

520 Lafayette Road North St. Paul, MN 55155-4194

Notice of Availability of an Environmental Assessment Worksheet (EAW)

Dem-Con Companies

Doc Type: Public Notice

Public comment information

EAW public comment period begins:	11/15/2022
EAW public comment period ends:	12/15/2022
Notice published in the EQB Monitor:	11/15/2022

Facility specific information

Facility name and location:	Facility contact:
Dem-Con Companies	Activity Owner: Bill Keegan
13020 Dem Con Drive	Address: 13020 Dem Con Drive
Shakopee, MN 55379-7200	Shakopee, MN 55379-7200
Scott County	Phone: 952-224-7102
	Fax: 952-445-8288
	Email: <u>billkeegan@dem-con.com</u>

MPCA contact information

MPCA EAW contact person:

MPCA Permit contact person:

Charles Peterson Resource Management and Assistance Division Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 5 5155 Phone: 651-757-2856 Email: <u>charles.peterson@state.mn.us</u> Abdi Hassan Resource Management and Assistance Division Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155 Phone: 651-757-2449 Email: abdi.hassan@state.mn.us

General information

The Minnesota Pollution Control Agency (MPCA) is distributing this Environmental Assessment Worksheet (EAW) for a 30-day review and comment period pursuant to the Environmental Quality Board (EQB) rules. The MPCA uses the EAW and any comments received to evaluate the potential for significant environmental effects from the project and decide on the need for an Environmental Impact Statement (EIS).

An electronic version of the EAW is available on the MPCA Environmental Review webpage at http://www.pca.state.mn.us/oxpg691. If you would like a copy of the EAW or Permit or have any questions on the EAW or Permit, contact the appropriate person(s) listed above.

Description of proposed project

The Dem-Con Landfill SW-290 is an existing Class III Demolition Landfill in Louisville Township, Scott County, Minnesota. Dem-Con Landfill, LLC is seeking a horizontal expansion onto 241 acres directly south of the existing landfill adding 36,247, 942 cubic yards (cy) of airspace to the existing landfill for a total design capacity of 55,300,384 cy of airspace. The 241-acre expansion area is an active limestone quarry that is nearing completion and preparing for final reclamation activities and end use development.

To submit written comments on the EAW [and (insert type of) Permit

Written comments on the EAW must be received by the MPCA within the comment period listed above.

Comments may be submitted:

- Online at http://www.pca.state.mn.us/publiccomments; or
 - By U.S. postal mail to the following address:
 Minnesota Pollution Control Agency
 Charles Peterson
 520 Lafayette Road North
 St. Paul, MN 55155

Note: All comment letters are public documents and will be part of the official public record for this project.

Need for an EIS

The MPCA Commissioner will make a final decision on the need for an EIS after the end of the comment period.

ENVIRONMENTAL ASSESSMENT WORKSHEET

This Environmental Assessment Worksheet (EAW) form and EAW Guidelines are available at the Environmental Quality Board's website at:

<u>http://www.eqb.state.mn.us/EnvRevGuidanceDocuments.htm</u>. The EAW form provides information about a project that may have the potential for significant environmental effects. The EAW Guidelines provide additional detail and resources for completing the EAW form.

Note to reviewers: Comments must be submitted to the RGU during the 30-day comment period following notice of the EAW in the *EQB Monitor*. Comments should address the accuracy and completeness of information, potential impacts that warrant further investigation and the need for an EIS.

1. Project title: Dem-Con Landfill SW-290 Expansion

- Proposer: Dem-Con Landfill, LLC Contact person: Bill Keegan, P.E. Title: President Address: 13020 Dem-Con Drive City, State, ZIP: Shakopee, MN 55379 Phone: (952) 224-7101 Email: markpahl@dem-con.com
- RGU MN Pollution Control Agency Contact person: Charles Peterson Title: Env. Review Project Manager Address: 520 Lafayette Road City, State, ZIP: St. Paul, MN 55155 Phone: 651-757-2856 Email: charles.peterson@state.mn.us

4. Reason for EAW Preparation:

Required:	Discretionary:
EIS Scoping	□ Citizen petition
Mandatory EAW	□ RGU discretion
	Proposer initiated

If EAW or EIS is mandatory give EQB rule category subpart number(s) and name(s): N/A

5. Project Location:

County: Scott County
City/Township: Louisville Township
PLS Location (¼, ¼, Section, Township, Range): Portions of Section 21 and Section 28, Township 115 N, Range 23 W.
Watershed (81 major watershed scale): Minnesota River – Shakopee (33)
GPS Coordinates: 44°44'55.86"N, 93°35'25.04"W
Tax Parcel Number: 079280042, 079280100, 079280080, 079280070, 079210120, 079210080.

The following Figures are attached as part of this EAW:

Figure 1: County Location Map Figure 2: U.S.G.S Quad Map Excerpt Figure 3: Existing Land Use Figure 4: Scott County Zoning Map Excerpt Figure 5: Shoreland Overlay District Figure 6: Public Waters Figure 7B: 2022 Water Table Figure 7A: 2015 Water Table Figure 8: Wellhead Protection Areas Figure 9: Water Supply Wells Near the Project Area Figure 10: Monitoring Well Networks Figure 11: Pre-Settlement Drainage Figure 12: Proposed Drainage Figure 13: Residential Noise Receptors within ½ Mile of the Expansion Area Figure 14: Haul Road Concept

The following Attachments are included as part of this EAW:

- Attachment 1 Landfill Development Plans
- Attachment 2 Climate Adaptation Data Sources
- Attachment 3 Soils Report
- Attachment 4 WCA Notice of Decision
- Attachment 5 Hydrogeologic Evaluation
- Attachment 6 2021 Dem-Con Groundwater Monitoring Report
- Attachment 7 Water Supply Well Logs
- Attachment 8 Dem-Con Monitoring Well Logs
- Attachment 9 Groundwater Monitoring Plan 2016 Permit
- Attachment 10 NHIS Review Letter
- Attachment 11 SHPO Review Letter
- Attachment 12 Viewshed
- Attachment 13 Air Applicability Determination
- Attachment 14 Barr Engineering Air Assessment
- Attachment 15 Greenhouse Gas Evaluation
- Attachment 16 SRF Traffic Review (Updated)

6. Project Description:

a. Provide the brief project summary to be published in the *EQB Monitor*, (approximately 50 words).

The Dem-Con Landfill SW-290 is an existing Class III Demolition Landfill in Louisville Township, Scott County, Minnesota. Dem-Con Landfill, LLC is seeking a horizontal expansion onto 241 acres directly south of the existing landfill adding 36,247, 942 cubic yards (cy) of airspace to the existing landfill for a total design capacity of 55,300,384 cy of airspace. The 241-acre expansion area is an active limestone quarry that is nearing completion and preparing for final reclamation activities and end use development.

b. Give a complete description of the proposed project and related new construction, including infrastructure needs. If the project is an expansion include a description of the existing facility. Emphasize: 1) construction, operation methods and features that will cause physical manipulation of the environment or will produce wastes, 2) modifications to existing

equipment or industrial processes, 3) significant demolition, removal or remodeling of existing structures, and 4) timing and duration of construction activities.

Dem-Con Landfill, LLC (Dem-Con) is seeking to expand the existing construction/demolition debris, and industrial waste operations onto 241 acres directly south of the existing landfill (Project). The Project area is an active limestone quarry that is phasing in completion of mining activities and preparing for final reclamation activities and end use development. The Project involves permitting the expansion area for additional construction, demolition, and industrial waste disposal capacity. The Project does not involve permitting for Municipal Solid Waste (MSW).

