in second in 62 years off British Columbia. http://www.grindtv.com/outdoor/nature/post/astonishing-north-pacific-right-whale-sighting-is-only-the-second-in-62-years-off-british-columbia/	Appendix A - Mammals	viii
US Fish and Wildlife Service (USFWS). 1994. Recovery plan for woodland caribou in the Selkirk Mountains. US Fish and Wildlife Service, Portland, Oregon.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2011. Species assessment and listing priority	Appendix A -	i
assignment form: <i>Urocitellus washingtoni</i> , Washington ground squirrel. US Fish and Wildlife Service, Portland, Oregon.	Mammals	
US Fish and Wildlife Service (USFWS). 2012. Recovery plan for the Columbia Basin distinct	Appendix A -	i
population segment of the pygmy rabbit (Brachylagus idahoensis). US Fish and Wildlife	Mammals	
Service, Portland, Oregon.		
US Fish and Wildlife Service (USFWS). 2013. Columbia River distinct population segment of	Appendix A -	i
the Columbian white-tailed deer (<i>Odocoileus virginianus leucurus</i>). Five-year review:	Mammals	
summary and evaluation. US Fish and Wildlife Service, Lacey, Washington.	Λ	:
US Fish and Wildlife Service (USFWS). 2014. Final environmental assessment: proposed	Appendix A - Mammals	i
translocation of Columbian white-tailed deer from Puget Island to Ridgefield National Wildlife Refuge and Julia Butler Hansen Refuge. US Fish and Wildlife Service, Cathlamet, Washington.	Mammais	
US Fish and Wildlife Service (USFWS). 2015.	Appendix A -	vi
http://www.fws.gov/refuge/julia_butler_hansen/conservation/columbian_white_taileddeer	Mammals	
Vander Haegen, W. M., G. R. Orth and M. J. Linders. 2013. Survival and causes of mortality in	Appendix A -	i
a northern population of western gray squirrel. Journal of Wildlife Management 77:1249–1257.	Mammals	
Varner, J. and M. D. Dearing. 2014. Dietary plasticity in pikas as a strategy for atypical	Appendix A -	i
resource landscapes. Journal of Mammalogy 95:72-81.	Mammals	
Verts, B. J. and L. N. Carraway. 1987. <i>Microtus canicaudus</i> . Mammalian Species 267:1-4.	Appendix A -	i
Nexts D. Lead I. N. Commun. 1000 Lead are smaller for any living its of California Decay.	Mammals	
Verts, B. J. and L. N. Carraway. 1998. Land mammals of Oregon. University of California Press, Berkeley, California.	Appendix A - Mammals	i
Verts, B. J., L. N. Carraway and A. Kinlaw. 2001. <i>Spilogale gracilis</i> . Mammalian Species 674: 1-10.	Appendix A - Mammals	i
Wakkinen, W. L. 2004. Demographics and population trends of grizzly bears in the Cabinet–	Appendix A -	i
Yaak and Selkirk Ecosystems of British Columbia, Idaho, Montana and Washington. Ursus 15:65-75.	Mammals	
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and endangered	Appendix A -	ii,iii
wildlife in Washington: 2012 annual report. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Washington Department of Fish and Wildlife (WDFW). 2014. Game management plan, July	Appendix A -	ii,iii,iv
2015-June 2021. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Wiles, G. J. 2004. Washington state status report for the killer whale. Washington	Appendix A -	ii,iii,iv
Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Wiles, G. J., H. L. Allen and G. E. Hayes. 2011. Wolf conservation and management plan for	Appendix A -	ii,iii,iv
Washington. Washington Department of Fish and Wildlife, Olympia, Washington.	Mammals	
Willis, C. K. R. and R. M. Brigham. 2005. Physiological and ecological aspects of roost selection	Appendix A - Mammals	i
by reproductive female hoary bats (<i>Lasiurus cinereus</i>). Journal of Mammalogy 8:85-94. Witczuk, J., S. Pagacz and L. S. Mills. 2013. Disproportionate predation on endemic marmots	Appendix A -	i
by invasive Coyotes. Journal of Mammalogy 94:702-713.	Mammals	I .
Yensen, E. and G. L. Kirkland. 1998. <i>Synaptomys borealis</i> (Richardson 1828): northern bog	Appendix A -	i
lemming. In D. J. Hafner, E. Yensen and G. L. Kirkland, editors. North American rodents: status survey and conservation action plan. International Union for the Conservation of	Mammals	'
Nature, Gland, Switzerland.	A 1: A	•
Zielinski, W. J., K. M. Slauson, C. R. Carroll, C. J. Kent and D. G. Kudrna. 2001. Status of American martens in coastal forests of the Pacific States. Journal of Mammalogy 82:478-490.	Appendix A - Mammals	i

REFERENCE	CHAPTER	CODE
Altman, B. 2011. Historical and current distribution and populations of bird species in Prairie-Oak habitats in the Pacific Northwest. Northwest Science 85:194-222.	Appendix A - Birds	i
Anderson, C. M. and S. G. Herman. 2005. Peregrine Falcon (<i>Falco peregrinus</i>). Pp 126-127 <i>in</i> Wahl, T.R., B. Tweit and S. G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Andres, B. A., P. A. Smith, R. I. G. Morrison, C. L. Gratto-Trevor, S. C. Brown and C. A. Friis. 2012. Population estimates of North American shorebirds, 2012. Wader Study Group Bull. 119: 178-194.	Appendix A - Birds	i
Bechard, M. J. and J. K. Schmutz. 1995. Ferruginous Hawk (<i>Buteo regalis</i>). Birds of North America. 172: 1-20.	Appendix A - Birds	i
Boag, D. A. and M. A. Schroeder. 1987. Population fluctuations in spruce grouse: what determines their numbers in spring? Canadian Journal of Zoology 65:2430-2435.	Appendix A - Birds	i
Boag, D. A. and M. A. Schroeder. 1991. Spruce grouse (Falcipennis canadensis). Birds of North America 5: 1-28.	Appendix A - Birds	i
Booms, T. L., G. L. Holroyd, M. A. Gahbauer, H.E. Trefry, D. A. Wiggins, D. W. Holt, J. A. Johnson, S. B. Lewis, M.D. Larson, K. L. Keyes and S. Swengel. 2014. Assessing the status and conservation priorities of the short-eared owl in North America. Journal of Wildlife Management 78: 772-778.	Appendix A - Birds	i
Bosakowski, T. 2005. Golden eagle (<i>Aquila chrysaetos</i>). Pp 121 – 122 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Braun, C. E., K. Martin and L. A. Robb. 1993. White-tailed Ptarmigan (<i>Lagopus leucurus</i>). Birds of North America 68: 1-24.	Appendix A - Birds	i
Brown, C. R. 1997 Purple Martin (<i>Progne subis</i>). The Birds of North America 287: 1-32.	Appendix A - Birds	i
Buchanan, J. B. 2005. Spotted Owl (<i>Strix occidentalis</i>). Pp 217-218 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Buchanan, J. B. 2005. Flammulated Owl (<i>Otus flammeolus</i>). Pp 211-212 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Buchanan, J. B. 2005. Marbled Godwit (<i>Limosa fedoa</i>). Page 149 <i>in</i> T. R.Wahl, B. Tweit and S. G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Buchanan, J. B. 2005. Western Bluebird (<i>Sialia mexicana</i>). Pp 290 - 291 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Buchanan, J. B. 2005. Western Screech Owl <i>(Otus kennicottii)</i> . Pp 212-213 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Bull, E. L. and J. R. Duncan. 1993. Great Gray Owl (<i>Strix nebulosa</i>). The Birds of North America 41:1-16.	Appendix A - Birds	i
Campbell R. W., N. K. Dawe, I. McTaggart-Cowan, J.M. Cooper, G. Kaiser, A.C. Stewart and M.C.E. McNall. 1990. Birds of British Columbia, Vol. 1. University of British Columbia Press, Vancouver, British Columbia.	Appendix A - Birds	i
Cannings, R. J. and T. Angell. 2001. Western Screech Owl (<i>Otus kennicottii</i>). The Birds of North America 597:1-20.	Appendix A - Birds	i
Chappell, C. B. 2005. Red Knot (<i>Calidris canutus</i>). Pp 152-153 in Wahl, T.R., B. Tweit and S.G. Mlodinow (Eds.), Birds of Washington: status and distribution. Oregon State University, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i

REFERENCE	CHAPTER	CODE
Chappell, C. B. 2005. White-breasted nuthatch (Sitta carolinensis). Pp 280 - 281 in T. R. Wahl,	Appendix A -	i
B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Birds	
Elliott, K. 2006. Declining numbers of Western Screech-owl in the lower mainland of British Columbia. British Columbia Birds 14: 2-11.	Appendix A - Birds	i
Evans, R. M. and F. L. Knopf. 1993. American white pelican (Pelecanus erythrorhynchos). Birds of North America 57: 1-24.	Appendix A - Birds	i
Evers, D. C., J. D. Paruk, J. W. Mcintyre and J. F. Barr. 2010. Common loon (<i>Gavia immer</i>). Birds of North America 313: 1-32.	Appendix A - Birds	i
Galbraith, H., D. W. DesRochers, S. Brown, J. M. Reed. 2014. Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 9(9):e108899. Doi:10.1371/journal.pone.0108899	Appendix A - Birds	i
Gammonley, J. H. 2012. Cinnamon Teal (<i>Anas cyanoptera</i>), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/209	Appendix A - Birds	i
Garrett, K. L., M. G. Raphael and R. D. Dixon. 1996. White-headed Woodpecker (<i>Picoides albolarvatus</i>). Birds of North America 252:1-24.	Appendix A - Birds	i
Gratto-Trevor, C. L. 2000. Marbled Godwit (<i>Limosa fedoa</i>). The Birds of North America 492: 1-24.	Appendix A - Birds	i
Gutiérrez, R. J., A. B. Franklin and W. S. LaHaye. 1995. Spotted Owl (<i>Strix occidentalis</i>). The Birds of North America 179:1-28.	Appendix A - Birds	i
Hafner, D. J., E. Yensen and G. L. Kirkland, Jr. (compilers and editors). 1998. North American rodents: status survey and conservation action plan. IUCN/SSC Rodent Specialist Group, IUCN, Gland, Switzerland and Cambridge, United Kingdom.	Appendix A - Birds	i
Hagar, J. C. and M. A. Stern. 2001. Avifauna in oak woodlands of the Willamette Valley, Oregon. Northwestern Naturalist 82:12-25.	Appendix A - Birds	i
Hanson, T. and G. J. Wiles. 2015. Washington state status report for the Tufted Puffin. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii,iv
Harrington, B. A. 2001. Red Knot (<i>Calidris canutus</i>). The Birds of North America 563:1-32.	Appendix A - Birds	i
Haug, E. A., B. A. Millsap and M. S. Martell. 1993. Burrowing owl (<i>Speotyto cunicularia</i>). Birds of North America 61: 1-20.	Appendix A - Birds	i
Houston, C. S. and D. E. Bowen, Jr. 2001. Upland Sandpiper (<i>Bartramia longicauda</i>). The Birds of North America 580:1-32.	Appendix A - Birds	i
Jewett S. G., W. P. Taylor, W. T. Shaw and J. W. Aldrich. 1953. Pp 67-68 <i>in</i> Birds of Washington. University of Washington Press, Seattle, Washington. 767 pp.	Appendix A - Birds	i
Kochert, M. N., K. Steenhof, C. L. McIntyre and E. H. Craig. 2002. Golden eagle (<i>Aquila chrysaetos</i>). Birds of North America 684: 1-44.	Appendix A - Birds	i
Kostka, S. and K. McAllister. 2005. Purple Martin (<i>Progne subis</i>). Pp 269-270 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Leach, R. H. 2005. Pygmy Nuthatch (<i>Sitta pygmaea</i>). Pp 281-282 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Leach, R.H. 2005. White-headed Woodpecker (<i>Picoides albolarvatus</i>). Pp 239-240 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Lewis, J. C., M. Whalen and E. A. Rodrick. 2002. Lewis' Woodpecker. Priority Habitats and Species, Vol. IV: Birds. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii

REFERENCE	CHAPTER	CODE
Littlefield, C. D. and G. L. Ivey. 2002. Washington State Recovery Plan for the Sandhill Crane. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii
Martin, J. W. and B. A. Carlson. 1998. Sage Sparrow (<i>Amphispiza belli</i>). Birds of North America 326: 1-20.	Appendix A - Birds	i
McCallum, D. A. 1994. Flammulated Owl (<i>Otus flammeolus</i>). The Birds of North America 93:1-24.	Appendix A - Birds	i
Mlodinow, S. G. 2005. Upland Sandpiper (<i>Bartramia longicauda</i>). Page 145 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Mlodinow, S. G. 2005. Vesper Sparrow <i>Pooecetes gramineus</i> . Pp 326-327 <i>in</i> T. R. Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon, USA. 436 pp.	Appendix A - Birds	i
Pacific Flyway Council 2010. Pacific Flyway management plan for the Pacific Coast population of band-tailed pigeons. Pacific Coast Band-tailed Pigeon Subcommittee, Pacific Flyway Study Committee [c/o USFWS], Portland, Oregon.	Appendix A - Birds	i
Pacific Flyway Council. 2014. Draft Pacific Flyway management plan for the dusky Canada goose. Dusky Canada Goose Subcommittee, Pacific Flyway Study Comm. [c/o USFWS], Portland, Oregon. Unpublished report.	Appendix A - Birds	i
Pacific Flyway Council. 2014. Draft Pacific Flyway Management Plan for Pacific Brant. USFWS, Portland, Oregon.	Appendix A - Birds	i
Pacific Harlequin Duck Management: Recommendations for Rocky Mountain-Northwest Coast Segment. July 23, 2004. Pacific Flyway Study Comm. [c/o USFWS], Portland, Oregon.	Appendix A - Birds	i
Pearson, S. F., C. Sundstrom, B. Hoenes and W. Ritchie. 2014. Washington State Snowy Plover Population Monitoring, Research and Management: 2013 Nesting Season Research Progress Report. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii
Peter, D. and C. Harrington. 2002. Site and tree factors in Oregon white oak acorn production in western Washington and Oregon. Northwest Science 76:189-201.	Appendix A - Birds	i
Piatt, J. F. and A. S. Kitaysky. 2002. Tufted Puffin (<i>Fratercula cirrhata</i>). Birds of North America 708: 1-31.	Appendix A - Birds	i
Pravosudov, V. V. and T. C. Grubb, Jr. 1993. White-breasted nuthatch (<i>Sitta carolinensis</i>). Birds of North America 54: 1-16.	Appendix A - Birds	i
Ralph, C. J., G. L. Hunt, M. G. Raphael and J. F. Piatt (technical editors). 1995. Ecology and conservation of the Marbled Murrelet. General Technical Report PSW-GTR-152. Albany, California.	Appendix A - Birds	i
Raphael, M. G., A. Shirk, G. A. Falxa and S. F. Pearson. 2014. Habitat associations of marbled murrelets during the nesting season in nearshore waters along the Washington to California coast. Journal of Marine Systems. DOI: 10.1016/j.jmarsys.2014.06.010	Appendix A - Birds	İ
Reynolds, T. D., T. D. Rich and D. A. Stephens. 1999. Sage Thrasher (Oreoscoptes montanus). Birds of North America 463: 1-24.	Appendix A - Birds	i
Richardson, S. A., A. E. Potter, K. L. Lehmkuhl, R. Mazaika, M. E. McFadzen and R. Estes. 2001. Prey of ferruginous hawks breeding in Washington. Northwestern Naturalist 82:58–64.	Appendix A - Birds	i
Ruthrauff, D. R. 2014. On the frozen edge: environmental and physiological constraints in the life history of a northerly-wintering shorebird. PhD Thesis, University of Groningen, Groningen, The Netherlands.	Appendix A - Birds	i
Sea Duck Joint Venture Species Fact Sheet – Surf Scoter: http://seaduckjv.org/meetseaduck/ss.html	Appendix A - Birds	vi
Sea Duck Joint Venture Species Fact Sheet – Barrow's Goldeneye: http://seaduckjv.org/meetseaduck/bge.html	Appendix A - Birds	vi

REFERENCE	CHAPTER	CODE
Sea Duck Joint Venture Species Fact Sheet – Black Scoter:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/bs.html	Birds	
Sea Duck Joint Venture Species Fact Sheet – Long-tailed Duck:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/ltd.html	Birds	
Sea Duck Joint Venture Species Fact Sheet – White-winged Scoter:	Appendix A -	vi
http://seaduckjv.org/meetseaduck/wws.html	Birds	
Seavey, J. R. 2005. Bald Eagle (<i>Haliaeetus leucocephalus</i>). Pp 111-112 <i>in</i> T.R. Wahl, B. Tweit	Appendix A -	i
and S.G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Birds	
University Press, Corvallis, Oregon. 436 pp.	1	
Shields, M. 2002. Brown Pelican (<i>Pelecanus occidentalis</i>). Birds of North America 609: 1-36.	Appendix A - Birds	i
Slater, G. L. and B. Altman. 2011. Avian restoration in the Prairie-Oak Ecosystem: a	Appendix A -	i
reintroduction case study of Western Bluebirds to San Juan Island, Washington.	Birds	
Northwest Science 85:223-232.		
Smith, M. R., P. W. Mattocks, Jr. and K. M. Cassidy. 1997. Breeding birds of Washington state:	Appendix A -	vi
location data and predicted distribution. <i>In</i> Cassidy, K. M., C. E. Grue, M. R. Smith and K.	Birds	
M. Dvornich (eds.). Washington state GAP analysis- final report. Vol. 4 Seattle Audubon		
Society Publications in Zoology No. 1, Seattle, Washington.	A A	
Stinson, D. W. 2015. Periodic status review for the Brown Pelican. Washington Department of	Appendix A -	ii,iii,iv
Fish and Wildlife, Olympia, Washington. Stinson, D. W. 2015. Periodic status review for the Streaked Horned Lark in Washington.	Birds	ii,iii,iv
Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	11,111,11
Stinson, D. W. and M. A. Schroeder. 2012. Washington state recovery plan for the Columbian	Appendix A -	ii,iii
sharp-tailed grouse. Washington Department of Fish and Wildlife, Olympia, Washington.	Birds	11,111
Stinson, D. W., D. W. Hays and M. A. Schroeder. 2004. Washington State recovery plan for the	Appendix A -	ii,iii
greater sage-grouse. Washington Department of Fish and Wildlife, Olympia, Washington.	Birds	,
Stinson, D. W., J. W. Watson and K. R. McAllister. 2007. Washington State Status Report for	Appendix A -	ii,iii,iv
the Bald Eagle. Washington Department of Fish and Wildlife, Olympia. 86 + viii pp.	Birds	,,
Storer, R. W. and G. L. Nuechterlein. 1992. Western and Clark's Grebes. Birds of North	Appendix A -	i
America 26: 1-24.	Birds	
Stout, B. E. and G. L Nuechterlein. 1999. Red-necked Grebe (<i>Podiceps grisegena</i>). Birds of	Appendix A -	i
North America 465: 1-32.	Birds	
Tacha, T. C., S. A. Nesbitt and P. A. Vohs. 1992. Sandhill crane (Grus canadensis tabida). Birds	Appendix A -	i
of North America 31: 1-24.	Birds	
Tobalske, B. W. 1997. Lewis' Woodpecker. Birds of North America 284: 1-28.	Appendix A -	i
	Birds	
Tweit, B. 2005. Yellow-billed cuckoo (Coccyzus americanus). Page 210 in T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
US Fish and Wildlife Service (USFWS). 2001. 12-month finding for a petition to list the	Appendix A -	i
Washington population of western sage grouse (<i>Centrocercus urophasianus phaios</i>). Federal Register 66:22984-22994.	Birds	
US Fish and Wildlife Service (USFWS). 2007. Recovery plan for the Pacific coast population of	Appendix A -	i
the western snowy plover(<i>Charadrius alexandrinus nivosus</i>). USFWS, Sacramento, California.	Birds	
US Fish and Wildlife Service (USFWS). 2008. Short-tailed Albatross recovery plan. Region 7,	Appendix A -	i
Anchorage, Alaska.	Birds	

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2009. Removal of the Brown Pelican (<i>Pelecanus occidentalis</i>) from the federal list of endangered and threatened wildlife: Final Rule.	Appendix A - Birds	i
Federal Register 74:59444-59472.	BITUS	
US Fish and Wildlife Service (USFWS). 2012. Endangered and threatened wildlife and plants;	Appendix A -	i
90-day finding on a petition to list the southern white-tailed ptarmigan and the Mt.	Birds	
Rainier white-tailed ptarmigan as threatened with critical habitat. Federal Register		
77:33143–33155.		
US Fish and Wildlife Service (USFWS). 2013. Endangered and threatened wildlife and plants;	Appendix A -	i
determination of endangered status for Taylor's Checkerspot butterfly and threatened	Birds	
status for the streaked horned lark; final rule. Federal Register 78 (192):61451-61503.		
US Fish and Wildlife Service (USFWS). 2013. Endangered and threatened wildlife and plants;	Appendix A -	i
proposed threatened status for the western distinct population segment of the yellow-	Birds	
billed cuckoo (<i>Coccyzus americanus</i>). Federal Register 78:61622-61666.		
US Fish and Wildlife Service (USFWS). 2014. Short-tailed Albatross 5-year review: summary	Appendix A -	i
and evaluation. Region 7, Anchorage, Alaska.	Birds	
Vander Haegen, W. M. 2005. Sage Sparrow (<i>Amphispiza belli</i>). Pp 328 – 329 in T. R. Wahl, B.	Appendix A -	i
Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon	Birds	
State University Press, Corvallis, Oregon, USA. 436 pp.		
Vander Hagen, W. M. 2005. Sage Thrasher (Oreoscoptes montanus). Pp 299 - 300 in T. R.	Appendix A -	i
Wahl, B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution.	Birds	
Oregon State University Press, Corvallis, Oregon, USA. 436 pp.		
Vischis, L. I., C. K. Johnson, J. R. Evenson, S. F. Pearson, K. L. Barry, P. D. Davidson, M. G.	Appendix A -	i
Raphael and J. K. Gaydos. 2014. Assessing ecological correlates of marine bird declines	Birds	
to inform marine conservation. Conservation Biology: doi: 10.1111/cobi.12378.		
Viste-Sparkman, K. 2006. White-breasted Nuthatch density and nesting ecology in oak	Appendix A -	i
woodlands of the Willamette Valley, Oregon. Master's thesis, Oregon State University,	Birds	
Corvallis, Oregon.		
Wahl, T. R. and S. Richardson. 2005. Common Loon (<i>Gavia immer</i>). Pp 76 – 77 in T. R. Wahl,	Appendix A -	i
B. Tweit and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution.	Birds	
OregonState University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Clark's Grebe. Page 83 <i>In</i> T.R. Wahl, B. Tweit and S.G. Mlodinow (eds.). Birds	Appendix A -	i
of Washington: Status and Distribution. Oregon State University Press, Corvallis, Oregon.	Birds	
Wahl, T. R. 2005. Loggerhead Shrike (<i>Lanius ludovicianus</i>). Pp 254-255 <i>in</i> T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Red-necked grebe (<i>Podiceps grisegena</i>). Pp 79 – 80 in T. R. Wahl, B. Tweit	Appendix A -	i
and S. G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Short-eared Owl (Asio flammeus). Pp 221-222 in T. R. Wahl, B. Tweit and S.	Appendix A -	i
G. Mlodinow (eds.) Birds of Washington: Status and Distribution. Oregon State	Birds	
University Press, Corvallis, Oregon, USA. 436 pp.		
Wahl, T. R. 2005. Western Grebe (Aechmophorus occidentalis). Pp 81-82 in T.R. Wahl, B. Tweit	Appendix A -	i
and S.G. Mlodinow (eds.). Birds of Washington: status and distribution. Oregon State	Birds	
University Press, Corvallis, Oregon. 436 pp.		
Washington Department of Fish and Wildlife (WDFW) Sea Duck Management Strategies:	Appendix A -	ii,iii
http://wdfw.wa.gov/publications/pub.php?id=01007	Birds	
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and Endangered	Appendix A -	ii,iii
Wildlife in Washington: 2012 Annual Report. Washington Department of Fish and	Birds	
Wildlife, Olympia, Washington.		
Washington Department of Fish and Wildlife (WDFW). 1995. Washington State recovery plan	Appendix A -	ii,iii
for the Snowy Plover. Olympia, Washington.	Birds	

REFERENCE	CHAPTER	CODE
Washington Department of Fish and Wildlife (WDFW). 2014. 2014 Game status and trend report. Washington Department of Fish and Wildlife, Olympia, Washington.	Appendix A - Birds	ii,iii,iv
Washington Department of Fish and Wildlife (WDFW). 2015. Game Management Plan July	Appendix A -	ii,iii,iv
2015 - June 2021. Washington Department of Fish and Wildlife, Olympia, Washington.	Birds	.,,.
Watson, J. W. 2003. Migration and winter ranges of ferruginous hawks from Washington.	Appendix A -	ii,iii
Final Report. WDFW, Olympia, Washington, USA. http://wdfw.wa.gov/publications/00131/	Birds	,
White, C. M., N. J. Clum, T. J. Cade and G. Hunt. 2002. Peregrine Falcon (<i>Falco peregrinus</i>).	Appendix A -	i
The Birds of North America 660: 1-48.	Birds	
Yosef, R. 1996. Loggerhead Shrike (<i>Lanius Iudovicianus</i>). The Birds of North America 231:1-28.	Appendix A -	i
	Birds	
Zhu, X., D. S. Srivastava, J. N. M. Smith and K. Martin. 2012. Habitat selection and reproductive success of Lewis' woodpecker (<i>Melanerpes lewis</i>) at its northern limit. PloS ONE 7(9): e44346. DOI: 10.1371/journal.pone.0044346	Appendix A - Birds	i
Alberta Northern Leopard Frog Recovery Team. 2005. Alberta Northern Leopard Frog	Appendix A -	vi
Recovery Plan, 2005-2010. Alberta Sustainable Resource Development, Fish and	Reptiles and	· ·
Wildlife Division, Alberta Species at Risk Recovery Plan no. 7. Edmonton, Alberta 26 pp.	Amphibians	
Benson, S. R., T. Eguchi, D. G. Foley, K. A. Forney, H. Bailey, C. Hitipeuw, B. P. Samber, R. F.	Appendix A -	i
Tapilatu, V. Rei, P. Ramohia, J. Pita and P. H. Dutton. 2011. Large-scale movements and	Reptiles and	
high-use areas of western Pacific leatherback turtles, <i>Dermochelys coriacea</i> . Ecosphere	Amphibians	
2(7):art84. doi:10.1890/ES11-00053.1.	•	
Bull, E. L. and M. P. Hayes. 2001. Post-breeding season movements of Columbia spotted frogs	Appendix A -	i
(Rana luteiventris) in northeastern Oregon. Western North American Naturalist 61:119-	Reptiles and	
123.	Amphibians	
Dunham, J. B., A. E. Rosenberger, C. H. Luce and B. E. Rieman. 2007. Influences of wildfire and	Appendix A -	i
channel reorganization on spatial and temporal variation in stream temperature and the	Reptiles and	
distribution of fish and amphibians. Ecosystems 10(2):335-346	Amphibians	
Germaine, S. and D. Hays. 2007. Distribution and post-breeding environmental relationships	Appendix A -	ii,iii
of northern leopard frogs (Rana pipiens) in Grant County, Washington. Final Report.	Reptiles and	
Washington Department of Fish and Wildlife, Wildlife Program, Olympia.	Amphibians	
Green, G. A., K. B. Livezey and R. L. Morgan. 2001. Habitat selection by Northern Sagebrush	Appendix A -	i
Lizards (Sceloporus graciosus graciosus) in the Columbia Basin, Oregon. Northwestern	Reptiles and	
Naturalist 82(3): 111-115.	Amphibians	
Hallock, L. 2006. Summary Report on the Striped Whipsnake (Masticophis taeniatus) in	Appendix A -	i
Washington. Natural Heritage Report 2006-05. Prepared for the Bureau of Land	Reptiles and	
Management, Wenatchee.	Amphibians	
Hallock, L. 2009. Conservation Assessment for the Sharp-tailed Snake (Contia tenuis) In	Appendix A -	vi
Washington and Oregon. Unpublished Report. Washington Natural Heritage Program,	Reptiles and	
Department of Natural Resources, Olympia. Submitted to the Interagency Special	Amphibians	
Status/Sensitive Species Program, Washington and Oregon. USDA Forest Service and		
Bureau of Land Management.		
Hallock, L. A. 2013. Draft State of Washington Oregon Spotted Frog Recovery Plan.	Appendix A -	ii,iii
Washington Department of Fish and Wildlife, Olympia. 93 pp.	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. California Mountain Kingsnake. Washington Herp	Appendix A -	vi
Atlas. http://www.1dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Cascade Torrent Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Hallock, L. A. and K. R. McAllister. 2005. Columbia Spotted Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Dunn's Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Larch Mountain Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Night Snake. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp	Reptiles and	•
The p., y www 1. at it. was go y impy refaces by the p	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Northern Leopard Frog. Washington Herp Atlas.	Appendix A -	vi
http://www.1dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	VI
http://www.fulli.wa.gov/ilip/refuesk/herp/	Amphibians	
Hallack L. A. and K. D. McAllistan 2005. Orogan Spottad Frog. Washington Harn Atlas		
Hallock, L. A. and K. R. McAllister. 2005. Oregon Spotted Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Pygmy Short-horned Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Ring-necked Snake. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Rocky Mountain Tailed Frog. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Sagebrush Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Side-blotched Lizard. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Tiger Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Van Dyke's Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Western Pond Turtle. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp	Reptiles and	**
The property of the property o	Amphibians	
Hallock, L. A. and K. R. McAllister. 2005. Western Toad. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/speciesmain.html	Reptiles and	VI
http://www.ram.wa.gov/mp/reluesk/nerp/speciesindin.html	Amphibians	
Hallack I. A. and K. P. McAllistan 2005, Woodbayee's Tood, Washington Harn Atlan		v.i
Hallock, L. A. and K. R. McAllister. 2005. Woodhouse's Toad. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	
Hallock, L. A. and K. R. McAllister. 2009. Cope's Giant Salamander. Washington Herp Atlas.	Appendix A -	vi
http://www1.dnr.wa.gov/nhp/refdesk/herp/	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State	Appendix A -	i
Inland Sand Dunes. Washington Natural Heritage Program Report 2007-05.	Reptiles and	
	Amphibians	
Hayes, M. and T. Quinn. 2014. Columbia Torrent Salamander (Rhyacotriton kezeri).	Appendix A -	vi
AmphibiaWeb: Information on amphibian biology and conservation. [web application].	Reptiles and	
Berkeley, California: AmphibiaWeb. Available: http://amphibiaweb.org/. (Accessed: Nov	Amphibians	
12, 2014).	•	
Jones, L. L. C, W. P. Leonard and D. H. Olson (Eds.). 2005. Amphibians of the Pacific	Appendix A -	i
Northwest. Seattle Audubon Society. 227 pp.	Reptiles and	
	Amphibians	
Lahti, M. 2005. Ecology of the Pygmy Short Horned Lizard (<i>Phrynosoma douglasii</i>) in	Appendix A -	i
Washington. Master's Thesis. Central Washington University, Ellensburg, Washington.	Reptiles and	
73 pp.	Amphibians	
Lahti, M. and D. Beck. 2007. Ecology and ontogenetic variation of diet in the pygmy short-	Appendix A -	i
horned lizard (<i>Phyrnosoma douglasii</i>). American Midland Naturalist 159:327-339.	Reptiles and	
Homea near a (1777/1000/11/a abayrash), 7 anerican malana mataranse 100/10/10/10/10/10/10/10/10/10/10/10/10/	Amphibians	
Lahti, M. and D. Beck. 2010. Ecology of the Pygmy short-horned lizard (<i>Phyrnosoma</i>	Appendix A -	i
douglasii). Northwestern Naturalist. 91(2):134-144.	Reptiles and	•
abagiasilj. Northwestern Naturalist. 51(2).154 144.	Amphibians	
Nussbaum, R. A., E. D. Brodie, Jr. and R.M. Storm. 1983. Amphibians and Reptiles of the	Ampinblans Appendix A -	i
	Reptiles and	I
Pacific Northwest. University of Idaho Press, Moscow, Idaho. 332 pp.	Amphibians	
O'Donnell D. C. Dichart 2012 Diet of the Columbia Torrent Columnador Physicatritan kazari	•••	•
O'Donnell, R., C. Richart. 2012. Diet of the Columbia Torrent Salamander, <i>Rhyacotriton kezeri</i>	Appendix A -	i
(Caudata: Rhyacotritonidae): Linkages between Aquatic and Terrestrial Ecosystems In	Reptiles and	
Forested Headwaters. Northwestern Naturalist 93(1):17-22. 2012	Amphibians	
Ovaska, K. E. and C. Engelstoft. 2008. Conservation of the Sharp-tailed Snake (<i>Contia tenuis</i>)	Appendix A -	i
in urban areas in the Gulf Islands, British Columbia, Canada. In Mitchell, J., R. Jung	Reptiles and	
Brown and B. Bartholomew Editors. 2008. Urban Herpetology. Herpetological	Amphibians	
Conservation 3:557-564. Society for the Study of Amphibians and Reptiles. Salt Lake		
City.		
Parker, W. S and W. S. Brown. 1972. Telemetric study of movements and oviposition of two	Appendix A -	i
female Masticophis t. taeniatus. Copeia 1972 (4): 892-895.	Reptiles and	
	Amphibians	
Petranka, J. W. 1998. Salamanders of the United States and Canada. Smithsonian	Appendix A -	i
Institutional Press, Washington. 587 pp.	Reptiles and	
	Amphibians	
Pramuk, J. F. Koontz, M. Tirhi, S. Zeigler, K. Schwartz and P. Miller (eds.) 2013. The Western	Appendix A -	i,ii
Pond Turtle in Washington: A Population and Habitat Viability Assessment. IUCN/SSC	Reptiles and	
Conservation Breeding Specialist Group, Apple Valley, M. N.Schmidt, T and M. Tirhi.	Amphibians	
2014.		
Russell, K. and A. Gonyaw, J. Strom, K. Diemer and K. Murk. 2002. Three new nests of the	Appendix A -	i
Columbia Torrent Salamander, Rhyacotriton kezeri, in Oregon with observations of	Reptiles and	
nesting behavior. Northwestern Naturalist 83:19-22.	Amphibians	
Washington Department of Fish & Wildlife (WDFW). 2014. WDFW Wildlife Survey and	Appendix A -	ii,vi
Management Database.	Reptiles and	
	Amphibians	
Weaver, R. E. 2008. Distribution, abundance and habitat associations of the Night Snake	Appendix A -	i
(Hypsiglena torquata) in Washington State. Northwestern Naturalist 89: 164-170.	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Wilkinson, K. and L. Todd, unpublished data.	Appendix A - Reptiles and	vii
	Amphibians	
Anthony, J. A., D. D. Robya and K. R. Turcob. 2000. Lipid content and energy density of forage	Appendix A -	i
fishes from the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 248: 53-78.	Fish	
Beacham, T. D., J. F. Schweigert, C. MacConnachie, K. D. Le and L. Flostrand. 2008. Use of	Appendix A -	i
microsatellites to determine population structure and migration of Pacific herring in British Columbia and adjacent regions. Transactions of the American Fisheries Society 137: 1795-1811.	Fish	
Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison. 1,052pp.	Appendix A - Fish	i
Behnke, R. J. 1992. Native trout of western North America. American Fisheries Society Monograph 6. 275 pp.	Appendix A - Fish	i
Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 1997. Status of Burbot in Washington	Appendix A -	ii
State. Washington Department of Fish and Wildlife Research Report. 51pp.	Fish	
Bumgarner, J. D. and J. T. Dedloff. 2011. Lyons Ferry complex hatchery evaluation: summer steelhead annual report 2008 and 2009 run year. Washington Department of Fish and	Appendix A - Fish	ii
Wildlife, Olympia, WA. Butler, J. L., M. S. Love and T. E. Laidig. 2012. A guide to the rockfishes, thornyheads and	Appendix A -	i
scorpionfishes of the northeast Pacific. University of California Press. Berkeley and Los Angeles, CA. 185pp.	Fish	I
Chittaro, P. M., R. W. Zabel, W. Palsson and C. Grandin. 2013. Population interconnectivity	Appendix A -	i
and implications for recovery of a species of concern, the Pacific hake of Georgia Basin. Marine Biology 160: 1157-1170.	Fish	
Columbia Basin White Sturgeon Planning Framework. 2013. Prepared by CRITFC, WDFW and ODFW for the Northwest Power and Conservation Council. R. Beamesderfer and P. Anders (eds). 285pp.	Appendix A - Fish	i
Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson and E. E. Holmes. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). Seattle, WA: NOAA Fisheries. 234pp	Appendix A - Fish	i
Ebert, D. A. 2003. The sharks, rays and chimaeras of California. University of California Press, San Francisco.	Appendix A - Fish	i
Emmett, R. L., S. A. Hinton, S. L. Stone and M. E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries Volume II: species life history summaries. National Oceanic and Atmospheric Administration. 334pp.	Appendix A - Fish	i
Eschmeyer, P. H. and R. M. Bailey. 1955. The pygmy whitefish, <i>Coregonus coulteri</i> , in Lake Superior. Transactions of the American Fisheries Society 84:161-199.	Appendix A - Fish	i
Ford, M. J. (ed.). 2011. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. US Department Commerce, NOAA Technical Memo. NMFS-NWFSC-113, 281pp.	Appendix A - Fish	i
Fradkin, S. C. 2001. Rialto Beach Surf Smelt Habitat Monitoring: Quillayute River Navigation Project. Olympic National Park. 16pp.	Appendix A - Fish	vi
Glasgow, J. and M. Hallock. 2009. Olympic mudminnow (<i>Novumbra hubbsi</i>) in the Green Cove Watershed, Thurston County, Washington: Distribution and recommendations for protection. Washington Department of Fish and Wildlife, Olympia. 18pp.	Appendix A - Fish	ii,iii
Gustafson, R. G., J. Drake, M. J. Ford, J. M. Meyers and E. E. Holmes. 2006. Status review of Cherry Point Pacific herring (<i>Clupea pallasii</i>) and updated status review of the Georgia Basin Pacific herring distinct population segment under the Endangered Species Act. Seattle, WA: US Department of Commerce. 182pp.	Appendix A - Fish	i

