Alice Zinnes

I thank the DRBC for banning fracking in the DRB. Peer-review studies after peer-review studies show that facking operations pollute the air, water and land with toxic chemicals, heavy metals and radioactive materials. It thus makes complete sense to ban fracking from our protected waters, the Delaware River.

However, and for similar reasons, it makes absolutely NO SENSE to allow -- even with regulations -- any frack wastewater into the Basin. This water holds the same chemicals, heavy metals and radioactive materials that give reason to ban fracking in the first place. Please see the attached policy analysis of the radioactivity in frack wastewater.

Policy Analysis

Subscriber access provided by UNIV OF PITTSBURGH

Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater

Nancy E. Lauer, Nathaniel R. Warner, and Avner Vengosh

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b04952 • Publication Date (Web): 04 Jan 2018 Downloaded from http://pubs.acs.org on January 21, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Sources of Radium Accumulation in Stream Sediments near
2	Disposal Sites in Pennsylvania: Implications for Disposal of
3	Conventional Oil and Gas Wastewater
4	
5	Nancy E. Lauer ¹ , Nathaniel R. Warner ² , Avner Vengosh ^{1*}
6	
7	¹ Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke
8	University, Durham, NC, USA; ² Department of Civil and Environmental Engineering,
9	Pennsylvania State University, University Park, PA, USA
10	* Corresponding Author: Telephone: 919-681-8050. E-mail: vengosh@duke.edu
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	KEY WORDS
23	Radium, Produced Water, Appalachian Basin, Marcellus Shale, Hydraulic Fracturing
24	
25	

26 ABSTRACT

27 In Pennsylvania, Appalachian oil and gas wastewaters (OGW) are permitted for 28 release to surface waters after some treatment by centralized waste treatment (CWT) 29 facilities. While this practice was largely discontinued in 2011 for unconventional 30 Marcellus OGW, it continues for conventional OGW. This study aimed to evaluate the 31 environmental implications of the policy allowing the disposal of conventional OGW. 32 We collected stream sediments from three discharge sites receiving treated OGW between 2014-2017 and measured ²²⁸Ra, ²²⁶Ra, and their decay products, ²²⁸Th and ²¹⁰Pb, 33 respectively. We consistently found elevated activities of ²²⁸Ra and ²²⁶Ra in stream 34 35 sediments in the vicinity of the outfall (total Ra = 90-25,000 Bq/kg) compared to upstream sediments (20-80 Bg/kg). In 2015 and 2017, ²²⁸Th/²²⁸Ra activity ratios in 36 37 sediments from two disposal sites were relatively low (0.2-0.7), indicating that a portion 38 of the Ra has accumulated in the sediments in recent (<3) years, when no unconventional Marcellus OGW was reportedly discharged. ²²⁸Ra/²²⁶Ra activity ratios were also higher 39 than what would be expected solely from disposal of low 228 Ra/ 226 Ra Marcellus OGW. 40 41 Based on these variations, we concluded that recent disposal of treated conventional 42 OGW is the source of high Ra in stream sediments at CWT facility disposal sites. 43 Consequently, policies pertaining to the disposal of only unconventional fluids are not 44 adequate in preventing radioactive contamination in sediments at disposal sites, and the 45 permission to release of treated Ra-rich conventional OGW through CWT facilities should be reconsidered. 46 47

17

48

49 INTRODUCTION

50	The large-scale development of unconventional shale gas in the Appalachian
51	Basin has been associated with different types and mechanisms of water contamination,
52	including the management and disposal of the oil and gas wastewater (OGW) that is
53	comprised of flowback fluids and produced waters. ¹⁻³ Flowback and produced waters
54	from the Appalachian Basin are highly saline and enriched in naturally occurring
55	radioactive materials (NORM). ⁴⁻⁷ Previous studies have demonstrated that NORM in
56	formation waters mainly consists of radium-226 ($t_{1/2}$ =1600 years) and radium-228
57	($t_{1/2}$ =5.8 years) from the uranium and thorium decay series. ⁷⁻⁹ Total Ra (²²⁸ Ra+ ²²⁶ Ra)
58	activities have been measured in Appalachian Basin formation waters up to hundreds of
59	Becquerels per liter (Bq/L; up to 660 Bq/L and 250 Bq/L for Marcellus and conventional
60	produced waters, respectively) ⁷ that exceed by several orders of magnitude the activities
61	typically measured in fresh surface waters (0.5- 20 mBq/L for 226 Ra) by several orders of
62	magnitude. ¹⁰ Elevated ²²⁸ Ra and ²²⁶ Ra may pose environmental and human health risks if
63	released to the environment, as they are carcinogenic, ¹¹ bioaccumulate (concentration
64	factors between sediment and aquatic plants and fish of 0.014 and 2.3-700,
65	respectively), ¹²⁻¹⁷ persist in the environment due to their relatively long half lives, and
66	decay into a suite of other radioactive elements including gaseous ²²² Rn, ²¹⁰ Pb, and ²¹⁰ Po.
67	Due to their high salinity, unique chemistry, and immense volume, OGW pose
68	significant management challenges when brought to the surface with hydrocarbons. In
69	Pennsylvania, 43 million bbl of unconventional and 6.6 million bbl of conventional OGW
70	were produced in 2014. A large fraction of this OGW (64% of unconventional OGW and
71	5% of conventional OGW; >50% of the combined total) was reused for hydraulic