Description of Existing and Proposed Project: The existing landfill (Landfill) is on 121 acres in Sections 16 and 21, Township 115, Range 23, in Louisville Township, Scott County, Minnesota (Figure 1 County Location Map). The Landfill accepts industrial waste and construction/demolition debris for disposal under Minnesota Pollution Control Agency (MPCA) Permit SW-290. The MPCA permitted the Landfill in November 1985 and Dem-Con began operation in January 1986. Initial construction included unlined landfill cells. In 2007, Dem-Con began construction of future cells with a synthetic liner and leachate collection system. The installation of the liner and leachate collection system provided enhanced environmental protection as well as allowed the Landfill to accept additional types of demolition, construction, and industrial waste. Once portions of the Landfill reach final grade, a synthetic cap is constructed over the completed fill areas and a protective rooting layer is placed along with topsoil and vegetation. The synthetic cover prevents precipitation from infiltrating into the underlying waste, thereby reducing, or eliminating, the generation of leachate which provides increased protection of groundwater. The current Landfill has an ultimate design capacity of 19,052,442 cubic yards (cy) of airspace capacity including cover materials, with less than seven million cy remaining.

The Project will add 36,247,942 cy of airspace. Figure 2 - USGS Quad Map Excerpt, illustrates the location of the Project Area with respect to the Landfill.

1) Construction, operation methods, and features that will cause physical manipulation of the environment or will produce wastes:

Like the Landfill, the Project will be developed in previously mined areas. Mining activity has been completed in most of the Project area. Mining is progressing from north to the south in a phased manner and development of landfill cells will proceed in a phased manner. Construction and filling of initial Landfill phases in the north will occur concurrently with completion of mining phases in the south. Mining activity in the northern portion of the quarry, which includes approximately the northern 180 acres of the Project, is nearing completion. Reclamation activity (e.g., Sloping along perimeter to approved reclamation grades, topsoil application, seeding and mulching to establish vegetation) has begun and is expected to be completed in 2-3 years in the area where landfilling activity will commence. Mining activity will continue to progress to the south and into the recently permitted southern portion of the quarry, which includes approximately 60 acres. Based on information from the operator, the quarry has an estimated ten years of mining activity remaining, but the life of the mine will be driven by local market demand. Both landfilling and mining activity will occur on the property concurrently, but in different areas of the site. This is Dem-Con's current practice of active mining and quarrying in advance of the construction of liner and leachate collection system and landfilling in the northern phases of the Landfill.

Construction of cells within the quarry will consist of placing and grading subsoils over the floor and slopes of the quarry. A synthetic liner and leachate collection system will be constructed to collect leachate generated from the filling process and prevent it from leaching into the underlying soils and groundwater. The collected leachate will be pumped and hauled for treatment at the Blue Lake Wastewater Treatment Facility in Shakopee, Minnesota and discharged in accordance with a Metropolitan Council Industrial Discharge Permit (Special Discharges) Number 2284. Attachment 1 Landfill Development Plan Set, includes:

- C-1.1 Existing Conditions Existing Landfill,
- C1.2 Existing Conditions Expansion Area,
- C-1.2 Post Mining Reclamation Conditions Expansion Area,
- C-2.1 Liner System Existing Landfill,
- C2.2 Liner and Leachate Collection System Expansion Area,
- C3 Phasing Plan
- C4.1 Final Grades Existing Landfill
- C4.2 Final Grades Expansion Area

Waste is placed in an active phase of the Project and phases are managed to keep as small of an operating area open as practical while maintaining safe operations. Intermittent cover is placed on the active areas of the Project on an as needed basis to control nuisance issues. However, at a minimum in accordance with Minn. R. 7035.2825, subp. 4(B), cover is placed on any waste that is exposed for 30 days. Suitable cover material is maintained on site and is obtained from on-site soil excavation or from clean soil hauled onto the site. Stockpiling measures are taken as necessary to ensure adequate cover material throughout the entire year, including winter months.

Once final grades have been reached, a final cover system will be constructed including a synthetic cap designed to prevent infiltration of precipitation into the waste thereby reducing the volume of leachate generated. Rooting soil and topsoil will be placed over the synthetic liner and vegetation will be established over the cap as part of closure activities.

Dem-Con operates under a closure and post closure plan that is part of the MPCA Solid Waste Permit. The plan ensures proper closure of the Project, monitoring of its post-closure effects, and maintaining the site in a safe condition. Dem-Con is responsible for post closure monitoring, which includes inspections, cover repair as needed, groundwater monitoring, and leachate collection and treatment. Dem-Con or its successor-in-interest will be responsible for the post-closure care of the site for a period of twenty years, or until such times as this responsibility has been assumed by another public or private entity acceptable to the regulatory agencies. Final end uses may be considered within the post closure period.

Closure and post closure care of the Project is designed to minimize or eliminate potential environmental and health hazards that could be caused by the Project. Closure and post closure care of the Project site includes maintaining the leachate collection system, off-site

disposal of leachate, maintaining the final cover , maintaining the groundwater monitoring network, restricting access to the site to authorized personnel through the use of locked gates and fencing, maintaining the vegetative cover over the site, the slope interception swales, and perimeter swales to reduce the potential for erosion, and maintaining the stormwater management facilities to treat stormwater runoff from the vegetated final cover system prior to discharge off-site.

The Landfill and Project currently accepts construction and demolition (C&D) debris from the seven-county metropolitan area, as well as surrounding greater Minnesota counties. The Landfill is open to the public. C&D debris is defined below:

Construction debris means waste building materials, packaging, and rubble resulting from construction, remodeling, repair, and demolition of buildings and roads (Minn. Stat. § 115A.03, subd. 7).

Demolition debris means solid waste resulting from the demolition of buildings, roads, and other structures including concrete, brick, bituminous concrete, untreated wood, masonry, glass, trees, rock, and plastic building parts. Demolition debris does not include asbestos wastes (Minn. R. 7035.0300, subp. 30).

Examples of C&D debris include materials generated from construction of new buildings, renovations of existing buildings, buildings torn down for redevelopment, and rubble from streets, sidewalks, and parking lot replacement.

In addition, Dem-Con currently accepts industrial wastes in accordance with an approved Industrial Solid Waste Management Plan (ISWMP). A few examples of accepted industrial wastes include, but are not limited to, manufacturing scraps, recycling residue, off-spec products, asbestos, contaminated soils, and water treatment and filtering sludges.

C&D waste averages between 70-85% and industrial waste averages between 15-30% of the annual waste stream landfilled at Dem-Con. Volumes of each waste type are reported annually to the MPCA. The Project will not change the composition of the waste stream. MPCA guidance allows up to 50% industrial waste based on annual gate receipts in a Class III demolition landfill.¹

Recyclable materials are handled at the Landfill as well. These materials are stored on-site until a sufficient volume accumulates for on-site processing, processing at Dem-Con's adjacent environmental campus, or transport from the site. Recyclables handled on-site include but are not limited to appliances, metals, batteries, asphalt pavement, tires, electronics, cardboard, concrete, clean wood debris, and shingles. Recyclable materials are stored outside. Batteries and electronics are stored in covered containers. Sheet C1.1 Existing Conditions- Existing Landfill illustrates the locations of these storage areas.