REFERENCE	CHAPTER	CODE
Gustafson, R. G., M. J. Ford, D. Teel and J. S. Drake. 2010. Status review of eulachon (<i>Thaleichthys pacificus</i>) in Washington, Oregon and California. US Department Commerce, NOAA Technical Memorandum. NMFS-NWFSC-105, 360pp.	Appendix A - Fish	i
Gustafson, R. G., W. H. Lenarz, B. B. McCain, C. C. Schmitt, W. S Grant, T. L. Builder, R. D. Methot. 2000. Status review of Pacific hake, Pacific cod and walleye pollock from Puget Sound, Washington. US Department Commerce, NOAA Technical Memorandum. NMFS-NWFSC-44, 275pp.	Appendix A - Fish	i
Hagen, D. W., G. E. E. Moodie and P. F. Moodie. 1972. Territoriality and courtship in the Olympic mudminnow (<i>Novumbra hubbsi</i>). Canadian Journal of Zoology 50:1111-1115.	Appendix A - Fish	i
Haggerty, M. J., A. C. Ritchie, J. G. Shellberg, M. J. Crewson and J. Jalonen. 2009. Lake Ozette Sockeye Limiting Factors Analysis. Prepared for Makah Indian Tribe and NOAA Fisheries in cooperation with Lake Ozette Sockeye Steering Committee, Port Angeles, WA. 565pp.	Appendix A - Fish	Vi
Hallock, M. and P. E. Mongillo. 1998. Washington status report for the Pygmy Whitefish. Washington Department of Fish and Wildlife, Olympia. 20pp.	Appendix A - Fish	ii,iii,iv
Hallock. M. 2000. Personal communication. Washington Department of Wildlife, Olympia.	Appendix A - Fish	vii
Hannah, R. W. and P. S. Rankin. 2011. Site fidelity and movement of eight species of Pacific rockfish at a high-relief rocky reef on the Oregon Coast. North American Journal of Fisheries Management 31: 483-494.	Appendix A - Fish	i
Hass, G.R. 1999. Personal communication. University of British Columbia, Vancouver. Cited in Wydoski and Whitney 2003.	Appendix A - Fish	vii
 Hayes, M. C., R. Hays, S. P. Rubin, D. M. Chase, M. Hallock, C. Cook-Tabor, C. W. Luzier and M. L. Moser. 2013. Distribution of Pacific lamprey <i>Entosphenus tridentatus</i> in watersheds of Puget Sound based on smolt monitoring data. Northwest Science 87(2): 95-105. 	Appendix A - Fish	i
Heard, W. R. and W. L. Hartman. 1966. Pygmy whitefish, <i>Prosopium coulteri</i> in Naknek River system of southwest Alaska. US Fish and Wildlife Service, Fishery Bulletin 65:555-579.	Appendix A - Fish	i
Hughes, G. W. and A. E. Peden. 1989. Status of the Umatilla Dace, <i>Rhinichthys umatilla</i> , in Canada. Canadian Field-Naturalist 103:193-200.	Appendix A - Fish	i
Israel, J. A. and B. May. 2010. Indirect genetic estimates of breeding population size in the polyploidy green sturgeon, <i>Acipenser medirostris</i> . Molecular Ecology 19:1058-1070.	Appendix A - Fish	i
Kendall, A. W., Jr. and A. J. Mearns. 1996. Egg and larval development in relation to systematic of <i>Novumbra hubbsi</i> , the Olympic mudminnow. Copeia 3:449-464.	Appendix A - Fish	i
Kramer, D. E. and V. M. O'Connell. 1995. Guide to northeast Pacific rockfishes: genera Sebastes and Sebastolobus. Alaska Sea Grant College Program, University of Alaska.	Appendix A - Fish	i
Lamb, A. and P. Edgell. 2010. Coastal fishes of the Pacific Northwest. Harbour Publishing Co. Ltd. Madeira Park, BC. 335pp.	Appendix A - Fish	i
Langness, M., P. Dionne, E. Dilworth and D. Lowry. 2014. Summary of coastal intertidal forage fish spawning surveys: October 2012-September 2013. Washington Department of Fish and Wildlife, Olympia, WA. FPA 14-01 FPA 14-01. 51pp.	Appendix A - Fish	ii
Larson, S., J. Christiansen, D. Griffing, J. Ashe, D. Lowry and K. Andrews. 2010. Relatedness and polyandry of sixgill sharks, Hexanchus griseus, in an urban estuary. Conservation Genetics. 10.1007/s10592-010-0174-9	Appendix A - Fish	i
Lee, D. S., C. R. Gilbert, C. H. Hocutt, R. E. Jenkins, D. E. McAllister and J. R. Stauffer, Jr. 1980. Atlas of North American freshwater fishes. North Carolina Biological Survey Publication #1980-12, 867pp.	Appendix A - Fish	i
Lonzarich, M. R. 1993. Habitat selection and character analysis of <i>Cottus marginatus</i> , the margined sculpin. Master's thesis, University of Washington, Seattle, WA. 88pp.	Appendix A - Fish	i
Love, M. S. 2011. Certainly more than you want to know about the fishes of the Pacific coast. Really Big Press. Santa Barbara, CA. 649pp.	Appendix A - Fish	i

REFERENCE	CHAPTER	CODE
Love, M. S., M. Yoklavich and L. Thorsteinson. 2002. The rockfishes of the northeast Pacific.	Appendix A -	i
University of California Press. Berkeley and Los Angeles, CA. 404pp.	Fish	
MacKay, W. C. 2000. Status of the pygmy whitefish (<i>Prosopium coulteri</i>) in Alberta. Alberta	Appendix A -	i
Environment, Fisheries and Wildlife Management Division and Alberta Conservation	Fish	
Association, Wildlife Status Report 27 Edmonton, AB. 16pp.		
Matthews, K. R. 1990. "An experimental study of the habitat preferences and movement	Appendix A -	i
patterns of copper, quillback and brown rockfishes (Sebastes spp.)." Environmental	Fish	
Biology of Fishes 29.3 (1990): 161-178.	_	
Matthews, K. R. 1990. A comparative study of habitat use by young-of-the-year, subadult and	Appendix A -	i
adult rockfish on four habitat types in Central Puget Sound. Fishery Bulletin 88: 223-239.	Fish	
May, B. E., B. J. Writer and S. Albeke. 2012. Redband Status Update Summary. Prepared by	Appendix A -	vi
Wild Trout Enterprises, LLC, Bozeman, MT.	Fish	
McFarlane, G. A. and R. J. Beamish. 1985. Biology and fishery of Pacific whiting, <i>Merluccius productus</i> , in the Strait of Georgia. Marine Fisheries Review 47: 23-34.	Appendix A - Fish	i
McIntyre, J. D. and B. E. Rieman. 1995. Westslope cutthroat trout. Pages 1-15 in Young, M.K.,		i
editor. Conservation assessment for inland cutthroat trout. USDA, Forest Service, Rocky	Appendix A - Fish	I
Mountain Forest and Range Experiment Station General Technical Report RM-256, Fort	1 1311	
Collins, CO.		
McPhail, J. D. 1987. Status of the Salish sucker, <i>Catostomus</i> sp., in Canada. Canadian Field-	Appendix A -	i
Naturalist 101:231-236.	Fish	•
Mongillo, P. E. and M. Hallock. 1999. Field study plan for priority native species, 1999-2003.	Appendix A -	ii
Washington Department of Fish and Wildlife, Olympia. 15pp.	Fish	••
Mongillo, P. E. and M. Hallock. 1999. Washington state status report for the Olympic	Appendix A -	ii,iii,iv
mudminnow. Washington Department of Fish and Wildlife, Olympia, Washington. 36pp.	Fish	, ,
Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley, CA.	Appendix A -	i
405pp.	Fish	
Moyle, P. B., J. E. Williams, J. E. and E. D. Wikramanayake. 1989. Fish species of special	Appendix A -	vi
concern of California. Final report submitted to CDFG, Inland Fisheries Division. Rancho	Fish	
Cordova, California.		
Muhlfeld, C. C., D. H. Bennett and B. Marotz. 2001. Fall and winter habitat use by Columbia	Appendix A -	i
River redband trout in a small stream in Montana. North American Journal of Fisheries	Fish	
Management 21:170-177.		
Myers, J., C. Busack, D. Rawding, A. Marshall, D. Teel. D. M. Van Doornik and M. T. Maher.	Appendix A -	i
2006. Historical population structure of Pacific Salmonids in the Willamette River and	Fish	
Lower Columbia River basins. NOAA Technical Memorandum. NMFS-NWFSC-73,		
311pp.		
National Marine Fisheries Service (NMFS), Southwest Region. 2010. Federal Recovery Outline	Appendix A -	i
- North American Green Sturgeon, Southern Distinct Population Segment.	Fish	
http://www.westcoast.fisheries.noaa.gov/publications/protected_species/other/green_		
sturgeon/green_sturgeon_sdps_recovery_outline2010.pdf National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and	Appendix A -	i
plants: threatened status for the Puget Sound/Georgia Basin Distinct Population	Fish	'
Segments of yelloweye and canary rockfish and endangered status for the Puget	1 1311	
Sound/Georgia Basin Distinct Population Segment of bocaccio rockfish. Federal Register.		
pp. 22276-22290.		
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and	Appendix A -	i
plants: threatened status for the Puget Sound/Georgia Basin Distinct Population	Fish	-
Segments of yelloweye and canary rockfish and endangered status for the Puget		
Sound/Georgia Basin Distinct Population Segment of bocaccio rockfish. Federal Register.		
pp. 22276-22290.		

REFERENCE	CHAPTER	CODE
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for Southern Distinct Population Segment of eulachon. Federal Register, 50 CFR Part 223. pp. 13012-13024.	Appendix A - Fish	Ī
National Marine Fisheries Service (NMFS). 2013. Federal Recovery Outline Pacific Eulachon Southern Distinct Population Segment. 24pp.	Appendix A - Fish	i
National Oceanic and Atmospheric Administration (NOAA). 2009. Pacific hake (<i>Merluccius productus</i>) Georgia Basin DPS fact sheet. http://www.nmfs.noaa.gov/pr/pdfs/species/pacifichake_detailed.pdf	Appendix A - Fish	vi
NatureServe Explorer, http://explorer.natureserve.org	Appendix A - Fish	vi
Oregon Department of Fish and Wildlife (ODFW) and Washington Department of Fish and Wildlife (WDFW). 2014. Studies of Eulachon Smelt in Oregon and Washington. C. Mallette, editor. Oregon Department of Fish and Wildlife and Washington Department of Fish and Wildlife project completion report to NOAA Fisheries. 159pp.	Appendix A - Fish	i,ii
Pacunski R. E., W. Palsson and H. G. Greene. 2013. Estimating fish abundance and community composition on rocky habitats in the San Juan Islands using a small remotely operated vehicle. Olympia, WA: Washington Department of Fish and Wildlife. FPT 13-02 FPT 13-02. 57 p.	Appendix A - Fish	ii
Page, L. M. and B. M. Burr. 1991. A field guide to freshwater fishes. Houghton Mifflin Co., Boston, MA. 432 pp.	Appendix A - Fish	i
Page, L. M. and B. M. Burr. 2011. Field guide to the freshwater fishes of North America north of Mexico. Peterson Field Guide series. Houghton Mifflin Harcourt, Boston, MA.	Appendix A - Fish	i
Page, L. M. and B. M. Burr. 2011. Peterson field guide to freshwater fishes, Second Edition. Houghton Mifflin Harcourt, Boston, MA. 688 pp.	Appendix A - Fish	i
Palsson, W. A., T. S. Tsou, G. G. Bargmann, R. M. Buckley, J. E. West, M. L. Mills, Y. W. Cheng and R. E. Pacunski. 2009. The biology and assessment of rockfishes in Puget Sound. Washington Department of Fish and Wildlife.	Appendix A - Fish	ii
Palsson, W.A. 1990. Pacific cod (Gadus macrocephalus) in Puget Sound and adjacent waters: Biology and stock assessment. Washington Department Fish. Technical Report No. 112. 137pp.	Appendix A - Fish	ii
Peden, A. E. and G. W. Hughes. 1988. Sympatry in four species of <i>Rhinichthys</i> (Pisces), including the first documented occurrences of <i>R. umatilla</i> in the Canadian drainages of the Columbia River. Canadian Journal of Zoology 66:1846-1856.	Appendix A - Fish	i
Pedersen, M. 1985. Puget Sound Pacific whiting, <i>Merluccius productus</i> , resource and industry: an overview. Marine Fisheries Review 47: 35-38.	Appendix A - Fish	i
Penttila, D. 2000. Documented spawning seasons of populations of the surf smelt, Hypomesus, in the Puget Sound basin. Washington Department of Fish and Wildlife, Olympia, WA. 36pp.	Appendix A - Fish	ii
Penttila, D. 2005. WDFW Priority Habitat and Species Management Recommendations: Forage fish spawning habitat. Washington Department of Fish and Wildlife. 19pp.	Appendix A - Fish	ii,iii
Point No Point Treaty Tribes and Washington Department of Fish and Wildlife. 2014. Summer Chum Salmon Conservation Initiative (SCSCI) Five-year Review: Supplemental Report No. 8 of SCSCI - An Implementation Plan to Recover Summer Chum in the Hood Canal and Strait of Juan de Fuca Region. Washington Department of Fish and Wildlife, Olympia, WA. 237pp.	Appendix A - Fish	i,ii
Quinnell, S. and C. Schmitt. 1991. Abundance of Puget Sound demersal fishes: 1987 research trawl survey results. Washington Department of Fisheries Prog. Rep. No. 286, 267pp.	Appendix A - Fish	ii
Repsys, A. 1973. Personal communication. University of Washington, College of Fisheries. Seattle.	Appendix A - Fish	vii

REFERENCE	CHAPTER	CODE
Robards, M. D., M. F. Willson, R. H. Armstrong and J. F. Piatt, eds. 1999. Sand lance: a review of biology and predator relations and annotated bibliography. In: US Department of Agriculture FS, Pacific Northwest Research Station, editor. Portland, Oregon: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 327pp.	Appendix A - Fish	i
Ruckelshaus, M. H., K. P. Currens, W. H. Graeber, R. R. Fuerstenberg, K. Rawson, N. J. Sands and J. B. Scott. 2006. Independent populations of Chinook salmon in Puget Sound. US Department Commerce, NOAA Technical Memorandum. NMFS-NWFSC-78, 125pp.	Appendix A - Fish	i
Scholz, A. T. and H. J. McLellan. 2009. Field Guide to the Fishes of Eastern Washington. Eagle Printing, Cheney, Washington. 310pp.	Appendix A - Fish	i
Scott, W. G. and E. J. Crossman. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada, Bulletin 184. 966pp.	Appendix A - Fish	i
Seeb, L. W. 1998. Gene flow and introgression within and among three species of rockfishes, Sebastes auriculatus, S. caurinus and S. maliger. Journal of Heredity 89:393-403.	Appendix A - Fish	i
Setter, A. L. 2000. Personal communication. Oregon Department of Fish and Wildlife, Enterprise, Oregon.	Appendix A - Fish	vii
Sigler, W. F. and J. W. Sigler. 1987. Fishes of the Great Basin: A natural history. University of Nevada Press, Reno, NV. 425pp.	Appendix A - Fish	i
Small, M. P., J. L. Loxterman, A. E. Frye, J. F. Von Bargen and C. Bowman. 2005. Temporal and spatial genetic structure among some Pacific herring populations in Puget Sound and the southern Strait of Georgia. Transactions of the American Fisheries Society 134: 1329 – 1341.	Appendix A - Fish	i
Smith G. R. 1966. Distribution and evolution of the North American catostomid fishes of the subgenus <i>Pantosteus</i> , genus Catostomus. University of Michigan, Museum of Zoology, Miscellaneous Publication 129. 133pp.	Appendix A - Fish	i
Staley, K and J. Mueller. 2000. Rainbow trout (<i>Oncorhynchus mykiss</i> . Fish and Wildlife Habitat Management Leaflet. Number 13.	Appendix A - Fish	vi
Stick, K. C., A. Lindquist and D. Lowry. 2014. 2012 Washington State herring stock status report. Olympia, WA: Washington Department of Fish and Wildlife. FPA 09-05 FPA 09-05. 97pp.	Appendix A - Fish	ii
Trotter, P. C., B. McMillan and D. Kappes. 2000. Occurrence of Olympic mudminnow in the east side of Puget Trough. Northwestern Naturalist 81:59-63.	Appendix A - Fish	i
US Fish and Wildlife Service (USFWS). 2012. Conservation Agreement for Pacific Lamprey (<i>Entosphenus tridentatus</i>) in the States of Alaska, Washington, Oregon, Idaho and California. 57pp.	Appendix A - Fish	i
US Fish and Wildlife Service (USFWS). 2012. Species Fact Sheet, Bull Trout, Salvelinus confluentus. 4pp.	Appendix A - Fish	vi
US Fish and Wildlife Service (USFWS). 2014. Revised draft recovery plan for the coterminous United States population of bull trout (<i>Salvelinus confluentus</i>). Portland, Oregon. xiii + 151pp.	Appendix A - Fish	i
Waples, R. S., R. P. Jones, B.R. Beckman and G.A. Swan. 1991 Status Review for Snake River Fall Chinook Salmon. NOAA Technical Memorandum NMFS F/NWC-201, 80pp.	Appendix A - Fish	i
Washington Department of Fish and Wildlife (WDFW), unpublished data.	Appendix A - Fish	ii
Washington Department of Fish and Wildlife (WDFW). http://wdfw.wa.gov/publications/01219/wdfw01219.pdf	Appendix A - Fish	ii,vi
Washington Department of Fish and Wildlife (WDFW). 2004. Washington State Salmonid Stock Inventory. Bull Trout/Dolly Varden. Washington Department of Fish and Wildlife, Olympia, WA. 449pp.	Appendix A - Fish	ii

REFERENCE	CHAPTER	CODE
Weisel, G.F., D.A. Hansel and R.I. Newell. 1973. The pygmy whitefish, <i>Prosopium coulteri</i> , in western Montana. US Department of Commerce, National Marine Fisheries Service, Fishery Bulletin 71(2):587-596.	Appendix A - Fish	i
Williams, G. D. andrews, K. S., Katz, S. L., Moser, M. L., Tolimieri, N., Farrer, D. A. and Levin, P. S. (2012), Scale and pattern of broadnose sevengill shark <i>Notorynchus cepedianus</i> movement in estuarine embayments. Journal of Fish Biology, 80: 1380–1400. doi: 10.1111/j.1095-8649.2011.03179.x	Appendix A - Fish	i
Williams, K. R. 1999. Washington westslope cutthroat status report. Washington Department of Fish and Wildlife, Olympia, WA. 14pp. plus Appendices.	Appendix A - Fish	ii,iii,iv
Wydoski, R. S. and R. R. Whitney 2003. Inland Fishes of Washington, second edition. University of Washington Press, Seattle, WA. 322 pp.	Appendix A - Fish	i
Anderson, D. WDFW, pers.comm.	Appendix A - Invertebrates	vii
Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultural Experiment Station Technical Bulletin, 134:1-152.	Appendix A - Invertebrates	i
Applegarth, J. S. 1999. Management Recommendations for <i>Cryptomastix hendersoni</i> , the Columbia Oregonian (land snail) v.20, Section 2, in T. E. Burke, J. S. Applegarth and T. R. Weasma. Management Recommendations for Survey and Manage Terrestrial Mollusks (v. 2). USFS and BLM.	Appendix A - Invertebrates	i
Applegarth, J. S. 2000. Management recommendations for terrestrial mollusk species <i>Megomphix hemphilli</i> the Oregon Megomphix. Version 2.0. Unpublished report to the Oregon Bureau of Land Management. 39 pp.	Appendix A - Invertebrates	i
Ballmer, G. and G. Pratt. 1991. Quantification of ant attendance (Myrmecophily) of lycaenid larvae. Journal of Research on the Lepidoptera. 30(1-2): 95-112.	Appendix A - Invertebrates	i
Bartels, P. 1995. Columbia River tiger beetle 1995 survey: Columbia and Snake River, Region Two. Washington Department of Fish and Wildlife, Ephrata.	Appendix A - Invertebrates	ii
Baumann, R. W. and B. C. Kondratieff 2010. The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia, 6(25):315-327. (Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia06-25.pdf)	Appendix A - Invertebrates	i
Baumann, R. W. and D. S. Potter 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162. Available online: http://www2.pms-lj.si/illiesia/Illiesia03-15.pdf	Appendix A - Invertebrates	i
Baumann, R. W. and. B. P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae) in North America. Illiesia, 9(06):65-93. Available online: http://www2.pms-lj.si/illiesia/papers/Illiesia09-06.pdf	Appendix A - Invertebrates	i
Bergdahl, J. 1997. Endemic Sphagnum-bog beetles from the Puget Sound Region: Kings Lake and Snoqualmie Bogs, King County, Washington. Northwest Biodiversity Center, Seattle, Washington.	Appendix A - Invertebrates	vi
Beyer, L. and C. Schultz. 2010. Oviposition selection by a rare grass skipper <i>Polites mardon</i> in montane habitats: Advancing ecological understanding to develop conservation strategies. Biological Conservation 143:862-872.	Appendix A - Invertebrates	i
Blackburn, M. 2012. Surveys to determine the status of rare Beller's ground beetle (Agonum belleri) and Hatch's click beetle (Eanus hatchii) in suitable bog habitats on FS lands in the Mt. Baker-Snoqualmie and Okanogan-Wenatchee National Forests of Washington. Project completion report to the Interagency Special Status/Sensitive Species Program (ISSSP), BLM and US Forest Service. 26pp.	Appendix A - Invertebrates	i
Blake, B. and A. Bradbury. 2012. Plan for Rebuilding Olympia Oyster (<i>Ostrea lurida</i>) Populations in Puget Sound with a Historical and Contemporary Overview. Washington Department of Fish and Wildlife, Olympia.	Appendix A - Invertebrates	ii

REFERENCE	CHAPTER	CODE
Boggs, C. 2003. Environmental variation, life histories and allocation <i>in</i> Butterflies: Ecology	Appendix A -	i
and Evolution Taking Flight. Boggs, C., W. Watt and P. Ehrlich, eds. The University of	Invertebrates	
Chicago Press. 737pp.		
Bumble Bee Watch. 2014. Available: http://bumblebeewatch.org/ Accessed November 3, 2014.	Appendix A - Invertebrates	vi
Burke, T. E. 2013. Land Snails and Slugs of the Pacific Northwest. Oregon State University	Appendix A -	i
Press, Corvallis, Oregon. 344pp.	Invertebrates	
Burke, T., J. Applegarth, T. Weasma and N. Duncan. 1999. Management recommendations	Appendix A -	i
for Survey and Manage terrestrial mollusks, ver. 2.0. USDA Forest Service, USDI Bureau of Land Management. Available online at	Invertebrates	
http://www.or.blm.gov/surveyandmanage/MR/TM23Species/m2000-003.htm		
Cameron, S., J. Lozier, J. Strange, J. Koch, N. Cordes, L. Solter and T. Griswold. 2011. Patterns	Appendix A -	i
of widespread decline in North American bumble bees. Proceedings of the National	Invertebrates	
Academy of Sciences 108:662–667.		
Center for Biological Diversity, Center for Food Safety, The Xerces Society and L. Brower.	Appendix A -	i
2014. Petition to protect the monarch butterfly (Danaus plexippus plexippus) under the	Invertebrates	
Endangered Species Act. Submitted 26 August. 159pp.		
Clemson University Department of Entomology (J.C. Morse, ed.). 2002. Last Updated 5	Appendix A -	vi
September 2006. Trichoptera World Checklist. Online. Available:	Invertebrates	
http://entweb.clemson.edu/database/trichopt/index.htm.		
COSEWIC, 2003. COSEWIC Assessment and Status Report on the Sand Verbena Moth	Appendix A -	vi
Copablepharon fuscum in Canada. Committee on the Status of Endangered Wildlife in	Invertebrates	
Canada. Ottawa. vii + 39pp.		
COSEWIC. 2006. COSEWIC assessment and update status report on the blue-grey taildropper	Appendix A -	vi
slug Prophysaon coeruleum in Canada. Committee on the Status of Endangered Wildlife	Invertebrates	
in Canada. Ottawa, Canada. 27 pp.		
COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Forestsnail <i>Allogona</i>	Appendix A -	vi
townsendiana in Canada. Committee on the Status of Endangered Wildlife in Canada.	Invertebrates	
Ottawa. xii + 87 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).	1	
Crawford, R. and H. Hall. 1997. Changes in the south Puget Sound prairie landscape. Pp 11-15	Appendix A -	i
in P. Dunn and K. Ewing (eds.) Ecology and Conservation of the south Puget Sound	Invertebrates	
Prairie Landscape. The Nature Conservancy, Seattle, Washington. 289pp. Davis, R. and K. Weaver. 2010. Johnson's Hairstreak surveys in Oregon and Washington	Annondiy A	i
(2010). US Forest Service, Interagency Monitoring Program. Roseburg, Oregon. 10 pp. +	Appendix A - Invertebrates	ı
appendices	ilivertebrates	
Denning, D. G. 1956. Several new species of western Trichoptera. Pan-Pacific Entomologist	Appendix A -	i
32(2):73-80.	Invertebrates	•
Dornfeld, E. J. 1980. Butterflies of Oregon. Timber Press, Forest Grove, Oregon. 276 pp.	Appendix A -	i
	Invertebrates	
Duncan, N. 2005. Conservation Assessment for <i>Lyogyrus</i> n. sp. 2 Masked Duskysnail.	Appendix A -	vi
Originally issued as Management Recommendations, December 1998 by R. Monthey.	Invertebrates	
Interagency Special Status/Sensitive Species Program, Forest Service, Bureau of Land		
Management. 10 pp.		
Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband.	Appendix A -	vi
Originally issued as Management Recommendations by T. R. Weasma, 1998. Revised by	Invertebrates	
N. Duncan. USDA Forest Service Region 6 and USDI Bureau of Land Management,		
Oregon and Washington, 14 pp.		
Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail.	Appendix A -	vi
Originally issued as: Burke, T.E. Management Recommendations, February 1999.	Invertebrates	
Revised October 2005. USDA Forest Service Region 6 and USDI Bureau of Land		
Management, Oregon and Washington. 22 pp.,		