72	fracturing operations. ¹⁸ A major option for disposal is injection underground via EPA
73	Class II deep-well injection wells, but since there are a relatively limited number of these
74	disposal wells in Pennsylvania, the OGW is often transported to neighboring states for
75	disposal. Therefore, alternative disposal options in Pennsylvania consist of spreading on
76	roads as a deicing agent or dust suppressant and treatment by wastewater treatment
77	plants, including centralized waste treatment (CWT) facilities. ¹⁸ Treatment of OGW at
78	these facilities has been described previously ¹⁹⁻²¹ and often includes the addition of
79	Na ₂ SO ₄ to promote the precipitation of metals, as well as Ra, before the treated OGW is
80	discharged to local surface waters.
81	Due to concerns of contamination, in the spring of 2011 the Pennsylvania
82	Department of Environmental Protection (PADEP) requested unconventional well
83	operators to cease sending Marcellus OGW to wastewater treatment facilities. Although
84	participation was voluntary, treatment of Marcellus waste at many wastewater treatment
85	plants in Pennsylvania nearly ended by the fall of 2011. ²² However, these facilities
86	continued to receive, treat, and dispose conventional OGW to the local streams. ¹⁸
87	Several studies addressing this issue were published in 2013, relatively soon after
88	Marcellus OGW treatment and discharge was discontinued. These studies showed that
89	the releases of highly saline effluent causes direct contamination of the stream water at
90	disposal sites, ^{19, 20, 23, 24} and also increases the risk of the formation of disinfection
91	byproducts in downstream communities. ²⁵ In addition to degrading water quality, Warner
92	et al. ²⁰ found that the release of treated OGW to Blacklick Creek, a tributary of the
93	Allegheny River in Josephine, PA, resulted in the accumulation of Ra (²²⁶ Ra activities of
94	544- 8,759 Bq/kg) in stream sediments in close vicinity (<200 m) to the outfall. Skalak et

95	al. ²⁶ found no increase in ²²⁶ Ra in stream sediments downstream of effluent sites from
96	five wastewater treatment facilities. In two facilities, Skalak et al. ²⁶ also collected
97	sediments at the disposal sites, one of which was found to have ²²⁶ Ra activities slightly
98	elevated (73 Bq/kg) above background (40 Bq/kg). These investigations, however, were
99	conducted during the time period that Marcellus OGW were treated and discharged
100	(2008-2011), or relatively soon after this practice was discontinued, and consequently the
101	Ra accumulation in sediments has been attributed to contamination from the time period
102	of high volumes of Marcellus OGW discharge. ²⁰
103	While much attention has been paid to understanding and mitigating
104	contamination from unconventional OGW, the environmental impact from disposal of
105	conventional OGW from CWT facilities has not been thoroughly investigated. Previous
106	research has shown that conventional OGW from the Appalachian basin is also enriched
107	in both 226 Ra and 228 Ra, with total Ra activities reaching 250 Bq/L (median 27 Bq/L). ⁷
108	Accordingly, we hypothesized that in spite of Marcellus OGW no longer being sent to
109	wastewater treatment facilities, long-term release of conventional OGW by CWT
110	facilities would still result in Ra accumulation in stream sediments at disposal sites.
111	In this study, we collected stream sediments from three disposal sites in PA
112	receiving treated OGW. These include sediments from Blacklick Creek in Josephine, the
113	Allegheny River in Franklin, and McKee Run in Creekside (Figure 1). Stream sediments
114	were collected between 2014 and 2017 while the CWT facilities were not receiving
115	Marcellus OGW but did report receipt of conventional OGW. ¹⁸ The objectives of this
116	study were to (1) assess Ra accumulation and the ingrowth of Ra decay products in
117	sediments of streams receiving treated conventional OGW; (2) use the U-Th series

118 disequilibrium to constrain the timing of Ra accumulation and determine whether the Ra

in stream sediments reflects ongoing conventional OGW disposal or legacy disposal of

120 Marcellus OGW; and (3) use the data to evaluate the environmental implications of

121 current policies that solely regulate and restrict unconventional fluids and allow

122 continued disposal of treated conventional OGW to the environment.

123

124 MATERIALS AND METHODS

125 Site Selection. We investigated three sites where OGW effluents were released to surface

126 waters from CWT facilities (Figure 1). The CWT facilities that were chosen are defined

127 by Standard Industrial Classification (SIC) codes that only relate to oil and gas wastes.

128 Although the possibility that these facilities received other undocumented wastes during

the study period is unknown, we are not aware of any other NORM-rich wastewater

130 sources in the study area. These facilities include (1) the Pennsylvania Brine Treatment

131 Josephine Facility ("Josephine Facility") in Josephine, PA which discharges treated

132 OGW to Blacklick Creek; (2) the Pennsylvania Brine Treatment Franklin Facility

133 ("Franklin Facility") in Franklin, PA, which discharges to the Allegheny River; and (3)

134 Hart Resource Technologies Creekside Facility ("Hart Facility") in Creekside, PA, which

135 discharges to McKee Run (Figure 1).

136 In 2010, the PADEP issued regulations that required effluents from wastewater

treatment plants have total dissolved solid (TDS) levels below 500 mg/L. However, the

138 Josephine, Franklin, and Creekside facilities were 3 of initially 27 facilities grandfathered

in to previous regulations that do not strictly limit the TDS of effluents.²⁷ These three

140 investigated facilities also reported that they stopped receiving unconventional OGW by

141	the end of 2011, following PADEP asking that well operators voluntarily stop sending
142	unconventional OGW to wastewater treatment facilities grandfathered in to the less
143	stringent TDS standards. ^{22, 27} Total conventional and unconventional waste sent to CWT
144	facilities investigated in this study was compiled from the PADEP oil and gas reporting
145	website for the years 2010-2016. ¹⁸ These data confirm that treatment of unconventional
146	wastes at these three facilities diminished by 2012, while treatment of conventional waste
147	and discharge of high salinity waters continued at consistent rates (Figure S1). Average
148	annual discharge rates from 2012 to 2017 were of $236\pm61 \times 10^6$ L per year at the Franklin
149	Facility and $174\pm29 \times 10^6$ L per year at the Josephine Facility. ²⁸
150	In each of the sites, effluents from the CWT facilities discharge to the local
151	streams. The stream sediments in these areas are common to northern Appalachian
152	watersheds. Grain size distribution analyses indicate that the stream sediments
153	consistently range from 5-15% silt and clay across all streams. The remainder of the size
154	fraction is fine to very coarse sand. Results in this study refer to the bulk sediments
155	without analysis of selective grain-size fractions.
156	
157	Sample Collection. Grab stream sediments were collected in May 2014 (Franklin n= 2,
158	Josephine n=7, Hart n=2), June and August 2015 (Franklin n= 4, Josephine n=2, Hart
159	n=2), and June 2017 (Franklin n= 4, Josephine n=3) from the three effluent sites.
160	Approximately 100 grams of the top 2-4 cm of sediment were scooped with a shovel and
161	stored in a polypropylene jar. Multiple sediment samples were similarly collected from
162	various points upstream of the disposal site over the course of the sampling campaigns
163	(Franklin n=5, Josephine n=7, Hart n=6). Upstream sediments are assumed to be

Page 8 of 28

unaffected by effluents and therefore are used as reference sites. However, other
upstream sources such as coal mine discharges and other CWT facilities could potentially
influence the "background".
One effluent sample was also collected from the Franklin Facility in 2015. The

sample was collected unfiltered, prior to coming in contact with stream water. The
effluent was diluted with freshwater to a specific conductivity less than seawater (<50
mS/cm) and passed through two sequential plastic columns each containing 10 grams of
MnO₂ coated acrylic fiber that efficiently adsorbs Ra.²⁹⁻³⁶ The flow rate through the
columns was monitored periodically and kept at less than 1 L/min. Fibers were rinsed
with DI water, hand squeezed to remove particulates and excess moisture, and stored in
separate plastic bags prior to laboratory processing.