Dem-Con is permitted to operate 24 hours a day 7 days per week. Site specific best management practices for high volume demolition landfills have been adopted by Dem-Con to screen for unacceptable wastes at the working face. Loads are initially screened at the

¹ MPCA Demolition Landfill Guidance Water/Solid Waste #5.04, August 2005. Retrieved online at https://www.pca.state.mn.us/sites/default/files/w-sw5-04.pdf

gate house near the existing site entrance where the type and the quantity of the waste is recorded and inspected. If the material is to be landfilled, the truck proceeds to the tipping area. Personnel are on-site at the active tipping area to oversee the tipping procedure and visually inspect the waste to verify that no unacceptable wastes are deposited into the landfill. If unacceptable wastes are encountered at the working face, the hauler is instructed to remove them from the site. The load is inspected, spread, and compacted. Additional material is placed vertically on existing grades.

Equipment used in day-to-day operations include compactors, front end loaders, dozers, offroad trucks, excavators, water truck, and skid steers. Additional equipment is brought to the site as needed for various construction projects, such as constructing a liner over a new phase or final cover over a completed phase.

2) Modifications to existing equipment or industrial processes:

The Project does not change the operating procedures at the landfill. General site operations will be the same in the expansion area as at the Landfill. Incoming loads check in at the gate house at the site entrance where the type and the quantity of the waste is recorded and inspected. If the material is to be landfilled, the truck proceeds to the tipping area. Personnel are on-site at the active tipping area to oversee the tipping procedure. The waste is inspected, spread, and compacted. Additional material is placed vertically. Cover material is applied as required by Minnesota Rules or more often as deemed necessary by the operator.

Materials to be recycled are directed to the appropriate locations where the material is unloaded. Records are maintained of the volume of recycled material removed from the site.

3) Significant demolition, removal, or remodeling of existing structures:

The Project will not require significant demolition of existing structures. The limestone quarry operations utilize portable processing equipment. The scale house for the mining operation is in the very southern portion of the Project area. The scale house may eventually be incorporated into site operations or removed or demolished. Any concrete foundations to be removed will be recycled or disposed of in the landfill.

4) Timing and duration of construction activities:

The Project will result in an ultimate design capacity of 55,300,384 cy of airspace including cover materials. Dem-Con proposes to begin construction of the initial phase of the expansion area in 2023. Phases are filled and developed over time with an estimated remaining life of 55-60 years. Without the expansion, the estimated life of the Landfill is less than ten years.

c. Project magnitude:

Table 6c: Project magnitude

Total project acreage	Project area - 241 acre
	(Existing landfill - 121 acres)
Linear project length	N/A
Number and type of residential units	0
Commercial building area (in square feet)	0
Residential building area (in square feet)	0
Industrial building area (in square feet)	0 sq ft
Institutional building area (in square feet)	0
Other uses – specify (in square feet)	0
Structure height(s)	Leachate storage tanks approximately 25 feet.
	Expansion Area Final Elevation: 910 feet above mean sea level (msl)
	Existing Landfill Permitted Final Elevation: 932 msl Project will not change currently approved final elevation of existing landfill. ²

d. Explain the project purpose; if the project will be carried out by a governmental unit, explain the need for the project and identify its beneficiaries.

The purpose of the Project is to provide the opportunity for Dem-Con to continue to meet the recycling, C&D and industrial waste disposal needs of the community. Dem-Con's existing business has progressed from a landfill company to a fully integrated solid waste and recycling company with continued investments into recycling and processing infrastructure at its integrated Environmental Campus. Despite continued improvement and investment in waste recycling and processing, local landfilling continues to be a necessary component of the overall integrated waste management system needed to serve Scott County and the Twin Cities metro area. This landfill expansion will give Dem-Con the ability to continue to meet the disposal needs of the community while investing in the Environmental Campus helping Scott County and the surrounding community meet their processing and recycling goals.

e. Are future stages of this development including development on any other property planned or likely to happen? □Yes ☑No

If yes, briefly describe future stages, relationship to present project, timeline and plans for environmental review.

There is a potential for a future MSW project to be considered at the Landfill. The MPCA issued a final Certificate of Need (CON) to the Landfill of 627,244 tons of MSW airspace in late spring of

² Sheet C-4.1 and C-4.2 of Attachment 1 Landfill Development Plan Set. illustrate the approved final grades of both the Existing Landfill and the Expansion Area.

2022. At this time, an application for an MSW stage has not been prepared or submitted to the MPCA. If or when an MSW project is developed, it will be subject to mandatory environmental review in accordance with Minn. R. 4410.

f. Is this project a subsequent stage of an earlier project? ☑Yes □No If yes, briefly describe the past development, timeline, and any past environmental review.

The Project is a horizontal expansion of the existing Dem-Con Landfill. The Dem-Con Landfill was originally permitted by the MPCA in 1985 and has been amended on several occasions including: 1987, 1988, 1993, 1998, 2003, 2005, 2011 and 2016. The major amendments have included expansions, design modifications related to the installation of a liner and leachate collection system over portions of the landfill, and design modifications to construction a synthetic cap over the entire portion of the Landfill. Demolition landfills are not included in the mandatory threshold for an Environmental Assessment Worksheet (EAW). While there have been environmental studies associated with the MPCA permitting process, an EAW was not prepared for the existing Landfill. The Dem-Con has volunteered to complete this EAW for the Landfill expansion.

The Project area has been included in past environmental reviews associated with mining. An EAW was completed in 1992 for the northern portion of the mining area that is currently operating under a Conditional Use Permit (CUP) issued by Scott County. An Environmental Impact Statement (EIS) was completed for the Merriam Junction Sands (MJS) project, which included the Project area as well as additional surrounding property (MJS FEIS). The MJS project was a mining proposal that included silica sand, limestone, and sand and gravel mining. The limestone and sand and gravel mining aspects of the MJS project have proceeded, but silica sand mining was not pursued. The MJS EIS included a comprehensive hydrogeologic study, biological survey, wetland delineations, and many other applicable environmental studies. The Final MJS EIS was determined adequate by the Scott County Board on July 7, 2020. The 2020 MJS FEIS is incorporated to this EAW by reference.³ After the MJS environmental review process was complete, Scott County issued Bryan Rock Products, Inc. an Interim Use Permit to mine the southern portion of the Project. Upon completion of mining under the existing CUP and recently issued IUP, the limestone quarry will encompass the entire Project area.

7. Climate Adaptation and Resilience:

a. Describe the climate trends in the general location of the project (see guidance: *Climate Adaptation and Resilience*) and how climate change is anticipated to affect that location during the life of the project.

Attachment 2 incudes a list of resources used to obtain climate trend information. The Project is situated in the Lower Minnesota River geographical region. According to information from the MDNR climate explorer website⁴ historical temperature trends over the past 30 years (January 1, 1991 – December 30, 2020) have been increasing in the Project area. The mean average

³ The MJS FEIS includes several studies relevant to the Project Area and is incorporated by reference/CVA.aspx" <u>https://metrocouncil.org/Communities/Planning/Local-Planning-Assistance.aspx</u>

⁴ Climate Explorer Map. Minnesota Climate Explorer Available at https://arcgis.dnr.state.mn.us/ewr/climateexplorer/main/historical

annual temperature has been increasing by 0.46° F every decade for the past three decades. The mean average annual temperature over this past thirty-year period is 45.18° F. Climate models predict that the average annual temperature for this area is expected to continue to rise in the future. Based on the model mean (the average of several different climate models included in MDNR the website's analysis), the present day (1980-1999) average annual temperature is 45.02° F and is predicted to increase by late century (2080-2099) to 50.97 ° F under an intermediate scenario (where greenhouse gas emissions peak in 2040) or up to 54.73° F for a worst-case extreme scenario. An increase in heat waves is expected to accompany the increased temperatures and more frequent periods of drought with more days between precipitation events.⁵

Historical precipitation trends indicate that in the Lower Minnesota River geographical region there has been a decline in the average annual precipitation of -0.01 inches per decade over the last three decades with an average annual rainfall of 30.75 inches. Based on the model mean, the present day average annual precipitation is 30.86 inches and is predicted to increase by late century to 31.77 inches under the intermediate scenario and up to 34.64 inches under the extreme scenario.