REFERENCE	CHAPTER	CODE
Duncan, N. 2005. Conservation assessment for <i>Prophysaon coeruleum</i> , Blue-Gray	Appendix A -	vi
Taildropper. Originally issued as Burke, T., N. Duncan and P. Jeske. 1999. Management	Invertebrates	
Recommendations. USDA Forest Service Region 6 and USDI Bureau of Land		
Management, Oregon and Washington.		
Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko Vertigo. Originally issued	Appendix A -	vi
as Management Recommendations by John S. Applegarth, February 1999. Revised by	Invertebrates	
Nancy Duncan, October 2005. USDA Forest Service Region 6 and USDI Bureau of Land		
Management, Oregon and Washington, 16 pp.		
Duncan, N. 2009. Vespericola columbianus depressa. Species Fact Sheet. Interagency Special	Appendix A -	vi
Status/Sensitive Species Program, Forest Service, Bureau of Land Management.	Invertebrates	
Edmunds, G.F. and R.D. Waltz. 1996. Ephemeroptera. Pages 126-163 in R.W. Merritt and	Appendix A -	i
K.W. Cummins (editors). An introduction to the aquatic insects of North America. 3 rd	Invertebrates	
Edition. Kendall/Hunt Publishers, Dubuque, Iowa.		
Edmunds, G.F., S.L. Jensen and L. Berner. 1976. The mayflies of North and Central America.	Appendix A -	i
University of Minnesota Press, Minneapolis, 330 pages.	Invertebrates	
Edworthy, A., K. Steensma, H. Zandberg and P. Lilley. 2012. Dispersal, home range size and	Appendix A -	i
habitat use of an endangered land snail, the Oregon Forestsnail (Allogona	Invertebrates	
townsendiana). Canadian Journal of Zoology 90(7):875-884.		
Erwin, T. 2011. eAgra entry: Scaphinotus mannii. Available at	Appendix A -	vi
http://canopy.lifedesks.org/pages/705 (Accessed 3 October, 2014).	Invertebrates	
Fleckenstein, J. 2015. Washington Department of Natural Resources. pers.comm.	Appendix A -	vii
	Invertebrates	
Fleckenstein, J. 2009. Makah Copper survey project. Final report to the US Fish and Wildlife	Appendix A -	i
Service. Natural Heritage Program, Washington Department of Natural Resources.	Invertebrates	
Olympia. 17 pp.		
Fleckenstein, J. 2014. Rare alpine butterflies in the Olympic Mountains. Final report to the US	Appendix A -	i
Forest Service and Bureau of Land Management. Natural Heritage Program, Washington	Invertebrates	
Department of Natural Resources. Olympia. 14 pp.		
Fleckenstein, J. and A. Potter. 1999. 1997, 1998 Project summary Puget prairie butterfly	Appendix A -	ii,iii
surveys. Washington Department of Natural Resources and Washington Department of	Invertebrates	
Fish and Wildlife, Olympia, WA.		
Foighil, D. O., T. Lee, D. C. Campbell and S. A. Clark. 2009. All voucher specimens are not	Appendix A -	i
created equal: A cautionary tale involving North American pleurocerid gastropods.	Invertebrates	
Journal of Molluscan Studies 75:305-306.		
Freshwater Mollusk Conservation Society (FMCS). 2013. Website	Appendix A -	vi
(http://molluskconservation.org/Snails_Ftpage.html.)	Invertebrates	
Frest, T. J and E. J. Johannes. 1997. Land snail survey of the lower Salmon River drainage,	Appendix A -	vi
Idaho. Report prepared for USDI BLM, Idaho, Deixis Consultants, Seattle. 367 pp.	Invertebrates	
Frest, T. J. 1999. A Review of the land and freshwater Mollusks of Idaho. Final report to the	Appendix A -	i
Idaho Conservation Data Center, Idaho Department of Fish and Game, 600 South	Invertebrates	
Walnut, P.O. Box 25, Boise, Idaho 83707. 281 pp. plus appendices.		
Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin mollusk species of special	Appendix A -	i
concern. Final report to the Interior Columbia Basin Ecosystem Management Project,	Invertebrates	
Walla Walla, WA. Contract #43-0E00-4-9112. 274 pp. plus appendices.		
Frest, T. J. and E. J. Johannes. 1995. Interior Columbia Basin Mollusk Species of Special	Appendix A -	i
Concern. Final Report, Deixis Consultants, Seattle. Prepared for Interior Columbia Basin	Invertebrates	
Ecosystem Management Project, Walla Walla, Washington. 362 pp.		
Gaines, W. L., A. L. Lyons, K. Weaver and A. Sprague. 2011. Monitoring the short-term effects	Appendix A -	i
of prescribed fire on an endemic mollusk in the dry forests of the eastern Cascades,	Invertebrates	
Washington, USA. Forest Ecology and Management 261:1460-1465.		

REFERENCE	CHAPTER	CODE
Gibble, W. and J. Fleckenstein. 2013. Copablepharon fuscum (sand-verbena moth) and Abronia latifolia (yellow sand-verbena) Washington State surveys. Report prepared for US Fish and Wildlife Service. University of Washington Botanic Gardens, Seattle and	Appendix A - Invertebrates	i
Washington Department of Natural Resources, Olympia. Natural Heritage Report 2013-02.		
Grosboll, D. N. 2011. Taylor's Checkerspot (<i>Euphydryas editha taylori</i>) oviposition habitat selection and larval hostplant use in Washington State. Master's Thesis, The Evergreen State College, Olympia. 77 pp.	Appendix A - Invertebrates	i
Guppy, C. and J. Shepard. 2001. Butterflies of British Columbia: including Western Alberta, Southern Yukon, The Alaska Panhandle, Washington, Northern Oregon, Northern Idaho and Northwestern Montana. University of British Columbia Press, Vancouver, B.C.	Appendix A - Invertebrates	i
Hallock, L., R. Haugo and R. Crawford. 2007. Conservation strategy for Washington inland sand dunes. Washington Department of Natural Resources, Olympia. Natural Heritage Report 2007-05.	Appendix A - Invertebrates	ii,iii
Hassall, C. and D. J. Thompson. 2008. The effects of environmental warming on Odonata: a review. International Journal of Odontology 11:131-153.	Appendix A - Invertebrates	i
Hatfield, R., S. Colla, S. Jepsen, L. Richardson and R. Thorp. 2014. IUCN assessments for North American <i>Bombus</i> spp. for the North American IUCN bumble bee specialist group. The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Appendix A - Invertebrates	vi
Hays, D., A. Potter, C. Thompson and P. Dunn. 2000. Critical habitat components for four rare south Puget Sound butterflies. Final report to The Nature Conservancy. Washington Department of Fish and Wildlife. Olympia.	Appendix A - Invertebrates	ii,vi
Hendricks, P., B. A. Maxell and S. Lenard. 2006. Land Mollusk Surveys on USFS Northern Region Lands. A report to the USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana. 11 pp. plus appendices.	Appendix A - Invertebrates	vi
Henry, E. and C. Shultz. 2012. A first step towards successful conservation: understanding local oviposition site selection of an imperiled butterfly, mardon skipper. Journal of Insect Conservation. DOI 10.1007/s10841-012-9496-x.	Appendix A - Invertebrates	i
Hershler, R. and H. P. Liu. 2012. Molecular phylogeny of the western North American pebblesnails, genus Fluminicola (Rissooidea: Lithoglyphidae), with description of new species. Journal of Molluscan Studies 78:321-329.	Appendix A - Invertebrates	i
Hershler, R. and T. J. Frest. 1996. A review of the North American freshwater snail genus Fluminicola (Hydrobiidae). Smithsonian Contributions to Zoology 583: 1-41.	Appendix A - Invertebrates	i
Jacobus L. M. and W. P. McCafferty. 2002. Analysis of some historically unfamiliar Canadian mayflies (Ephemeroptera). The Canadian Entomologist. 134(02): 141-155.	Appendix A - Invertebrates	i
James, D. and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. OregonState University Press, Corvallis. 447 pp.	Appendix A - Invertebrates	i
Jensen, S. L. 1966. The mayflies of Idaho (Ephemeroptera). Master's thesis. University of Utah.	Appendix A - Invertebrates	i
lepsen, S., A. Carleton and S. F. Jordan. 2012. Spring 2012 Blue Mountains terrestrial mollusk surveys. Final report to the Interagency Special Species Status/Sensitive Species Program. The Xerces Society for Invertebrate Conservation. 88pp.	Appendix A - Invertebrates	vi
lepsen, S., C. LaBar and J. Zarnoch. 2011. Profile: California floater (<i>Anodonta californiensis</i>) / Winged floater (<i>Anodonta nuttalliana</i>). The Xerces Society. 31 pp. (Available at http://www.xerces.org/california-and-winged-floaters/).	Appendix A - Invertebrates	vi
lepsen, S., C. LaBar and J. Zarnoch. 2011. Profile: Western ridged mussel (<i>Gonidea angulata</i>) The Xerces Society. 19 pp. (Available at http://www.xerces.org/western-ridged-mussel/).	Appendix A - Invertebrates	vi
Jepsen, S., C. LaBar and J. Zarnoch. 2012. Profile: Western pearlshell (Margaritifera falcata). The Xerces Society. 24 pp. (Available at http://www.xerces.org/western-pearlshell/).	Appendix A - Invertebrates	vi

REFERENCE	CHAPTER	CODE
Jordan, S. 2013. Vertigo andrusiana (Pilsbry 1899) Pacific Vertigo. Species Fact Sheet. Xerces	Appendix A -	vi
Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest	Invertebrates	
Service, Bureau of Land Management.		
Jordan, S. F. 2013. Soliperla fender (Jewett 1955). Species Fact Sheet. The Xerces Society.	Appendix A -	vi
Prepared for the Interagency Special Status/Sensitive Species Program, Forest Service,	Invertebrates	
Bureau of Land Management. 5pp.		
Jordan, S. F. 2013a. Olympia Pebblesnail (<i>Fluminicola virens</i>). Species Fact Sheet. Xerces	Appendix A -	vi
Society. Prepared for the Interagency Special Status/Sensitive Species Program, Forest	Invertebrates	
Service, Bureau of Land Management.9 pp.		
Jordan, S. F. 2013b. Ashy Pebblesnail/Columbia Pebblesnail (<i>Fluminicola fuscus</i>). Species Fact	Appendix A -	vi
Sheet. Xerces Society. Prepared for the Interagency Special Status/Sensitive Species	Invertebrates	
Program, Forest Service, Bureau of Land Management. 19pp.		
Kelley, R., S. Dowlan, N. Duncan and T. Burke. 1999. Field guide to survey and manage	Appendix A -	vi
terrestrial mollusk species from the northwest forest plan. Unpublished report of the	Invertebrates	
Bureau of Land Management, Oregon State Office. 114pp.		
Kondratieff, B. Colorado State University, pers.comm.	Appendix A -	vii
	Invertebrates	
Kondratieff, B.C. and R.A. Lechleitner. 2002. Stoneflies (Plecoptera) of Mt. Rainer National	Appendix A -	i
Park, Washington. Western North American Naturalist 62(4): 385–404.	Invertebrates	
LaBar, C. C. 2009. Investigating the use of herbicides to control invasive grasses in prairie	Appendix A -	i
habitats: effects of non-target butterflies. Master's Thesis, Washington State University,	Invertebrates	
Vancouver. 37 pp.		
Labonte, J., D. Scott, J. McIver and J. Hayes. 2001. Threatened, endangered and sensitive	Appendix A -	i
insects in eastern Oregon and Washington forests and adjacent lands. Northwest	Invertebrates	
Science, Vol. 75, Special Issue.		
Lafontaine, J. D, L. G. Crabo and G. A. Fauske. 2004 Genus Copablepharon. pp.146–180 in:	Appendix A -	i
Lafontaine (2004), Noctuoidea: Noctuidae (part) – Agrotini. In: Hodges RW (Ed) The	Invertebrates	
Moths of North America. Fascicle 27.1. The Wedge Entomological Research Foundation,		
Washington, 394 pp.		
Lambert, A. M. 2011. Natural history and population ecology of a rare pierid butterfly,	Appendix A -	i
Euchloe ausonides insulanus Guppy and Shepard (Pieridae). PhD Thesis, University of	Invertebrates	
Washington, 199 pp.		
Lane, M. 1938. A new species of the genus Eanus (Coleoptera Elatridae). Pan-Pacific	Appendix A -	i
Entomologist. 14(4): 188-191.	Invertebrates	
Lane, M. 1971. Key to the genus Eanus. in M. Hatch, Beetles of the Pacific Northwest.	Appendix A -	i
University of Washington Publications in Biology. 16: 28-29.	Invertebrates	
Lee, T., J. J. Kim, H. C. Hong, J. B. Burch and D. O'Foighil. 2006. Crossing the Continental	Appendix A -	i
Divide: the Columbia drainage species Juga hemphilli (Henderson, 1935) is a cryptic	Invertebrates	
member of the eastern North American genus Elimia (Cerithioidea: Pleuroceridae).		
Journal of Molluscan Studies 72:314-317.		
Leonard, W. WSDOT, pers.comm.	Appendix A -	vii
	Invertebrates	
Martin, R. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchii). Relicense	Appendix A -	vi
Study T-4. Final report to Puget Sound Energy for FERC Project No. 2150. Hamer	Invertebrates	
Environmental, Mt. Vernon, Washington.		
Maynard-Johnson, J. University of Idaho, pers.comm.	Appendix A -	vii
	Invertebrates	
Mazzacano, C. 2014. Limpets: giant Columbia River limpet (Fisherola nuttalli), (Gastropoda:	Appendix A -	vi
Lymnaeidae). The Xerces Society for Invertebrate Conservation. (Online:	Invertebrates	
http://www.xerces.org/giant-columbia-river-limpet/)		

REFERENCE	CHAPTER	CODE
Mazzacano, C., S. Jepsen and S. Hoffman-Black. 2010. Surveys to determine the status of two	Appendix A -	vi
rare insect species on the Oregon coast: the Siuslaw hairy-necked tiger beetle	Invertebrates	
(Coleoptera: Cicindelidae: Cicindela hirticollis siuslawensis Graves, Krejci and Graves,		
1988) and the Oregon plant bug (Hemiptera: Miridae: Lygus oregonae Knight, 1944).		
Project completion report submitted to the Interagency Special Status/Sensitive Species		
Program (ISSSP), BLM and US Forest Service. 26pp.		
McAllister, K. 2015. Washington State Department of Transportation, pers.comm.	Appendix A - Invertebrates	vii
McCafferty, W. P. and B. C. Kondratieff. 1999. New species of PARALEPTOPHLEBIA	Appendix A -	i
(Ephemeroptera: Leptophlebiida) from Idaho and Washington. Entomological News 110(4): 217-220.	Invertebrates	•
McCafferty, W. P. and R. L. Newell. 2007. Insecta, Ephemeroptera: range extension and new	Appendix A -	i
state records from far western Montana, U.S.A. Check List, 3(3): 260-261.	Invertebrates	
McGraw, R., N. Duncan and E. Cazares, 2002. Fungi and other items consumed by the Blue-	Appendix A -	i
gray Taildropper slug (<i>Prophysaon coeruleum</i>) and the Papillose Taildropper slug	Invertebrates	
(Prophysaon dubium). The Veliger, Vol. 45, No. 3, P. 261-264.		
Meyer, M. D. and W. P. McCafferty. 2008. Mayflies (Ephemeroptera) of the far western	Appendix A -	i
United States. Part 3: California. Transactions of the American Entomological Society	Invertebrates	•
134(3-4):337-430.		
Meyer, M.D. and W.P. McCafferty. 2007. Mayflies (Ephemeroptera) of the far western United	Appendix A -	i
States. Part I: Washington. Transactions of the American Entomological Society, 133(1-	Invertebrates	
2): 21-63.		
Monroe, M., D. Frey and S. Stevens. 2014. Western monarch Thanksgiving count data 1997-	Appendix A -	vi
2013. Available from: http://www.xerces.org/butterfly-conservation/western-monarch-	Invertebrates	**
thanksgiving-count/ Accessed 20 October 2014.		
NatureServe. 2014. NatureServe Explorer: An online encyclopedia of life [web application].	Appendix A -	vi
Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org.	Invertebrates	
Nedeau, E. J., A. K. Smith, J. Stione and S. Jepsen. 2009. Freshwater Mussels of the Pacific	Appendix A -	i
Northwest. 2nd edition. The Xerces Society. 51 pp.	Invertebrates	
Neitzel, D. A. and Frest, T. J. 1992. Survey of Columbia River Basin streams for Columbia	Appendix A -	vi
pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli. Technical	Invertebrates	
Report PNL-8229, Battelle Pacific Northwest Laboratory, Richland, WA. 83 pp.		
Neitzel, D. A. and T. J. Frest. 1989. Survey of Columbia River Basin streams for giant Columbia	Appendix A -	vi
River spire snail Fluminicola columbiana and great Columbia River limpet Fisherola	Invertebrates	
nuttalli. Tech. Rep. #PNL7103, Battelle Pacific Northwest Labs. 59 pp.		
Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis	Appendix A -	i
(Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American	Invertebrates	
Naturalist 69(4):551-555.		
Oberhauser, K. and M. Solensky, eds. 2004. The Monarch Butterfly: Biology and Conservation.	Appendix A -	i
Cornell University Press.	Invertebrates	
Pacific Northwest Moths. 2014. Western Washington University, Bellingham, Washington.	Appendix A -	vi
Available at: http://pnwmoths.biol.wwu.edu/ Viewed January 10, 2014.	Invertebrates	
Page, N., P. Lilley, J. Heron and N. Kroeker. 2009. Distribution and habitat characteristics of	Appendix A -	vi
Taylor's Checkerspot on Denman Island and adjacent areas of Vancouver island (2008).	Invertebrates	= -
Report prepared for British Columbia Ministry of Environment and Parks Canada.		
Raincoast Applied Ecology, Vancouver. 32 pp.		
Paulson, D. 2009. Dragonflies and Damselflies of the West. Princeton Univ. Press, Princeton,	Appendix A -	i
NJ. 535pp.	Invertebrates	•
Paulson, D. R. 2014. Washington Odonata. Slater Museum of Natural History, University of	Appendix A -	vi
Puget Sound, Tacoma. Sept 2014. http://www.pugetsound.edu/academics/academic-	Invertebrates	••
. "Out board, ratornal best both interit www.basecountaical/academics/academics		

Academy of Natural Sciences of Philadelphia, 2(2): 521-1113. Potter, A., T. Hanson and S. Vernon. 2011. Surveys for the island marble butterfly (Euchloe ausonides insulanus) in San Juan County, Washington, 2010. Washington Department of Fish and Wildlife, Olympia, Washington. Pyle, R. 1989. Washington butterfly conservation status plan. Washington Department of Fish and wildlife. Olympia, Washington. 216pp. Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Inve Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Apple Inve Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates	ii ii,iii i
ausonides insulanus) in San Juan County, Washington, 2010. Washington Department of Fish and Wildlife, Olympia, Washington. Pyle, R. 1989. Washington butterfly conservation status plan. Washington Department of Fish and wildlife. Olympia, Washington. 216pp. Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Approximately and the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Approximately and the American Entomological Society 131(1/2): 159-187. endix A - i i i i i i i i i i i i i i i i i i	i,iii	
Fish and Wildlife, Olympia, Washington. Pyle, R. 1989. Washington butterfly conservation status plan. Washington Department of Fish and wildlife. Olympia, Washington. 216pp. Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Apportune Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Apportune Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - ii rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i	i i i
and wildlife. Olympia, Washington. 216pp. Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Appellinve Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates	i i i
Pyle, R. 1999. Chasing Monarchs: Migrating with the Butterflies of Passage. Houghton Mifflin. Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - i rtebrates endix A - rtebrates endix A - rtebrates endix A - rtebrates endix A - rtebrates endix A - rtebrates endix A - i	i i
Boston, MA. Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - v rtebrates endix A - i	i i
Pyle, R. 2002. The Butterflies of Cascadia. Seattle Audubon Society. Seattle, WA. 420 pp. Inve Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - i rtebrates endix A - i rtebrates endix A - i rtebrates endix A - vrtebrates endix A - i	i i vii
Ruiter, D. E. 1995. The genus Limnephilus Leach (Trichoptera: Limnephilidae) of the New World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Appel Inversity of Texas, pers.comm. Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - i rtebrates endix A - i rtebrates endix A - v rtebrates endix A - i	vii
World. Ohio Biological Survey Bulletin, new series, 11: 1-200. Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Appellinve Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i rtebrates endix A - v rtebrates endix A - i	vii
Ruiter, D. E., B. Kondratieff, R. A. Lechleitner and R. E. Zuellig. 2005. An annotated list of the caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - i rtebrates vrtebrates endix A - i	vii
caddisflies (Trichoptera) of Mt. Rainier National Park, Washington, USA. Transactions of the American Entomological Society 131(1/2): 159-187. Ruiter, D. 2015. University of Texas, pers.comm. Appellinve Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	endix A - vrtebrates endix A - i	
Ruiter, D. 2015. University of Texas, pers.comm. Appel Inve Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i	
Schultz, C., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtebrates endix A - i	
Fimbel, S. Black, H. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and		
Wilderman, R. Davenport, E. Steel, N. Page, P. Lilley, J. Heron, N. Kroeker, C. Webb and	rtobrotc-	i
	rtebrates	
D. Dondon 2011 Concentration of projeto only butterflies in Organia Westington and		
B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington and		
British Columbia. Northwest Science 85: 361–388.		
Schweitzer, D., N. Capuano, B. Young and S. Colla. 2012. Conservation and management of Appe	endix A - i	i
North American bumble bees. NatureServe, Arlington, Virginia and USDA Forest Service, Unvewashington, D.C.	rtebrates	
Severns, P. M. and A. D. Warren. 2008. Selectively eliminating and conserving exotic plants to Appe	endix A - i]
save an endangered species from local extinction. Animal Conservation 11:476-483.	rtebrates	
Severns. P. M and D. Grosboll. 2010. Patterns of reproduction in four Washington State Appe	endix A - v	vi
populations of Taylor's checkerspot (<i>Euphydryas editha</i> taylori) during the spring 2010. Inve Report submitted to the Nature Conservancy. 81pp.	rtebrates	
Shear, W. A. and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to Appe	endix A - i	I
Anthroleucosomatoidea). Zootaxa. 609:1-7.	rtebrates	
http://www.mapress.com/zootaxa/2004f/z00609f.pdf		
	endix A - i rtebrates	
· · · · · · · · · · · · · · · · · · ·	endix A - i]
concern on USFS Northern Region lands. Report prepared for USDA Forest Service, Northern Region, Missoula, Montana.	rtebrates	
	endix A - i	
	rtebrates	
Entomological Society of Washington 106(4): 747-750.		
	endix A - i	i
	rtebrates	
	endix A - i	i
	rtebrates	

REFERENCE	CHAPTER	CODE
Stinson, D. W. 2005. Washington State status report for the Mazama pocket gopher, streaked	Appendix A -	ii,iii,iv
horned lark and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129 pp.	Invertebrates	
Stone, T., 2009. Crowned Tightcoil (<i>Pristiloma pilsbryi</i>). Species Fact Sheet. Interagency	Appendix A -	vi
Special Status/Sensitive Species Program, Forest Service, Bureau of Land Management. 5pp.	Invertebrates	
Takaoka, S. and F. Swanson. 2008. Change in extent of meadows and shrub fields in the	Appendix A -	i
central western Cascade Range, Oregon. The Professional Geographer 60:4. http://www.tandfonline.com/doi/abs/10.1080/00330120802212099	Invertebrates	
The Nature Conservancy. 1990. Population dynamics and habitat selection of the Oregon	Appendix A -	vi
silverspot butterfly (<i>Speyeria zerene hippolyta</i>): a comparative study at four primary sites in Oregon. Report to the Siuslaw National Forest. Portland, Oregon.	Invertebrates	
Thompson, J. 2007. Mountain meadows—here today, gone tomorrow? Meadow science and	Appendix A -	i
restoration. Science Findings Issue 94. PNW Research Station, Portland, Oregon.	Invertebrates	
http://www.fs.fed.us/pnw/sciencef/scifi 94.pdf		
Thorp, R., D. Horning, Jr. and L. Dunning. 1983. Bumble bees and cuckoo bumble bees of	Appendix A -	i
California (Hymenoptera: Apidae). Bulletin of the California Insect Survey: Vol. 23. University of CA Press. Berkley and Los Angeles.	Invertebrates	
Troubridge, J. and L. Crabo. 1995. A new species of Copablepharon (Lepidoptera: Noctuidae)	Appendix A -	i
from British Columbia and Washington. Journal of Entomology Society British Columbia. 92: December. Pp. 87-90.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2001. Oregon silverspot butterfly (Speyeria zerene	Appendix A -	i
hippolyta) revised recovery plan. US Fish and Wildlife Service, Portland, Oregon. 13 pp.	Invertebrates	_
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants:	Appendix A -	i
90-day finding on a petition to list 29 mollusk species as threatened or endangered with critical habitat: proposed rule. Federal Register 76 (No. 193, October 5, 2011): 61826-61853.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and threatened wildlife and plants;	Appendix A -	i
12-month finding on a petition to list the Bearmouth mountainsnail, Byrne Resort	Invertebrates	•
mountainsnail and meltwater lednian stonefly as endangered or threatened. Federal		
Register 76(65): 18684-18701. US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
12-Month Finding on a Petition to List the Giant Palouse Earthworm (Driloleirus	Invertebrates	1
americanus) as Threatened or Endangered. Federal Register 76(143):44547-44564.	invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
90-Day Finding on a Petition to List the Sand Verbena Moth as Endangered or Threatened. Federal Register Vol. 76, No. 33: 9309-9318.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2014. Endangered and Threatened Wildlife and Plants;	Appendix A -	i
90-Day Finding on a Petition to List the Island Marble Butterfly as an Endangered Species. Federal Register Vol. 79, No. 160: 49045-49047.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2005. Species fact sheet:	Appendix A -	vi
Columbia River tiger beetle. Prepared by G. Brenner. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2007. Species fact sheet:	Appendix A -	vi
Siuslaw Sand tiger beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2008a. Species fact sheet:	Appendix A -	vi
Columbia Clubtail (Gomphus lynnae). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2008b. Species fact sheet:	Appendix A -	vi
Pacific Clubtail (Gomphus kurilis). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Invertebrates	

REFERENCE	CHAPTER	CODE
US Forest Service and Bureau of Land Management (USFS-BLM). 2008c. Species fact sheet:	Appendix A -	vi
White-belted Ringtail (Erpetogomphus compositus). Prepared by S. Foltz. Xerces Society for Invertebrate Conservation, Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet:	Appendix A -	vi
Beller's ground beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet:	Appendix A -	vi
Hatch's Click Beetle. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2009. Species fact sheet:	Appendix A -	vi
Valley Silverspot. Prepared by The Xerces Society for Invertebrate Conservation.	Invertebrates	
Portland, Oregon.		
US Forest Service and Bureau of Land Management (USFS-BLM). 2010. Species fact sheet:	Appendix A -	vi
Silver-bordered fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2011. Species fact sheet:	Appendix A -	vi
Subarctic Bluet. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
US Forest Service and Bureau of Land Management (USFS-BLM). 2012. Species fact sheet:	Appendix A -	vi
Meadow Fritillary. Prepared by The Xerces Society for Invertebrate Conservation. Portland, Oregon.	Invertebrates	
Vadopalas, B. and J. Watson. 2014. Recovery Plan for Pinto Abalone (<i>Haliotis kamtschatkana</i>) in Washington state. Puget Sound Restoration Fund. 50pp.	Appendix A - Invertebrates	vi
Wainwright, M. 2008. Chinquapin (Golden) Hairstreak butterfly survey report. US Forest	Appendix A -	vi
Service, Gifford Pinchot National Forest. 6pp.	Invertebrates	
WildEarth Guardians. 2010. Petition to list the Sand Verbena Moth (Copablepharon fuscum)	Appendix A -	vi
under the US Endangered Species Act. Submitted to the US Secretary of Interior February 4, 2010.	Invertebrates	
Wilke, T. and N. Duncan 2004. Phylogeographical patterns in the American Pacific Northwest:	Appendix A -	i
lessons from the arionid slug <i>Prophysaon coeruleum</i> , Molecular Ecology (2004) 13: 2303-2315.	Invertebrates	
Williams, P. H., S. R. Colla and Z. Xie. 2009. Bumblebee vulnerability: common correlates of	Appendix A -	i
winners and losers across three continents. Conservation Biology 23(4):931-940.	Invertebrates	
Wilson, J., L. Wilson, L. Loftis and T. Griswold. 2010. The montane bee fauna of north central Washington, USA, with floral associations. Western North American Naturalist 70(2):198-207.	Appendix A - Invertebrates	i
Xerces–The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, <i>Euchloe ausonides</i> insulanus (Guppy and Shepard, 2001) as an endangered species under the US endangered species act. Portland, Oregon. Submitted August 22, 2012.	Appendix A - Invertebrates	vi
Beer, W. and J. Anderson. 2011. Sensitivity of juvenile salmonid growth to future climate trends. River Research and Applications, 27(5), 663-669.	Appendix C	i
Bumbaco, K. A. and P. W. Mote. 2010. Three recent flavors of drought in the Pacific Northwest. Journal of Applied Meteorology and Climatology, 49(9), 2058-2068.	Appendix C	i
Cai, WJ., X. Hu, WJ. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, WC. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai and GC. Gong. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11), 766-770.	Appendix C	i

REFERENCE	CHAPTER	CODE
Climate Impacts Group. 2009. The Washington Climate Change Impacts Assessment, M.	Appendix C	i
McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science in the Earth		
System, Joint Institute for the Study of the Atmosphere and Oceans, University of		
Washington, Seattle, Washington.		
Connolly, T., B. Hickey, S. Geier and W. Cochlan. 2010. Processes influencing seasonal hypoxia	Appendix C	i
in the northern California Current System. Journal of Geophysical Research: Oceans		
(1978–2012), 115(C3).		
Diaz, R. J. and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929.	Appendix C	i
Doney, S., A. A. Rosenberg, M. Alexander, F. Chavez, C. D. Harvell, G. Hofmann, M. Orbach	Appendix C	i
and M. Ruckelshaus. 2014. Ch. 24: Oceans and Marine Resources. Climate Change		
Impacts in the United States: The Third National Climate Assessment, J. M. Melillo,		
Terese (T.C.) Richmond and G. W. Yohe, Eds., US Global Change Research Program, 557-		
578. doi:10.7930/J0RF5RZW.		
Eby, L. A., O. Helmy, L. M. Holsinger and M. K. Young. 2014. Evidence of climate-induced	Appendix C	i
range contractions in Bull Trout Salvelinus confluentus in a Rocky Mountain watershed,		
USA. PloS one, 9(6), e98812.		
Feely, R. A., S. C. Doney and S. R. Cooley. 2009. Ocean acidification: present conditions and	Appendix C	i
future changes in a high-CO2 world. Oceanography, 22(4), 37-47.		
Feely, R. A., S. R. Alin, J. Newton, C. L. Sabine, M. Warner, A. Devol, C. Krembs and C. Maloy.	Appendix C	i
2010. The combined effects of ocean acidification, mixing and respiration on pH and		
carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science,		
88(4), 442-449.		
Gregg, R. M., K. M. Feifel, J.M. Kershner and J.L. Hitt. 2012. The State of Climate Change	Appendix C	i
Adaptation in the Great Lakes Region. EcoAdapt, Bainbridge Island, WA.		
Gregg, R. M., L. J. Hansen, K. M. Feifel, J. L. Hitt, J. M. Kershner, A. Score and J. R. Hoffman.	Appendix C	i
2011. The State of Marine and Coastal Adaptation in North America: A Synthesis of		
Emerging Ideas. EcoAdapt, Bainbridge Island, WA.		
Hamlet, A. F. and D. P. Lettenmaier. 2007. Effects of 20th century warming and climate	Appendix C	i
variability on flood risk in the western US. Water Resources Research, 43(6).		
Huppert, D. D., A. Moore and K. Dyson. 2009. Impacts of climate change on the coasts of	Appendix C	i
Washington State. Washington Climate Change Impacts Assessment: Evaluating		
Washington's Future in a Changing Climate, 285-309.		
Isaak, D. J., S. Wollrab, D. Horan and G. Chandler. 2012. Climate change effects on stream and	Appendix C	i
river temperatures across the northwest U.S. from 1980–2009 and implications for		
salmonid fishes. Climatic Change, 113(2), 499-524.		
Mantua, N., I. Tohver and A. Hamlet. 2009. Impacts of climate change on key aspects of	Appendix C	i
freshwater salmon habitat in Washington State. Washington Climate Change Impacts		
Assessment: Evaluating Washington's future in a changing climate. Climate Impacts		
Group, University of Washington. Seattle, Washington.		
Mantua, N., I. Tohver and A. Hamlet. 2010. Climate change impacts on streamflow extremes	Appendix C	i
and summertime stream temperature and their possible consequences for freshwater	• •	
salmon habitat in Washington State. Climatic Change, 102(1-2), 187-223.		
Monleon, V. J. and H. E. Lintz. 2015. Evidence of tree species' range shifts in a complex	Appendix C	i
landscape. PloS One, 10(1), e0118069.		
Moore, S. K., N. J. Mantua, B. M. Hickey and V. L. Trainer. 2009. Recent trends in paralytic	Appendix C	i
shellfish toxins in Puget Sound, relationships to climate and capacity for prediction of		
toxic events. Harmful Algae, 8(3), 463-477.		
Moore, S. K., V. L. Trainer, N. J. Mantua, M. S. Parker, E. A. Laws, L. C. Backer and L. E.	Appendix C	i
Fleming. 2008. Impacts of climate variability and future climate change on harmful algal	• •	
blooms and human health. Environmental Health, 7(2), S4.		