175

176 Radionuclide Analyses. Approximately 40-60 grams of sediment were oven dried at 105 177 degrees C and, if necessary, ground with a mortal and pestle to a diameter less than 5 178 mm. Samples were packed and weighed in plastic snap close Petri style dishes (6.5 cm in 179 diameter and 2 cm in height) that were then sealed with electrical tape and coated in wax to prevent the escape of gaseous 222 Rn ($t_{1/2}$ =3.8 days) and 220 Rn ($t_{1/2}$ =55 seconds). The 180 181 MnO₂ coated fibers from the Franklin Facility were compressed and then packaged and 182 incubated similarly to the sediment samples. The two fibers were packaged and analyzed 183 separately to monitor for potential Ra bleed through that would result in underestimation of Ra activities.³⁴ 184

Sealed samples incubated for a minimum of 21 days to allow ²²⁶Ra to reach
radioactive secular equilibrium (i.e. the activity of the parent nuclide is equal to the

187	activity of decay product) with ²²² Rn along with other decay products, ²¹⁴ Bi ($t_{1/2}$ = 19.9
188	minutes) and ²¹⁴ Pb ($t_{1/2}$ = 27 minutes). This holding time also allows ²²⁸ Th to reach
189	radioactive secular equilibrium with 224 Ra (t _{1/2} =3.6 days) and the succeeding short-lived
190	radionuclides including ²¹² Pb ($t_{1/2}$ =10.6 hours) and for ²²⁸ Ra to reach radioactive secular
191	equilibrium with its immediate decay product 228 Ac (t _{1/2} =6.1 hours). If radioactive secular
192	equilibrium is assumed in these sections of the U and Th decay series, ²²⁸ Ra, ²²⁶ Ra, and
193	²²⁸ Th can be measured through their decay products ³⁶⁻³⁹ when direct measurement is not
194	feasible (e.g. the significant interference of ²³⁵ U (54% yield) on the 186 KeV peak).
195	Following incubation, samples were counted on a Canberra Broad Energy 5030
196	Germanium Gamma detector surrounded by 10 cm of lead shielding. Samples typically
197	counted for 6-48 hours so that counting errors (2σ) were less than 10%. ²²⁶ Ra activities
198	were measured through the 351 KeV energy peak of ²¹⁴ Pb. ²²⁸ Ra activities were
199	measured through the 911 KeV energy peak of ²²⁸ Ac. ²²⁸ Th activities were measured
200	through the 239 KeV energy peak of ²¹² Pb. Finally, ²¹⁰ Pb ($t_{1/2}$ = 22 years) activities were
201	measured directly through the 47 KeV energy peak. The detector efficiencies were
202	determined using a U-Th reference ore material (DL-1a) prepared by the Canadian
203	Certified Reference Materials Project (CCRMP) that was packaged and incubated in a
204	container identical to the samples. Background and efficiency checks were performed
205	routinely prior to and during the time frame of sample analyses.
206	We accounted for attenuation of gamma photons by the sample itself at each
207	energy investigated in this study using U and Th point sources according to methods
208	described in Cutshall et al. ⁴⁰ At low energies (<200 KeV; ²¹⁰ Pb), differences in sample
209	density and composition between the standard and samples of interest resulted in

210 significant attenuation differences. However, we found at higher energies (>200 KeV),

these differences were generally minor (i.e. within statistical counting error) for our

sample set.

213

214 **RESULTS AND DISCUSSION**

215 Accumulation of Ra and decay products in sediments at OGW disposal sites. At all

three investigated sites, we consistently find elevated Ra activities in stream sediments

collected near effluent pipes at the outfall sites (226 Ra = 57-14,949 Bq/kg; n= 26)

- compared to upstream sediments (226 Ra = 9-41 Bq/kg; n=18) (Figure 2). Sediments from
- 219 the Franklin effluent site had ²²⁶Ra activities ranging from 269-14,949 Bq/kg (n=10),
- sediments the Josephine effluent site had ²²⁶Ra activities ranging from 119- 10,747 Bq/kg
- 221 (n=12), and sediments from the Hart effluent site had ²²⁶Ra activities ranging from 57-

222 351 Bq/kg (n=4). We did not observe any apparent trends in activities increasing or

decreasing with time.

224 Because Ra is significantly higher in sediments from disposal sites compared to sediments from upstream sites (up to ~650 times compared to the average 226 Ra 225 226 background activity at the Franklin Facility), combined with direct evidence for water contamination from OGW effluents in the stream water,^{20, 41} we suggest that the CWT 227 228 facility discharges are the source for the elevated Ra in the impacted stream sediments. While total Ra activities in conventional OGW can be found up to 250 Bg/L, low ²²⁶Ra 229 activities in the discharged effluents from Josephine site were reported by Warner et al²⁰ 230 231 (0.13-0.19 Bq/L), which indicate substantial Ra removal as part of the CWT treatment. Similarly, we found relatively low activities of ²²⁶Ra and ²²⁸Ra (0.4 Bg/L and 0.6 Bg/L, 232