The weather is expected to get warmer and wetter in the Project area because of climate change. Extreme rain events are expected to increase in frequency with the area of the Site experiencing a 0-5% increase in extreme rainfall events over the next thirty years compared to 1980 to 2021 averages.⁶ Increased rainfall and the flashier nature of events can result in increased flooding frequency and higher flood stages.

b. For each Resource Category in the table below: Describe how the project's proposed activities and how the project's design will interact with those climate trends. Describe proposed adaptations to address the project effects identified.

⁵ Climate Vulnerability Assessment. Climate Vulnerability Assessment - Metropolitan Council available at https://metrocouncil.org/Communities/Planning/Local-Planning-Assistance.aspx

⁶ Flood Factor for zip code 55379. Flood Factor available at https://floodfactor.com/environmental-changes

Table 7b: Resource category

Resource category	Climate considerations (example text provided below is to be replaced with project-specific information)	Project information	Adaptations
Project Design	Final cap is designed to limit infiltration to reduce leachate generation which increases		Building one or more structures to retain or divert floodwater, including vegetated berms, drainage swales, and retention ponds Installing fabricated and armored drainageway to reduce velocities and therefore reduce erosion that could be caused by higher velocity flows associated with higher intensity events. Constructing reinforced emergency overflows using synthetic fabric and riprap armor at surface water discharge locations to minimize erosion and downstream impacts of flooding events greater than the 100-year event, while minimizing erosion and the potential for downstream sediment transport. Stabilizing banks of onsite segments of susceptible drainageways through a
			crainageways through a combination of "soft" armor (synthetic fabrics and deep- rooted vegetation) and "hard" armor (riprap and segmental retaining walls).
Land Use	The site is in an industrially zoned area and does not include structures or activities that would be susceptible to increased flood stages or periods of prolonged drought. Prolonged flooding could cause groundwater levels to rise with respect to the liner system.	Climate change risksand vulnerabilities identified include: The Minnesota River is the controlling hydrologic factor in the local groundwater flow regime, periods of prolonged flooding could create an increase in the high-water	Installation of a liner and leachate collection system designed to provide protection even if increased groundwater elevations were to cause an inward gradient. Under these circumstances, the leachate head would be reduced with no negative impact to the effectiveness of the liner and

Resource category	Climate considerations (example text provided below is to be replaced with project-specific information)	Project information	Adaptations
		table elevations in the immediate vicinity of the river. This could result in a shift in the vertical groundwater gradient beneath the liner. Increased groundwater heads more than five feet could result in a temporary inward gradient into portions of the liner.	the groundwater quality would remain protected.
Water Resources	Address in item 12	Address in item 12	Address in item 12
Contamination/ Hazardous Materials/Wastes	For example, how current Minnesota climate trendsand anticipated climate change in the general location of the project may influence the potential environmental effects of generation/use/storage of hazardous waste and materials. The Project is in an area where an increase in annual precipitation is predicted. Increased precipitation will result in an increase in leachate in areas of the landfill that are active.	pumping system and more frequent transport of leachate from the facility to the wastewater	precipitation amounts increase.
Fish, wildlife, plant communities, and sensitive ecological resources (rare features)	Address in item 14.	Address in item 14.	Address in item14.

8. Cover types: Estimate the acreage of the site with each of the following cover types before and after development:

Note that the following table reflects landcover values at the start of Project construction and the approved and permitted reclamation condition of the limestone quarry.

Table	8-1:	Cover	types
-------	------	-------	-------

Cover types	Before (acres)	After (acres)	Cover types	Before (acres)	After (acres)
Wetlands	0	0	Lawn/landscaping	0	0
Livestock rangeland/pastureland	0	0	Green infrastructure TOTAL (from table below*)	0	0.9
Deep water/streams	0	0	Impervious surface	1.5	6
Wooded/forest	0	0	Stormwater Pond	3	13.6
Brush/Grassland	0	0	Other (describe) see below		
Cropland	0	0	C&D Landfill	0	185
			Limestone Quarry	218	0
			Vegetated Setback Area	18.5	32.5
			TOTAL	241	241

Green infrastructure*	Before (acreage)	After (acreage)
Constructed infiltration systems (infiltration basins/infiltration trenches/ rainwater gardens/bioretention areas without underdrains/swales with impermeable check dams)	0	0.9
Constructed tree trenches and tree boxes	0	0
Constructed wetlands	0	0
Constructed green roofs	0	0
Constructed permeable pavements	0	0
Other (describe)		
TOTAL*		

Trees	Percent	Number
Percent tree canopy removed or number of mature trees removed during development		Less than 10
Number of new trees planted		368

Land Cover – before landfill development (after mining)

				1 AT
	C&D La Acres	andfill 185		
	Stormwater Ponds 13.6 Acres		Vegetated setback area 35.5Acres	-
	Green infastructure 0.9 Acres	Imperviou: 6 Acres	s Areas	
E	Land Cover - Aft	er Project		-11/

Land Cover – after project

9. Permits and approvals required: List all known local, state and federal permits, approvals, certifications and financial assistance for the project. Include modifications of any existing permits, governmental review of plans and all direct and indirect forms of public financial assistance including bond guarantees, Tax Increment Financing and infrastructure. *All of these final decisions are prohibited until all appropriate environmental review has been completed. See Minnesota Rules, Chapter 4410.3100.*

Table 9: Permits and approvals

Unit of government	Type of application	Status	
Minnesota Pollution Control Agency (MPCA)	Amendment to Solid Waste Facility Permit SW-290	Submitted	
	NPDES/SDS (Industrial Stormwater Multi Sector General Permit) – includes Construction Stormwater General Permit Requirements	Obtained	
	Air Permit Applicability Determination	Submitted and Completed (no permit needed)	
Minnesota Department of	Well Sealing (as needed)	To be submitted	
Health (MDH)	Well Construction Permit	To be submitted	
	Monitoring Well Permit	To be submitted	
Metropolitan Council	Industrial Discharge Permit (Special Discharges) for leachate disposal	Obtained.	
	Amendment to Conditional Use Permit (CUP)	To be submitted	
Scott County	Annual Solid Waste License	Obtained for existing Landfill, Submitted annually	
	Septic system, building permits, etc.	To be submitted	

10. Land use:

- a. Describe:
 - i. Existing land use of the site as well as areas adjacent to and near the site, including parks, and open space, cemeteries, trails, prime or unique farmlands.

Figure 3 – Existing Land Use, illustrates the existing land use associated with the Project and surrounding area. Current and recent land use and development within the Project area includes limestone quarrying and processing operations which operate under land use permits issued by Scott County. Limestone quarrying has occurred within the Project area since the 1950's. The Site is bordered by the Union Pacific Railroad to the west and the US Highway 169 corridor to the east.