REFERENCE	CHAPTER	CODE
Morgan, E. and D. Siemann. 2010. Climate Change Effects on Marine and Coastal Habitats in	Appendix C	vi
Washington State Prepared for the Ecosystems, Species and Habitats Topic Advisory		
Group. Available at:		
http://dfwwbolyhq01.dfw.wa.gov/conservation/climate_change/publications/marine_c		
oastal_climate_science_summary.pdf		
Mote, P., A. K. Snover, S. Capalbo, S. D. Eigenbrode, P. Glick, J. Littell, R. Raymondi and S.	Appendix C	i
Reeder. 2014. Ch. 21: Northwest. Climate Change Impacts in the United States: The		
Third National Climate Assessment, J. M. Melillo, Terese (T .C.) Richmond and G. W.		
Yohe, Eds., US Global Change Research Program, 487-513. doi:10.7930/J04Q7RWX.		
Peterson, J. O., C. A. Morgan, W. T. Peterson and E. D. Lorenzo. 2013. Seasonal and	Appendix C	i
interannual variation in the extent of hypoxia in the northern California Current from		
1998–2012. Limnology and Oceanography, 58(6), 2279-2292.		
Raupach, M. R., G. Marland, P. Ciais, C. Le Quéré, J. G. Canadell, G. Klepper and C. B. Field.	Appendix C	i
2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the		
National Academy of Sciences, 104(24), 10288-10293.		
Snover, A. K, G. S. Mauger, L.C. Whitely Binder, M. Krosby and I. Tohver. 2013. Climate	Appendix C	i
Change Impacts and Adaptation in Washington State: Technical Summaries for Decision		
Makers. State of Knowledge Report prepared for the Washington State Department of		
Ecology. Climate Impacts Group, University of Washington, Seattle.		
State of Washington Department of Ecology (WDOE). 2012. Preparing for a Changing Climate:	Appendix C	i
Washington States Integrated Climate Response Strategy. Publication No. 12-01-004.		
Olympia, WA.		
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in	Appendix C	vi
Freshwater Aquatic and Riparian Ecosystems in the North Pacific Landscape		
Conservation Cooperative Region: A Compilation of Scientific Literature. National		
Wildlife Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-		
Warming/2014/Freshwater-Report/NPLCC_Freshwater_Climate-Effects_Final.pdf		
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in	Appendix C	vi
Marine and Coastal Ecosystems of the North Pacific Landscape Conservation		
Cooperative Region: A Compilation of Scientific Literature. National Wildlife Federation.		
Available at: http://www.nwf.org/~/media/PDFs/Global-Warming/2014/Marine-		
Report/NPLCC_Marine_Climate-Effects_Final.pdf		
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for	Appendix C	vi
Terrestrial Ecosystems, Habitats and Species: A Compilation of the Scientific Literature		
for the North Pacific Landscape Conservation Cooperative Region. National Wildlife		
Federation. Available at: http://www.nwf.org/~/media/PDFs/Global-		
Warming/2014/Terrestrial-Report/CC-and-Terrestrial-Systems_Final-Report_NPLCC-		
NWF_online-size.pdf		
Washington Climate Impacts Group. 2009. The Washington Climate Change Impacts	Appendix C	i
Assessment, M. McGuire Elsner, J. Littell and L. Whitely Binder (eds). Center for Science		
in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans.		
University of Washington. Seattle, Washington.		
Washington Wildlife Habitat Connectivity Working Group (WHCWG). 2010. Washington	Appendix C	i,ii,iii
Connected Landscapes Project: Statewide Analysis. Washington Department of Fish and		
Wildlife and Washington Statement Department of Transportation.		
Akins, J. 2012. Conservation Status of the Cascade Red Fox. Mount Rainier National Park	Climate Change	vi
Science Brief. National Park Service, US Department of the Interior. 2 pp.	Vulnerability –	
·	Mammals	
Anderwald, P., P. G. H. Evans, R. Dyer, A. Dale, P. J. Wright and A. R. Hoelzel. 2012. Spatial	Climate Change	i
scale and environmental determinants in minke whale habitat use and foraging. Marine	Vulnerability –	
Ecology Progress Series 450, 259–274.	Mammals	

REFERENCE	CHAPTER	CODE
Armitage, K.B. 2013. Climate change and the conservation of marmots. Natural Science 5: 36-43.	Climate Change Vulnerability – Mammals	i
Aubry, K. B. and S. D. West. 1984. The status of native and introduced mammals on Destruction Island, Washington. The Murrelet, 65(3): 80-83.	Climate Change Vulnerability – Mammals	İ
Azerrad, J. M. 2004. Merriam's Shrew in Volume V: Mammals. Washington Department of Fish and Wildlife. 4 pgs. http://wdfw.wa.gov/publications/00027/mesh.pdf	Climate Change Vulnerability – Mammals	ii,iii
Baumgartner, M. F., N. S. J. Lysiak, H. C. Esch, A. N. Zerbini, C. L. Berchok and P. J. Clapham. 2013. Associations between North Pacific right whales and their zooplanktonic prey in the southeastern Bering sea. Marine Ecology Progress Series 490, 267–284.	Climate Change Vulnerability – Mammals	i
Beever, E. A., P. E. Brussard and J. Berger. 2003. Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. Journal of Mammalogy 84:37-54.	Climate Change Vulnerability – Mammals	i
Burek, K. A., F. M. D. Gulland and T. M. O'Hara. 2008. Effects of Climate Change on Arctic Marine Mammal Health. Ecological Applications 18, S126–S134.	Climate Change Vulnerability – Mammals	i
Burtenshaw, J. C., E. M. Oleson, J. A. Hildebrand, M. A. McDonald, R. K. Andrew, B. M. Howe and J. A. Mercer. 2004. Acoustic and satellite remote sensing of blue whale seasonality and habitat in the Northeast Pacific. Deep. Res. Part II Topographic Studies Oceanography 51, 967–986.	Climate Change Vulnerability – Mammals	i
Clapham, P., K. Shelden and P. Wade. 2005. Review of Information Relating to Possible Critical Habitat for Eastern North Pacific Right Whale. National Marine Mammal Lab. Accessible via http://alaskafisheries.noaa.gov/protectedresources/whales/nright/rule/rwcrithabinfo08 05.pdf. Accessed 5/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/taxidea- taxus, accessed 6/4/2015	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/ochotona- princeps, accessed 5/31/2015	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/85	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lepus- californicus, accessed 5/31/2015	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/vulpes-vulpes-cascadensis, accessed 6/4/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/martespennanti, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/canis-lupus-0, accessed 6/5/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/canis-lupus, accessed 6/5/2015.	Climate Change Vulnerability – Mammals	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/68, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lasiurus-cinereus, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/525, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/orcinus-orca, accessed 5/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/microtus-pennsylvanicus, accessed 6/1/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/67, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/thomomys-mazama-yelmensis, accessed 6/1/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sorex- merriami	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/synaptomys-borealis, accessed 5/2/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/502, accessed 6/2/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/507, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sorex-preblei.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/brachylagus-idahoensis-0, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lasionycteris-noctivagans, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/euderma-maculatum, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/corynorhinus-townsendii, accessed 5/312015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/57, accessed 6/2/2015.	Climate Change Vulnerability – Mammals	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/spilogale-gracilis, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lepus-townsendii, accessed 5/31/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gulo-gulo, accessed 6/3/2015.	Climate Change Vulnerability – Mammals	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/rangifer- tarandus-caribou	Climate Change Vulnerability – Mammals	vi
Croll, D. A., B. Marinovic, S. Benson, F. P. Chavez, N. Black, R. Ternullo and B. R. Tershy, 2005. From wind to whales: Trophic links in a coastal upwelling system. Marine Ecology Progress Series 289, 117–130.	Climate Change Vulnerability – Mammals	i
Dalla Rosa, L., J. K. B. Ford and A. W. Trites. 2012. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters. Continental Shelf Research. 36, 89–104.	Climate Change Vulnerability – Mammals	i
Delach, A. and N. Mattson. 2014. No Refuge from Warming: Climate Change Vulnerability of the Mammals of the Arctic National Wildlife Refuge. Defenders of Wildlife, Washington, D.C. 57 pp.	Climate Change Vulnerability – Mammals	vi
Department of the Interior (USDOI). 2014. Endangered and Threatened Wildlife and Plants; Threatened Species Status for the Olympia Pocket Gopher, Roy Prairie Pocket Gopher, Tenino Pocket Gopher and Yelm Pocket Gopher, with Special Rule; Final Rule. Federal Register, Vol. 79, No. 68.	Climate Change Vulnerability – Mammals	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Mammals	i
Elliott, M. L. and J. Jahncke. 2014. Ocean Climate Indicators Status Report – 2013. Unpublished Report. Point Blue Conservation Science, Petaluma, California. Point Blue contribution number 1982.	Climate Change Vulnerability – Mammals	vi
Feldhamer, G. A., B.C. Thompson and J. A. Chapman (Eds.). 2003. Wild mammals of North America: Biology, Management and Conservation. JHU Press. 1216 pages.	Climate Change Vulnerability – Mammals	i
Ferguson, H. L. and M. Atamian. 2012. Appendix A.3 Habitat Connectivity for Black-tailed Jackrabbit (Lepus californicus) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity Working Group. 41 pp.	Climate Change Vulnerability – Mammals	i,ii,iii
Ferguson, H. L., K. A. Divens and M. Atamian. 2010. Appendix A. Focal Species Modeling Background: White-tailed Jackrabbit (Lepus townsendii) in Washington Connected Landscapes Project: Statewide Analysis. Washington Department of Fish and Wildlife and Washington Department of Transportation, Olympia, WA. 7 pp.	Climate Change Vulnerability – Mammals	i,ii,iii
Ford, J. K. B., G. M. Ellis and P. F. Olesiuk. 2005. Linking prey and population dynamics: did food limitation cause recent declines of 'resident' killer whales (Orcinus orca) in British Columbia? Canadian Science Advisory Secretariat, Research Document 2005/042. Fisheries & Oceans, Canada, Pacific Biological Station.	Climate Change Vulnerability – Mammals	i
George, S. B. 1989. Sorex trowbridgii. Mammalian Species, 337: 1-5.	Climate Change Vulnerability – Mammals	i
Gitzen, R. A., J. E. Bradley, J. E., M. R. Kroeger and S. D. West. 2009. First Record of Preble's Shrew (Sorex preblei) in the Northern Columbia Basin, Washington. Northwestern Naturalist, 90(1), 41-43.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Griffin, S. C. 2008. Demography and ecology of a declining endemic: The Olympic marmot.	Climate Change	i
Theses, Dissertations, Professional Papers. Paper 299.	Vulnerability –	
	Mammals	
Griffin, S. C., M. L. Taper, R. Hoffman and L. S. Mills. 2008. The case of the missing marmots:	Climate Change	i
Are metapopulation dynamics or range-wide declines responsible? Biological	Vulnerability –	
Conservation 141: 1293-1309.	Mammals	
Gunther, K. A., R. R. Shoemaker, K. L. Frey, M. A. Haroldson, S. L. Cain, F. T. van Manen and J.	Climate Change	i
K. Fortin. 2014. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem.	Vulnerability –	
Ursus 25: 60-72.	Mammals	
Hanson, M. B., R. W. Baird, J. K. B. Ford, J. Hempelmann-Halos, D. M. Van Doornik, J. R. Candy,	Climate Change	i
C. K. Emmons, G. S. Schorr, B. Gisborne, K. L. Ayres, S. K. Wasser, K. C. Balcomb, K.	Vulnerability –	
Balcomb-Bartok, J. G. Sneva and M. J. Ford. 2010. Species and stock identification of	Mammals	
prey consumed by endangered southern resident killer whales in their summer range.		
Endangered Species Research 11, 69–82.		
Haug, T., U. Lindstrom and K. T. Nilssen. 2002. Variations in Minke Whale (Balaenoptera	Climate Change	i
acutorostrata) Diet and Body Condition in Response to Ecosystem Changes in the	Vulnerability –	
Barents Sea. Sarsia North Atlantic Marine Science 87, 409–422.	Mammals	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: Pacific Fisher. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Vulnerability –	
	Mammals	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: American Marten. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Vulnerability –	
	Mammals	
Hayes, G. and G. J. Wiles. 2013. Washington bat conservation plan. Washington Department	Climate Change	ii,iii,iv
of Fish and Wildlife, Olympia, Washington. 138+viii pp.	Vulnerability –	
	Mammals	
Howard, J. L. 1995. Lepus californicus. In: Fire Effects Information System, [Online]. US	Climate Change	vi
Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire	Vulnerability –	
Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2015,	Mammals	
May 31].		
Jaquet, N. and D. Gendron. 2002. Distribution and relative abundance of sperm whales in	Climate Change	i
relation to key environmental features, squid landings and the distribution of other	Vulnerability –	
cetacean species in the Gulf of California, Mexico. Marine Biology 141, 591–601.	Mammals	
Johnston, K. M., K. A. Freund and O. J. Schmitz. 2012. Projected range shifting by montane	Climate Change	i
mammals under climate change: implications for Cascadia's National Parks. Ecosphere 3.	Vulnerability –	
Article 97.	Mammals	
Laidre, K. L., M. P. Heide-Jørgensen, P. Heagerty, A. Cossio, B. Bergström and M. Simon. 2010.	Climate Change	i
Spatial associations between large baleen whales and their prey in West Greenland.	Vulnerability –	
Marine Ecology Progress Series 402, 269–284.	Mammals	
Laidre, K. L., R. J. Jameson, E. Gurarie, S. J. Jeffries and H. Allen. 2009. Spatial habitat use	Climate Change	i
patterns of Sea Otters in Coastal Washington. Journal of Mammalogy, 90 (4): 906-917.	Vulnerability –	
	Mammals	
Learmonth, J. A, C. D. Macleod, M. B. Santos, G. J. Pierce, H. Q. P. Crick and R. A. Robinson,	Climate Change	i
2006. Potential effects of climate change on marine mammals. Oceanography and	Vulnerability –	
Marine Biology: An Annual Review. 44, 431–464.	Mammals	
Linders, M. J. and D. W. Stinson. 2007. Washington State Recovery Plan for the Western Gray	Climate Change	ii,iii
Squirrel. Washington Department of Fish and Wildlife, Olympia, WA. 128 pp.	Vulnerability –	
	Mammals	
MacLeod, C. D. 2009. Global climate change, range changes and potential implications for the	Climate Change	i
conservation of marine cetaceans: A review and synthesis. Endangered Species	Vulnerability –	
Research 7, 125–136.	Mammals	

REFERENCE	CHAPTER	CODE
Marcy, A. E., S. Fendorf, J. L. Patton and E. A. Hadly. 2013. Morphological adaptations for digging and climate-impacted soil properties define pocket gopher (Thomomys spp.) distributions. PLoS One 8: e64935.	Climate Change Vulnerability – Mammals	i
McCluskey, S. M. 2006. Space Use Patterns and Population Trends of Southern Resident Killer Whales (Orcinus orca) in Relation to Distribution and Abundance of Pacific salmon (Oncorhynchus spp.) in the Inland Marine Waters of Washington State and British Columbia. Master's thesis, University of Washington, School of Aquatic and Fisheries Science.	Climate Change Vulnerability – Mammals	i
McKelvey, K. S., J. P. Copeland, M. K. Schwartz, J. S. Littell, K. B. Aubry, J. R. Squires, S. A. Parks, M. M. Elsner and G.S. Mauger. 2011. Climate change predicted to shift wolverine distributions, connectivity and dispersal corridors. Ecological Applications 21: 2882-2897.	Climate Change Vulnerability – Mammals	i
Meaney, C. and G. P. Beauvais. 2004. Species Assessment for Gray Wolf (Canis lupus) in Wyoming. Prepared for US Department of the Interior Bureau of Land Management. http://www.blm.gov/style/medialib/blm/wy/wildlife/animal-assessmnts.Par.50140.File.dat/GrayWolf.pdf	Climate Change Vulnerability – Mammals	vi
Moore, J. E. and J. P. Barlow. 2014. Improved abundance and trend estimates for sperm whales in the eastern North Pacific from Bayesian hierarchical modeling. Endangered Species Research 25, 141–150.	Climate Change Vulnerability – Mammals	i
Mountain Caribou Science Team. 2005. Mountain Caribou in British Columbia: A Situation Analysis. 19 May 2005. http://www.env.gov.bc.ca/wld/speciesconservation/mc/files/Mountain_Caribou_Situation_Analysis.pdf	Climate Change Vulnerability – Mammals	vi
National Marine Fisheries Service (NMFS). 2010. Final recovery plan for the fin whale (Balaenoptera physalus). National Marine Fisheries Service, Silver Spring, Maryland. 121 pp.	Climate Change Vulnerability – Mammals	i
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Ovis+canadensis	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Odocoileus+virginia nus+leucurus	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Sorex+merriami	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Rangifer+tarandus+ caribou	Climate Change Vulnerability – Mammals	vi
NatureServe Explorer. http://explorer.natureserve.org/servlet/NatureServe?searchName=Sorex+preblei.	Climate Change Vulnerability – Mammals	vi
Olsen, E., W. P. Budgell, E. Head, L. Kleivane, L. Nøttestad, R. Prieto, M. A. Silva, H. Skov, G. A. Víkingsson, G. Waring and N. Øien. 2009. First satellite-tracked long-distance movement of a sei whale (Balaenoptera borealis) in the North Atlantic. Aquatic Mammals 35, 313–318.	Climate Change Vulnerability – Mammals	i
Pierce, G. J., M. B. Santos, C. Smeenk, A. Saveliev and A. F. Zuur. 2007. Historical trends in the incidence of strandings of sperm whales (Physeter macrocephalus) on North Sea coasts: An association with positive temperature anomalies. Fisheries Research 87, 219–228.	Climate Change Vulnerability – Mammals	i
Roberts, D. R., S. E. Nielson and G. B. Stenhouse. 2014. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes. Ecological Applications 24: 1144-1154.	Climate Change Vulnerability – Mammals	i

REFERENCE	CHAPTER	CODE
Sasaki, H., H. Murase, H. Kiwada, K. Matsuoka, Y. Mitani and S. I. Saitoh. 2013. Habitat differentiation between sei (Balaenoptera borealis) and Bryde's whales (B. brydei) in the	Climate Change Vulnerability –	i
western North Pacific. Fisheries Oceanography 22, 496–508.	Mammals	
Sato, C. 2012. Appendix A.5 Habitat Connectivity for Townsend's Ground Squirrel (Urocitellus	Climate Change	i,ii,iii
townsendii) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity	Vulnerability –	
Working Group. 24 pp. Sato, C. 2012. Appendix A.6 Habitat Connectivity for Washington Ground Squirrel (Urocitellus	Mammals Climate Change	i,ii,iii
washingtoni) in the Columbia Plateau Ecoregion. Washington Habitat Connectivity	Vulnerability –	1,11,111
Washington harrie common hareau Ecologion. Washington hashat connectivity Working Group. 24 pp.	Mammals	
Scheffer, V. B. and W. W. Dalquest. 1942. A new shrew from Destruction Island, Washington.	Climate Change	i
Journal of Mammalogy, 23(3). 333-335.	Vulnerability – Mammals	
Servheen, C. and M. Cross. 2010. Climate change impacts on grizzly bears and wolverines in	Climate Change	vi
the Northern U.S. and Transboundary Rockies: Strategies for Conservation. Report on a	Vulnerability –	
workshop held Sept. 13-15, 2010 in Fernie, British Columbia. 23 pp.	Mammals	•
Shelden, K. E. W., S. E. Moore, J. M. Waite, P. R. Wade and D. J. Rugh. 2005. Historic and current habitat use by North Pacific right whales Eubalaena japonica in the Bering Sea	Climate Change Vulnerability –	i
and Gulf of Alaska. Mammal Review 35, 129–155.	Mammals	
Sherwin, H. A., W. I. Montgomery and M. G. Lundy. 2012. The impact and implications of	Climate Change	i
climate change for bats. Mammal Review. doi: 10.1111/j.1365-2907.2012.00214.x	Vulnerability –	
	Mammals	
Simmonds, M. P. and S. J. Isaac. 2007. The impacts of climate change on marine mammals:	Climate Change	i
early signs of significant problems. Oryx 41, 19.	Vulnerability –	
Skaug, H. J., H. Gjosæter, T. Haug, K. T. Nilssen and U. Lindstrøm. 1997. Do minke whales	Mammals Climate Change	i
(Balaenoptera acutorostrata) exhibit particular prey preferences? Journal of Northwest	Vulnerability –	'
Atlantic Fishery Science 22, 91–104.	Mammals	
Smithsonian National Museum of Natural History: North American Mammals - White-tailed	Climate Change	i
jackrabbit (June, 2011) http://www.mnh.si.edu/mna/image_info.cfm?species_id=133.	Vulnerability –	
	Mammals	
Steel, Z. L., M. Wilkerson, P. Grof-Tisza and K. Sulzner. 2011. Assessing species and area vulnerability to climate change for the Oregon Conservation Strategy: Willamette Valley	Climate Change Vulnerability –	i
Ecoregion. Conservation Management Program. University of California, Davis.	Mammals	
Stinson, D. W. 2013. Draft Mazama Pocket Gopher Status Update and Washington State	Climate Change	ii,iii,iv
Recovery Plan. Washington Department of Fish and Wildlife, Olympia, WA. 91 pp.	Vulnerability – Mammals	, ,
Symes, S. A. 2013. Winter ecology of the North American badger (Taxidea taxus jeffersonii) in	Climate Change	i
the Cariboo Region of British Columbia. Thesis, Thompson Rivers University, Kamloops, B.C. 125 pp.	Vulnerability – Mammals	
US Fish and Wildlife Service (USFWS). 2013. Columbia River Distinct Population Segment of	Climate Change	i
the Columbian White-tailed Deer (Odocoileus virginianus leucurus) - 5-Year Review:	Vulnerability –	
Summary and Evaluation. Lacey, WA. 53 pp. http://www.fws.gov/uploadedFiles/Region_1/NWRS/Zone_2/Willapa_Complex/Julia_B	Mammals	
utler_Hansen/Documents/CWTD%205%20%20year%20Review.pdf		-
US Fish and Wildlife Service (USFWS). 2003. Endangered and Threatened Wildlife and Plants;	Climate Change	i
Status Review and 12-Month Finding for a Petition to List the Washington Population of the Western Gray Squirrel. Federal Register, Vol. 68, No. 111: 34628-34640.	Vulnerability – Mammals	
US Fish and Wildlife Service (USFWS). 2010. Species Assessment and Listing Priority	Climate Change	i
Assignment Form (Urocitellus washingtoni). US Fish and Wildlife Service. 33 pp.	Vulnerability –	
_ , , , , , , , , , , , , , , , , , , ,	Mammals	

REFERENCE	CHAPTER	CODE
Van Horne, B., G. S. Olson, R. L. Schooley, J. G. Corn and K. P. Burnham. 1997. Effects of	Climate Change	i
drought and prolonged winter on Townsend's ground squirrel demography in	Vulnerability –	
shrubsteppe habitats. Ecological Monographs 67: 295-315.	Mammals	
Vander Haegen, W. M., G. R. Orth and M. J. Linders. 2013. Survival and causes of mortality in	Climate Change	i
a northern population of western gray squirrels. Journal of Wildlife Management 77:	Vulnerability –	
1249-1257.	Mammals	
Walker, K. A., J. W. Davis and D. A. Duffield. 2008. Activity budgets and prey consumption of	Climate Change	i
sea otters (Enhydra lutris kenyoni) in Washington. Aquatic Mammals 34, 393–401.	Vulnerability –	
	Mammals	
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Columbian	Climate Change	ii,iii
white-tailed deer in 2012 Annual Report. pp. 40-43.	Vulnerability –	
http://wdfw.wa.gov/conservation/endangered/species/columbian_white-	Mammals	
tailed_deer.pdf		
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species - Woodland	Climate Change	ii,iii
Caribou in 2012 Annual Report. pp. 44-47.	Vulnerability –	
http://wdfw.wa.gov/conservation/endangered/species/woodland_caribou.pdf	Mammals	
Washington Department of Fish and Wildlife (WDFW). 1995. Washington state recovery plan	Climate Change	ii,iii
for the pygmy rabbit. Wildlife Management Program, Washington Department Fish and	Vulnerability –	
Wildlife, Olympia. 73 pp.	Mammals	
Washington Department of Fish and Wildlife (WDFW). 2013. Threatened and Endangered	Climate Change	ii,iii
Wildlife in Washington: 2012 Annual Report. Listing and Recovery Section, Wildlife	Vulnerability –	
Program, Washington Department of Fish and Wildlife, Olympia, WA. 251 pp.	Mammals	
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From	Climate Change	i
Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L.	Vulnerability –	
Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Mammals	
WildEarth Guardians. 2014. Petition to list the Northern Bog Lemming (Synaptomys borealis)	Climate Change	vi
under the US Endangered Species Act. WildEarth Guardians, Denver, CO. 43 pp.	Vulnerability –	VI
under the 03 Endangered Species Act. Whataith Guardians, Denver, CO. 45 pp.	Mammals	
Yensen, E., D. L. Quinney, K. Johnson, K. Timmerman and K. Steenhof. 1992. Fire, Vegetation	Climate Change	i
Changes and Population Fluctuations of Townsend's Ground Squirrels. American	Vulnerability –	'
Midland Naturalist 128: 299-312.	Mammals	
Achs, J., C. Hughes and G. Nuechterlein. 2007. Evolution of coloniality in birds: A test of	Climate Change	i
hypotheses with the Red-necked Grebe (Podiceps grisegena). The Auk 124, 628–642.	Vulnerability –	•
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Birds	
Adams, J. S., R. L. Knight, L. C. McEwen and T. L. George. 1994. Survival and growth of	Climate Change	i
nestling Vesper Sparrows exposed to experimental food reductions. The Condor 96:	Vulnerability –	
739-748.	Birds	
Aiello-Lammens, M. E., M. L. Chu-Agor, M. Convertino, R. A. Fischer, I. Linkov and H. Resit	Climate Change	i
Akçakaya. 2011. The impact of sea-level rise on Snowy Plovers in Florida: Integrating	Vulnerability –	
geomorphological, habitat and metapopulation models. Global Change Biology 17,	Birds	
3644–3654.		
Ainley, D. G. and D. K. Hyrenbach. 2010. Top-down and bottom-up factors affecting seabird	Climate Change	i
population trends in the California current system (1985-2006). Progress in	Vulnerability –	
Oceanography 84, 242–254.	Birds	
Aldridge, C. L., S. E. Nielsen, H. L. Beyer, M. S. Boyce, J. W. Connelly, S. T. Knick and M. A.	Climate Change	i
Schroeder. 2008. Range-wide patterns of greater sage-grouse persistence. Diversity and	Vulnerability –	
Distributions 14: 983-994.	Birds	
Altman, B. and J. D. Alexander. 2012. Habitat Conservation for Landbirds in the Coniferous	Climate Change	vi
Forests of Western Oregon and Washington. Version 2.0. Oregon-Washington Partners	Vulnerability –	
in Flight and American Bird Conservancy and Klamath Bird Observatory. 88 pp.	Birds	