233 respectively) in effluents collected from the Franklin Site in 2015. In spite of the large 234 removal of Ra from the treated effluents, Ra in sediments collected from the disposal 235 sites was still elevated. These data suggest that the release of low Ra effluents can 236 potentially results in high Ra accumulation in sediments at the disposal sites. However, 237 we cannot exclude the possibility of infrequent pulses of high Ra effluents to the streams 238 as a major contributor to the Ra activities measured in sediments from the disposal sites. 239 We conducted mass-balance calculations to evaluate the possibility that the 240 ongoing release of low-Ra effluents is responsible for the elevated Ra observed in the 241 sediments near the effluents discharge sites. Our model (see SI for details) takes into 242 account the Ra loading to the stream (based on the Ra activities and volume of the 243 discharge effluents), variable salinity ranges that control the Ra adsorption coefficient $(K_d)^{42}$, and the volume of impacted sediments. We find that the Ra activities in impacted 244 245 stream sediments modeled from these mass-balance calculations are similar to the 246 measured Ra activities in the sediments, supporting the notion that Ra accumulation at 247 the levels observed in this study is possible from long-term discharge of treated OGW 248 effluents even with low Ra activities. Our model does not account for any sediment 249 losses from the system due to continuous downstream transport. A previous study 250 estimated sedimentation rates at 5 to 8 cm per year in a location downstream of the discharge site of Blacklick Creek⁴³, suggesting that there is likely some transport of 251 252 sediments to and from the discharge sites, which could effectively be "diluting" the Ra 253 activities at the discharge sites. 254 The retention of Ra in stream sediments following OGW disposal can be obtained

by (1) Ra adsorption to clays and/or manganese and iron oxides;^{42, 44, 45} (2) incorporation

256	of Ra into secondary minerals such as barite ((Ba,Ra)SO ₄) that could be generated upon
257	the blending of Ba-rich OGW with high-sulfate river water; 46 and/or (3) episodic or
258	ongoing addition of extremely fine-grained barite particles that were generated during the
259	treatment process, suspended in the liquid effluents, and then transported to the stream
260	sediments. While determining the mechanism of Ra accumulation to sediments is outside
261	the scope of this study, future research should investigate whether Ra is incorporated into
262	sediments in these streams through adsorption, authigenic barite formation, or effluent-
263	transported solid barite particles. Such a distinction could have important implications for
264	mitigating future contamination.
265	In addition to ²²⁶ Ra and ²²⁸ Ra, elevated activities of Ra decay products, ²¹⁰ Pb and
266	²²⁸ Th, were detected in the sediments collected from two CWT disposal sites at
267	substantially elevated activities compared to the upstream sediments (Figure 2).
268	Sediments from the Franklin site had ²²⁸ Th activities ranging from 91-4591 Bq/kg and
269	²¹⁰ Pb activities ranging from 117-1593 Bq/kg, and sediments the Josephine effluent site
270	had 228 Th activities ranging from 32- 2614 Bq/kg and 210 Pb activities ranging from 33-82
271	Bq/kg. Upstream ²²⁸ Th and ²¹⁰ Pb activities ranged from 9-38 Bq/kg and 14-81 Bq/kg,
272	respectively, at both sites. Given the low solubility of Th and Pb and their negligible
273	levels in OGW ⁸ , we assume that the accumulation of 228 Th and 210 Pb in the stream
274	sediments is likely due to Ra decay and subsequent ingrowth in situ, rather than the
275	transport and addition of these nuclides via retention from discharged effluents.
276	
277	Source and Age Constraints of Radionuclide Accumulation. Determination of the
278	timing of Ra accumulation has important implications for assessing the source of Ra

contamination in the investigated streams. If elevated Ra activities are found to be solely
due to legacy contamination from Marcellus OGW treatment and disposal, then the end
of this practice in 2011 should have prevented any additional contamination from OGW
disposal after 2011. However, if the age of the contamination is relatively recent, then
the elevated Ra activities in stream sediments at the disposal sites can be attributed to
continued disposal of treated conventional OGW.

The ²²⁸Th/²²⁸Ra activity ratios have been previously used to determine the age and source of OGW spills and radioactive barite associated with oil and gas development.^{38,} ^{47, 48} Unsupported ²²⁸Ra decays into ²²⁸Th, and the ²²⁸Th/²²⁸Ra activity ratio can serve as a chronometer of contamination events^{8, 38, 47, 49} due to the insolubility and suitable 1.9 year half-life of ²²⁸Th.^{45, 50-52} With time, ²²⁸Th approaches transient equilibrium with ²²⁸Ra, and the ²²⁸Th/²²⁸Ra activity ratio will approach ~1.5 after about 15 years. Changes in the ²²⁸Th/²²⁸Ra activity ratio with time can be modeled according the Equation 1.

292
$$\frac{228Th}{228Ra} = \frac{\lambda_{Th228}}{\lambda_{Th228} - \lambda_{Ra228}} \left[1 - e^{(\lambda_{228Ra} - \lambda_{Th228})t} \right]$$
(Eq. 1)

Previous studies have typically employed this ²²⁸Th/²²⁸Ra dating technique on 293 relatively specific events,^{38, 47, 48} while its application to dating contamination events 294 295 derived from OGW effluents that have been released over multiple years is less established. Here we develop the use of the ²²⁸Th-²²⁸Ra disequilibrium to constrain the 296 297 age of ongoing contamination from discharging effluents. If all the excess Ra measured 298 in the sediments from the disposal sites was solely accumulated between 2008 and 2011, when the Marcellus OGW was discharged, then observed ²²⁸Th/²²⁸Ra activity ratios 299 300 would fall within the range of 0.8-1.2 in 2015 and 1.1-1.3 in 2017 (Figure 3). However, the relatively low 228 Th $^{/228}$ Ra activity ratios (0.3-0.7 in 2015 and 0.2-0.4 in 2017) found 301

in impacted sediments at the Franklin and Josephine sites indicate that at least a portion