Land use immediately surrounding the Project area is predominantly industrial and commercial in nature. The Dem-Con Landfill and associated environmental campus with recycling, processing, and transfer operations are north of the Project. Louisville Landfill, a closed municipal solid waste (MSW) landfill is north of the Project and west of the existing Dem-Con Landfill. Sand and gravel and limestone mines are west and east of the Project and north of Trunk Highway (TH) 41. The Green Quarry, a former limestone quarry, is southwest of the Project. Other nearby industrial and commercial land uses include Anchor Block, Diemold Tool, 169 Truck and Auto Repair, and RRT yard waste compost facility.

The closest rural residential land uses are 1,000 feet east of the Project and are buffered by the US Highway 169 corridor and additional light industrial and commercial land uses east of the highway. There are two residences under one-half mile south of the Project. These

residences are west of US Highway 169, south of the 147th St overpass system, and south of the RRT yard waste compost facility. The Jackson Heights mobile home park is near the intersection of Dem-Con Drive and TH 41 just west northwest of US Highway 169 and just under one-mile from the Project area.

There are two festival land uses near the Project including the Minnesota Renaissance Festival and the Sever's Festival grounds. The Renaissance Festival is an annual festival held in late summer and fall of each year. The festival grounds and parking area are on property just west of the Project. Sever's Festival grounds are one-quarter mile to the southeast of the Project. Sever's currently hosts annual events primarily in the fall and winter but is developing year-round events.

The remainder of the surrounding land use is vacant land, agricultural land, and state and federal park lands associated with the Minnesota River Valley to the west. The United States Fish and Wildlife Service (USFWS) has acquired land along both sides of the Minnesota River establishing the Minnesota Valley National Wildlife Refuge. Refuge units are along the river valley from the City of Bloomington to Henderson Minnesota.⁷ The Louisville Swamp Unit is south of the Project and the Rapids Lake Unit and Chaska Lake Unit are southwest and northwest of the Project on the west side of the river.

The Louisville Swamp Unit is developed with trails, parking lots, and other infrastructure and contains approximately 2,600 acres of land and open space adjacent to the Minnesota River. The main access and parking area are off US Highway169 via 145th Street, which runs along the southern portion of the Project area. 145th Street also serves as an access point to the Renaissance Festival.

The Minnesota Bluffs regional trail currently ends in the City of Carver but is planned to eventually cross the Minnesota River and run through the abandoned Union Pacific railroad right-of-way west of the Project and link up with the trail segment recently installed adjacent to Red Rock Drive, just south of the Project. This segment of the trail is currently in the design phase. The preliminary alignment does not impact the Project property. There are no cemeteries in the vicinity of the Project.

ii. Plans. Describe planned land use as identified in comprehensive plan (if available) and any other applicable plan for land use, water, or resources management by a local, regional, state, or federal agency.

The Scott County 2040 Plan (2040 Plan) articulates a vision of how Scott County will develop over the next 20 years. The 2040 Plan includes strategies that will accommodate growth and development to optimize benefits to Scott County and provide a framework for zoning and subdivision regulations. The 2040 Plan includes a Future Land Use Map that is intended to provide a logical framework to guide Scott County's land use policies and development decisions.

The 2040 Plan designates future land use of the Project as Industrial served by major

⁷ https://www.fws.gov/refuge/minnesota-valley

transportation corridors, as well as areas of Commercial and Urban Expansion to the east of the Project. According to the 2040 Plan, the purpose of this planning category is to provide areas for industrial development in the unincorporated areas to expand the local tax base and allow for economic development. Landfills are an allowed use in the industrial land use category and help support the economic development of the area.

The Project is in the Scott Watershed Management Organization (Scott WMO) and is subject to their Comprehensive Water Resources Management Plan. The overall purpose of this plan is to protect, preserve, and manage natural surface and groundwater systems within the Scott WMO in response to rapid urban growth and agricultural activity. The Project is also subject to Scott County's Natural Resource Management Ordinance and the standards within.

The MPCA's Metropolitan Solid Waste Management Policy Plan 2016 – 2036 (Metro Policy Plan)⁸ is applicable to the Project. The Metropolitan Solid Waste Management Policy Plan establishes the plan for managing the Metropolitan Area's solid waste. The MPCA prepares this plan every six years.

The goals of the Metro Policy Plan are to:

- Protect the environment and public health, reduce greenhouse gas emissions, and conserve energy and natural resources.
- Manage waste in an integrated system to minimize landfilling.
- Manage waste cost-effectively and internalize future costs to minimize long-term financial liability and maximize environmental benefits.
- Share responsibility and costs for environmentally sound management of waste.

The Metro Policy Plan also includes a component of Environmental Justice. MPCA staff conducted an environmental justice review and identified areas of concern for environmental justice that will potentially be affected by the proposed policy to insure that:

- Pollution does not have disproportionate negative impacts on any group of people.
- The benefits, opportunities, and risks of agency policies, decisions, and activities are fairly and equitably distributed.
- All individuals and groups are given the opportunity for meaningful involvement in agency decisions that may impact them.
- Environmental justice concerns are given due consideration by agency decisionmakers during the development, implementation, and enforcement of environmental laws, regulations, and policies.
- The MPCA and its stakeholders have mechanisms in place to regularly evaluate progress, success, and failure in meeting the agency's goals and the outcomes of those evaluations are used to inform future planning and decision-making by the agency.

MPCA staff identified solid waste management sites in areas of concern for environmental justice. A list of these facilities was included in the plan, along with recommendations for

⁸ Metropolitan Solid Waste Management Policy Plan 2016-2036. Minnesota Pollution Control Agency

increased diligence in permitting actions, including a higher level of scrutiny of impacts, greater effort to avoid and diminish impacts, more frequent inspections, and enhanced community engagement. These recommendations apply to any new facilities proposed in areas of concern.

The Project is not within an Environmental Justice Area of Concern identified by the MPCA.⁹ Information relating to the geographic areas and population served, including highlighting areas of concern for environmental justice is included in the MPCA Solid Waste Permit application.

iii. Zoning, including special districts or overlays such as shoreland, floodplain, wild and scenic rivers, critical area, agricultural preserves, etc.

The Project is zoned I-2, Heavy Industrial. This district is intended to allow industrial uses that are not water intensive and are compatible without municipal services in those areas having access to arterial roadways and/or rail transportation in locations specifically guided by the Comprehensive Plan. Landfills are an allowed conditional use within the I-2 zoning District.

Upon completion of landfilling activities and construction of the final cover system, the landfill will enter a twenty-year post closure period regulated by the MPCA through the Solid Waste Permit. Dem-Con is responsible for post closure monitoring, which includes inspections, cover repair as needed, groundwater monitoring, and leachate collection and treatment. Dem-Con is responsible for establishing a fully funded and bonded post closure fund at the time of closure. Post closure end uses may be considered within the post closure period if found to be compatible with both the landfill and county zoning in effect at that time (e.g. unoccupied open space, solar).

Zoning of the adjacent developed properties is I-2 Heavy Industrial, I-1 Rural Industrial, C-1 General Commercial, UER Urban Expansion Reserve, or UER-C Urban Expansion Reserve Cluster. Figure 4, Scott County Zoning Map Excerpt, illustrates the zoning of the Project and surrounding area.

The Project area is not within a Floodplain, Shoreland Overlay District, or another special overlay district. Property to the west of the Project area near the Minnesota River and Gifford Lake is within the Shoreland Overlay District. Figure 5 - Shoreland Overlay District, depicts the location of the Shoreland District with respect to the Project area.

iv. If any critical facilities (i.e. facilities necessary for public health and safety, those storing hazardous materials, or those with housing occupants who may be insufficiently mobile) are proposed in floodplain areas and other areas identified as at risk for localized flooding, describe the risk potential considering changing precipitation and event intensity.