REFERENCE	CHAPTER	CODE
Anders, A.D. and E. Post. 2006. Distribution-wide effects of climate on population densities of	Climate Change	i
a declining migratory landbird. Journal of Animal Ecology 75: 221-227.	Vulnerability – Birds	
Audubon, The Climate Report, http://climate.audubon.org/birds/burowl/burrowing-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/grgowl/great-gray-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/sagthr/sage-thrasher, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Audubon, The Climate Report, http://climate.audubon.org/birds/sheowl/short-eared-owl, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Bagne, K. E. and D. M. Finch. 2013. Vulnerability of species to climate change in the Southwest: threatened, endangered and at-risk species at Fort Huachuca, Arizona. General Technical Report RMRS-GTR-302. Fort Collins, CO. 183 pp.	Climate Change Vulnerability – Birds	i
Becker, B. H., M. Z. Perry and S. R. Beissinger. 2007. Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Marine Ecology Progress Series 329, 267–279.	Climate Change Vulnerability – Birds	i
BirdLife International 2012. Megascops kennicottii. The IUCN Red List of Threatened Species. Version 2014.3. <www.iucnredlist.org>. Downloaded on 08 May 2015.</www.iucnredlist.org>	Climate Change Vulnerability – Birds	vi
Buchanan, J. B. 1999. Recent changes in the winter distribution and abundance of Rock Sandpipers in North America. Western Birds 30, 193–199.	Climate Change Vulnerability – Birds	i
Buchanan, J. B., J. E. Lyons, L. J. Salzer, R. Carmona, N. Arce, G. J. Wiles, K. Brady, G. E. Hayes, S. M. Desimone, G. Schirato and W. Michaelis. 2012. Among-year site fidelity of red knots during migration in Washington. Journal of Field Ornithology 83, 282–289.	Climate Change Vulnerability – Birds	i
Buchanan, J. B., L. J. Salzer, G. J. Wiles, K. Brady, S. M. Desimone and W. Michaelis. 2011. An investigation of Red Knot Calidris canutus spring migration at Grays Harbor and Willapa Bay, Washington. Wader Study Grant Bulletin 118, 97–104.	Climate Change Vulnerability – Birds	i,ii
Bunnell, R. L., R. W. Wells, B. Harrison and A. Breault. 2013. One size does not fit all: differential responses of waterfowl species to impacts of climate change in central British Columbia. Waterfowl and Climate Change 23: 27-38.	Climate Change Vulnerability – Birds	i
Burthe, S. J., S. Wanless, M.A. Newell, A. Butler and F. Daunt. 2014. Assessing the vulnerability of the marine bird community in the western North Sea to climate change and other anthropogenic impacts. Marine Ecology Progress Series 507: 277-295.	Climate Change Vulnerability – Birds	i
California Audubon, http://ca.audubon.org/surf-scoter-0, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Cannings, R. J. and T. Angell. 2001. Western Screech-Owl (Otus kennicottii). In The Birds of North America, No. 597 (A. Poole and F. Gill, eds.). The Birds of North America, Inc., Philadelphia, PA. http://www.allaboutbirds.org/guide/Western_Screech-Owl/lifehistory, accessed 5/8/15.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Carroll, A. L., S. W. Taylor, J. Régnière and L. Safranyik. 2003. Effects of climate change on range expansion by the mountain pine beetle in British Columbia. Pages 223-232 in T. L. Shore, J. E. Brooks and J. E. Stone (editors). Mountain pine beetle symposium: challenges and solutions. October 30-31, 2003, Kelowna, British Columbia. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Information Report BC-X-399, Victoria, British Columbia.	Climate Change Vulnerability – Birds	Vi
Center for Biological Diversity. 2010. Petition to list the white-tailed ptarmigan as a threatened species under the Endangered Species Act. http://www.biologicaldiversity.org/species/birds/white-tailed_ptarmigan/pdfs/WTP_Petition.pdf	Climate Change Vulnerability – Birds	vi
Chamberlain, D. and J. Pearce-Higgins. 2013. Impacts of climate change on upland birds: complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155: 451-455.	Climate Change Vulnerability – Birds	i
Chesser, R. T., R. C. Banks, F. K. Barker, C. Cicero, J. L. Dunn, A. W. Kratter, I. J. Lovette, P. C. Rasmussen, J. V. Remsen Jr., J. D. Rising, D. F. Stotz and K. Winker. 2013. Fifty-fourth supplement to the American Ornithologists' Union check-list of North American birds. The Auk, 130(3), 558-572.	Climate Change Vulnerability – Birds	i
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/587, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/581, accessed 4-24-/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/falcipennis-canadensis, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/lagopus-leucura, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/87, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/asio-flammeus accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/562, accessed 4-29-15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/580, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/553, accessed 4/28/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gavia-pacifica, accessed 4-27-15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/141, accessed 4/23/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/556, accessed 5/6/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/586, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/589, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sialia-mexicana, accessed 5/7/15.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/559, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/haliaeetus-leucocephalus-0, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/592, Accessed 4-24-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/576, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/583, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/aquila-chrysaetos, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/aechmophorus-clarkii, accessed 4-24-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/strix-nebulosa, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/577, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/570, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/551, accessed 4-25-2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/579, accessed 4/28/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/sitta- pygmaea, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/tympanuchus-phasianellus, accessed 5/4/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/melanitta-fusca, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/branta-bernicla-0, accessed on 4/23/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/565, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/522, accessed 4/23/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/centrocercus-urophasianus, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/538, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/578, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/bucephala-islandica, accessed 4/22/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/melanitta- perspicillata, accessed 4/30/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Database. http://climatechangesensitivity.org/species/charadrius-alexandrinus-nivosus Accessed 4/24/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Sensitivity Databse, http://climatechangesensitivity.org/node/568, accessed 5/8/2015.	Climate Change Vulnerability – Birds	vi
Climate Change Senstivity Database, http://climatechangesensitivity.org/species/lanius-ludovicianus, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Climate Impacts Group, 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell and L Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington.	Climate Change Vulnerability – Birds	i
Coe, S. J., D. M. Finch and M. M. Friggens. 2012. An assessment of climate change and the vulnerability of wildlife in the Sky Islands of the Southwest. General Technical Report RMRS-GTR-273. Fort Collins, CO. 208 pp.	Climate Change Vulnerability – Birds	i
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Horned_Lark/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Loggerhead_Shrike/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Purple_Martin/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Pygmy_Nuthatch/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Sagebrush_Sparrow/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Sage_Thrasher/lifehistory, accessed 5/5/15.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/Vesper_Sparrow/lifehistory, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/western_bluebird/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Cornell Lab of Ornithology, http://www.allaboutbirds.org/guide/White-breasted_Nuthatch/lifehistory, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Drever, M. C., R. G. Clar, C. Derksen, S. M. Slattery, P. Toose and T. D. Nudds. 2012. Population vulnerability to climate change linked to timing of breeding in boreal ducks. Global Change Biology 18: 480-492.	Climate Change Vulnerability – Birds	i
Dudley, J. and V. Saab. 2003. A field protocol to monitor cavity-nesting birds. Research Paper, RMRS-RP-44.	Climate Change Vulnerability – Birds	vi
Eberhart-Phillips, L. J. and M. A. Colwell. 2014. Conservation challenges of a sink: the viability of an isolated population of the Snowy Plover. Bird Conservation International 24, 327–341.	Climate Change Vulnerability – Birds	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Birds	i
Encylopedia of Puget Sound, http://www.eopugetsound.org/articles/slender-billed-white-breasted-nuthatch-sitta-carolinensis-aculeata, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
Feely, R. A., T. Klinger, J. A. Newton and M. Chadsey. 2012. Scientific Summary of Ocean Acidification in Washington State Marine Waters. NOAA OAR Special Report. 3. US Fish and Wildlife Service. 2014. Endangered and Threatened Wildlife and Plants; Threatened Species Status for the Rufa Red Knot; Final Rule. Department of the Interior. Federal Register 50 CFR Part 17, Vol. 79, No. 238.	Climate Change Vulnerability – Birds	İ
Fisher, R. and E. Bayne. 2013. Protecting rare grassland birds from extreme weather events. Prepared for the Biodiversity Management and Climate Change Adaptation project. Alberta Biodiversity Monitoring Institute, Edmonton, AB. 17pp.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Fraser, K. C., B. J. Stutchbury, C. Silverio, P. M. Kramer, J. Barrow, D. Newstead, N. Mickle, B.	Climate Change	i
F. Cousens, J. Charlene Lee, D. M. Morrison, T. Shaheen, P. Mammenga, K. Applegate	Vulnerability –	
and J. Tautin. 2012. Continent-wide tracking to determine migratory connectivity and	Birds	
tropical habitat associations of a declining aerial insectivore. Proceedings of the Royal		
Society of London B 282(1807): Biological Sciences, rspb20122207.		
Fraser, K. C., C. Silverio, P. Kramer, N. Mickle, R. Aeppli and B. J. Stutchbury. 2013. A trans-	Climate Change	i
hemispheric migratory songbird does not advance spring schedules or increase	Vulnerability –	
migration rate in response to record-setting temperatures at breeding sites. PloS One, 8(5), e64587.	Birds	
Friggens, M. M., D. M. Finch, K. E. Bagne, S. J. Coe and D. L. Hawksworth. 2013. Vulnerability	Climate Change	i
of species to climate change in the Southwest: terrestrial species of the Middle Rio	Vulnerability –	
Grande. General Technical Report RMRS-GTR-306. Fort Collins, CO. 191 pp.	Birds	
Galbraith, H., D. W. Desrochers, S. Brown and J. M. Reed. 2014. Predicting Vulnerabilities of	Climate Change	i
North American Shorebirds to Climate Change. PLoS One 9, DOI:	Vulnerability –	
10.1371/journal.pone.0108899.	Birds	
Galbraith, H., R. Jones, R. Park, J. Clough, S. Herrod-Julius, B. Harrington and G. Page. 2002.	Climate Change	i
Global Climate Change and Sea Level Rise: Potential Losses of Intertidal Habitat for	Vulnerability –	
Shorebirds. Waterbirds 25, 173.	Birds	_
Gjerdrum, C., A. M. J. Valle, C. Cassady, S. Clair, D. F. Bertram, J. L. Ryder and G. S. Blackburn.	Climate Change	i
2003. Tufted puffin reproduction reveals ocean climate variability. Proceedings of the	Vulnerability –	
National Academy of Sciences. U. S. A. 100, 9377–9382.	Birds	
Hansen, K. W. 2014. Causes of annual reproductive variation and anthropogenic disturbance	Climate Change	i
in harlequin ducks breeding in Glacier National Park, Montana. Doctoral Dissertation.	Vulnerability –	
University of Montana.	Birds	
Hanson, T. and G. J. Wiles. 2015. Washington state status report for the Tufted Puffin. Washington Department of Fish and Wildlife, Olympia, Washington. 66 pp.	Climate Change Vulnerability –	ii,iii,iv
washington bepartment of rish and whome, Olympia, washington. 00 pp.	Birds	
Harvey, C. J., P. E. Moriarty and E. P. Salathe Jr. 2012. Modeling climate change impacts on	Climate Change	i
overwintering bald eagles. Ecology and Evolution 2: 501-514.	Vulnerability –	
overwhitering bala cagles. Ecology and Evolution El Sol Si in	Birds	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: Mountain Quail. Version 1.0. EcoAdapt, Bainbridge Island, WA.	Vulnerability –	
	Birds	
Hauptfeld, R. S. and J. M. Kershner. 2014. Sierra Nevada Individual Species Vulnerability	Climate Change	i
Assessment Briefing: Greater Sage-Grouse. Version 1.0. EcoAdapt, Bainbridge Island,	Vulnerability –	
WA.	Birds	
Haynes, T. B., S. K. Nelson, F. Poulsen and V. M. Padula. 2008. At-sea habitat use and patterns	Climate Change	vi
in spatial distribution of Marbled Murrelets in Port Snettisham, SE Alaska. Unpublished	Vulnerability –	
report prepared for the Alaska Department of Fish and Game by Wildlife Trust, New	Birds	
York, NY and Oregon State University, Corvallis, Oregon. 57 pp.		
Hollenbeck, J., V. A. Saab and R. W. Frenzel. 2011. Habitat suitability and nest survival of	Climate Change	i
white-headed woodpeckers in unburned forests of Oregon. Journal of Wildlife	Vulnerability –	
Management 75: 1061-1071.	Birds	
Holopainen, S. 2015. Duck habitat use and reproduction in boreal wetlands: importance of	Climate Change	i
habitat quality and population density. Doctoral Dissertation. University of Helsinki.	Vulnerability –	
	Birds	
Holt, D. W. and S. M. Leasure. 1993. Short-eared Owl (Asio flammeus). In The Birds of North	Climate Change	i
America, No. 62 (A. Poole and F. Gill, Eds.). Philadelphia: The Academy of Natural	Vulnerability –	
Sciences; Washington, D.C.: The American Ornithologists' Union.	Birds	
http://www.allaboutbirds.org/guide/Short-eared_Owl/lifehistory, accessed 5/8/15.		

REFERENCE	CHAPTER	CODE
Ivey, G. L. 2007. Factors Influencing Nest Success of Greater Sandhill Cranes at Malheur National Wildlife Refuge, Oregon. Master of Science. Oregon State University.	Climate Change Vulnerability –	i
Kereki, C. J. 1999. Optimal Migration Routes of Dusky Canada Geese: Can They Indicate Estuaries in British Columbia for Conservation? Master of Science. Simon Fraser University.	Birds Climate Change Vulnerability – Birds	i
King, D. T. and T. C. Michot. 2002. Distribution, Abundance and Habitat Use of American White Pelicans in the Delta Region of Mississippi and Along the Western Gulf of Mexico Coast. Waterbirds 25, 410–416.	Climate Change Vulnerability – Birds	i
Kuhn, A., J. Copeland, J. Cooley, H. Vogel, K. Taylor, D. Nacci and P. August. 2011. Modeling Habitat Associations for the Common Loon (Gavia immer) at Multiple Scales in Northeastern North America. Avian Conservation Ecology 6.	Climate Change Vulnerability – Birds	i
Kuletz, K. J., M. Renner, E. A. Labunski and G. L. Hunt. 2014. Changes in the distribution and abundance of eastern Bering Sea albatrosses: 1975–2010. Deep Sea Research II 109, 1–11.	Climate Change Vulnerability – Birds	i
Kurzl, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, T. Ebata and L. Safranyik. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987-990.	Climate Change Vulnerability – Birds	i
La Porte, N., N. Koper and L. Leston. 2014. Assessing the breeding success of the Western Grebe (Aechmophorus occidentalis) after 40 years of environmental changes at Delta Marsh, Manitoba. Waterbirds 37, 30–42.	Climate Change Vulnerability – Birds	i
Lawler J. J. and M. Mathias. 2007. Climate Change and the Future of Biodiversity in Washington. Report prepared for the Washington Biodiversity Council.	Climate Change Vulnerability – Birds	vi
Liebezeit, J., E. Rowland, M. Cross and S. Zack. 2012. Assessing Climate Change Vulnerability of Breeding Birds in Arctic Alaska. A report prepared for the Arctic Landscape Conservation Cooperative. Wildlife Conservation Society, North America Program. 167 pp.	Climate Change Vulnerability – Birds	vi
Littlefield, C. D. and G. L. Ivey. 2002. Washington State Recovery Plan for the Sandhill Crane. Washington Department of Fish and Wildlife, Olympia, WA. 71pp.	Climate Change Vulnerability – Birds	ii,iii
Marra, P. P., L. A. Culp, A. L. Scarpignato and E.B. Cohen. 2014. Full Annual Cycle Climate Change Vulnerability Assessment for Migratory Birds of the Upper Midwest and Great Lakes Region (final report to the Upper Midwest and Great Lakes Landscape Conservation Cooperative). The Smithsonian Conservation Biology Institute, Migratory Bird Center, Washington, D.C. [online] URL: www. migratoryconnectivityproject.org/climate-change-vulnerability.	Climate Change Vulnerability – Birds	i
Mawdsley, J. and R. Lamb. 2013. Climate Change Vulnerability Assessment for Priority Wildlife Species. Prepared for the Navajo Nation Department of Fish and Wildlife. Heinz Center for Science, Economics and the Environment. 49pp.	Climate Change Vulnerability – Birds	vi
McCallum, D. A. 1994. Chapter 4. Review of technical knowledge: Flammulated owls. In: Hayward, G. D. and J. Verner, tech. editors. Flammulated, boreal and great gray owls in the United States: A technical conservation assessment. General Technical Report RM- 253. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. p. 14-46.	Climate Change Vulnerability – Birds	Vi
Melcher, C. P., A. Farmer and G. Fernández. 2010. Version 1.2. Conservation Plan for the Marbled Godwit (Limosa fedoa). Manomet Center for Conservation Science, Manomet, Massachusetts.	Climate Change Vulnerability – Birds	vi

REFERENCE	CHAPTER	CODE
Michalak, J. L., J. C. Withey, J. J. Lawler, S. Hall and T. Nogeire. 2014. Climate Vulnerability and Adaptation in the Columbia Plateau, WA. Report to the Great Northern Landscape Conservation Cooperative. http://www.researchgate.net/profile/John_Withey/publication/267750432_Climate_Vu Inerability_and_Adaptation_in_the_Columbia_Plateau_Washington/links/545918280cf2 cf516483ca31.pdf.	Climate Change Vulnerability – Birds	İ
Miller, S. L., C. B. Meyer and C. J. Ralph. 2002. Land and Seascape Patterns Associated with Marbled Murrelet Abundance Offshore. Waterbirds 25, 100–108.	Climate Change Vulnerability – Birds	i
Miller, S. L., M. G. Raphael, G. A. Falxa, C. Strong, J. Baldwin, T. Bloxton, B. M. Galleher, M. Lance, D. Lynch, S. F. Pearson, C. J. Ralph and R. D. Young. 2012. Recent Population Decline of the Marbled Murrelet in the Pacific Northwest. The Condor 114, 771–781.	Climate Change Vulnerability – Birds	i
Miller, V., E. Nol, L. P. Nguyen and D. Turner. 2013. Nest success and habitat selection of Upland Sandpipers (Bartramia longicauda) in Ivvavik National Park, Yukon Territory, Canada. Canadian Field Naturalist 128, 341–349.	Climate Change Vulnerability – Birds	i
Murphy-Klassen, H. M., T. J. Underwood, S. G. Sealy and A. Ashleigh. 2005. Long-Term Trends in Spring Arrival Dates of Migrant Birds at Delta Marsh, Manitoba, in Relation to Climate Change. The Auk 122, 1130–1148.	Climate Change Vulnerability – Birds	i
National Wildlife Federation. 2013. Shifting Skies: Migratory Birds in a Warming World. National Wildlife Federation. 48pp.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Lanius+ludovicianus, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=pooecetes+gramine us+affinis, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=progne+subis, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=sialia+mexicana, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Eremophila+alpestri s+strigata, accessed 5/7/2015.	Climate Change Vulnerability – Birds	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchSpeciesUid=ELEMENT_GLO BAL.2.101963, accessed 5/5/2015.	Climate Change Vulnerability – Birds	vi
Northwest Power and Conservation Council (NPCC). 2014. Volume III, Chapter 14 Sandhill Crane. http://www.nwcouncil.org/media/21139/VolIII_Ch14Sandhill_Cranes.pdf.	Climate Change Vulnerability – Birds	vi
Pearson, S. F. and B. Altman. 2005. Range-wide Streaked Horned Lark (Eremophila alpestris strigata) Assessment and Preliminary Conservation Strategy. Washington Department of Fish and Wildlife, Olympia, WA. 25pp.	Climate Change Vulnerability – Birds	ii,iii
Peery, M. Z., R. J. Gutierrez, R. Kirby, O. E. Ledee and W. Lahaye. 2011. Climate change and spotted owls: potentially contrasting responses in the Southwestern United States. Global Change Biology 18: 865-880.	Climate Change Vulnerability – Birds	i
Peery, M. Z., S. R. Beissinger, S. H. Newman, E. B. Burkett and T. D. Williams. 2004. Applying the declining population paradigm: Diagnosing causes of poor reproduction in the Marbled Murrelet. Conservation Biology 18, 1088–1098.	Climate Change Vulnerability – Birds	i

REFERENCE	CHAPTER	CODE
Piatt, J. F., J. Wetzel, K. Bell, A. R. DeGange, G. R. Balogh, G. S. Drew, T. Geernaert, C. Ladd and	Climate Change	i
G. V. Byrd. 2006. Predictable hotspots and foraging habitat of the endangered short-	Vulnerability –	
tailed albatross (Phoebastria albatrus) in the North Pacific: Implications for	Birds	
conservation. Deep. Research Part II Topical Studies in Oceanography 53, 387–398.		
Raymond, C. L., D. L. Peterson and R. M. Rochefort, eds. 2014. Climate change vulnerability	Climate Change	i
and adaptation in the North Cascades region, Washington. General Technical Report	Vulnerability –	
PNW-GTR-892. Portland, Oregon. 279 pp.	Birds	
Robb, L. and M. A. Schroeder. 2012. Appendix A.1 Washington Connected Landscape Project:	Climate Change	ii,iii
Analysis of the Columbia Plateau Ecoregion.	Vulnerability –	
	Birds	
Robison, K. M., D. W. Anderson and R. E. Robison. 2015. Brood Size and Nesting Phenology in	Climate Change	i
Western Grebe (Aechmophorus occidentalis) and Clark's Grebe (Aechmophorus clarkii)	Vulnerability –	
in Northern California. Waterbirds 38, 99–105.	Birds	
Ruthrauff, D. R., R. E. Gill and T. L. Tibbitts. 2013. Coping with the cold: An ecological context	Climate Change	i
for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet,	Vulnerability –	
Alaska. Arctic 66, 269–278.	Birds	
Saab, V. A., J. Dudley and W. L. Thompson. 2004. Factors influencing occupancy of nest	Climate Change	i
cavities in recently burned forests. The Condor 106: 20-36.	Vulnerability –	
Con Functions Day Initely (and use 2000) Wetland Doctoration and Dusington Insurants for us	Birds	:
San Francisco Bay Joint Venture. 2008. Wetland Restoration and Projected Impacts from	Climate Change	vi
Climate Change: Recommendations for and by partners of the San Francisco Bay Joint	Vulnerability – Birds	
Venture. San Francisco Bay Joint Venture. 25 pp.	·	
Sea Duck Joint Venture. 2015. Species Status Summary and Information Needs. http://seaduckjv.org/wp-content/uploads/2014/08/WWSC-status-summary-	Climate Change Vulnerability –	vi
MarChapter 2015-FINAL.pdf.	Birds	
Seattle Audubon Society, http://www.seattleaudubon.org/birdweb/bird/western_bluebird,	Climate Change	vi
accessed 5/7/2015.	Vulnerability –	VI
accessed 5/7/2015.	Birds	
Shank, C. C. and E. M. Bayne. 2015. Ferruginous hawk climate change adaptation plan for	Climate Change	i
Alberta. Prepared for the Biodiversity Management and Climate Change Adaptation	Vulnerability –	'
project. Alberta Biodiversity Monitoring Institute, Edmonton, AB. 32pp.	Birds	
Shaughnessy, F. J., W. Gilkerson, J. M. Black, D. H. Ward and M. Petrie. 2012. Predicted	Climate Change	i
eelgrass response to sea level rise and its availability to foraging Black Brant in Pacific	Vulnerability –	
Coast estuaries. Ecological Applications 22: 1743-1761.	Birds	
Siegel, R. B., P. Pyle, J. H. Thorne, A. J. Holguin, C. A. Howell, S. Stock and M. Tingley. 2014.	Climate Change	i
Vulnerability of birds to climate change in California's Sierra Nevada. Avian Conservation	Vulnerability –	
and Ecology 9: 7.	Birds	
Slater, G. L. and B. Altman. 2011. Avian restoration in the prairie-oak ecosystem: A	Climate Change	i
reintroduction case study of western bluebirds to San Juan Island, Washington.	Vulnerability –	
Northwest Science, 85(2), 223-232.	Birds	
Slater, G. L., B. Altman and Pacific Coast Joint Venture. 2006. Feasibility assessment for	Climate Change	vi
reintroducing the slender-billed white-breasted nuthatch to south Puget Sound,	Vulnerability –	
Washington. Unpublished report on file at Ecostudies Institute, Mount Vernon, WA.	Birds	
Stinson, D. W. and M. A. Schroeder. 2012. Washington State Recovery Plan for the Columbian	Climate Change	ii,iii
Sharp-tailed Grouse. Washington Department of Fish and Wildlife. Olympia, WA. 159 pp.	Vulnerability –	
	Birds	
Swanson, D. L. and J. S. Palmer. 2009. Spring migration phenology of birds in the Northern	Climate Change	i
Prairie region is correlated with local climate change. Journal of Field Ornithology 80,	Vulnerability –	
351–363.	Birds	

REFERENCE	CHAPTER	CODE
Thogmartin, W. E., M. G. Knutson, M.G. and J. R. Sauer. 2006. Predicting Regional Abundance of Rare Grassland. The Condor 108, 25–46.	Climate Change Vulnerability – Birds	i
Tillman, P. and P. Glick. 2013. Climate Change Effects and Adaptation Approaches for Terrestrial Ecosystems, Habitats and Species. A Compilation of the Scientific Literature for the North Pacific Landscape Conservation Cooperative Region. National Wildlife Federation. 462 pp.	Climate Change Vulnerability – Birds	Vi
US Fish and Wildlife Service (USFWS). 2008. Final Recovery Plan for the Northern Spotted Owl, Strix occidentalis caurina. US Fish and Wildlife Service, Portland, Oregon. 142 pp.	Climate Change Vulnerability – Birds	i
US Fish and Wildlife Service (USFWS). 2014. Determination of Threatened Status for the Western Distinct Population Segment of the Yellow-billed Cuckoo. Federal Register 79: 192.	Climate Change Vulnerability – Birds	i
US Fish and Wildlife Service (USFWS). 2014. Short-tailed Albatross 5-year review: summary and evaluation. Region 7, Anchorage, Alaska.	Climate Change Vulnerability – Birds	i
Viste-Sparkman, K. 2006. White-breasted nuthatch density and nesting ecology in oak woodlands of the Willamette Valley, Oregon. Master's thesis, Oregon State University, Corvallis, Oregon.	Climate Change Vulnerability – Birds	i
Wagner, B. M. A. and L. A. Hansson. 1998. Food competition and niche separation between fish and the red-necked Grebe Podiceps grisegena (Boddaert, 1783). Hydrobiologia 368:75-81.	Climate Change Vulnerability – Birds	i
Ward, D. H., A. Reed, J. S. Sedinger, J. M. Blacks, D. V. Derksen and P. M. Castell. 2005. North American Brant: effects of changes in habitat and climate on population dynamics. Global Change Biology 11: 869-880.	Climate Change Vulnerability – Birds	i
Washington Department of Fish and Wildlife (WDFW). 1995 . Washington state recovery plan for the upland sandpiper. Washington Department of Fish and Wildlife. Olympia. 50pp.	Climate Change Vulnerability – Birds	ii,iii
Waterbury, B., S. Ehlers and J. Runco. 2009. Flammulated Owls (Otus flammeolus) Occurrence in East-Central Idaho 2007-2008. Salmon, Idaho.	Climate Change Vulnerability – Birds	vi
Williamson, S. J., D. Keppie, R. Davison, D. Budeau, S. Carriere, D. Rabe and M. Schroeder. 2008. Spruce Grouse Continental Conservation Plan. Association of Fish & Wildlife Agencies. Washington, DC. 60pp.	Climate Change Vulnerability – Birds	i,ii
Wilson, S., E. M. Anderson, A. S. G. Wilson, D. F. Bertram and P. Arcese. 2013. Citizen Science Reveals an Extensive Shift in the Winter Distribution of Migratory Western Grebes. PLoS One 8. doi:10.1371/journal.pone.0065408.	Climate Change Vulnerability – Birds	i
Wright, S. K., D. D. Roby and R. G. Anthony. 2007. Responses of California Brown Pelicans to Disturbances at a Large Oregon Roost. Waterbirds 30, 479–487.	Climate Change Vulnerability – Birds	i
Yosef, R. 1996. Loggerhead Shrike (Lanius Iudovicianus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/231.	Climate Change Vulnerability – Birds	i
Zuckerberg, B., A. M. Woods and W. F. Porter. 2009. Poleward shifts in breeding bird distributions in New York State. Global Change Biology 15, 1866–1883.	Climate Change Vulnerability – Birds	i
Adams, M. J. and B. Bury. 2002. The endemic headwater stream amphibians of the American Northwest: associations with environmental gradients in a large forested preserve. Global Ecology and Biogeography 11: 169-178.	Climate Change Vulnerability – Reptiles and Amphibians	İ

REFERENCE	CHAPTER	CODE
Adams, S. B. and C. A. Frissell. 2001. Thermal habitat use and evidence of seasonal migration	Climate Change	i
by Rocky Mountain Tailed Frogs, Ascaphus montanus, in Montana. Canadian Field	Vulnerability –	
Naturalist 115, 251–256.	Reptiles and	
	Amphibians	
Bagne, K. E. and D. M. Finch. 2013. Vulnerability of species to climate change in the	Climate Change	i
Southwest: threatened, endangered and at-risk species at Fort Huachuca, Arizona.	Vulnerability –	
General Technical Report RMRS-GTR-302. Fort Collins, CO. 183 p.	Reptiles and	
	Amphibians	
Blouin, M. S., I. C. Phillipsen and K. J. Monsen. 2010. Population structure and conservation	Climate Change	i
genetics of the Oregon spotted frog, Rana pretiosa. Conservation Genetics 11, 2179-	Vulnerability –	
2194. doi:10.1007/s10592-010-0104-x.	Reptiles and	
	Amphibians	
Bos, D. H. and J. W. Sites. 2001. Phylogeography and conservation genetics of the Columbia	Climate Change	i
spotted frog (Rana luteiventris; Amphibia, Ranidae). Molecular Ecology 10, 1499–1513.	Vulnerability –	
doi:10.1046/j.1365-294X.2001.01295.x.	Reptiles and	
	Amphibians	
Center for Biological Diversity. 2012. Petition to List 53 Amphibians and Reptiles in the United	Climate Change	vi
States as Threatened or Endangered Species Under the Endangered Species Act. Center	Vulnerability –	
for Biological Diversity. 453 pp.	Reptiles and	
	Amphibians	
Chaloupka, M., N. Kamezaki and C. Limpus. 2008. Is climate change affecting the population	Climate Change	i
dynamics of the endangered Pacific loggerhead sea turtle? Journal of Experimental	Vulnerability –	
Marine Biology and Ecology 356, 136–143.	Reptiles and	
	Amphibians	
Chapter 2: Impacts of Climate Change on Fish, Wildlife and Plants in The National Fish,	Climate Change	i
Wildlife and Plants Climate Adaptation Strategy. 2012. National Fish, Wildlife and Plants	Vulnerability –	
Climate Adaptation Partnership.	Reptiles and	
	Amphibians	
Clarke, D. N. and P. A. Zani. 2012. Effects of night-time warming on temperate ectotherm	Climate Change	i
reproduction: potential fitness benefits of climate change for side-blotched lizards.	Vulnerability –	
Journal of Experimental Biology. 215: 1117-1127.	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database,	Climate Change	vi
http://climatechangesensitivity.org/species/rhyacotriton-cascadae, accessed	Vulnerability –	
5/26/2015.	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database,	Climate Change	vi
http://climatechangesensitivity.org/species/rhyacotriton-kezeri-0, accessed 5/27/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/plethodon-	Climate Change	vi
larselli-0, accessed 5/27/2015.	Vulnerability –	
14100111 0, 40000004 0, 1 1, 1 20 20 1	Reptiles and	
	Amphibians	
·	Climate Change	vi
pipiens, accessed 5/27/2015.	Vulnerability –	
	Reptiles and	
	1	