302

303 of the measured Ra has accumulated during the ~ 0.5 to 3 years prior to sample collection. These relatively low ²²⁸Th/²²⁸Ra activity ratios observed in the stream sediments rule out 304 305 the possibility that the elevated Ra activities in the sediments is entirely derived from 306 legacy contamination from documented Marcellus OGW, and rather suggests that at least 307 a portion of the excess radioactivity in sediments from the disposal sites is derived from 308 recent disposal of conventional OGW. 228 Th/ 228 Ra age dating assumes a closed system with no losses of 228 Ra or external 309 source of ²²⁸Th in the impacted sediments. Adsorption/desorption is heavily controlled by 310 311 the ionic strength of the fluid, among other parameters such as pH and the cation exchange capacity (CEC) of the sediment.^{42, 44, 45, 53} For example, in groundwater 312 systems, the sediment partition coefficient (K_d; the ratio of the adsorbed nuclide to the 313 314 nuclide in the dissolved phase) for Ra exponentially increased from 1.4 at TDS~200,000 mg/L to >500 at TDS<1000 mg/L.⁴² We posit that the dilution of highly saline OGW 315 316 with stream water following discharge permits Ra adsorption to stream sediment. Subsequent desorption of Ra or ingrown²²⁸Th is possible following fluctuations in 317 salinity or pH. However, Th is far less mobile than Ra,^{52, 54} and losses to the system from 318 desorption would more heavily affect Ra rather than Th. In such a case, the ²²⁸Th/²²⁸Ra 319 320 activity ratios measured in this study would be artificially high and derived age 321 constraints would be artificially old (i.e., indicating even younger ages than our evaluation assuming no Ra lost). Additionally, ²²⁸Th/²²⁸Ra age dating in this system 322 323 assumes a fixed sediment substrate despite potential transport of sediments downstream. 324 Regardless, the results from this study indicate that contamination has occurred on a

recent time scale and cannot solely be attributed to discharges of Marcellus OGW from2008-2011.

Age constraints determined from the ²²⁸Th/²²⁸Ra activity ratios can be 327 corroborated with ²²⁸Ra/²²⁶Ra activity ratios, which also suggest that Ra is being 328 329 continually introduced to the stream sediments from the disposal of conventional OGW. While distinctly low ²²⁸Ra/²²⁶Ra activity ratios (typically less than 0.3) characterize OGW 330 from the Marcellus Shale, higher ²²⁸Ra/²²⁶Ra (~1) activity ratios have been reported for 331 OGW from conventional formations.^{6, 7, 55} The ²²⁸Ra/²²⁶Ra activity ratios in the impacted 332 333 sediments are expected to mimic the ratios of the OGW, combined with the decay of ²²⁸Ra over time. Following the retention of Ra to the stream sediments, unsupported 334 ²²⁸Ra decays with a half-life of 5.8 years, while ²²⁶Ra is relatively unchanged over this 335 time scale. Therefore, the ²²⁸Ra/²²⁶Ra activity ratio in contaminated sediment is expected 336 to decrease with time according the Equation 2, where lambda is the ²²⁸Ra decay constant 337 (0.12 yr^{-1}) and t is time. 338

339
$$\frac{228Ra}{226Ra} = \left(\frac{228Ra}{226Ra}\right)_0 e^{-\lambda_{Ra228}t}$$

Therefore, if all excess Ra was accumulated in the sediments during the period of Marcellus OGW disposal (2008 to 2011), we would expect ²²⁸Ra/²²⁶Ra activity ratios to be well below 0.3 as ²²⁸Ra decays with time. Instead, we observed ²²⁸Ra/²²⁶Ra activity ratios ranging from 0.4-0.9 in sediments collected in 2015 and 2017, which are higher than typical Marcellus ²²⁸Ra/²²⁶Ra ratios (< 0.3), suggesting that Ra in the sediments was derived from relatively recent conventional OGW with a relatively high ²²⁸Ra/²²⁶Ra activity ratio of ~1 (Figure 4).

(Eq.2)

347

348	Policy Implications for Disposal of Conventional OGW from CWT Facilities.
349	Previous ²⁰ and new data presented in this study indicate that the disposal of OGW to the
350	environment results in the accumulation of Ra and Ra-decay products in the upper
351	section of impacted stream sediments. Our data indicate that in spite of the removal of a
352	large fraction of Ra from treated OGW, the discharge of effluents results in accumulation
353	of Ra (²²⁶ Ra up to 15,000 Bq/kg) in impacted sediments. This observation is supported by
354	a Ra mass-balance model (See SI for details) that shows that the modeled Ra
355	accumulation in the stream sediments is similar to the observed Ra activities in the
356	impacted sediments. While there is no federal regulation, several states have developed
357	limits for solids containing NORM, which typically range from 185-1850 Bq/kg (5 pCi/g
358	to 50 pCi/g). ⁵⁶ Our data indicate that the disposal of treated OGW results in elevated
359	NORM activities in impacted stream sediments above the 1850 Bq/kg threshold. Waste
360	materials with ²²⁶ Ra above 1850 Bq/kg should be transferred to a licensed radioactive
361	waste disposal facility that has strict requirements related to site location and the
362	following features: (1) lined walls, back up lining, and a cover, (2) a leachate collection
363	system, and (3) leak detector systems. ⁵⁷
364	Relatively low 228 Th/ 228 Ra and high 228 Ra/ 226 Ra activity ratios measured in
365	sediments collected from two CWT discharge sites in PA indicate that at least a portion
366	of the Ra measured in sediments has accumulated in recent $(0.5-3)$ years when no
367	Marcellus OGW was reportedly discharged, suggesting that conventional OGW
368	discharges are a noteworthy source of radium accumulation. Accordingly, data from this
369	study indicate that restricting treatment to only conventional OGW at CWT facilities does

not prevent the large accumulation of Ra in stream sediments from disposal sites. Our

data and previous data²⁰ also suggest that the large Ra removal from the disposed
effluents potentially does not mitigate the high NORM accumulation in sediments at the
disposal sites, although we cannot rule out the possibility of infrequent pulses of high-Ra
effluents as a major contributor of Ra to the sediments rather than long-term discharge
and accumulation from low-Ra effluent.

376 In addition to treatment at wastewater treatment plants, unconventional OGW is 377 also prohibited from being used as a deicing agent or dust suppressant on roads, while untreated conventional OGW is permitted for application to roads.²⁶ While the fate of 378 379 NORM following the use of OGW as deicing agents and dust suppressants remains a 380 major question, data from this study suggests that permission of conventional OGW will 381 not protect the environment from radioactive contamination. In an initial assessment, Skalak et al. 26 found elevated Ra (1.2x), Sr, Ca, and Na in roadside sediments in Vernon 382 383 County, PA, where OGW was applied to roads for dust suppression when compared to 384 background sites. Future research addressing the application of OGW to roads as a 385 deicing agent and dust suppressant is important to fully understand the impact of OGW 386 related NORM on soils and sediments and the human and environmental health 387 implications of this practice.