The Project is not within and does not involve any critical facilities within a floodplain area

⁹ https://www.pca.state.mn.us/about-mpca/environmental-justice

or other area identified at risk for local flooding.

b. Discuss the project's compatibility with nearby land uses, zoning, and plans listed in Item 9a above, concentrating on implications for environmental effects.

The Project is compatible with the nearby heavy industrial land uses, local zoning designations, and local land use plans. The use is served by major transportation corridors (US Highway 169 and TH 41), which support the heavy industrial zoning district established by Scott County's local land use plans and ordinances.

c. Identify measures incorporated into the proposed project to mitigate any potential incompatibility as discussed in Item 10b above.

The Project will be subject to operational standards established by the MPCA. Residential land uses are buffered from the landfill by the major US Highway 169 major transportation corridor and other industrial uses. The Project will be subject to performance standards established in the local zoning regulations and the MPCA Rules related to setbacks, screening, noise, dust control and other potential nuisance conditions, which are discussed individually in following sections of this document. The Project area is not in an area identified by the MPCA as an area of Environmental Justice Concern.

11. Geology, soils and topography/land forms:

a. Geology - Describe the geology underlying the project area and identify and map any susceptible geologic features such as sinkholes, shallow limestone formations, unconfined/shallow aquifers, or karst conditions. Discuss any limitations of these features for the project and any effects the project could have on these features. Identify any project designs or mitigation measures to address effects to geologic features.

The Geology of the Project area originally consisted of a shallow bedrock deposit of the Prairie du Chien Group – a limestone dolomite formation that has been mined across much of the Project area since the 1950's. The Prairie du Chien Group forms the bedrock subcrop over the southern unmined portion of the Project area. The Prairie du Chien Group is composed of two units, the upper Shakopee Formation and the lower Oneota Dolomite. Both the Oneota Dolomite and overlying Shakopee Formation consist largely of carbonate components, characterized by thin to very thick, beds of dolostone, with negligible amounts of sandstone and other silica bearing rocks, except in the lowermost 10 to 20 feet, within the Coon Valley Member, the lowest member of the Oneota Dolomite–which can contain substantial quantities of sandstone, siltstone, and shale.¹⁰ The Prairie du Chien Group is typically 140 to 190 feet thick where past erosion has not diminished the thickness of the unit. However, in the Project area it is typically 25-70 feet thick due to past erosion of the uppermost portion of this bedrock unit.

The Oneota Dolomite is being progressively mined and while mining encounters small solution cavities and fracture zones typical of this formation, there is no evidence of sinkholes or other larger karst features within the Project area. Permitted mining activity will involve the continued

¹⁰ Mossler, John. 2008. Paleozoic Stratigraphic Nomenclature for Minnesota. Report of Investigations 65. University of Minnesota St. Paul, MN.

mining and removal of the carbonate bedrock from the Project area to within a few feet of the underlying Jordan Sandstone, therefore the potential for geologic hazards related to karst features is not significant.

Underlying the Prairie du Chien Group and forming the bedrock subcrop in the very southern portion of the Project area, is the Jordan Sandstone. The Jordan Sandstone is approximately 80 to 120 feet thick within the Project area. It contains two facies, a medium-to coarse-grained quartz sandstone and fine-grained feldspathic sandstone with lenses of siltstone and shale. The Jordan Sandstone is the source of the silica sand deposit.

Beneath the Jordan Sandstone, additional bedrock units are found. From uppermost to lowermost, the Jordan is underlain by the St Lawrence Formation, the Tunnel City Group (formerly known as the Franconia Formation), the Wonewoc Sandstone (formerly known as the Ironton and Galesville Sandstones), and the Eau Claire Formation. The St. Lawrence Formation is a dolomite-cemented, very fine-grained sandstone and siltstone. The St. Lawrence Formation contains interbedded laminated green shale and pink to red, finely to coarsely crystalline dolostone, the latter being particularly abundant in the lower one-half of the formation. To the west of the Project, the Minnesota River flows through a bedrock valley, which is believed to be down cut into the St. Lawrence Formation and/or Tunnel City Group.

The Project is underlain by bedrock aquifer systems. Mining has removed the majority of the Prairie du Chien and the water table is generally associated with the upper portion of the Jordan Sandstone. Mining within the Project area is not conducted below the water table. The base of the liner will be constructed a minimum of five feet above the groundwater table. A synthetic liner and leachate collection system will be installed to protect groundwater.

The underlying St. Lawrence Formation is considered a regional confining bed hydraulically separating the overlying Jordan aquifer from the underlying Tunnel City-Wonewoc (Franconia-Ironton-Galesville) aquifer. The Eau Claire Formation: a shale, siltstone, and very fine-grained sandstone, averaging about 75 feet in thickness acts as a confining layer hydraulically separating the overlying Wonewoc from the underlying Mt. Simon-Hinckley aquifer. In addition to the bedrock aquifers, sand layers in the glacial drift may be used as a source of water supply by some residents in the vicinity of the Project. The groundwater flow direction is from east to west beneath the Project, towards the discharge area of the Minnesota River.

b. Soils and topography - Describe the soils on the site, giving NRCS (SCS) classifications and descriptions, including limitations of soils. Describe topography, any special site conditions relating to erosion potential, soil stability or other soils limitations, such as steep slopes, highly permeable soils. Provide estimated volume and acreage of soil excavation and/or grading. Discuss impacts from project activities (distinguish between construction and operational activities) related to soils and topography. Identify measures during and after project construction to address soil limitations including stabilization, soil corrections or other measures. Erosion/sedimentation control related to stormwater runoff should be addressed in response to Item 11.b.ii.

Soils: A Natural Resource Conservation Service (NRCS) Soil Map and Report for the Project Area is included as Attachment 3. According to the NRCS Web Soil Survey, the original soils in the

Project area were composed predominantly of stony land with shallow depths to limestone bedrock, which is the target resource of the past and current mining activity in the Project area. The majority of Project area soils have been or will be removed as part of the mining activity. The exception to this is the soils in the very southern portion

of the Project area (Excerpt 10-1 below) that were identified as being the only soils remaining in the Project area that are suitable for the development of Subsurface Sewage Treatment System (SSTS) sites¹¹ (Fesner 2019). The area is not served by municipal utilities and future development is dependent upon suitable SSTS sites. The protection of these soils is a condition of the mine permit and the approved mining and reclamation plans. The Project also includes provisions to protect these soils for future development.

Table 11-1 includes the soil types of the original site soils.

Map unit symbol	Map unit name	Acres in AOI	Percent of AOI
CdB	Copaston silt loam, 2 to 6 percent slopes	4.1	1.7%
CdB2	CdB2 Copaston silt loam, 2 to 6 percent slopes, moderately eroded		0.5%
DbB	Dickman sandy loam, 2 to 6 percent slopes	0.0	0.0%
EaB	Estherville sandy loam, 2 to 6 percent slopes	13.6	5.6%
Gp	Pits, gravel	4.3	1.8%
Sc	Stony land	213.2	88.4%
Та	Terrace escarpments	2.1	0.9%
TcA	Terril loam, 0 to 2 percent slopes	2.5	1.0%

Table 11-1: Project site soils

^{11 2019.} Fesner Environmental. Site Suitability for Septic Systems. Merriam Junction Sands, LLC on property owned by Bryan Rock Products and Malker0son Sales, Inc. Attachment 5 of the July 2020 MJS FEIS.