REFERENCE	CHAPTER	CODE
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/533, accessed	Climate Change	vi
5/27/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/539, accessed	Climate Change	vi
5/28/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/anaxyrus-	Climate Change	vi
boreas, accessed 5/25/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/bufo-	Climate Change	vi
woodhousii, accessed 5/25/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/gadus-	Climate Change	vi
macrocephalus, accessed 5/8/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Sensitivity Database. http://climatechangesensitivity.org/species/rana-	Climate Change	vi
luteiventris-1, accessed 5/27/2015.	Vulnerability –	
	Reptiles and	
	Amphibians	
Climate Change Vulnerability Assessment of Conservation Priority Species in Nevada Wildlife	Climate Change	vi
Action Plan, Identification of Species of Conservation Priority. 2013. Nevada Department	Vulnerability –	
of Wildlife.	Reptiles and	
	Amphibians	
Coe, S. J., D. M. Finch and M. M. Friggens. 2012. An assessment of climate change and the	Climate Change	i
vulnerability of wildlife in the Sky Islands of the Southwest. General Technical Report	Vulnerability –	
RMRS-GTR-273. Fort Collins, CO. 208 p. 4.	Reptiles and	
	Amphibians	
Corn, P. S. and J. C. Fogleman, J.C. 1984. Extinction of Montane Populations of the Northern	Climate Change	i
Leopard Frog (Rana pipiens) in Colorado Extinction of Montane Populations of the	Vulnerability –	
Northern Leopard Frog (Rana pipiens) in Colorado. Journal of Herpetology 18, 147–152.	Reptiles and	
	Amphibians	
Crisafulli, C. M., D. R. Clayton and D. H. Olson. 2008. Conservation Assessment for the Larch	Climate Change	vi
Mountain Salamander (Plethodon larselli). Version 1.0. USDA Forest Service Region 6	Vulnerability –	
and USDI Bureau of Land Management. 36 pp.	Reptiles and	
	Amphibians	
Dunham, J. B., A. E. Rosenberger, C. H. Luce and B. E. Rieman. 2007. Influences of wildfire and	Climate Change	i
channel reorganization on spatial and temporal variation in stream temperature and the	Vulnerability –	
distribution of fish and amphibians. Ecosystems 10, 335–346. doi:10.1007/s10021-007-	Reptiles and	
9029-8.	Amphibians	
Dupuis, L. and P. Friele. 2006. The distribution of the Rocky Mountain tailed frog (Ascaphus	Climate Change	i
montanus) in relation to the fluvial system: Implications for management and	Vulnerability –	
conservation. Ecological Research 21, 489–502. doi:10.1007/s11284-006-0147-0.	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Foster, A. D. and D. H. Olson. 2014. Conservation Assessment for the Cope's Giant	Climate Change	vi
Salamander (Dicamptodon copei). Version 1.0. USDA Forest Service Region 6 and USDI	Vulnerability –	
Bureau of Land Management. 57 pp.	Reptiles and	
	Amphibians	
Foster, A. D., D. H. Olson and L. L. C. Jones. 2014. A Review of the Biology and Conservation of	Climate Change	i
the Cope's Giant Salamander, Dicamptodon copei Nussbaum, 1970 (Amphibia: Caudata:	Vulnerability –	
Dicamptodontidae) in the Pacific Northwestern Region of the USA. Life: The Excitement	Reptiles and	
of Biology 2: 210-246.	Amphibians	
Friggens, M. M., D. M. Finch, K. E. Bagne, S. J. Coe and D. L. Hawksworth. 2013. Vulnerability	Climate Change	i
of species to climate change in the Southwest: terrestrial species of the Middle Rio	Vulnerability –	
Grande. General Technical Report RMRS-GTR-306. Fort Collins, CO. 191 pp.	Reptiles and	
	Amphibians	
Funk, W. C., C. A. Pearl, H. M. Draheim, M. J. Adams, T. D. Mullins and S. M. Haig. 2008.	Climate Change	i
Range-wide phylogeographic analysis of the spotted frog complex (Rana luteiventris and	Vulnerability –	
Rana pretiosa) in northwestern North America. Molecular Phylogenetics and Evolution	Reptiles and	
49, 198–210. doi:DOI 10.1016/j.ympev.2008.05.037	Amphibians	
Funk, W. C., M. S. Blouin, P.S. Corn, B. A. Maxel, D. S. Pilliod, S. Amish and F. W. Allendorf.	Climate Change	i
2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly	Vulnerability –	
affected by the landscape. Molecular Ecology 14, 483–496. doi:10.1111/j.1365-	Reptiles and	
294X.2005.02426.x.	Amphibians	
Germaine, S. and D. Hays. 2009. Distribution and Postbreeding Environmental Relationships	Climate Change	i
of Northern Leopard Frogs (Rana [Lithobates] Pipiens) in Washington. Western North	Vulnerability –	
American Naturalist 69, 537–547. doi:10.3398/064.069.0413.	Reptiles and	
	Amphibians	
Goller, M., F. Goller and S. S. French. 2014. A heterogeneous thermal environment enables	Climate Change	i
remarkable behavioral thermoregulation in Uta stansburiana. Ecology and Evolution 4:	Vulnerability –	
3319-3329.	Reptiles and	
	Amphibians	
Gori, D., M. S. Cooper, E. S. Soles, M. Stone, R. Morrison, T. F. Turner, D. L. Propst, G. Garfin,	Climate Change	vi
M. Switanek, H. Chang, S. Bassett, J. Haney, D. Lyons, M. Horner, C. N. Dahm, J. K. Frey,	Vulnerability –	
K. Kindscher, H. A. Walker and M. T. Bogan. 2014. Gila River Flow Needs Assessment. A	Reptiles and	
report by The Nature Conservancy.	Amphibians	
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State	Climate Change	i
Inland Sand Dunes. Washington Natural Heritage Program Report 2007-05.	Vulnerability –	
	Reptiles and	
	Amphibians	
Halofsky, J. E., D. L. Peterson, K. A. O'Halloran and C. Hawkins Hoffman, eds. 2011. Adapting	Climate Change	i
to climate change at Olympic National Forest and Olympic National Park. General	Vulnerability –	
Technical Report PNW-GTR-844. Portland, Oregon. 130p.	Reptiles and	
	Amphibians	
Hawkes, L. A., A. C. Broderick, M. H. Godfrey and B. J. Godley. 2009. Climate change and	Climate Change	i
marine turtles. Endangered Species Research 7, 137–154.	Vulnerability –	
	Reptiles and	
	Amphibians	
Howell, B. L. and N. M. Maggiulli. 2011. Conservation Assessment for the Cascade Torrent	Climate Change	vi
Salamander (Rhyacotriton cascadae). USDA Forest Service Region 6 and USDI Bureau of	Vulnerability –	
Land Management Interagency Special Status and Sensitive Species Program. 50 pp.	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Kaye, T. N., I. Pfingsten, T. Taylor and E. Steel. 2013. Climate Change Vulnerability Assessment	Climate Change	vi
for West Eugene Wetland Species. Institute for Applied Ecology, Corvallis, Oregon and	Vulnerability –	
City of Eugene, Eugene, Oregon.	Reptiles and	
	Amphibians	
McCaffery, R. M. and B. A. Maxwell. 2010. Decreased winter severity increases viability of a	Climate Change	i
montane frog population. Proceedings of the National Academy of Sciences U. S. A. 107,	Vulnerability –	
8644-8649 doi:10.1073/pnas.0912945107.	Reptiles and	
	Amphibians	
McIntyre, A. P., R. A. Schmitz and C. M. Crisafulli. 2006. Associations of the Van Dyke's	Climate Change	i
Salamander (Plethodon vandykei) with Geomorphic Conditions in Headwall Seeps of the	Vulnerability –	
Cascade Range, Washington State. Journal of Herpetology 40: 309-322.	Reptiles and	
	Amphibians	
McMahon, C. R. and G. C. Hays. 2006. Thermal niche, large-scale movements and implications	Climate Change	i
of climate change for a critically endangered marine vertebrate. Global Change Biology	Vulnerability –	
12, 1330–1338.	Reptiles and	
	Amphibians	
McMenamin, S. K., E. A. Hadly and C. K. Wright. 2008. Climatic change and wetland	Climate Change	i
desiccation cause amphibian decline in Yellowstone National Park. Proceedings of the	Vulnerability –	
National Academy of Sciences 105: 16988-16993.	Reptiles and	
	Amphibians	
Mushet, D. M., N. H. Euliss Jr. and C. A. Stockwell. 2012. Mapping Anuran Habitat Suitability	Climate Change	vi
to Estimate Effects of Grassland and Wetland Conservation Programs. USGS Northern	Vulnerability –	
Prairie Wildlife Research Center. Paper 279.	Reptiles and	
, , , , , , , , , , , , , , , , , , ,	Amphibians	
NatureServe. 2014. Larch Mountain Salamander. NatureServe Explorer: An online	Climate Change	vi
encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia.	Vulnerability –	
Available http://explorer.natureserve.org.	Reptiles and	
· · · · · · · · · · · · · · · · · · ·	Amphibians	
Pike, D. A. 2013. Climate influences the global distribution of sea turtle nesting. Global	Climate Change	i
Ecology and Biogeography 22, 555–566.	Vulnerability –	
2001089 4.114 21080208144119 229 3001	Reptiles and	
	Amphibians	
Pilliod, D. S., C. R. Peterson and P. I. Ritson. 2002. Seasonal migration of Columbia spotted	Climate Change	i
frogs (Rana luteiventris) among complementary resources in a high mountain basin.	Vulnerability –	
Canadian Journal of Zoology 80, 1849–1862. doi:10.1139/z02-175.	Reptiles and	
Canadian 30 annu 01 20010 64 004 10 13 10021 40112012133/202 1731	Amphibians	
Pollett, K. L., J. G. MacCracken and J. A. MacMahon. 2010. Stream buffers ameliorate the	Climate Change	i
effects of timber harvest on amphibians in the Cascade Range of Southern Washington,	Vulnerability –	•
USA. Forest Ecology and Management 260:1083-1087.	Reptiles and	
OSA. Forest Ecology and Management 200:1005 1007.	Amphibians	
Poloczanska, E. S., C. J. Limpus, C. J. and G. C. Hays. 2009. Vulnerability of Marine Turtles to	Climate Change	i
Climate Change. In D. W. Sims, editor: Advances in Marine Biology, Vol. 56, Burlington:	Vulnerability –	'
Academic Press, 2009, pp. 151-211.	Reptiles and	
πεαμετιπές Γτεςς, 2003, μμ. 131-211.	Amphibians	
Paymond C.L. D. I. Datarson and D. M. Bachofort, add 2014. Climate change unless shilling		i
Raymond, C. L., D. L. Peterson and R. M. Rochefort, eds. 2014. Climate change vulnerability	Climate Change	i
and adaptation in the North Cascades region, Washington. General Technical Report	Vulnerability –	
PNW-GTR-892. Portland, Oregon. 279 pp. Reptiles and Amphibians		

REFERENCE	CHAPTER	CODE
Reptiles in Nevada Wildlife Action Plan. 2013. Nevada Department of Wildlife.	Climate Change	vi
	Vulnerability –	
	Reptiles and	
	Amphibians	
Rosenberg, D., J. Gervais, D. Vesely, S. Barnes, L. Holts, R. Horn, R. Swift, L. Todd and C. Yee.	Climate Change	vi
2009. Conservation Assessment of the Western Pond Turtle in Oregon. Version 1.0. USDI	Vulnerability –	
Bureau of Land Management and Fish and Wildlife Service, USDA Forest Service Region	Reptiles and	
6, Oregon Department of Fish and Wildlife and City of Portland.	Amphibians	
Russell, K. R., T. J. Mabee, M. B. Cole and M. J. Rochelle. 2005. Evaluating biotic and abiotic	Climate Change	i
influences on torrent salamanders in managed forests of western Oregon. Wildlife	Vulnerability –	
Society Bulletin 33: 1413-1424.	Reptiles and	
	Amphibians	
Ryan, M. E., W. J. Palen, M. J. Adams and R.M. Rochefort. 2014. Amphibians in the climate	Climate Change	i
vice: loss and restoration of resilience of montane wetland ecosystems in the western	Vulnerability –	
US. Frontiers in Ecology and the Environment 12: 232-240.	Reptiles and	
	Amphibians	
Spear, S. F. and A. Storfer. 2010. Anthropogenic and natural disturbance lead to differing	Climate Change	i
patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biological	Vulnerability –	
Conservation 143, 778–786. doi:10.1016/j.biocon.2009.12.021.	Reptiles and	
	Amphibians	
Species at Risk Committee. 2014. Species Status Report for Western Toad (Anaxyrus boreas)	Climate Change	vi
in the Northwest Territories. Species at Risk Committee, Yellowknife, NT.	Vulnerability –	
	Reptiles and	
	Amphibians	
Status summary of Dunn's salamander (Plethodon dunni). 2009. California Amphibian and	Climate Change	vi
Reptile Species of Special Concern.	Vulnerability –	
http://arssc.ucdavis.edu/reports/Plethodon_dunni.html, accessed 5/27/2015.	Reptiles and	
	Amphibians	
Steel, Z. L., M. Wilkerson, P. Grof-Tisza and K. Sulzner. 2011. Assessing species and area	Climate Change	vi
vulnerability to climate change for the Oregon Conservation Strategy: Willamette Valley	Vulnerability –	
Ecoregion. Conservation Management Program. University of California, Davis.	Reptiles and	
	Amphibians	
Trumbo, D. R., S. F. Spear, J. Baumsteiger and A. Storfer. 2013. Rangewide landscape genetics	Climate Change	i
of an endemic Pacific northwestern salamander. Molecular Ecology doi:	Vulnerability –	
10.1111/mec.12168. 16 p.	Reptiles and	
	Amphibians	
Van Houtan, K. S. and O. L. Bass. 2007. Stormy oceans are associated with declines in sea	Climate Change	i
turtle hatching. Current Biology 17, 590–591.	Vulnerability –	
	Reptiles and	
	Amphibians	
Walpole, A. A., J. Bowman, D. C. Tozer and D. Badznski. 2012. Community-Level Response to	Climate Change	i
Climate Change: Shifts in Anuran Calling Phenology. Herpetological Conservation Biology	Vulnerability –	
7, 249–257. doi:10.1146/annurev.energy.30.050504.144308.	Reptiles and	
-	Amphibians	
lton, K., T. Gotthardt and T. Fields. 2013. Alaska Species Ranking System Summary Report - Climate Change	vi	
Western toad. Alaska Natural Heritage Program. Anchorage, AK.	Vulnerability –	
	Reptiles and	
	Amphibians	

REFERENCE	CHAPTER	CODE
Washington Department of Wildlife (WDFW). 1993. Status of the Larch Mountain salamander (Plethodon larselli) in Washington. Unpublished Report. Washington Department of Fish and Wildlife. Olympia, Washington.	Climate Change Vulnerability – Reptiles and Amphibians	ii,iii
Watson, J. W., K. R. McAllister, K.R. and D. J. Pierce. 2003. Home Ranges, Movements and Habitat Selection of Oregon Spotted Frogs (Rana pretiosa). Journal of Herpetology 37, 292–300. doi:10.1670/0022-1511(2003)037[0292:HRMAHS]2.0.CO;2.	Climate Change Vulnerability – Reptiles and Amphibians	i
Weishampel, J. F., D. A. Bagley, L. M. Ehrhart and A. C. Weishampel. 2010. Nesting phenologies of two sympatric sea turtle species related to sea surface temperatures. Endangered Species Research 12, 41–47.	Climate Change Vulnerability – Reptiles and Amphibians	i
Wildlife in British Columbia At Risk: Sharp-tailed Snake. 2004. Biodiversity Branch, Ministry of Water, Land and Air Protection, British Columbia, Canada.	Climate Change Vulnerability – Reptiles and Amphibians	vi
Wilkins, R. N. and N. P. Peterson. 2000. Factors related to amphibian occurrence and abundance in headwater streams draining second-growth Douglas-fir forests in southwestern Washington. Forest Ecology and Management 139: 79-91.	Climate Change Vulnerability – Reptiles and Amphibians	i
Zani, P. A., J. T. Irwin, M. E. Rollyson, J. L. Counihan, S. D. Healas, E. K. Lloyd, L. C. Kojanis, B. Fried and J. Sherma. 2012. Glycogen, not dehydration or lipids, limits winter survival of side-blotched lizards (Uta stansburiana). Journal of Experimental Biology 215: 3126-3134.	Climate Change Vulnerability – Reptiles and Amphibians	İ
Agostini, V. N., A. N. Hendrix, A. B. Hollowed, C. D. Wilson, S. D. Pierce and R. C. Francis. 2008. Climate-ocean variability and Pacific hake: A geostatistical modeling approach. Journal of Marine Systems 71, 237–248.	Climate Change Vulnerability – Fish	İ
Agostini, V. N., R. C. Francis, A. B. Hollowed, S. D. Pierce, C. Wilson and A. N. Hendrix. 2006. Distribution and poleward subsurface flow in the California Current System. Canadian Journal of Fisheries and Aquatic Sciences 63, 2648–2659.	Climate Change Vulnerability – Fish	i
Alberta Sustainable Resource Development and Alberta Conservation Association. 2011. Status of the Pygmy Whitefish (Prosopium coulterii) in Alberta: Update 2011. Alberta Sustainable Resource Development. Alberta Wildlife Status Report No. 27 (Update 2011). Edmonton, AB. 46 pp.	Climate Change Vulnerability – Fish	İ
Andrews, K. S., G. D. Williams and P. S. Levin. 2010. Seasonal and ontogenetic changes in movement patterns of sixgill sharks. PLoS One 5, 1–12. doi:10.1371/journal.pone.0012549.	Climate Change Vulnerability – Fish	i
Bailey, K. M., 2000. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Marine Ecology Progress Series 198, 215–224.	Climate Change Vulnerability – Fish	i
Bartholow, J. M. and J. A. Henriksen. 2006. Assessment of Factors Limiting Klamath River Fall Chinook Salmon Production Potential Using Historical Flows and Temperatures. (Open File Report 2006–1249). Reston, VA: USDI, USGS.	Climate Change Vulnerability – Fish	vi
Beamesderfer, R. C., M. L. Simpson and G. J. Kopp. 2007. Use of life history information in a population model for Sacramento green sturgeon. Environmental Biology of Fishes, 79(3-4), 315-337.	Climate Change Vulnerability – Fish	i
Beamish, R. J. 1980. Adult biology of the river lamprey (Lampetra ayresi) and the Pacific lamprey (Lampetra tridentata) from the Pacific coast of Canada. Canadian Journal of Fisheries and Aquatic Sciences, 37(11), 1906-1923.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Beamish, R. J., Editor. 2008. Impacts of Climate and Climate Change on the Key Species in the	Climate Change	i
Fisheries in the North Pacific. PICES Working Group on Climate Change, Shifts in Fish	Vulnerability –	
Production and Fisheries Management. PICES Scientific Report No. 35.	Fish	
Beauchamp, D. A., E. R. Byron and W. A. Wurtsbaugh. 1994. Summer habitat use by littoral-	Climate Change	i
zone fishes in Lake Tahoe and the effects of shoreline structures. North American	Vulnerability –	
Journal of Fisheries Management 14(2), 385-394.	Fish	
Belica, L. T. and N. P. Nibbelink. 2006. Mountain Sucker (Catostomus platyrhynchus): a	Climate Change	vi
technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain	Vulnerability –	
Region. http://www.fs.fed.us/r2/projects/scp/assessments/mountainsucker.pdf.	Fish	
Bennett, W. A., K. Roinestad, L. Rogers-Bennett, L. Kaufman, D. Wilson-Vandenberg and B.	Climate Change	i
Heneman. 2004. Inverse regional responses to climate change and fishing intensity by	Vulnerability –	
the recreational rockfish (Sebastes spp.) fishery in California. Canadian Journal of	Fish	
Fisheries and Aquatic Sciences 61, 2499–2510.		
Benson, A. J., G. A. McFarlane, S. E. Allen and J. F. Dower. 2002. Changes in Pacific Hake	Climate Change	i
(Merluccius productus) Migration Patterns and Juvenile Growth Related To the 1989	Vulnerability –	
Regime Shift. Canadian Journal of Fisheries and Aquatic Sciences 59, 1969–1979.	Fish	
Black, B. A., G. W. Boehlert and M. M. Yoklavich. 2008. Establishing climate-growth	Climate Change	i
relationships for yelloweye rockfish (Sebastes ruberrimus) in the northeast Pacific using	Vulnerability –	
a dendrochronological approach. Fisheries Oceanography 17, 368–379.	Fish	
Bonar, S. A., L. G. Brown, P. E. Mongillo and K. Williams. 2000. Biology, distribution and	Climate Change	i
management of burbot (Lota lota) in Washington State. Northwest Science, 74(2), 87-	Vulnerability –	
96.	Fish	
Carlin, J. L., M. Consoer, C. Hagan, M. Johnson, B. Mahoney, J. McDermet and J. Schwartz.	Climate Change	i
2012. Population and Habitat Characteristics of Margined Sculpin, Cottus marginatus, in	Vulnerability –	
the Walla Walla Watershed (Oregon, Washington, USA). Northwest Science, 86(3), 153-	Fish	
167. Ciannelli, L., K. M. Bailey, K. Chan, A. Belgrano and N. C. Stenseth. 2005. Climate change	Climata Changa	i
causing phase transitions of walleye pollock (Theragra chalcogramma) recruitment	Climate Change Vulnerability –	1
dynamics. Proceedings of the Royal Society B: Biological Sciences 272, 1735–1743.	Fish	
Clemens, B. J., S. Van De Wetering, J. Kaufman, R. A. Holt and C. B. Schreck. 2009. Do summer	Climate Change	i
temperatures trigger spring maturation in Pacific lamprey, Entosphenus tridentatus?	Vulnerability –	'
Ecology of Freshwater Fish, 18(3), 418-426.	Fish	
Coleman, M. A. and K. D. Fausch. 2007. Cold Summer Temperature Limits Recruitment of	Climate Change	i
Age-0 Cutthroat Trout in High-Elevation Colorado Streams. Transactions of the	Vulnerability –	
American Fisheries Society 136: 1231-1244.	Fish	
Columbia River Inter-Tribal Fish Commission. (2011). Tribal Pacific Lamprey Restoration Plan	Climate Change	vi
for the Columbia River Basin. 195 pp.	Vulnerability –	
10. 11.0 Cold.11.01.0 200111 200 pp.	Fish	
Cooke, S. J., C. M. Bunt, S. J. Hamilton, C. A. Jennings, M. P. Pearson, M. S. Cooperman and D.	Climate Change	i
F. Markle. 2005. Threats, conservation strategies and prognosis for suckers	Vulnerability –	
(Catostomidae) in North America: insights from regional case studies of a diverse family	Fish	
of non-game fishes. Biological Conservation, 121(3), 317-331.		
COSEWIC. 2010. COSEWIC assessment and status report on the Umatilla Dace, Rhinichthys	Climate Change	vi
umatilla, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa.	Vulnerability –	
xii + 37 pp. (www.sararegistry.gc.ca/status/status_e.cfm).	Fish	
Coyle, K. O., L. B. Eisner and F. J. Mueter. 2011. Climate change in the southeastern Bering	Climate Change	i
Sea: impacts on pollock stocks and implications for the oscillating control hypothesis.	Vulnerability –	
Fisheries Oceanography 20, 139–156.	Fish	
Crozier, L. G., R. W. Zabel, E. E. Hockersmith and S. Achord. 2010. Interacting effects of	Climate Change	i
density and temperature on body size in multiple populations of Chinook salmon.	Vulnerability –	
Journal of Animal Ecology, 79(2), 342-349. doi: 10.1111/j.1365-2656.2009.01641.x.	Fish	

REFERENCE	CHAPTER	CODE
DeHaan, P. W., B. A. Adams, R. A. Tabor, D. K. Hawkins and B. Thompson. 2014. Historical and contemporary forces shape genetic variation in the Olympic mudminnow (Novumbra hubbsi), an endemic fish from Washington State, USA. Conservation Genetics, 15(6), 1417-1431.	Climate Change Vulnerability – Fish	i
Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson and E. E. Holmes. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). Seattle, WA: NOAA Fisheries. 234pp.	Climate Change Vulnerability – Fish	i
Drake J. S., E. A. Berntson, J. M. Cope, R. G. Gustafson, E. E. Holmes, P. S. Levin, N. Tolimieri, R. S. Waples, S. M. Sogard and G. D. Williams. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes paucispinis), canary rockfish (S. pinniger), yelloweye rockfish (S. ruberrimus), greenstriped rockfish (S. elongatus) and redstripe rockfish (S. proriger). US Department of Commerce, NOAA Technical Memo NMFS-NWFSC-108, 234 p.	Climate Change Vulnerability – Fish	İ
Dunham, J., B. Rieman, B. and G. Chandler. 2003. Influences of Temperature and Environmental Variables on the Distribution of Bull Trout within Streams at the Southern Margin of Its Range. North American Journal of Fisheries Management, 23(3), 894-904. doi: 10.1577/M02-028.	Climate Change Vulnerability – Fish	Ī
Eby, L. A., O. Helmy, L. M. Holsinger and M.K. Young. 2014. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, USA. PLoS ONE doi: 10.1371/journal.pone.0098812.	Climate Change Vulnerability – Fish	i
EcoAdapt. 2014. A Climate Change Vulnerability Assessment for Resources of Nez Perce- Clearwater National Forests. Version 3.0. EcoAdapt, Bainbridge Island, WA.	Climate Change Vulnerability – Fish	i
Eliason, E. J., T. D. Clark, M. J. Hague, L. M. Hanson, Z. S. Gallagher, K. M. Jeffries, M. K. Gale, D. A. Patterson, S. G. Hinch and A. P. Farrell. 2011. Differences in Thermal Tolerance Among Sockeye Salmon Populations. Science, 332(6025), 109-113. doi: 10.1126/science.1199158.	Climate Change Vulnerability – Fish	Ĭ
Ficke, A. D., C. A. Myrick and L. J. Hansen. 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4), 581-613.	Climate Change Vulnerability – Fish	i
FishBase, http://www.fishbase.org/summary/2757/	Climate Change Vulnerability – Fish	vi
Gamperl, A. K., K. J. Rodnick, H. A. Faust, E. C. Venn, M. T. Bennett, L. I. Crawshaw, E. R. Keeley, M. S. Powell and H. W. Li. 2002. Metabolism, swimming performance and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): Evidence for phenotypic differences in physiological function. Physiological and Biochemical Zoology 75: 413-431.	Climate Change Vulnerability – Fish	İ
Gee, J. H. 1961. Ecology of the leopard dace Rhinichthys falcatus and its ecological relationships with the longnose dace Rhinichthys cataractae. Master of Science Thesis. University of British Columbia.	Climate Change Vulnerability – Fish	i
Greene, C. M., D. W. Jensen, G. R. Pess, E. A. Steel and E. Beamer. 2005. Effects of environmental conditions during stream, estuary and ocean residency on Chinook salmon return rates in the Skagit River, Washington. Transactions of the American Fisheries Society, 135, 1562-1581.	Climate Change Vulnerability – Fish	i
Griffiths, J. R. and D. E. Schindler. 2012. Consequences of changing climate and geomorphology for bioenergetics of juvenile sockeye salmon in a shallow Alaskan lake. Ecology of Freshwater Fish 21: 349-362.	Climate Change Vulnerability – Fish	İ