388 Overall, this study shows consistently elevated activities of Ra and their decay 389 products in stream sediments at three disposal sites of CWT facilities in PA receiving 390 conventional OGW, up to five years after unconventional Marcellus OGW were no 391 longer discharged. The ²²⁸Th/²²⁸Ra and ²²⁸Ra/²²⁶Ra activity ratios in the sediments 392 suggest that at least a portion of the Ra has accumulated in recent years when no 393 Marcellus OGW were reportedly discharged, indicating that permitting CWT facilities to

treat and release only conventional OGW does not prevent radioactive contamination and

394

395	accumulation in the upper portion of sediments at disposal sites. In order to prevent
396	radionuclide accumulation in the environment, we suggest that disposal restrictions
397	should apply to any type of Ra-rich water, regardless of source, and that current policies
398	differentiating the treatment and disposal of conventional OGW from unconventional
399	OGW should be reconsidered.
400	
401	ACKNOWLEDGEMENTS
402	We thank Andrew Kondash for fieldwork assistance and Dr. James Kaste for
403	laboratory use at the College of William and Mary. The authors also gratefully
404	acknowledge funding from the Park Foundation and NSF (EAR-1441497). We thank four
405	anonymous reviewers for their comments and insights who greatly improved the quality
406	of this manuscript.
407	
408	SUPPORTING INFORMATION AVAILABLE
409	Expanded information on the Ra mass balance calculations, 1 figure, and 1 table
410	are available.
411	
412	
413	
414	
415	
416	

18

- 420
- 421

422 Figure 1. A map of the northern Appalachian Basin and major shale plays in the eastern United States. Inset map shows the entirety of the Appalachian Basin, that extends from

- 423 424 New York southward through Pennsylvania, Maryland, Ohio, West Virginia, Virginia,
- 425 Kentucky, and Tennessee before terminating in Alabama. The location of the three CWT
- 426 facilities investigated in this study are also shown.

- 427 428
- 429

Figure 2. ²²⁶Ra, ²²⁸Ra, ²¹⁰Pb, and ²²⁸Th in sediments collected from three streams receiving OGW discharged by CWTs in 2014, 2015, and 2017. Josephine data from 2011 and 2012 were compiled from the literature.¹⁸ The boxplots indicate the middle 50% and the median of the data. Boxplot whiskers indicate the minimum and maximum values, excluding outliers which are indicated by open circles. Dashed lines show the average ²²⁶Ra activity of upstream samples, assumed to be unaffected by treated OGW effluents. Elevated activities were measured at all three effluent sites compared to upstream sites.

- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445 446

Figure 3. ²²⁸Th/²²⁸Ra activity ratios in sediments collected from the Franklin and Josephine CWT facilities in 2014, 2015, and 2017. Ratios that fall within the gray band reflect contamination that can be dated to the time period of high discharges of treated unconventional Marcellus OGW (2008-2011). Sediments collected in 2015 and 2017 had ²²⁸Th/²²⁸Ra activity ratios that fall below the expected range if contamination was solely from Marcellus OGW contamination. These relatively low ratios suggest that at least a portion of the Ra that has accumulated in the sediments is from relatively recent releases of conventional OGW.

Figure 4. ²²⁸Ra/²²⁶Ra activity ratios in sediments collected from the Franklin and
Josephine CWT facilities in from 2011-2017. 2011 and 2012 data are compiled from
Warner et al. (2013).²⁰ Ratios that fall within the gray band reflect the ratios that would
be expected from Marcellus OGW contamination from 2008-2011. Sediments from this
study collected in 2014, 2015 and 2017 had ²²⁸Ra/²²⁶Ra activity ratios above the
Marcellus range, suggesting that at least some of the contamination is sourced from
conventional OGW with a relatively higher ²²⁸Ra/²²⁶Ra activity ratio (~1).

494 **References**

495

Vengosh, A.; Jackson, R. B.; Warner, N.; Darrah, T. H.; Kondash, A. A critical
review of the risks to water resources from unconventional shale gas development and
hydraulic fracturing in the United States. *Environ. Sci. Technol.* 2014, *48*, (15), 83348348.

500 2. Brown, V. J. Radionuclides in fracking wastewater: Managing a toxic blend.
501 *Environ. Health Perspect.* 2014, *122*, (2), A50-A55.

502 3. Vidic, R.; Brantley, S.; Vandenbossche, J.; Yoxtheimer, D.; Abad, J. Impact of 503 shale gas development on regional water quality. *Science* **2013**, *340*, (6134), 1235009.

504 4. Chapman, E. C.; Capo, R. C.; Stewart, B. W.; Kirby, C. S.; Hammack, R. W.;
505 Schroeder, K. T.; Edenborn, H. M. Geochemical and strontium isotope characterization
506 of produced waters from Marcellus shale natural gas extraction. *Environ. Sci. Technol.*507 2012, 46, (6), 3545-3553.

5. Rowan, E. L.; Engle, M. A.; Kraemer, T. F.; Schroeder, K. T.; Hammack, R. W.;
509 Doughten, M. W. Geochemical and isotopic evolution of water produced from Middle
510 Devonian Marcellus shale gas wells, Appalachian Basin, Pennsylvania. *AAPG Bulletin*511 2015, (20,140,808).

512 6. Dresel, P. E.; Rose, A. W. Chemistry and origin of oil and gas well brines in
513 Western Pennsylvania: Pennsylvania Geological Survey; Pennsylvania Department of
514 Conservation and Natural Resources, 2010.

7. Rowan, E.; Engle, M.; Kirby, C.; Kraemer, T. Radium content of oil-and gas-field
produced waters in the northern Appalachian Basin (USA)—summary and discussion of
data: US Geological Survey Scientific Investigations Report 2011, 5135, 15.

8. Nelson, A. W.; Eitrheim, E. S.; Knight, A. W.; May, D.; Mehrhoff, M. A.;
Shannon, R.; Litman, R.; Burnett, W. C.; Forbes, T. Z.; Schultz, M. K. Understanding the
radioactive ingrowth and decay of naturally occurring radioactive materials in the
environment: An analysis of produced fluids from the Marcellus Shale. *Environ. Health Perspect.* 2015.

Swann, C.; Matthews, J.; Ericksen, R.; Kuszmaul, J. Evaluations of radionuclides
of uranium, thorium, and radium associated with produced fluids, precipitates, and
sludges from oil, gas, and oilfield brine injections wells in Mississippi. MS: Mississippi
Mineral and Resources Institute/Department of Pharmacology/Department of Geology
and Geological Engineering, University of Mississippi, 2004.