Map unit symbol	Map unit name	Acres in AOI	Percent of AOI
Totals for Area of Interest		241.0	100.0%

The topography of the Project reflects the past mining activity of the Project. Terraced bedrock highwalls lead down to the quarry floor, which is sloped gently to the west. The final floor elevations of the quarry are situated 2-5 feet above the regional water table. Plan Sheet C1.3 illustrates the elevation of the floor of the mine upon completion of mining. The elevation of the quarry floor ranges from approximately 720 to 726 msl. The topography of the area generally slopes east to west towards the Minnesota River Valley.

Reclamation of the quarry will involve leaving a combination of benched limestone walls and 2:1 to 3:1 backfilled slopes. Construction of the liner system will require additional backfilling to create slopes and subsoils suitable for liner construction. The Project will disturb approximately 238 acres of land, which have been previously disturbed by mining activity. An estimated 1,500,000 cy of material will be required to build up the subgrade from the quarry reclamation grades for liner construction and development of the Project.

The grades of the base of the Project will vary and the liner will slope from east to west. The liner grades are designed to maintain a minimum five-foot separation between the top of the liner and the seasonal high-water table. The liner grades for the Project area are illustrated on Plan Sheet 2.2 Liner Grades-Expansion Area.

12. Water resources:

- a. Describe surface water and groundwater features on or near the site in a.i. and a.ii. below.
 - i. Surface water lakes, streams, wetlands, intermittent channels, and county/judicial ditches. Include any special designations such as public waters, shoreland classification and floodway/floodplain trout stream/lake, wildlife lakes, migratory waterfowl feeding/resting lake, and outstanding resource value water. Include the presence of aquatic invasive species and include water quality impairments or special designations listed on the current MPCA 303d Impaired Waters List that are within 1 mile of the project. Include DNR Public Waters Inventory number(s), if any.

There are no lakes, streams, wetlands, county, or judicial ditches within the Project area. The Project is not within the shoreland district floodway or floodplain. There is a stormwater channel that runs through the northern portion of the Project area.

The floodplain and shoreland districts of the Minnesota River and Gifford Lake are west of the Project. Figure 5, Shoreland Overlay District illustrates the location of the shoreland district with respect to the Project Area. Public waters within one-mile of the Project include the Minnesota River, Gifford Lake (Public Water 70-118P), Louisville Swamp (Public Waters 70-209P and 70-210P), Picha Creek, and Sand Creek. Picha Creek is south of the Project and flows into Louisville Swamp joining Sand Creek before discharging into the Minnesota River. The confluence of Sand Creek with the Minnesota River is just under one mile west of the Project. Figure 6, Public Waters illustrates the location of public waters in the vicinity of the Project.

A wetland delineation¹² was performed in conjunction with the MJS EIS. There are no Wetland Conservation Act (WCA) regulated wetlands or US Army Corps of Engineers jurisdictional wetland basins in the Project area. Three basins, including two stormwater basins and an aggregate wash settlement pond are in the northern portion of the Project area. These three basins were determined to be incidental wetlands and not regulated under the Wetland Conservation Act. The wash basin will be relocated to the southern portion of the Project as mining progresses to the south. The Technical Evaluation Panel issued a Notice of Decision (NOD) on 2/15/2015. The NOD approved the wetland delineation boundaries and types and a No Loss Decision. Wetland delineations are typically valid for a period of five years. However, the TEP issued an extension of the NOD until February 11, 2027, for the Project area upon finding that conditions related to aquatic conditions had not changed. A copy of the NOD and the letter granting an extension of the delineation on the property to 2027 is included as Attachment 4.

No regulated wetland basins were identified in the Project area. The wetland delineation was used as a basis for the recent permitting of the southern portion of the Bryan Rock Quarry. The landfill expansion will only be disturbing areas of the Project that have been previously disturbed from mining operations.

Wetlands in the vicinity of the Project include scattered wetland basins and larger wetland complexes within the floodplain of the Minnesota River. Figure 11 illustrates the locations of surrounding wetlands. Wetlands shown on this figure are from the MJS wetland delineation referenced above. There are a few isolated wetland basins in the area, but most wetland areas are associated with larger wetland complexes within the floodplain of the Minnesota, River. Off-site wetlands will not be impacted by the Project.

The lower Minnesota River Valley is an important bird area that supports a variety of nesting and migrating waterfowl. Demolition landfills have little to no impact on migratory birds as they contain no food sources or habitat. Dem-Con operations and active mining operations within the Project area are setback from the large wetland complexes associated with the MN River by approximately one-quarter mile. The wetland complexes and upland areas in the surrounding area that provide nesting habitat will not be impacted by the Project. The Project area will be constructed on the floor of the quarry, which consists of barren unvegetated rock. The Landfill has operated without negative impacts on nesting and migrating waterfowl for decades. The Project is a continuation of these activities and will not be creating any new potential for impacts to migratory birds or nesting waterfowl.

Impaired waters within one mile of the Project that are on the 2022 Draft impaired waters list¹³ are included in Table 12-1.

¹² Barr (2011) Portions of Merriam Junction Sands Mine Scott County, Minnesota Prepared for Hunt Global Resources, Inc. LGU provided an extension of the wetland delineation until 2027.

¹³ https://www.pca.state.mn.us/water/impaired-waters-viewer-iwav

Impaired water	Impairments	Impaired use
Picha Creek	Fish bioassessments	Aquatic Life
Sand Creek	Chloride, E. coli., Fish bioassessments, Nutrients, Turbidity, Benthic macroinvertebrate bioassessments	Aquatic Life, Aquatic Recreation
Minnesota River High Island to Carver Creek	Fecal coliform, Mercury in fish tissue, Mercury in Water Column, Turbidity, PCB in fish tissue,	Aquatic Life, Aquatic Recreation, Aquatic Consumption
Minnesota River Carver Creek to RM 22	Mercury in fish tissue, Mercury in Water Column, Turbidity, Nutrients, PCB in fish tissue,	Aquatic Life, Aquatic Consumption

Table 12-1: Impaired waters within one mile of Project

- ii. Groundwater aquifers, springs, seeps. Include: 1) depth to groundwater; 2) if project is within a MDH wellhead protection area; 3) identification of any onsite and/or nearby wells, including unique numbers and well logs if available. If there are no wells known on site or nearby, explain the methodology used to determine this.
 - 1) depth to groundwater: The elevation of the water table varies from approximately 726 feet above mean sea level (msl) in the eastern portion of the Project to approximately 721 feet above msl along the western portion of the Project. Figure 7A Groundwater Table, illustrates the water table and flow direction across the Project area based on water levels taken in the spring of 2015. Figure 7B illustrates the water table and flow direction across the Project area based on direction across the Project area taken in the winter of 2022 and demonstrates the seasonal fluctuation of the water table. The hydrogeologic evaluation of the Project area in the solid waste application is included as Attachment 5. The direction of groundwater flow is from the east to the west towards the discharge region of the Minnesota River. In areas where limestone has been previously quarried, the depth to water table currently varies from approximately 2-20 feet below the floor of the quarry. Groundwater flow in the Jordan Sandstone occurs under unconfined conditions. Below the Jordan Sandstone, the St. Lawrence Formation characteristically has low vertical hydraulic conductivity and is typically considered a confining unit hydraulically separating the Jordan Aquifer from the underlying Tunnel City aquifer.