REFERENCE	CHAPTER	CODE
Hallock, M. and P. E. Mongillo. 1998. Washington State status report for the pygmy whitefish. Washington Department of Fish and Wildlife. Olympia, WA. 20 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Hanson, P. C. 1997. Fish Bioenergetics 3.0 Modeling Software (Vol. WISCU-T-97-001): Board of Regents, University of Wisconsin System Sea Grant Institute, Center for Limnology.	Climate Change Vulnerability – Fish	vi
Haynes, T. B. and C. L. K. Robinson. 2011. Re-use of shallow sediment patches by Pacific sand lance (Ammodytes hexapterus) in Barkley Sound, British Columbia, Canada. Environmental Biology of Fishes 92:1–12.	Climate Change Vulnerability – Fish	i
Haynes, T. B., C. K. L. Robinson and P. Dearden. 2008. Modelling nearshore intertidal habitat use of young-of-the-year Pacific sand lance (Ammodytes hexapterus) in Barkley Sound, British Columbia, Canada. Environmental Biology of Fishes 83:473-484.	Climate Change Vulnerability – Fish	i
Hillman, T. W., M. D. Miller and B. A. Nishitani. 1999. Evaluation of seasonal cold-water temperature criteria. Report prepared for Idaho Division of Environmental Quality. BioAnalysts, Inc. 50 pp.	Climate Change Vulnerability – Fish	vi
Hitt, N. P., C. A. Frissell, C. C. Muhlfeld and F. W. Allendorf. 2003. Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi and nonnative rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences 60: 1440-1451.	Climate Change Vulnerability – Fish	i
Isaak, D. J., W. A. Hubert and C. R. Berry. 2003. Conservation Assessment for Lake Chub (Couesius plumbeus), Mountain Sucker (Catostomus platyrhynchus) and Finescale Dace (Phoxinus neogaeus) in the Black Hills National Forest of South Dakota and Wyoming. 102 pp.	Climate Change Vulnerability – Fish	vi
IUCN Red List of Threatened Species, http://www.iucnredlist.org/details/full/202363/0.	Climate Change Vulnerability – Fish	vi
Keefer, M. L., C. A. Peery, T. C. Bjornn and M. A. Jepson. 2004. Hydrosystem, dam and reservoir passage rates of adult Chinook salmon and steelhead in the Columbia and Snake Rivers. Transactions of the American Fisheries Society 133: 1413-1439.	Climate Change Vulnerability – Fish	i
Keefer, M. L., M. L. Moser, C. T. Boggs, W. R. Daigle and C. A. Peery. 2009. Variability in migration timing of adult Pacific lamprey (Lampetra tridentata) in the Columbia River, USA. Environmental biology of Fishes, 85(3), 253-264.	Climate Change Vulnerability – Fish	i
Krueger, K., K. Pierce, T. Quinn and D. E. Penttila. 2010. Anticipated Effects of Sea Level Rise in Puget Sound on Two Beach-Spawning Fishes. Puget Sound Shorelines and the Impacts of Armoring – Proceedings of a State of the Science Workshop. Accessible via http://pubs.usgs.gov/sir/2010/5254/pdf/sir20105254_chap17.pdf, accessed 5/7/2015.	Climate Change Vulnerability – Fish	li,
Larson, S. J., Christiansen, D. Griffing, J. Ashe and D. Lowry. 2011. Relatedness, diversity and polyandry within Puget Sound sixgill sharks, Hexanchus griseus. Conservation Genetics, 12: 679-690.	Climate Change Vulnerability – Fish	i
Laurel, B. J. and P. Thomas, P. 2008. The role of temperature on the growth and survival of early and late hatching Pacific cod larvae (Gadus macrocephalus). Journal of Plankton Research 30, 1051–1060.	Climate Change Vulnerability – Fish	i
Levin, P. S., P. Horne, K. S. Andrews and G. Williams. 2012. An empirical movement model for sixgill sharks in Puget Sound: Combining observed and unobserved behavior. Current Zoology. 58, 103–115.	Climate Change Vulnerability – Fish	i
Lindley, S. T., M. L. Moser, D. L. Erickson, M. Belchik, D. W. Welch, E. L. Rechisky, J. T. Kelly, J. Heublein and A. P. Klimley. 2008. Marine migration of North American green sturgeon. Transactions of the American Fisheries Society, 137(1), 182-194.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Luzier, C. W., H. A. Schaller, J. K. Brostrom, C. Cook-Tabor, D. H. Goodman, R. D. Nelle, K. Ostrand and B. Streif. 2011. Pacific Lamprey (Entosphenus tridentatus) Assessment and Template for Conservation Measures. US Fish and Wildlife Service, Portland, Oregon. 282 pp.	Climate Change Vulnerability – Fish	vi
Mayfield, R. B. and J. J. Cech Jr. 2004. Temperature effects on green sturgeon bioenergetics. Transactions of the American Fisheries Society, 133(4), 961-970.	Climate Change Vulnerability – Fish	i
McFarlane, G.A., J. R. King and R. J. Beamish. 2000. Have there been recent changes in climate? Ask the fish. Progress in Oceanography 47, 147–169.	Climate Change Vulnerability – Fish	i
Meeuwig, M. H., J. M. Bayer and J. G. Seelye. 2005. Effects of temperature on survival and development of early life stage Pacific and western brook lampreys. Transactions of the American Fisheries Society, 134(1), 19-27.	Climate Change Vulnerability – Fish	i
Mesa, M. G., L. K. Welland, H. E. Christiansen, S. T. Sauter and D. A. Beauchamp. 2013. Development and evaluation of a bioenergetics model for bull trout. Transactions of the American Fisheries Society 142: 41-49.	Climate Change Vulnerability – Fish	i
Miller, A. K. and W. J. Sydeman. 2004. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Marine Ecology Progress Series 281, 207–216.	Climate Change Vulnerability – Fish	i
Mongillo, P. E. and M. Hallock. 1998. Washington State status report for the margined sculpin. Washington Department of Fish and Wildlife, Fish Management Program. Olympia, WA. 15 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Mongillo, P.E. and M. Hallock. 1999. Washington state status report for the Olympic Mudminnow. Washington Department of Fish and Wildlife. Olympia, WA. 36 pp.	Climate Change Vulnerability – Fish	ii,iii,iv
Moser, M. L. and S. T. Lindley. 2007. Use of Washington estuaries by subadult and adult green sturgeon. Environmental Biology of Fishes, 79(3-4), 243-253.	Climate Change Vulnerability – Fish	i
Mueter, F. J., N. A. Bond, J. N. Ianelli and A. B. Hollowed. 2011. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science 10.1093/icesjms/fsr022.	Climate Change Vulnerability – Fish	i
Mueter, F. J., R. M. Peterman and B. J. Pyper. 2002. Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Canadian Journal of Fisheries and Aquatic Sciences 59: 456-463.	Climate Change Vulnerability – Fish	i
Muhlfeld, C. C., S. E. Albeke, S. L. Gunckel, B. J. Writer, B. B. Shepard and B. E. May. 2014. Status and conservation of interior redband trout in the Western United States. North American Journal of Fisheries Management 35: 31-53.	Climate Change Vulnerability – Fish	i
Nakano, S. and M. Murakami, M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences, 98, 166-170.	Climate Change Vulnerability – Fish	i
National Marine Fisheries Service (NMFS). 2010. Endangered and threatened wildlife and plants: threatened status for southern distinct population segment of eulachon. Federal Register 5: 130129–13124.	Climate Change Vulnerability – Fish	i
National Marine Fisheries Service (NMFS). 2013. ESA Recovery Plan for Lower Columbia River Coho Salmon, Lower Columbia River Chinook Salmon, Columbia River Chum Salmon and Lower Columbia River Steelhead. National Marine Fisheries Service, Northwest Region, Seattle, WA.	Climate Change Vulnerability – Fish	i
National Oceanic and Atmospheric Administration (NOAA). 2003. Endangered and threatened wildlife and plants: 12-month finding of a petition to list North American Green Sturgeon as a threatened or endangered species. Federal Register 68: 4433-4441.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Siphateles+bicolor.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Thaleichthys+pacific us.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Rhinichthys+falcatus	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Catostomus+platyrh ynchus.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Novumbra+hubbsi.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Prosopium+coulteri.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Catostomus+sp.+4.	Climate Change Vulnerability – Fish	vi
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Rhinichthys+umatill a.	Climate Change Vulnerability – Fish	vi
O'Brien, S. M., V. F. Gallucci and L. Hauser. 2013. Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conservation Genetics 14, 125–144.	Climate Change Vulnerability – Fish	i
Palsson, W. A., T. Tsou, G. G. Bargmann, R. M. Buckley, J. E. West, M. L. Mills, Y. W. Cheng and R. E. Pacunski. 2009. The biology and assessment of rockfishes in Puget Sound. Fish Management Division, Fish Program. Washington Department of Fish and Wildlife.	Climate Change Vulnerability – Fish	ii
Parsley, M. J. and L. G. Beckman. 1994. White sturgeon spawning and rearing habitat in the lower Columbia River. North American Journal of Fisheries Management, 14(4), 812-827.	Climate Change Vulnerability – Fish	i
Pearson, M. P. 2000. The biology and management of Salish sucker and Nooksack dace. The biology and management of species and habitats at risk. BC Ministry of Environment, Lands and Parks, Victoria and University College of the Cariboo, Kamloops, Kamloops, BC, 619-624.	Climate Change Vulnerability – Fish	vi
Pearson, M. P. and M. C. Healey. 2003. Life-history characteristics of the endangered Salish sucker (Catostomus sp.) and their implications for management. Copeia, 2003(4), 759-768.	Climate Change Vulnerability – Fish	i
Petersen, J. H. and J. F. Kitchell. 2001. Climate regimes and water temperature changes in the Columbia River: bioenergetic implications for predators of juvenile salmon. Canadian Journal of Fisheries and Aquatic Sciences, 58(9), 1831-1841. doi: 10.1139/f01-111.	Climate Change Vulnerability – Fish	i
Planque, B. and T. Frédou. 1999. Temperature and the recruitment of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 56(11): 2069-2077, 10.1139/f99-114.	Climate Change Vulnerability – Fish	i
Planque, B., JM. Fromentin, P. Cury, K. F. Drinkwater, S. Jennings, R. I. Perry and S. Kifani. 2010. How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems 79, 403–417.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Polacek, M. C., C. M. Baldwin and K. Knuttgen. 2006. Status, distribution, diet and growth of burbot in Lake Roosevelt, Washington. Northwest Science, 80(3), 153-164.	Climate Change Vulnerability – Fish	i
Quinn, T. 1999. Habitat Characteristics of an intertidal Aggregation of Pacific Sand Lance (Ammodytes hexapterus) at a North Puget Sound Beach in Washington. Northwest Science 73, 44–49.	Climate Change Vulnerability – Fish	i
Quinn, T. P. 2005. The Behavior and Ecology of Pacific Salmon and Trout (1st ed. Vol. Bethesda, MD): American Fisheries Society.	Climate Change Vulnerability – Fish	i
Quinn, T., K. Krueger, D. Penttila, K. Perry, T. Hicks and D. Lowry. 2012. Patterns of Surf Smelt, Hyopmesus pretiosus, Intertidal Spawning Habitat Use in Puget Sound, Washington State. Coastal and Estuarine Research 35, 1214–1228.	Climate Change Vulnerability – Fish	i
Raymond, A. W. and E. Sobel. 1990. The use of Tui Chub as food by Indians of the western Great Basin. Journal of California and Great Basin Anthropology, 2-18.	Climate Change Vulnerability – Fish	i
Reum, J. C. P., T. E. Essington, C. M. Greene, C. A. Rice and K. L. Fresh. 2011. Multiscale influence of climate on estuarine populations of forage fish: the role of coastal upwelling, freshwater flow and temperature. Marine Ecology Progress Series 425, 203–215.	Climate Change Vulnerability – Fish	i
Rodnick, K. J., A. K. Gamperi, K. R. Lizars, M. T. Bennett, R. N. Raush and E. R. Keeley. 2004. Thermal tolerance and metabolic physiology among redband trout populations in southeastern Oregon. Journal of Fish Biology, 64(2), 310-335. doi: 10.1111/j.0022-1112.2004.00292.x	Climate Change Vulnerability – Fish	İ
Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers and M. S. Webster. 2010. Population diversity and the portfolio effect in an exploited species. Nature, 455, 609-612.	Climate Change Vulnerability – Fish	i
Schlaff, A. M., M. R. Heupel and C. A. Simpfendorfer. 2014. Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish Biology and Fisheries 1089–1103.	Climate Change Vulnerability – Fish	i
Selong, J. H., T. E. McMahon, A. V. Zale and F. T. Barrows. 2001. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society 130: 1026-1037.	Climate Change Vulnerability – Fish	i
Shiri Harzevili, A., I. Dooremont, I. Vught, J. Auwerx, P. Quataert and D. De Charleroy. 2004. First feeding of burbot, Lota lota (Gadidae, Teleostei) larvae under different temperature and light conditions. Aquaculture Research, 35(1), 49-55.	Climate Change Vulnerability – Fish	i
Stabeno, P. J., N. B. Kachel, S. E. Moore, J. M. Napp, M. Sigler, A. Yamaguchi and A. N. Zerbini. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep Sea Research Part II: Topical Studies in Oceanography 65-70, 31–45.	Climate Change Vulnerability – Fish	i
Stapanian, M. A., V. L. Paragamian, C. P. Madenjian, J. R. Jackson, J. Lappalainen, M. J. Evenson and M. D. Neufeld. 2010. Worldwide status of burbot and conservation measures. Fish and Fisheries, 11(1), 34-56.	Climate Change Vulnerability – Fish	i
Stasiak, R. 2006. Lake Chub (Couesius plumbeus): a technical conservation assessment. [online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/ lakechub.pdf.	Climate Change Vulnerability – Fish	vi
Therriault, T. W., D. E. Hay and J. F. Schweigert. 2009. Biological overview and trends in pelagic forage fish abundance in the Salish Sea (Strait of Georgia, British Columbia). Marine Ornithology 8, 3–8.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Thurow, R. F. and B. E. Rieman. 2007. Distribution and status of redband trout in the Interior Columbia River Basin and portions of the Klamath River and Great Basins. Redband Trout: Resilience and Challenge in a Changing Landscape, Oregon Chapter, American Fisheries Society: 28-46.	Climate Change Vulnerability – Fish	İ
Tillman, P. and D. Siemann. 2011. Climate Change Effects and Adaptation Approaches in Marine and Coastal Ecosystems of the North Pacific Landscape Conservation Cooperative Region. A Compilation of the Scientific Literature. Final Report. National Wildlife Federation. 264 pp.	Climate Change Vulnerability – Fish	vi
Torgersen, C. E., D. P. Hockman-Wert, D. S. Bateman and R. E. Gresswell. 2007. Longitudinal patterns of fish assemblages, aquatic habitat and water temperature in the Lower Crooked River, Oregon. US Geological Survey Open-File Report 2007-1125. 36 pp.	Climate Change Vulnerability – Fish	vi
US Fish and Wildlife Service (USFWS). 2012. Olympic Mudminnow Workshop - October 17, 2012. http://www.fws.gov/wafwo/Olymudminnow_wkshp.html.	Climate Change Vulnerability – Fish	vi
US Fish and Wildlife Service (USFWS). Species Factsheet: River lamprey. http://www.fws.gov/wafwo/species/Fact%20sheets/Riverlampreyfinal.pdf	Climate Change Vulnerability – Fish	vi
Vaz, P. G., E. Kebreab, S. S. Hung, J. G. Fade., S. Lee and N. A. Fangue. 2015. Impact of Nutrition and Salinity Changes on Biological Performances of Green and White Sturgeon. PloS One, 10(4).	Climate Change Vulnerability – Fish	i
Wade, A. A., T. J. Beechie, E. Fleishman, N. J. Mantua, H. Wu, J. S. Kimball, D. M. Stoms and J. A. Stanford. 2013. Steelhead vulnerability to climate change in the Pacific Northwest. Journal of Applied Ecology 50: 1093-1104.	Climate Change Vulnerability – Fish	i
Washington Department of Fish and Wildlife (WDFW). 2012. Sensitive Species: Olympic Mudminnow in 2012 Annual Report. pp. 157-159. http://wdfw.wa.gov/conservation/endangered/species/olympic_mudminnow.pdf.	Climate Change Vulnerability – Fish	ii,iii
Washington Department of Fish and Wildlife (WDFW). 2012. Threatened Species: Margined Sculpin in 2012 Annual Report. pp. 160-161. http://wdfw.wa.gov/conservation/endangered/species/margined_sculpin.pdf.	Climate Change Vulnerability – Fish	ii,iii
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.	Climate Change Vulnerability – Fish	i
Watson, L. R., A. Milani and R. P. Hedrick. 1998. Effects of water temperature on experimentally-induced infections of juvenile white sturgeon (Acipenser transmontanus) with the white sturgeon iridovirus (WSIV). Aquaculture, 166(3), 213-228.	Climate Change Vulnerability – Fish	i
Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet and J. E. Williams. 2011. Flow regime, biotic interactions and temperature determine winners and losers among trout species under climate change. Proceedings of the National Academy of Sciences, 108, 14175-14180.	Climate Change Vulnerability – Fish	i
Westley, P. A. H., R. Hilborn, T. P. Quinn, G. T. Ruggerone and D.E. Schindler. 2008. Long-term changes in rearing habitat and downstream movement by juvenile sockeye salmon (Oncorhynchus nerka) in an interconnected Alaska lake system. Ecology of Freshwater Fish 17: 443-454.	Climate Change Vulnerability – Fish	İ
Williams, G. D., K. S. Andrews, D. A. Farrer, G. G. Bargman and P. S. Levin. 2011. Occurrence and biological characteristics of broadnose sevengill sharks (Notorynchus cepedianus) in Pacific Northwest coastal estuaries. Environmental Biology of Fishes 91, 379–388.	Climate Change Vulnerability – Fish	i
Wipfli, M. S. and C. V. Baxter. 2011. Linking Ecosystems, Food Webs and Fish Production: Subsidies in Salmonid Watersheds. Fisheries, 35(8), 373-387. doi: 10.1577/1548-8446-35.8.373.	Climate Change Vulnerability – Fish	i

REFERENCE	CHAPTER	CODE
Yau, M. M. and E. B. Taylor. 2013. Environmental and anthropogenic correlates of	Climate Change	i
hybridization between westslope cutthroat trout (Oncorhynchus clarkia lewisi) and	Vulnerability –	
introduced rainbow trout (O. mykiss). Conservation Genetics. 14: 885-900.	Fish	
Zabel, R. W., P. S. Levin, N. Tolimieri and N. J. Mantua. 2011. Interactions between climate	Climate Change	i
and population density in the episodic recruitment of bocaccio, Sebastes paucispinis, a	Vulnerability –	
Pacific rockfish. Fisheries Oceanography 20, 294–304.	Fish	
Anderson, M. K. 2009. The Ozette Prairies of Olympic National Park: Their Former Indigenous	Climate Change	vi
Uses and Management. Final Report to the Olympic National Forest. Port Angeles,	Vulnerability –	
Washington. 167 pp.	Invertebrates	
Andrews, H. 2010. Species fact sheet: Columbia clubtail. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Andrews, H. 2010. Species fact sheet: Silver-bordered fritillary. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
Apply W. W. 2005 Manusha Footistom Managament Amendia A. Crasica of the Administra	Invertebrates	
Aney, W. W. 2005. Menucha Ecosystem Management. Appendix A: Species of the Menucha Ecosystem	Climate Change Vulnerability –	vi
http://www.menucha.org/wp-content/uploads/2010/01/The_Aney_Report_Appendix_A.pdf	Invertebrates	
Arizona Game and Fish Department (AGFD). 2015. Heritage Data Management System.	Climate Change	vi
http://www.gf.state.az.us/w_c/edits/documents/Anodcali.fo.pdf, accessed 6-25-2015.	Vulnerability –	VI
intp.//www.gr.state.az.us/w_c/edits/documents/Anodcan.io.pdi, accessed 6-25-2015.	Invertebrates	
Baumann, R. W. and B. C. Kondratieff. 2015. The stonefly genus Lednia in North America	Climate Change	i
(Plecoptera: Nemouridae). Illiesia 6(25): 315-327. Available from http://www2.pms-	Vulnerability –	1
lj.si/illiesia/papers/Illiesia06-25.pdf (accessed July 7, 2015).	Invertebrates	
Baumann, R. W. and B. P. Stark. 2013. The genus Megaleuctra Neave (Plecoptera: Leuctridae)	Climate Change	i
in North America. Illiesia, 9(06):65-93. Available from http://www2.pms-	Vulnerability –	
lj.si/illiesia/papers/Illiesia09-06.pdf (accessed July 7, 2015).	Invertebrates	
Baumann, R. W. and D. S. Potter. 2007. What is Bolshecapnia sasquatchi Ricker? Plus a new	Climate Change	i
species of Bolshecapnia from Montana (Plecoptera: Capniidae). Illiesia, 3(15):157-162.	Vulnerability –	
Available from http://www2.pms-lj.si/illiesia/Illiesia03-15.pdf (accessed July 8, 2015).	Invertebrates	
Bennett, V. J., M. G. Betts and W. P. Smith. 2014. Influence of thermal conditions on habitat	Climate Change	i
use by a rare spring-emerging butterfly Euphydryas editha taylori. Journal of Applied	Vulnerability –	
Entomology, 138(8), 623-634.	Invertebrates	
Black, S., Lauvray, L. and S. Jepsen. 2007. Species Fact Sheet: Siuslaw Sand Tiger Beetle.	Climate Change	vi
Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp-	Vulnerability –	
content/uploads/2008/09/cicindela_hirticollis_siuslawensis.pdf	Invertebrates	
Brenner, G. 2005. Species Fact Sheet: Allomyia scottia, Scott's apatanian caddisfly. USDA	Climate Change	vi
Forest Service. Available from	Vulnerability –	
http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/20050906-fact-sheet-	Invertebrates	
allomyia-scottia.doc (accessed July 7, 2015).		
British Columbia Invertebrates Recovery Team. 2008. Recovery strategy for Sand-verbena	Climate Change	vi
Moth (Copablepharon fuscum) in British Columbia. Prepared for the B.C. Ministry of	Vulnerability –	
Environment, Victoria, BC. 18 pp.	Invertebrates	
Brown, M. J. and R. J. Paxton. 2009. The conservation of bees: a global perspective.	Climate Change	i
Apidologie, 40(3), 410-416.	Vulnerability –	
	Invertebrates	
Burke, T. 1999. Conservation Assessment for Prophysaon coeruleum, Blue-Gray Taildropper.	Climate Change	vi
USDA Bureau of Land Management. Available at	Vulnerability –	
http://www.blm.gov/or/plans/surveyandmanage/files/ca-ig-prophysaon-coeruleum-	Invertebrates	
2005-11-01.pdf.		

REFERENCE	CHAPTER	CODE
Butterflies and Moths of North America,	Climate Change	vi
http://www.butterfliesandmoths.org/species/Oeneis-nevadensis	Vulnerability –	
	Invertebrates	
Butterflies and Moths of North America,	Climate Change	vi
http://www.butterfliesandmoths.org/species/Erynnis-propertius	Vulnerability –	
	Invertebrates	
Cameron, S. A., J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter and T. L. Griswold.	Climate Change	i
2011. Patterns of widespread decline in North American bumble bees. Proceedings of	Vulnerability –	
the National Academy of Sciences, 108(2), 662-667.	Invertebrates	
Cameron, S., S. Jepsen, E. Spevak, J. Strange, M. Vaughan, J. Engler and O. Byers (eds.). 2011.	Climate Change	vi
North American Bumblebee Species Conservation Planning Workshop Final Report.	Vulnerability –	
IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN.	Invertebrates	
Cheng, B. S., J. M. Bible, A. L. Chang, M. Ferner, K. Wasson, C. Zabin, M. Latta, A.K. Deck, A.	Climate Change	i
Todgham and E. D. Grosholz. 2015. Local and global stressor impacts on a coastal	Vulnerability –	
foundation species: using an ecologically realistic framework. Global Change.	Invertebrates	
Clarke, L. R. 2010. Population Density and Growth of the Freshwater Mussel Anodonta	Climate Change	i
californiensis in a Flow-Fragmented Stream. Journal of Freshwater Ecology 25, 179–192.	Vulnerability –	
doi:10.1080/02705060.2010.9665067.	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/content/forest-	Climate Change	vi
columbia-plateau-western-juniper-woodland-and-savanna	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/species/polites-	Climate Change	vi
mardon	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/184, accessed	Climate Change	vi
6/10/2015.	Vulnerability –	
	Invertebrates	
Climate Change Sensitivity Database, http://climatechangesensitivity.org/node/207, accessed	Climate Change	vi
6/10/2015.	Vulnerability –	
	Invertebrates	
COSEWIC. 2013. COSEWIC assessment and status report on the Oregon Branded Skipper	Climate Change	vi
Hesperia colorado oregonia in Canada. Committee on the Status of Endangered Wildlife	Vulnerability –	
in Canada. Ottawa. ix + 51 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).	Invertebrates	
Crane, M. F. 1991. Arctostaphylos uva-ursi. In: Fire Effects Information System, [Online]. U.S.	Climate Change	vi
Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire	Vulnerability –	
Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2015,	Invertebrates	
June 17].		
Crim, R. N., J. M. Sunday and C. D. G. Harley. 2011. Elevated seawater CO2 concentrations	Climate Change	i
impair larval development and reduce larval survival in endangered northern abalone	Vulnerability –	
(Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology 400,	Invertebrates	
272–277.		
Davis, R. J. 2010. Johnson's Hairstreak Surveys in Oregon and Washington. 34 pp.	Climate Change	vi
Turis, in a lateral control of the c	Vulnerability –	
	Invertebrates	
Dingle, H., M. P. Zalucki, W. A. Rochester and T. Armijo-Prewitt. 2005. Distribution of the	Climate Change	i
monarch butterfly, Danaus plexippus (L.)(Lepidoptera: Nymphalidae), in western North	Vulnerability –	
America. Biological Journal of the Linnean Society, 85(4), 491-500.	Invertebrates	
Duncan, N. 2005. Conservation Assessment for Cryptomastix hendersoni, Columbia	Climate Change	vi
Oregonian. USDA Forest Service Region 6 and USDI Bureau of Land Management,	Vulnerability –	VI
Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-	Invertebrates	
docs/20050900-moll-columbia-oregonian.doc	mverteniates	
uocs/20050900-moii-columbia-oregonian.doc		

REFERENCE	CHAPTER	CODE
Duncan, N. 2005. Conservation Assessment for Monadenia fidelis minor, Dalles Sideband. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning- docs/20050817-moll-dalles-sideband.doc	Climate Change Vulnerability – Invertebrates	vi
Duncan, N. 2005. Conservation Assessment for Oreohelix n. sp. 1, Chelan Mountainsnail. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/20051018-orxx1-final.doc	Climate Change Vulnerability – Invertebrates	vi
Duncan, N. 2005. Conservation Assessment for Vertigo n. sp., Hoko vertigo. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/20051111-vexx-final.doc	Climate Change Vulnerability – Invertebrates	vi
Duncan, N. 2009. Species Fact Sheet: Dalles hesperian. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-vespericola-columbiana-depressa-2009-02.doc	Climate Change Vulnerability – Invertebrates	vi
Dunn, P. and J. Fleckenstein, J. 1997. Butterflies of the South Puget Sound prairie landscape. Ecology and Conservation of the South Puget Sound Prairie Landscape. The Nature Conservancy of Washington, Seattle, WA, 75-84.	Climate Change Vulnerability – Invertebrates	vi
Encyclopedia of Life, http://eol.org/pages/13603718/details	Climate Change Vulnerability – Invertebrates	vi
Ferry, E. E., G. R. Hopkins, A. N. Stokes, S. Mohammadi, E. D. Brodie and B. G. Gall. 2013. Do All Portable Cases Constructed by Caddisfly Larvae Function in Defense? Journal of Insect Science, 13:5. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735051/ (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	İ
Fleckenstein, J. 2006. Species fact sheet: Lycaena mariposa charlottensis. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Fleckenstein, J. 2006. Species fact sheet: Polites sonora siris. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi
Foltz Jordan, S. 2012. Species Fact Sheet: Pacific vertigo. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-ig-vertigo-andrusiana-2013-11.doc	Climate Change Vulnerability – Invertebrates	vi
Foltz Jordan, S. 2013. Species Fact Sheet: Oregon Megomphix. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-ig-megomphix-hemphilli-2014-11.doc	Climate Change Vulnerability – Invertebrates	vi
Foltz Jordan, S. and C. Mazzacano. 2014. Species Fact Sheet: Fisherola nuttalli. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-ig-fisherola- nuttalli-2014-11.doc	Climate Change Vulnerability – Invertebrates	vi
Foltz, S. 2009. Species Fact Sheet: Agonum belleri. Xerces Society for Invertebrate Conservation. http://www.xerces.org/wp-content/uploads/2009/09/sfs-iico-agonumbelleri.pdf	Climate Change Vulnerability – Invertebrates	vi
Foltz, S. 2009. Species Fact Sheet: Eanus hatchii. USDA Forest Service.	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
Forister, M. L. and A. M. Shapiro. 2003. Climatic trends and advancing spring flight of	Climate Change	i
butterflies in lowland California. Global Change Biology, 9(7), 1130-1135.	Vulnerability –	
	Invertebrates	
Foster, A. D. and Ziegltrum, J. 2013. Riparian-Associated Gastropods in Western Washington:	Climate Change	i
Community Composition and the Effects of Forest Management. Northwest Science 87,	Vulnerability –	
243–256. doi:10.3955/046.087.0306.	Invertebrates	
Gall, B. G. and E. D. Brodie, Jr. 2011. Survival and growth of the caddisfly Limnephilus	Climate Change	i
flavastellus after predation on toxic eggs of the Rough-skinned Newt (Taricha	Vulnerability –	
granulosa). Canadian Journal of Zoology, 89:483-489. Available from	Invertebrates	
http://faculty.virginia.edu/brodie/files/publications/cjz2011.pdf (accessed July 7, 2015).		
Garry Oaks Ecosystem Recovery Team. 2003. Erynnis propertius in Species at Risk in Garry	Climate Change	vi
Oak and Associated Ecosystems in British Columbia.	Vulnerability –	
http://www.goert.ca/documents/SAR_manual/SARFS_erynprop.pdf	Invertebrates	
Government of Canada, Species at Risk Public Registry,	Climate Change	vi
http://www.sararegistry.gc.ca/species/speciesDetails e.cfm?sid=789.	Vulnerability –	VI
Tittp://www.sararegistry.gc.ca/species/speciesDetails_e.cimrsid=769.		
	Invertebrates	
Hallock, L. A., R. D. Haugo and R. Crawford. 2007. Conservation Strategy for Washington State	Climate Change	i
Inland Sand Dunes. Washington Natural Heritage Program, Washington Department of	Vulnerability –	
Natural Resources, Olympia, WA. Natural Heritage Report 2007-05.	Invertebrates	
http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/cs-blm-wa-state-		
inland-sand-dunes-2007-06.pdf		
Hamer Environmental. 2003. Analysis Species Assessment: Beller's Ground Beetle (Agonum	Climate Change	vi
belleri). Final Report prepared for Puget Sound Energy. FERC Project No. 2150. 4 pp.	Vulnerability –	
	Invertebrates	
Hamer Environmental. 2003. Analysis Species Assessment: Hatch's Click Beetle (Eanus hatchi).	Climate Change	vi
Final Report prepared for Puget Sound Energy. FERC Project No. 2150. 4 pp.	Vulnerability –	
	Invertebrates	
Hassall, C. and D. J. Thompson, D. J. 2008. The effects of environmental warming on Odonata:	Climate Change	i
a review. International Journal of Odonatology, 11(2), 131-153.	Vulnerability –	
	Invertebrates	
Hettinger, A., E. Sanford, T. M. Hill, A. D. Russell, K. N. S. Sato, J. Hoey, M. Forsch, H. N. Page	Climate Change	i
and B. Gaylord. 2012. Persistent carry-over effects of planktonic exposure to ocean	Vulnerability –	
acidification in the Olympia oyster. Ecology 93, 2758–2768.	Invertebrates	
Hettinger, A., E. Sanford, T. M. Hill, J. D. Hosfelt, A. D. Russell and B. Gaylord. 2013. The	Climate Change	i
influence of food supply on the response of Olympia oyster larvae to ocean acidification.	Vulnerability –	'
Biogeosciences 10, 6629–6638.	Invertebrates	
Howard, J. K. and K. M. Cuffey. 2006. Factors controlling the age structure of Margaritifera	Climate Change	i
falcata in 2 northern California streams. Journal of the North American Benthological	Vulnerability –	I
<u> </u>		
Society 25, 677–690. doi:10.1899/0887-3593(2006)25[677:FCTASO]2.0.CO;2.	Invertebrates	
Howard, J. K. and K. M. Cuffey. 2003. Freshwater mussels in a California North Coast Range	Climate Change	i
river: occurrence, distribution and controls. Journal of the North American	Vulnerability –	
Benthological Society 22, 63–77. doi:10.2307/1467978.	Invertebrates	
IUCN Redlist, http://www.iucnredlist.org/details/164494/0	Climate Change	vi
	Vulnerability –	
	Invertebrates	
IUCN Redlist, http://www.iucnredlist.org/details/42686/0.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
IUCN Redlist, http://www.iucnredlist.org/details/44937666/0	Climate Change	vi
-	Vulnerability –	
	Invertebrates	

REFERENCE	CHAPTER	CODE
IUCN Redlist, http://www.iucnredlist.org/details/6828/0.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Jepsen, S. 2013. Species Fact Sheet: Bombus occidentalis. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Jespen, S., C. LaBar and J. Zarnoch. 2015. Species Profile: Gonidea angulata (Lea, 1838)	Climate Change	vi
Western ridged mussel Bivalvia: Unionidae. The Xerces Society for Invertebrate	Vulnerability –	
Conservation. http://www.xerces.org/wp-content/uploads/2010/12/xerces-status-	Invertebrates	
review-gonidea-angulata1.pdf, accessed 6-29-2015.		
Jordan, S. F. 2011. Species Fact Sheet: Coenagrion interrogatum. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Jordan, S. F. 2011. Species Fact Sheet: Rhyacophila chandleri, a caddisfly. USDA Forest	Climate Change	vi
Service. Available from http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-iitr-	Vulnerability –	
rhyacophila-chandleri-2012-01.doc (accessed July 7, 2015).	Invertebrates	
Jordan, S. F. 2012. Species fact sheet: Plebejus icarioides blackmorei. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Jordan, S. F. 2013. Species Fact Sheet: Fluminicola virens. U.S. Department of Agriculture,	Climate Change	vi
Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP)	Vulnerability –	
http://www.fs.fed.us/r6/sfpnw/issssp/documents2/sfs-ig-fluminicola-virens-2013-	Invertebrates	
11.doc	Climata Changa	:
Jordan, S. F. 2013. Species Fact Sheet: Soliperla fender, Rainier roachfly. USDA Forest Service.	Climate Change	vi
Available from http://www.fs.fed.us/r6/sfpnw/issssp/documents3/sfs-iipl-soliperla-	Vulnerability – Invertebrates	
fenderi-2014-02.doc (accessed July 7, 2015). Kogut, T. and N. Duncan. 2005. Conservation Assessment for Cryptomastix devia, Puget	Climate Change	vi
Oregonian. USDA Forest Service Region 6 and USDI Bureau of Land Management,	Vulnerability –	VI
Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-	Invertebrates	
docs/20050900-moll-puget-oregonian.doc	invertebrates	
LaBonte, J. R. 1995. Possible threatened or endangered terrestrial predaceous Coleoptera of	Climate Change	vi
the Columbia River Basin. Report prepared for the Bureau of Land Management/US	Vulnerability –	V1
Forest Service, Eastside Ecosystem Management Project.	Invertebrates	
LaBonte, J. R., D. W. Scott, J. D. McIver and J. L. Hayes. 2001. Threatened, endangered and	Climate Change	i
sensitive insects in eastern Oregon and Washington forests and adjacent lands.	Vulnerability –	
Northwest Science, 5: 185-198.	Invertebrates	
Mazzacano, C. Species Fact Sheet: Cicindela columbica (Hatch, 1938). Xerces Society for	Climate Change	vi
Invertebrate Conservation. http://www.xerces.org/wp-	Vulnerability –	
content/uploads/2008/09/cicindella columbica.pdf	Invertebrates	
Miller, J. and C. Voight. 2011. Species fact sheet: Boloria bellona. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	
Miller, J. and C. Voight. 2011. Species fact sheet: Callophrys gryneus nr. Chalcosiva. USDA	Climate Change	vi
Forest Service.	Vulnerability –	
	Invertebrates	
Miller, J. and Voight, C. 2011. Species fact sheet: Habrodais grunus. USDA Forest Service.	Climate Change	vi
	Vulnerability –	
	Invertebrates	

REFERENCE	CHAPTER	CODE
Monthey, R. 1998. revised by Duncan, N. 2005. Conservation Assessment for Lyogyrus n. sp. 2 Masked Duskysnail. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. 10 pp. http://www.blm.gov/or/plans/surveyandmanage/files/ca-ig-lyogyrus-nsp2-2005-10-	Climate Change Vulnerability – Invertebrates	vi
29.pdf		
NatureServe Explorer, http://explorer.natureserve.org/servlet/NatureServe?searchName=Bombus+suckleyi	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available from	Climate Change Vulnerability – Invertebrates	vi
http://explorer.natureserve.org (accessed July 7, 2015). NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available from http://explorer.natureserve.org (accessed July 8, 2015).	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed June 22, 2015).	Climate Change Vulnerability – Invertebrates	vi
NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. Available http://explorer.natureserve.org. (Accessed June 10, 2015).	Climate Change Vulnerability – Invertebrates	vi
Newell, R. L. and M. L. Anderson. 2009. Note on the occurrence of Siphlonurus autumnalis (Ephemeroptera: Siphlonuridae) in a Montana spring brook. Western North American Naturalist 69(4): 551–555. Available from https://ojs.lib.byu.edu/spc/index.php/wnan/article/view/27460/25923 (accessed July 8, 2015).	Climate Change Vulnerability – Invertebrates	İ
Newton, T. J., D. A. Woolnough and D. L. Strayer. 2008. Using landscape ecology to understand and manage freshwater mussel populations. Journal of the North American Benthological Society 27, 424–439. doi:10.1899/07-076.1.	Climate Change Vulnerability – Invertebrates	i
Niwa, C. G., R. E. Sandquist, R. Crawford, T. L. Frest, T. L. Griswold, P. Hammond, E. Ingham, S. James, E. J. Johannes, J. Johnson, W. P. Kemp, J. LaBonte, J. D. Lattin, J. McIver, J. McMillin, A. Modenke, J. Moser, D. Ross, T. Schowalter, V. J. Tepedino and M. R. Wagner. 2001. Invertebrates of the Columbia River basin assessment area. Gen. Tech. Rep. PNW-GTR-512. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 74 p. (Quigley, Thomas M., ed.; Interior Columbia Basin Ecosystem Management Project: scientific assessment)	Climate Change Vulnerability – Invertebrates	i
O'Brien, C., D. Nez, D. Wolf and J. B. Box. 2013. Reproductive Biology of Anodonta californiensis, Gonidea angulata and Margaritifera falcata (Bivalvia: Unionoida) in the Middle Fork John Day River, Oregon Reproductive Biology of Anodonta californiensis, Gonidea angulata and Margaritifera falcata. Northwest Science 87, 59–72. doi:10.3955/046.087.0105.	Climate Change Vulnerability – Invertebrates	i
Ovaska, K., W. P. Leonard, L. Chichester, T. E. Burke, L. Sopuck and J. Baugh. 2004. Prophysaon coeruleum Cockerell, 1890, blue-gray taildropper (Gastropoda: Arionidae): new distributional records and reproductive anatomy. Western North American Naturalist 64, 538–543.	Climate Change Vulnerability – Invertebrates	i
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family-noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon-columbia/	Climate Change Vulnerability – Invertebrates	Vi
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family-noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon-mutans/	Climate Change Vulnerability – Invertebrates	vi