528 10. IAEA The environmental behavior of radium: Revised edition; Vienna, 2014.

11. Raabe, O. G. Comparison of the carcinogenicity of radium and bone-seeking
actinides. *Health physics* 1984, 46, (6), 1241-1258.

531 12. Bollhöfer, A.; Brazier, J.; Humphrey, C.; Ryan, B.; Esparon, A. A study of 532 radium bioaccumulation in freshwater mussels, Velesunio Angasi, in the Magela Creek 533 catchment, Northern Territory, Australia. J. Environ. Radioact. 2011, 102, (10), 964-974. 534 Jha, V.; Tripathi, R.; Sethy, N.; Sahoo, S.; Shukla, A.; Puranik, V. 13. Bioaccumulation of ²²⁶Ra by plants growing in fresh water ecosystem around the uranium 535 industry at Jaduguda, India. J. Environ. Radioact. 2010, 101, (9), 717-722. 536 537 14. Jeffree, R. A.; Simpsonf, R. Radium-226 is accumulated in calcium granules in 538 the tissues of the freshwater mussel, velesunio angasi: Support for a metabolic analogue 539 hypothesis? Comparative Biochemistry and Physiology Part A: Physiology 1984, 79, (1), 540 61-72. 541 15. Johnston, A.; Murray, A.; Marten, R.; Martin, P.; Pettersson, H. Bioaccumulation 542 of radionuclides and stable metals in the freshwater mussel, Velesunio Angasi. *Alligator* 543 Rivers Region Research Institute Annual Research Summary **1986**, 87, 69-74. 544 16. Williams, A. Radium uptake by freshwater plants. In *The environmental* 545 behaviour of radium 1990, Vol. 1. 546 Justyn, J.; Havlik, B., Radium uptake by freshwater fish. In *The environmental* 17. 547 behaviour of radium, 1990; Vol. 1. 548 PA DEP Oil & Gas Reporting Website: Statewide Data Downloads. 18. 549 https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/Waste/WasteByWas 550 teFacility.aspx (Accessed 10/2/2015). 551 19. Ferrar, K. J.; Michanowicz, D. R.; Christen, C. L.; Mulcahy, N.; Malone, S. L.; 552 Sharma, R. K. Assessment of effluent contaminants from three facilities discharging 553 Marcellus Shale wastewater to surface waters in Pennsylvania. Environ. Sci. Technol. 554 **2013**, *47*, (7), 3472-3481. 555 20. Warner, N. R.; Christie, C. A.; Jackson, R. B.; Vengosh, A. Impacts of shale gas 556 wastewater disposal on water quality in Western Pennsylvania. Environ. Sci. Technol. 557 2013, 47, (20), 11849-11857. 558 21. Veil, J. A. Water management technologies used by Marcellus shale gas 559 *producers*; prepared for U.S. department of Energy Office of Fossil Fuel Energy, 560 National Energy Technology Laboratory, 2010. 561 22. Pennsylvania DEP calls on natural gas drillers to stop giving treatment facilities 562 wastewater. http://www.prnewswire.com/news-releases/pennsylvania-dep-calls-on-563 natural-gas-drillers-to-stop-giving-treatment-facilities-wastewater-120206249.html 564 (Accessed September 10, 2017). 565 23. Olmstead, S. M.; Muehlenbachs, L. A.; Shih, J.-S.; Chu, Z.; Krupnick, A. J. Shale 566 gas development impacts on surface water quality in Pennsylvania. Proc. Natl. Acad. Sci. 567 2013, 110, (13), 4962-4967.

568 24. Wilson, J. M.; Wang, Y.; VanBriesen, J. M. Sources of high total dissolved solids
569 to drinking water supply in Southwestern Pennsylvania. *J. of Environ.l Eng.* 2013, *140*,
570 (5), B4014003.

571 25. Parker, K. M.; Zeng, T.; Harkness, J.; Vengosh, A.; Mitch, W. A. Enhanced
572 formation of disinfection byproducts in shale gas wastewater-impacted drinking water
573 supplies. *Environ. Sci. Technol.* 2014, *48*, (19), 11161-11169.

Skalak, K. J.; Engle, M. A.; Rowan, E. L.; Jolly, G. D.; Conko, K. M.; Benthem,
A. J.; Kraemer, T. F. Surface disposal of produced waters in Western and Southwestern
Pennsylvania: Potential for accumulation of alkali-earth elements in sediments. *Int. J. Coal Geol.* 2014, *126*, (0), 162-170.

578 27. Wilson, J. M.; VanBriesen, J. M. Oil and gas produced water management and 579 surface drinking water sources in Pennsylvania. *Environ. Pract.* **2012**, *14*, (4), 288-300.

580 28. USEPA. Discharge monitoring report (DMR) pollutant loading tool.
581 https://cfpub.epa.gov/dmr/ (Accessed 11/20/17).

582 29. Moore, W. S.; Reid, D. F. Extraction of radium from natural waters using 583 manganese-impregnated acrylic fibers. *J. Geophys. Res.* **1973**, *78*, (36), 8880-8886.

30. Garcia-Solsona, E.; Garcia-Orellana, J.; Masqué, P.; Dulaiova, H. Uncertainties
associated with ²²³Ra and ²²⁴Ra measurements in water via a delayed coincidence
counter (RaDeCC). *Mar. Chem.* 2008, *109*, (3), 198-219.

587 31. Vinson, D. S.; Vengosh, A.; Hirschfeld, D.; Dwyer, G. S. Relationships between
588 radium and radon occurrence and hydrochemistry in fresh groundwater from
589 fractured crystalline rocks, North Carolina (USA). *Chem. Geol.* 2009, *260*, (3), 159590 171.

Burnett, W. C.; Peterson, R.; Moore, W. S.; de Oliveira, J. Radon and radium
isotopes as tracers of submarine groundwater discharge–results from the Ubatuba,
Brazil SGD assessment intercomparison. *Est. Coast. Shelf Sci.* 2008, *76*, (3), 501-511.

