9th GIF/INPRO-IAEA Interface Meeting IAEA HQs, Vienna, Austria. 4-5 March 2015

# INPRO methodology in the area of Environment (Stressors and Resources)

F.Depisch, S.Fesenko, A.Korinny

IAEA/INPRO group



# **Introduction: INPRO areas in 2008-2014**







#### Introduction



#### **Interfaces of Nuclear Energy System**





#### Background



#### **Environment includes:**

- Human beings & Non-human biota;
- Abiotic components, including soil, water and air;
- Natural resources and landscape;
- Interactions among these components.

#### Environmental effect definition includes detrimental change of environment:

- Physical, chemical or biological change;
- Health effects on people, plants and animals;
- Effects on quality of life;
- Depletion of resources.

Stressor definition includes entities that can induce an adverse response in the environment:

- Physical, Chemical, or Biological effect;
- Radioactive & non-radioactive emissions to air, water (fresh and groundwater) and soil;
- Waste heat discharges;
- Land use.



### INPRO area of environment structure in 2008-2014



INPRO International Project on Innovative Nuclear Reactors and Fuel Cycles

Basic Principle BP1: Acceptability of expected adverse environmental effects Two User Requirements:

- Controllability of environmental stressors;
- Adverse effects as low as reasonably practicable.

Basic Principle BP2: Fitness for purpose.

Two User Requirements:

- Consistency with resource availability;
- Adequate net energy output.

Nine criteria covering all aspects of those four URs.



### Update of INPRO methodology in the area of environment



- Area of Environment was requested to split into two separate areas:
  - Environmental impact of stressors;
  - Environmental impact from depletion of resources.
- Structure of INPRO requirements in these two areas has been modified for better transparency and flexibility;
- Introduced separate criteria on:
  - Adverse effects of non-radiological stressors;
  - Effects of stressors on non-human biota.
- In 2014 both reports approved for publication as Nuclear Energy Series Reports NG-T-3.13 and NG-T-3.14;





### **Impact of stressors**



### **Environmental impact of stressors: structure**







#### Scope of consideration



INPRO assessment of environmental impact of stressors is focused on:

- Screening of single facilities within a given NES option:
  - Mining and milling facilities;
  - Refining and conversion;
  - Enrichment;
  - UOX and MOX fabrication;
  - NPP and spent fuel storage;
  - Reprocessing;
  - Waste disposal (discussed in INPRO manual on Waste Management).
- Normal operation, including off-normal events (AOO):
  - no accidents considered in this area.



# Impact of stressors: groups of stressors and limits



| Stressors                           | Units                     | Limits                                  |
|-------------------------------------|---------------------------|-----------------------------------------|
| Radionuclides                       |                           |                                         |
| Emission Rate                       | Bq/s                      | Reference Level (Control Level)         |
| Total alpha/beta activity           | Bq/m³                     | National Limits                         |
| Radionuclide activity in air, water | Bq/m³                     | Limits based on radiation safety level  |
| Dose to the population              | mSv/a                     | National Limits                         |
| Doses to reference biota species    | mGy/a                     | Limits based on international consensus |
| Toxic chemicals                     |                           |                                         |
| Heavy metals                        | kg/m³                     | National Limits                         |
| Organic compounds                   | kg/m³                     | National Limits                         |
| Others                              |                           |                                         |
| Land committed                      | m <sup>2</sup> /tU(or GW) | National Limits                         |
| Particulates to air                 | g/m³                      | National Limits                         |
| Waste heat to air / water           | MW(h)/a                   | National Limits                         |
| Solids to water                     | g/m³                      | National Limits                         |



# Impact of Stressors: controllability







# Impact of stressors: simplified evaluation model



- Simplified IAEA evaluation method for radiological stressors (tiered approach) based on IAEA Safety Reports Series No.19;
- IAEA models "developed for screening of proposed radioactive discharges of new facilities";
- Preliminary evaluation of radiological effects on humans to be compared with dose limits;
- New edition of report is expected soon.

Generic Models for
Use in Assessing the
Impact of Discharges of
Radioactive Substances



to the Environment



# Impact of stressors: analysis of impact on environment







## INPRO basic principle in the area of impact of stressors



- INPRO International Project on Innovative Nuclear Reactors and Fuel Cycles
- BP: The expected adverse environmental effects of a nuclear energy system shall be well within the performance envelope of current nuclear energy systems delivering similar energy product
- Three user requirements:
  - Controllability of environmental stressors: The environmental stressors from each facility of a NES over the complete life cycle should be controllable to levels meeting or below current standards;
  - Reduction of total environmental impact of emitted radioactivity: Total
    radiotoxicity\* of radionuclides discharged by the NES assessed should be
    lower than that of any current NES delivering similar energy products;
  - Optimisation of the measures to reduce environmental impact: The measures applied to reduce adverse environmental impact attributable to a NES should be optimised

Note: \* - Ability of radionuclides to cause harmful effects because of its radioactivity



### INPRO criteria in the area of impact of stressors



- Dose to public should be lower than dose constraints (may vary for different facilities and countries, examples provided);
- Doses to the reference biota species should be lower than international recommendations (1 mGy/day recommended);
- Levels of chemicals and other stressors should be lower than national environmental safety standard levels;
- Total radiotoxicity of radionuclides emitted to the environment from the NES assessed should be lower than radiotoxicity of stressors emitted to the environment from current NES delivering similar energy products;
- Measures to reduce environmental impact of the NES should be optimised. Options:
  - Best Available Techniques (BAT);
  - Best Environmental Practice (BEP),
  - Best Available Technology Not Entailing Excessive Costs (BATNEEC),
  - ALARA or ALARP





### **Depletion of resources**



### **Environmental impact from depletion of resources: Structure**



INPRO International Project on Innovative Nuclear Reactors and Fuel Cycles



BP - 1; UR - 2; CR - 7

# INPRO basic principle in the area of depletion of resources



- BP: A nuclear energy system shall be capable of contributing to the energy needs in the 21st century while making efficient use of nonrenewable resources
- Two user requirements:
  - Consistency with resource availability: The NES should be able to contribute to the world's energy needs during the 21st century without running out of fissile/fertile material and other non-renewable materials, with account taken of reasonably expected uses of these materials external to the NES. In addition, the NES should make efficient use of nonrenewable resources
    - Three types of resources considered: fissile materials, power supply and non-renewable resources (e.g. zirconium).
  - Adequate net energy output: The energy output of the NES should exceed the energy required to implement, operate and decommission the NES within an acceptably short period.



## INPRO criteria in the area of impact of depletion of resources



- Fissile/fertile material available for use in the NES should be enough at least for 100 years;
- Non-renewable materials available for use in the NES should be enough at least for 100 years;
- Power available (from both internal and external sources) for use in the NES should be enough at any period of time within next 100 years;
- End use, i.e. energy delivered by the NES per Mg, of uranium mined should be higher than maximum achievable end use for an existing (2013) NES with a once through (open) fuel cycle;
- End use of thorium mined, should be higher than maximum achievable end use for a current operating thorium fuel cycle;
- Limits for end use of non-renewable materials should be determined on a case specific basis;
- Time required to match the total energy input into the NES with energy output << intended life time of NES</li>



#### Conclusion



- INPRO methodology covers two aspects of environment:
  - Impact of stressors on environment;
  - Depletion of resources in the environment.
- INPRO methodology offers using simplified method to perform sustainability assessment in the area of impact of stressors;
- INPRO methodology asks for availability of resources at least until the end of the century.







Thank you for your attention! www.iaea.org/INPRO a.korinny@iaea.org