REFERENCE	CHAPTER	CODE
Pacific Northwest Moths, http://pnwmoths.biol.wwu.edu/browse/family-	Climate Change	vi
noctuidae/subfamily-noctuinae/tribe-noctuini/copablepharon/copablepharon-	Vulnerability –	
viridisparsa/	Invertebrates	
Pelini, S. L., J. A. Keppel, A. E. Kelley and J. Hellmann. 2010. Adaptation to host plants may	Climate Change	i
prevent rapid insect responses to climate change. Global Change Biology, 16(11), 2923-	Vulnerability –	
2929.	Invertebrates	
Pelini, S. L., J. D. Dzurisin, K. M. Prior, C. M. Williams, T. D. Marsico, B. J. Sinclair and J. J.	Climate Change	i
Hellman. 2009. Translocation experiments with butterflies reveal limits to	Vulnerability –	
enhancement of poleward populations under climate change. Proceedings of the	Invertebrates	
National Academy of Sciences, 106(27), 11160-11165.		
Potter, A. and R. Gilbert. 2014. A Region Specific Guide to Butterflies of South Puget Sound,	Climate Change	ii,iii
Washington. http://cascadiaprairieoak.org/wp-content/uploads/2014/04/Guide-to-	Vulnerability –	
Butterflies-of-South-Puget-Sound-2014_updated.pdf	Invertebrates	
Potter, A., J. Fleckenstein, S. Richardson and D. Hays. 1999. Washington state status report	Climate Change	ii,iii,iv
for the mardon skipper. Washington Department of Fish and Wildlife. Olympia,	Vulnerability –	
Washington. 39pp.	Invertebrates	
Prior, K. M., J. D. Dzurisin, S. L. Pelini and J. J. Hellmann. 2009. Biology of larvae and adults of	Climate Change	i
Erynnis propertius at the northern edge of its range. The Canadian Entomologist,	Vulnerability –	
141(02), 161-171.	Invertebrates	
Rogers-Bennett, L., 2007. Is climate change contributing to range reductions and localized	Climate Change	i
extinctions in northern (Haliotis kamtschatkana) and flat (Haliotis walallensis) abalones?	Vulnerability –	
Bulletin of Marine Science 81, 283–296.	Invertebrates	
Rogers-Bennett, L., B. L. Allen and D. P. Rothaus. 2011. Status and habitat associations of the	Climate Change	i
threatened northern abalone: Importance of kelp and coralline algae. Aquatic	Vulnerability –	
Conservation: Marine and Freshwater Ecosystems 21, 573–581.	Invertebrates	
Rothaus, D. P., B. Vadapalas and C. S. Friedman. 2008. Precipitous declines in pinto abalone	Climate Change	i
(Haliotis kamtschatkana kamtschatkana) abundance in the San Juan Archipelago,	Vulnerability –	•
Washington, USA, despite statewide fishery closure. Canadian Journal of Fisheries and	Invertebrates	
Aquatic Sciences 65, 2703–2711.	mvertebrates	
Schmid, F. 1998. Genera of the Trichoptera of Canada and Adjoining or Adjacent United	Climate Change	i
States The Insects and Arachnids of Canada Series, Part 7. NRC Research Press. 320 pp.	Vulnerability –	
5 Carles 1.110 1.100 Carles 2.110 Carles 2.1	Invertebrates	
Schöne, B. R., N. A. Page, D. L. Rodland, J. Fiebig, S. Baier, S. O. Helama and W. Oschmann.	Climate Change	i
2007. ENSO-coupled precipitation records (1959-2004) based on shells of freshwater	Vulnerability –	
bivalve mollusks (Margaritifera falcata) from British Columbia. International Journal of	Invertebrates	
Earth Sciences 96, 525–540. doi:10.1007/s00531-006-0109-3.		
Schultz, C. B., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C.	Climate Change	i
Fimbel, S. Black, H. E. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D.	Vulnerability –	•
Wilderman, R. Davenport, E. Steel, N. Page, P. L. Lilley, J. Heron, N. Kroeker, C. Webb	Invertebrates	
and B. Reader. 2011. Conservation of prairie-oak butterflies in Oregon, Washington and		
British Columbia. Northwest Science, 85(2), 361-388.		
Schweitzer, D. F., N. A. Capuano, B. E. Young and S. R. Colla. 2012. Conservation and	Climate Change	vi
management of North American bumble bees. NatureServe, Arlington, Virginia and	Vulnerability –	ļ VI
USDA Forest Service, Washington, D.C.	Invertebrates	
Severns, P. M. and D. Grossball. 2011. Patterns of reproduction in four Washington State	Climate Change	vi
populations of Taylor's checkerspot (Euphydryas editha taylori) during the spring of	Vulnerability –	V.
2010. Report to the Nature Conservancy. 82 pp.	Invertebrates	
Shear, W. A and W. P. Leonard. 2004. The millipede family Anthroleucosomatidae new to	Climate Change	i
	-	'
	•	
North America: Leschius mcallisteri, new genus, new species. (Diplopoda: Chordeumatida: Anthroleucosomatoidea). Zootaxa 7, $1-7$.	Vulnerability – Invertebrates	

REFERENCE	CHAPTER	CODE
Shepard, J. and C. Guppy. 2011. Butterflies of British Columbia: including western Alberta, southern Yukon, the Alaska panhandle, Washington, northern Oregon, northern Idaho and northwestern Montana. UBC Press. 414 pp.	Climate Change Vulnerability – Invertebrates	İ
South Puget Sound Prairies, http://www.southsoundprairies.org/rare-wildlife-of-the-prairies/	Climate Change Vulnerability – Invertebrates	vi
Stagliano, D. M., G. M. Stephens and W. R. Bosworth. 2007. Aquatic Invertebrate Species of Concern on USFS Northern Region Lands. Report to USDA Forest Service, Northern Region. Montana Natural Heritage Program, Helena, Montana and Idaho Conservation Data Center, Boise, Idaho. 95 pp. plus appendices. Available from http://fishandgame.idaho.gov/ifwis/idnhp/cdc_pdf/2007_R1_aq_invert.pdf (accessed July 7, 2015).	Climate Change Vulnerability – Invertebrates	İ
Stark, B. P. and B. C. Kondratieff. 2004. Pictetiella lechleitneri (Plecoptera: Perlodidae), a new species from Mount Rainier National Park, Washington, U.S.A. Proceedings of the Entomological Society of Washington 106(4): 747-750.	Climate Change Vulnerability – Invertebrates	i
Stelzenmüller, V. M. and P. Martìn. 2009. Patterns of species and functional diversity around a coastal marine reserve: a fisheries perspective. Aquatic Conservation: Marine and Freshwater Ecosystems 19, 554–565. doi:10.1002/aqc.	Climate Change Vulnerability – Invertebrates	i
Stevens, S. R. and D. F. Frey. 2010. Host plant pattern and variation in climate predict the location of natal grounds for migratory monarch butterflies in western North America. Journal of Insect Conservation, 14(6), 731-744.	Climate Change Vulnerability – Invertebrates	i
Stinson, D. W. 2005. Washington State Status Report for the Mazama Pocket Gopher, Streaked Horned Lark and Taylor's Checkerspot. Washington Department of Fish and Wildlife, Olympia, Washington. 129+ xii pp.	Climate Change Vulnerability – Invertebrates	ii,iii,iv
Stone, J., S. Barndt and M. Gangloff. 2004. Spatial Distribution and Habitat Use of the Western Pearlshell Mussel (Margaritifera falcata) in a Western Washington Stream. Journal of Freshwater Ecology 19, 341–352. doi:10.1080/02705060.2004.9664907.	Climate Change Vulnerability – Invertebrates	i
Stone, T. 2009. Species Fact Sheet: Barren juga. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP) http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-juga-hemphilli-hemphilli-2010-05.doc	Climate Change Vulnerability – Invertebrates	Vi
Stone, T. 2009. Species Fact Sheet: Crowned tightcoil. USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington. http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-pristiloma-pilsbryi-2010-05.doc	Climate Change Vulnerability – Invertebrates	vi
Stone, T. 2009. Species Fact Sheet: Dalles juga. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-juga-hemphillidlesensis-2011-03.doc		vi
Stone, T. 2009. Species Fact Sheet: Poplar Oregonian. U.S. Department of Agriculture, Forest Service, Interagency Special Status/Sensitive Species Program (ISSSSP). http://www.fs.fed.us/r6/sfpnw/issssp/documents/planning-docs/sfs-ig-cryptomastix-populi-2010-11.doc	Climate Change Vulnerability – Invertebrates	Vi
The Evergreen State College, http://academic.evergreen.edu/projects/ants/TESCBiota/kingdom/animalia/phylum/art hropoda/class/insecta/order/lepidoptera/family/lycaenidae/genera/icaricia/species/bla ckmorei/blackmorei.html	Climate Change Vulnerability – Invertebrates	Vi
The Nature Conservancy of Washington. 2014. Integrated Prairie-Oak Conservation Report for Oregon and Washington. 46 pp. http://cascadiaprairieoak.org/wp-content/uploads/2014/01/Integrated-Prairie-Conservation-Report-for-OR-and-WA.pdf	Climate Change Vulnerability – Invertebrates	i

REFERENCE	CHAPTER	CODE
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/mardon-skipper/	Climate Change Vulnerability –	vi
	Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/columbia-river-	Climate Change	vi
tiger-beetle/	Vulnerability –	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/eanus-hatchi/	Invertebrates	\./i
The xerces society for invertebrate conservation, http://www.xerces.org/eanus-natchi/	Climate Change Vulnerability –	vi
	Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/johnsons-	Climate Change	vi
hairstreak/	Vulnerability –	
	Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/oregon-silverspot/	Climate Change	vi
	Vulnerability –	
	Invertebrates	_
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/yuma-skipper/	Climate Change	vi
	Vulnerability – Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/gomphus-kurilis/	Climate Change	vi
The Acres Society for invertebrate conservation, http://www.xerces.org/gomphus-kurins/	Vulnerability –	VI
	Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/dragonflies-white-	Climate Change	vi
belted-ringtail/	Vulnerability –	
	Invertebrates	
The Xerces Society for Invertebrate Conservation, http://www.xerces.org/sand-verbena-	Climate Change	vi
moth/	Vulnerability –	
The Verses Cosists for Invented and Consequentian 2012. Detition to list the cidenal results	Invertebrates	:
The Xerces Society for Invertebrate Conservation. 2012. Petition to list the island marble butterfly, Euchloe ausonides insulanus (Guppy & Shepard, 2001) as an endangered	Climate Change Vulnerability –	vi
species under the Endangered Species Act.	Invertebrates	
The Xerces Society for Invertebrate Coservation, http://www.xerces.org/western-bumble-	Climate Change	vi
bee/	Vulnerability –	
	Invertebrates	
The Xerces Society for Invetebrate Conservation, http://www.xerces.org/speyeria-zerene-	Climate Change	vi
bremnerii/	Vulnerability –	
	Invertebrates	_
Thomson, J. D. 2010. Flowering phenology, fruiting success and progressive deterioration of	Climate Change	i
pollination in an early-flowering geophyte. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1555), 3187-3199.	Vulnerability – Invertebrates	
US Fish and Wildlife Service (USFWS). 2001. Oregon silverspot butterfly (Speyeria zerene	Climate Change	i
hippolyta) revised recovery plan. U.S. Fish and Wildlife Service, Portland, Oregon. 113	Vulnerability –	•
pp.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2006. Endangered and Threatened Wildlife and Plants;	Climate Change	i
12-Month Finding on a Petition to List the Island Marble Butterfly (Euchloe ausonides	Vulnerability –	
insulanus) as Threatened or Endangered. Federal Register, 71(219): 66292-66298.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened	Climate Change	i
Wildlife and Plants; 12-Month Finding on a Petition To List the Giant Palouse Earthworm	Vulnerability –	
(Drilolerius americanus) as Threatened or Endangered. Federal Register, 76(143): 44547-44564.	Invertebrates	

REFERENCE	CHAPTER	CODE
US Fish and Wildlife Service (USFWS). 2011. Endangered and Threatened Wildlife and Plants;	Climate Change	i
90-Day Finding on a Petition To List the Sand Verbena Moth as Endangered or	Vulnerability –	
Threatened. Federal Register, 76(33): 9309-9318.	Invertebrates	
US Fish and Wildlife Service (USFWS). 2014. Endangered and Threatened Wildlife and Plants;	Climate Change	i
90-Day Finding on a Petition To List the Island Marble Butterfly as an Endangered	Vulnerability –	
Species . Federal Register, 79(160): 49045-49047.	Invertebrates	
USDA Forest Service (USFS). 2015. Species Fact Sheet: Spotted Taildropper.	Climate Change	vi
https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCEQFjAA & wrl=http%3A%2F%2Fwww.fs.fed.us%2Fr6%2Fsfpnw%2Fissssp%2Fdocuments%2Fplann	Vulnerability – Invertebrates	
ing-docs%2Fsfs-ig-prophysaon-vanattae-pardalis-2010- 01.doc&ei=xGKSVeDCA4SAU_L8gPgK&usg=AFQjCNH088OZHJhAYqmro3uVjiFLebAf_g&si		
g2=rkPDF3QpSstqGC9DsQ2_LQ&bvm=bv.96783405,d.d24&cad=rja, accessed 6-20-3015.		
USDA Forest Service (USFS). Hoary Elfin,	Climate Change	vi
http://www.fs.fed.us/wildflowers/pollinators/pollinator-of-the-	Vulnerability –	
month/hoary_elfin.shtml	Invertebrates	
USDA Forest Service (USFS).	Climate Change	vi
http://www.fs.fed.us/database/feis/plants/shrub/vacoxy/all.html	Vulnerability –	
	Invertebrates	
USDA Forest Service (USFS).	Climate Change	vi
http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fsbdev2_026318.pdf	Vulnerability –	
	Invertebrates	
USDA Forest Service (USFS).	Climate Change	vi
http://www.na.fs.fed.us/pubs/silvics_manual/Volume_1/juniperus/occidentalis.htm	Vulnerability –	
	Invertebrates	
Washington Department of Fish and Wildlife (WDFW). 1995. Management Recommendations	Climate Change	ii,iii
for Washington's Priority Species - Volume I: Invertebrates. Larsen, E. M., Rodrick, E. &	Vulnerability –	,
Milner, R. (Tech. Eds.) Olympia, WA. 87 pp.	Invertebrates	
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Mardon	Climate Change	ii,iii
Skipper in 2012 Annual Report. pp. 96-99.	Vulnerability –	",""
3Npper III 2012 / IIII ddi Neport. pp. 30 33.	Invertebrates	
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Oregon	Climate Change	ii,iii
Silverspot Butterfly in 2012 Annual Report. pp. 88-89.	Vulnerability –	11,111
Silverspot butterny in 2012 Annual Neport. pp. 88-85.	Invertebrates	
Washington Dangeton and of Fish and Wildlife (WDFW) 2012, Endangered Consider Toulands		
Washington Department of Fish and Wildlife (WDFW). 2012. Endangered Species: Taylor's	Climate Change	ii,iii
Checkerspot in 2012 Annual Report. pp. 90-95.	Vulnerability –	
	Invertebrates	
Washington Department of Natural Resources (WDNR) 2005. Covered Species Technical	Climate Change	i
Paper. Aquatic Resources Program Endangered Species Act Compliance Project.	Vulnerability –	
Prepared by Entrix and Battelle. Washington Department of Natural Resources.	Invertebrates	
Olympia, Washington.		
Washington Department of Natural Resources (WDNR). 2005. Covered Species Technical	Climate Change	i
Paper. Aquatic Resources Program Endangered Species Act Compliance Project.	Vulnerability –	
Prepared by Entrix and Battelle. Washington Department of Natural Resources,	Invertebrates	
Olympia, Washington.		
Washington Department of Wildlife (WDFW). 1993. Status of the Oregon silverspot butterfly	Climate Change	ii,iii,iv
(Speyeria zerene hippolyta) in Washington. Unpublished report. Washington	Vulnerability –	
Departmenet of Fish and Wildlife. Olympia, WA.	Invertebrates	
Washington State Blue Ribbon Panel on Ocean Acidification. 2012. Ocean Acidification: From	Climate Change	i
Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L.	Vulnerability –	
Whitely Binder (eds). Washington Department of Ecology. Olympia, Washington. Publication no. 12-01-015.	Invertebrates	

REFERENCE	CHAPTER	CODE
White, J., J. L. Ruesink, A. C. Trimble, J. White, J. L. Ruesink and A. C. Trimble. 2009. The Nearly Forgotten Oyster: Ostrea lurida Carpenter 1864 (Olympia Oyster) History and Management in Washington State 28, 43–49.	Climate Change Vulnerability – Invertebrates	i
Williams, C. M., J. Hellman and B. J. Sinclair. 2012. Lepidopteran species differ in susceptibility to winter warming. Climate Research, 53(2), 119.	Climate Change Vulnerability – Invertebrates	i
Williams, J. D., M. L. Warren Jr., K. S. Cummings, J. L. Harris and R. J. Neves. 1993. Conservation Status of Freshwater Mussels of the United States and Canada. Fisheries 18, 6–22. doi:10.1577/1548-8446(1993)018<0006:CSOFMO>2.0.CO;2.	Climate Change Vulnerability – Invertebrates	i
Williams, P., S. Colla and Z. Xie. 2009. Bumblebee vulnerability: common correlates of winners and losers across three continents. Conservation Biology, 23(4), 931-940.	Climate Change Vulnerability – Invertebrates	i
World Wildlife Fund, https://www.worldwildlife.org/species/monarch-butterfly	Climate Change Vulnerability – Invertebrates	vi

2015 STATE WILDLIFE ACTION PLAN

Summary of responses to comments received during the public comment period (August 11-September 11, 2015)

COMMENTS RECEIVED

We received 21 comments by email from external reviewers. Eleven were in support of adding Great Blue Heron, eight recommended a number of other species be added to Species of Greatest Conservation Need (SGCN); listed below), and the remainder raised a small number of other issues. For questions, more information, or the full text of comments received, please contact Penny Becker at penny.becker@dfw.wa.gov.

RESPONSE

Each of the comments and Washington Department of Fish and Wildlife (WDFW) responses are briefly summarized below. Comments are organized by the chapter they most closely correspond to. Where appropriate, we have referenced the page number where specific edits to the public review draft can be found.

Chapter 2 - State Overview

COMMENT	RESPONSE
Acknowledge recent	Information on recent habitat acquisitions and descriptions of two additional
habitat acquisitions	collaborative projects (Puget Sound Nearshore Ecosystem Restoration Project
Include additional	and the I-90 Snoqualmie Pass Project) were added to Chapter 2 (See pages 2-16,
collaborative projects	2-24, and 2-26).

Chapter 3 – Species of Greatest Conservation Need

COMMENT	RESPONSE
Add a generic "local native pollinator complex" to cover the conservation needs of Washington State's approximately 600 species of native bees and other declining native pollinators.	We added text in the SGCN chapter (page 3-40) to emphasize the importance of this group of species and we outlined challenges to their conservation. We also edited the methodology and criteria section in Chapter 3 to clarify that we need data to be able to confirm that the species is in need of conservation – lack of information alone does not qualify a species as an SGCN. While State Wildlife Grants may not be utilized to fund the work requested by the commenter, WDFW will continue to work with our partners and to utilize other funds (such as Watchable Wildlife License Plate funds) as possible to bring attention to our state's important pollinators.
Combine Priority Habitats and Species (PHS) and SGCN lists.	We evaluated the option of combining these lists early in the SWAP development process and determined that each program serves unique purposes, and is oriented towards different audiences. Combining the lists would dilute the effectiveness of each and ultimately cause more confusion. WDFW will work to better clarify the purpose and functions of these lists for internal and external users.
Terminology confusing – eliminate "species of concern".	WDFW will evaluate the benefits of retaining this term as we move forward with implementation of the SWAP.

Chapter 3 – Species of Greatest Conservation Need: recommendations for adding specific species to the list.

While we greatly appreciate the comments and data provided by all emails received, we have not changed the SGCN list as published in the SWAP Public Review Draft at this time. We reviewed the current status and data available for each of the species noted below and determined that in each case there was no compelling indication of region-wide decline. Please see Chapter 3 of the final SWAP for the criteria used to assess which species should be on the SGCN list. We also note for reviewers that federal guidance allows WDFW to add a species to the SGCN list within the next ten years, if new data or evidence of declines becomes available. We will periodically assess the status of species and recommended new additions if necessary. Please note that the comments have been summarized in the table below.

Species	Rationale for not adding this species to the SGCN list at this time.
Acorn Woodpecker	This species was not included on the SGCN list because it is at the periphery of its
Although newer to WA, it is	range, and has recently expanded its range north into Washington. We do not
still in need of conservation	have information as to why the species has expanded into Washington.
because of the overall	
decline in oak woodland	
habitat and its slow	
reproduction rate.	
Black-backed Woodpecker	It seems likely that this species exhibits both functional and numerical responses
This species is highly	to forest fires. As a result, the population likely changes in space and time at
dependent on conservation	multiple spatial scales. The most productive areas are recent burned forests and
restrictions essentially	when those areas are no longer suitable the species again responds (we assume)
unknown away from recent	both functionally and numerically. When recently burned forests are no longer
burned forests, it exists	present in a particular landscape or are insufficiently large at least some of these
only where burned snags	woodpeckers move back to the closed-canopy forest. We are fully aware of
are projected from salvage	research indicating that the species uses recently burned forests and that salvage
logging.	harvest modifies habitat. We are unaware, however, of any data indicating that
	the species is experiencing a long-term population decline.
	This is currently a PHS species, and therefore WDFW has developed
	management recommendations for local governments, conservation groups and
	others to utilize for its continued conservation.
Ten native bumblebees	There are many native bee species, and unfortunately, like many insects, we
White-shouldered bumble	know little regarding their distribution and abundance, or trends of either. Our
bee, Bombus appositus	SGCN assessment process consisted of evaluating NatureServe designated G1,
High country bumble bee,	G2, S1 and S2 species, and state and federally listed taxa, which included only
California bumble bee,	one or two bees. We also used additional resources as available for SGCN
Bombus californicus	assessments. For our assessments of bees, we relied heavily on data that did
(fervidus)	exist; the recent IUCN Assessments for North American Bombus spp. (Bombus
Yellow bumble Bee,	genus includes all bumble bees), and phone discussion with the lead author of
Bombus fervidus	the document, Rich Hatfield, with The Xerces Society for Invertebrate
Obscure bumble bee,	Conservation.
Bombus calignosus	
Fernald cuckoo bumble	All Bombus occurring in WA categorized by IUCN as Vulnerable or at a higher
bee, Bombus fernaldae	level of endangerment were added to SGCN list, unless there were significant
Frigid bumble bee, <i>Bombus</i>	questions regarding status presented in the analysis or justification notes. IUCN
frigidus	assessments categorized the three bumble bee SGCN as Vulnerable (Western
Indiscriminate cuckoo	and Morrison's Bumble Bees) and Critically Endangered (Suckley Cuckoo Bumble
bumble bee, <i>Bombus</i>	Bee). Two species recommended by this commenter were also categorized
insularis	
Forest bumble bee,	Vulnerable (California and Obscure Bumble Bees), but had significant questions presented in the report regarding data confidence or other assessment values.

Species	Rationale for not adding this species to the SGCN list at this time.
Bombus sylvicola Half-black bumble bee, Bombus vagans Van Dyke's bumble bee, Bombus vandykei	Of the other eight species recommended for SGCN status by this comment, seven were categorized by IUCN as Least Concern, and one as Data Deficient.
Cascades Frog Should be added because the USFWS has issued a 90- day finding that determined consideration for listing under the ESA was warranted.	We know of no data indicating region wide, long-term population declines of Cascades Frogs. Cascades Frog depend on high elevation wetlands for breeding, and are potentially at risk from climate change - population status should be assessed over time.
Cassin's Auklet Data not sufficient to remove.	We have no information to indicate this species has experienced a population decline. Many seabirds are susceptible to changes in their food supply in response to changes in oceanic conditions. This can result in dynamic changes in species abundance. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Common Murre Data not sufficient to remove.	We have no information to indicate this species has experienced a population decline. Many seabirds are susceptible to changes in their food supply in response to changes in oceanic conditions. This can result in dynamic changes in species abundance. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Great Blue Heron WDFW does not separately list the disappearing Pacific Great Blue Heron, the fannini subspecies found only in the Salish Sea, from the herodias subspecies found throughout our state. In 1976 there were ten nesting colonies of fannini in Thurston County. At last counting, in 2009, there were only five.	The subspecies <i>fannini</i> is found throughout the "coastal" areas of western Washington (not just in the Salish Sea) and extends to Alaska. We are not aware of evidence that any populations within western Washington have declined. The 9,000 individuals in the Greater Puget Sound area in 2006 (as mentioned in one comment letter) does not appear to us to be a small number. Without a newer estimate showing a decline, this doesn't represent a significant concern. Some colonies do exist close to populated areas and seem to do well as long as human disturbance doesn't become excessive. Also, we note that the SWAP SGCN list focused on statewide or region-wide population status and trends, not county by county. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Harbor Porpoise The harbor porpoise should be included in protective management until it is certain that its population is stable or increasing.	Two sources indicate that harbor porpoises have been on the increase in the Washington portion of the Salish Sea over the last 15 to 20 years and that the species may now be at historically high population levels. These sources include one WDFW biologist that annually surveys the Salish Sea (Evenson) and Cascadia Research Cooperative (Calambokidis). Both data sets seem to show a very noticeable increasing trend in harbor porpoises since the 1990s. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.

Species	Rationale for not adding this species to the SGCN list at this time.
Pileated Woodpecker At risk because it requires large, decayed snags for nesting and roosting.	Breeding Bird Survey data indicate slight increases in Washington for both time periods reported (1966-2013 and 2003-2013). Confidence intervals for both time periods indicate that trends were not distinguishable from stability. Trends for the Northern Pacific Rainforest (BCR 5) were slightly down for both periods, and again the confidence intervals were not distinguishable from stability. This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to
Vaux's Swift Specifically regarding	utilize for its continued conservation. Breeding Bird Survey data indicate slight declines in Washington, British Columbia and the Northern Pacific Rainforest (BCR 5); however, all trends had
Vaux's swift, there is widespread evidence from numerous sources (e.g., BBS data; Bull 2003) that this species has been in decline in the northwest for some time.	confidence intervals indicating that trends were not distinguishable from stability. The trend for Oregon was a slight increase. We are aware of no monitoring data that rigorously demonstrates a population decline in this species in Washington. The trend in habitat loss in Washington since European settlement is acknowledged; most of that loss occurred prior to the beginning of the Breeding Bird Survey period, and trend in habitat loss is now much less. Although this was not a reason for not including Vaux's Swift as a SGCN, it is noteworthy that forests in lower and mid-elevation areas in Washington (e.g. nonfederal lands in the Puget Lowlands and southwestern Washington) will almost certainly improve as habitat for this species in the decades ahead, as forest buffers along fish-bearing streams mature and trees in those buffers attain the size and age where the structural conditions needed by swifts for roosting and nesting are present.
	This is currently a PHS species, and therefore WDFW has developed management recommendations for local governments, conservation groups and others to utilize for its continued conservation.
Western Yellow-bellied Racer	This species is considered extirpated in Washington and we have chosen not to include these species as SGCN.

Chapter 4 – Habitats of Greatest Conservation Need

COMMENT	RESPONSE
High alpine lakes are unique	We recognize that one of the weaknesses of the National Vegetation
and should not be lumped	Classification is the lack of detail regarding aquatic systems. We are working to
into the Open Water	strengthen the aquatic components of the national vegetation classification,
formation.	particular in terms of defining ecological systems and will incorporate these
	refinements as we work to implement the SWAP.
11.11.1.11.15	
Listing habitat features next	We added language in Chapter 4 (page 4-3) to indicate the habitat features
to each SGCN in that	based on the work of Johnson and O'Neill that were referenced throughout the
ecological system would	plan in developing conservation actions for species.
make plan more useful to	
implementers. Consider	
using sources such as	
Johnson and O'Neill (2001)	
and expert department staff to bring more	
_	
specificity to this section.	

COMMENT	RESPONSE
Terminology is confusing. Explain differences between PHS, HGCN, ESOC.	Additional clarification of the term Habitats of Greatest Conservation is provided in Chapters 2 and 4. This new language clarifies that for the purposes of the SWAP, Habitats of Greatest Conservation Need includes ecological systems of concern (those identified as imperiled) as well as those ecological systems considered especially important to SGCN. We have also clarified the differences between HGCN and PHS – namely that the lists of habitats contained within each were developed for difference purposes and different audiences.

Chapter 5 – Climate Change

COMMENT	RESPONSE
Eliminate	The Department recognizes that in some cases stocking lakes in high alpine areas can have
stocking of high	deleterious effects on native amphibian populations. The Department has several ways to
alpine lakes as a	minimize this potential negative effect.
climate	1. The Department minimizes lakes where fish stocking occurs. There are thousands of
adaptation	high elevation lakes in Washington, of which less than 2,000 contain fish. Most high
strategy.	lakes, tarns, and ponds are fishless and no fish stocking occurs. In addition, many of the
Fish in	high lakes that are stocked are not good amphibian habitat. Amphibians prefer shallow, warm, productive high lakes and ponds, which in turn do not support fish stocking well.
naturally-	Fish stocking occurs in lakes that are steep sided and deep. Finally, the Department
fishless systems	does not stock "new" high lakes; stocking occurs only at lakes that have historically
reduce the	been stocked.
abundance of	
larval	2. The Department has also put in place measures to reduce the deleterious effects of
amphibian	stocking where fish stocking does occur sympatric with native amphibian populations.
populations.	The Department has a high lakes stocking objective to stock lakes on a rotational basis,
	only stock lakes where reproduction cannot occur (or if reproduction can occur then to
	use triploid fish), mostly stock fish native to the range except in a few places, and stock
	at low densities with single age classes. This ensures that forage does not become
	limited to trout that could shift to consuming amphibians and that on a rotational basis most stocked lakes are fishless or at exceptionally low fish densities over time. Most
	lakes are stocked on a 3 to 10 year rotation based on fishing pressure. This approach is
	based on best science and outlined in the National Park Service fish stocking
	Environmental Impact Statement.
	3. Finally, the Department is partnering with USFS and other land management entities to
	ensure that fish stocking is done in a way that does not preclude movement by
	amphibians through high elevation waters. WDFW is in the initial planning stages of
	ensuring aquatic connectivity of fishless waters throughout public lands in the
	Cascades. The Department is also working on identifying lakes where fish communities
	are likely to lead to elevated predation on amphibians. The Department estimates there
	are likely only 300 or so lakes (of the 7,000) where this is an issue, and we are looking
	for innovative ways to deal with these lakes.

Chapter 6 – Monitoring and Adaptive Management

COMMENT	RESPONSE
Ecosystem monitoring, multi-species monitoring	Both of these suggestions will be considered during the
and monitoring little known species are rarely	implementation of the SWAP.

COMMENT	RESPONSE
funded – suggest small dedicated fund for these.	
WDFW should do an annual TRACS summary for the public.	

Appendix B – Potential Range and Habitat Distribution Maps

COMMENT	RESPONSE
WDFW should do a report to assess the accuracy of the maps over time.	The Potential Range and Habitat Distribution Maps are considered a work in progress and we intend to refine and update them over time as new information becomes available regarding species occurrence data.
Add an index that lists SGCN distribution by county, similar to PHS.	While we appreciate the suggestion to make the maps as useful as possible, we want to clarify that these maps are not intended to be used as a substitute for the PHS maps currently published by the Department.

Appendix E – Prioritization Matrix

COMMENT	RESPONSE
Scoring tool should be provided on line.	WDFW will consider these options during the implementation phase of the SWAP.
Provide a real world example of using the criteria.	