- Gu, H.; Moore, W. S.; Zhang, L.; Du, J.; Zhang, J. Using radium isotopes to
 estimate the residence time and the contribution of submarine groundwater
 discharge (SGD) in the Changjiang effluent plume, East China Sea. *Cont. Shelf Res.*2012, *35*, 95-107.
- 598 34. Vinson, D. S.; Tagma, T.; Bouchaou, L.; Dwyer, G. S.; Warner, N. R.; Vengosh, A.
 599 Occurrence and mobilization of radium in fresh to saline coastal groundwater
 600 inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). *Appl. Geochem.*601 2013, *38*, 161-175.

Beterson, R. N.; Burnett, W. C.; Dimova, N.; Santos, I. R. Comparison of
measurement methods for radium-226 on manganese-fiber. *Limnol. Oceanogr-Meth.* **2009**, 7, (2), 196-205.

605 36. Dulaiova, H.; Burnett, W. C. An efficient method for γ - spectrometric
606 determination of radium - 226,228 via manganese fibers. *Limnol. Oceanogr-Meth.*607 **2004**, *2*, (8), 256-261.

Reyss, J. L.; Schmidt, S.; Latrouite, D.; Floris, S. Age determination of
crustacean carapaces using ²²⁸Th/²²⁸Ra measurements by ultra low level gamma
spectroscopy. *Appl. Radiat. Isot.* **1996**, *47*, (9), 1049-1053.

38. Zielinski, R.; Otton, J.; Budahn, J. Use of radium isotopes to determine the age
and origin of radioactive barite at oil-field production sites. *Environ. Pollut.* 2001, *113*, (3), 299-309.

39. Zielinski, R. A.; Budahn, J. R. Radionuclides in fly ash and bottom ash:
Improved characterization based on radiography and low energy gamma-ray
spectrometry. *Fuel* **1998**, *77*, (4), 259-267.

617 40. Cutshall, N. H.; Larsen, I. L.; Olsen, C. R. Direct analysis of ²¹⁰Pb in sediment
618 samples: Self-absorption corrections. *Nucl. Instrum. and Methods* **1983**, *206*, (1–2),
619 309-312.

41. Harkness, J. S.; Dwyer, G. S.; Warner, N. R.; Parker, K. M.; Mitch, W. A.;
Vengosh, A. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas
wastewaters: Environmental implications. *Environ. Sci. Technol.* 2015, 49, (3), 19551963.

42. Sturchio, N.; Banner, J.; Binz, C.; Heraty, L.; Musgrove, M. Radium
geochemistry of ground waters in Paleozoic carbonate aquifers, Midcontinent, USA. *Appl. Geochem.* 2001, *16*, (1), 109-122.

Burgos, W. D.; Castillo-Meza, L.; Tasker, T. L.; Geeza, T. J.; Drohan, P. J.; Liu, X.;
Landis, J. D.; Blotevogel, J.; McLaughlin, M.; Borch, T. Watershed-scale impacts from
surface water disposal of oil and gas wastewater in western Pennsylvania. *Environ. Sci. Technol.* 2017, *51*, (15), 8851-8860.

44. Landa, E.; Reid, D. Sorption of radium-226 from oil-production brine by
sediments and soils. *Environ. Geol.* **1983**, *5*, (1), 1-8.

Krishnaswami, S.; Graustein, W. C.; Turekian, K. K.; Dowd, J. F. Radium,
thorium and radioactive lead isotopes in groundwaters: Application to the in situ
determination of adsorption - desorption rate constants and retardation factors.

636 *Water Resour. Res.* **1982,** *18*, (6), 1663-1675.

637 46. Kondash, A. J.; Warner, N. R.; Lahav, O.; Vengosh, A. Radium and barium 638 removal through blending hydraulic fracturing fluids with acid mine drainage. 639 Environ. Sci. Technol. 2013, 48, (2), 1334-1342. 640 47. Lauer, N.; Vengosh, A. Age dating oil and gas wastewater spills using radium isotopes and their decay products in impacted soil and sediment. Environ. Sci. 641 642 Technol. Lett. 2016, 3, (5), 205-209. 643 48. Zielinski, R. A.; White, G. J.; Otton, J. K. In Chemical and radiometric assessment 644 of NORM in soils and sediments contacted by produced water, Teapot Dome, Wyoming, 645 Proceedings of the 5th International Petroleum Environmental Conference, 646 Albuquerque, N.M., 1998. 647 49. Nelson, A. W.; Knight, A. W.; May, D.; Eitrheim, E. S.; Schultz, M. K., Naturally-648 occurring radioactive materials (NORM) associated with unconventional drilling for 649 shale gas. In *Hydraulic fracturing: Environmental issues*, American Chemical Society: 650 2015; Vol. 1216, pp 89-128. 651 50. Porcelli, D.; Swarzenski, P. W. The behavior of U- and Th-series nuclides in 652 groundwater. Rev. Mineral. Geochem. 2003, 52. 653 51. Laul, J.; Smith, M.; Hubbard, N. In Behavior of natural uranium, thorium and 654 radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas, MRS 655 Proceedings, 1984; Cambridge Univ Press: 1984; p 475. 656 52. Langmuir, D.; Herman, J. S. The mobility of thorium in natural waters at low 657 temperatures. *Geochim. Cosmochim. Acta* **1980**, 44, (11), 1753-1766. 658 Webster, I. T.; Hancock, G. J.; Murray, A. S. Modelling the effect of salinity on 53. 659 radium desorption from sediments. Geochim. Cosmochim. Acta 1995, 59, (12), 2469-660 2476. 661 54. Lazar, B.; Weinstein, Y.; Paytan, A.; Magal, E.; Bruce, D.; Kolodny, Y. Ra and Th adsorption coefficients in lakes—Lake Kinneret (Sea of Galilee) "natural 662 663 experiment". Geochim. Cosmochim. Acta 2008, 72, (14), 3446-3459. 664 55. Asikainen, M. Radium content and the ²²⁶Ra/²²⁸Ra activity ratio in 665 groundwater from bedrock. *Geochim. Cosmochim. Acta* **1981**, 45, (8), 1375-1381. 56. 666 Smith, K. P.; Arnish, J. J.; Williams, G. P.; Blunt, D. L. Assessment of the disposal 667 of radioactive petroleum industry waste in nonhazardous landfills using risk-based 668 modeling. Environ. Sci. Technol. 2003, 37, (10), 2060-2066. 669 57. Michigan DEO Michigan TENORM disposal advisory panel white paper 2014-670 2015; 2015. 671 672