The groundwater monitoring plan requires collection of water level data on a quarterly basis in conjunction with quarterly sampling. Groundwater table maps reflecting the quarterly monitoring results are prepared and submitted to the MPCA on a quarterly basis and in the annual groundwater report, which includes the past five years of data. The most recent groundwater monitoring report is included as Attachment 6 - 2021 Annual Groundwater Monitoring Report.

2) MDH Wellhead Protection Areas: The Project area is not in a Minnesota Department of Health (MDH) wellhead protection area. The Carver and Chaska wellhead protection

areas: Carver North, Carver Central, and Chaska South) are over one mile from the Project area and across the Minnesota River, which represents a hydrogeologic barrier between the Project and the wellhead protection areas. The wellhead protection area for the city of Shakopee is just under one mile from the Project. The Shakopee wellhead protection area is upgradient of the Project and the Existing Landfill. Figure 8 – Wellhead Protection Areas, illustrates the location of wellhead protection areas in the vicinity of the Project.

3) Onsite and/or nearby wells. There are two monitoring wells in the Project area, MW-7-11 and MW-4-11 that were installed as part of the hydrogeologic investigation conducted for the MJS EIS. The Bryan Rock Production Well used for washing was sealed in 2020 and will be redrilled in the southern portion of the quarry to support aggregate washing operations.

The Renaissance Festival has two non-community public water supply wells that are located downgradient of the Project. These wells are finished in deeper aquifers. Other water supply wells associated with nearby commercial industrial and residential land uses are upgradient or side gradient of the Project area. Table 12-1 includes the names, unique numbers (where available), and locations of wells within 1,000 feet of the Project. Figure 9 - Water Supply Wells Near the Project, illustrates the locations of these wells. Attachment 4 includes copies of these water supply well logs.

Well ID	Owner	Address	Тwp	Rng	Sect
	Bryan Rock Products	13580 Johnson Memorial Dr.			
540281	(sealed)	Shakopee MN 55379	115	23	21
	Dem-Con Material Recovery	13161 Johnson Memorial Dr.			
272748	Facility	Shakopee MN 55379	115	23	21
	Dem-Con Material Recovery	13161 Johnson Memorial Dr.			
272749	Facility	Shakopee MN 55379	115	23	21
	Dem-Con Material Recovery	13161 Dem Con Dr.			
796915	Facility	Shakopee MN 55379	115	23	21
		13020 Dem-Con Dr.			
684019	Dem-Con Office	Shakopee MN 55379	115	23	21
		13142 Dem Con Dr.			
809771	Dem-Con Metal Recycling	Shakopee MN 55379	115	23	21
		13122 Johnson Memorial Dr.			
405973	Halloran	Shakopee MN 55379	115	23	21
610403	Anchor Block	13450 Johnson Memorial Dr.	115	23	21
759599	Anchor Block	Shakopee MN 55379	115	23	21
		13450 Johnson Memorial Dr.			
221364	Johnson & Bigler Co.	Shakopee MN	115	23	21
209939	Lano Implement	3021 133 rd St. W.	115	23	21

Table 12-2: Nearby water supply wells

Well ID	Owner	Address	Тwp	Rng	Sect
		Shakopee MN 55379			
		13731 Johnson Memorial Dr.			
551318	C.H. Carpenter Lumber	Shakopee MN	115	23	21
836415	Mumoff	13745 Johnson Memorial Drive	115	23	21
		3630 145 th St. W.			
248000	MN Renaissance Festival	Shakopee MN 55379	115	23	21
		3036 150 th St. W.			
211864	Lindstrom	Shakopee MN 55379	115	23	28
244436	Merriam Junc. RR Well	145 th St. W. and RR track	115	23	28
		14331 Johnson Memorial Dr.			
709026	Doucette	Shakopee MN	115	23	28
		3232 150 th St. W.			
211863	Minn. Valley Nursery	Shakopee MN 55379	115	23	28
		3232 150 th St. W.			
211865	Minn. Valley Garden Cent	Shakopee MN 55379	115	23	28
		14800 Johnson Memorial Dr.			
569344	NRG	Shakopee MN	115	23	28
222446		Irrigation Well 14145 Johnson			
233116	Granzlow (Doucette)	Memorial	115	23	28
		3325 145 th St. W.			
513892	Renaissance Festival	Shakopee MN 55379	115	23	28
		3525 145 th St. W.			
404657	Renaissance Festival	Shakopee MN 55379	115	23	28
		14505 Johnson Memorial Dr.			
401129	MN Valley Wholesale	Shakopee MN 55379	115	23	28

Potential Impacts to Groundwater: Impacts to groundwater from a landfill generally results from the production of leachate, which enters the groundwater system. Leachate is produced when precipitation travels through and is in contact with the in-place decomposing waste. The water picks up dissolved material forming leachate. The volume of leachate produced, and strength of leachate depends upon several factors including climate and the type of waste that is landfilled.

The MPCA defines three classes of demolition landfills.¹⁴ Class I Demolition Landfills accept C&D wastes included on the MPCA's Acceptable C&D Waste List. Class II demolition landfills accept MPCA's Acceptable C&D Waste List and incidental nonrecyclable packaging consisting of paper, cardboard and plastic, and limited demo-

¹⁴ August 2005. Demolition Landfill Guidance Water/Solid Waste #5.04. MPCA available online at https://www.pca.state.mn.us/sites/default/files/w-sw5-04.pdf

like industrial waste that is limited in composition to wood, concrete, porcelain fixtures, shingles or window glass. Class III demolition landfills may accept all C&D wastes and most industrial wastes.

Dem-Con has implemented several landfill design elements to reduce the volume of leachate generated and to prevent leachate that is generated from impacting the groundwater. Leachate reduction measures include:

- The use of cover materials over exposed waste;
- Limiting the size of active fill area;
- Use of diversion berms, swales, and grading to prevent stormwater from running into an active fill area;
- Installing a final cap on completed fill area; and
- Final grades designed to shed precipitation off the fill area.

The final cap design at the Landfill exceeds the design standards for Class III landfills and consists of a six-inch buffer layer overlain by a 40-mil LLDPE liner, a drainage geocomposite, 18 inches of rooting material and six inches of topsoil layer. This system significantly reduces the amount of precipitation that can enter the landfill and generate leachate. Rooting soils and establishment of vegetation promote evapotranspiration and provide erosion control. These measures minimize the volume of leachate generated during the operating life and post closure period.

Measures to prevent leachate generated from impacting groundwater include:

- Installation of a landfill liner and leachate collection system; and
- Routine groundwater monitoring.

The liner system is designed to provide a barrier between the waste and the underlying ground and prevents leachate from reaching the groundwater. The liner system design over the expansion area consists of a six-inch soil cushion layer, geosynthetic clay liner (GCL), 60-mil HDPE liner, drainage geocomposite, and 12-inch granular drainage layer. The liner system creates an essentially impermeable layer that protects the underlying groundwater. The base of the liner system is sloped towards a series of collection pipes that transmit the leachate off the liner to a sump. Pumps remove the leachate from the sump to a leachate storage tank via a double walled force main. Secondary containment sized to contain the entire tank volume plus precipitation is provided for the leachate storage tanks. When the final cover system is constructed over a completed cell, there is no longer a source of water to produce leachate. New leachate generation ceases. Any leachate still contained within the waste percolates downward over time and is collected and removed by the liner and leachate collection system creating a "dry tomb" condition.

In addition to these groundwater protection measures; a groundwater monitoring network has been established at the landfill. This network will be expanded to incorporate the Project area. Routine groundwater sampling is conducted in accordance with the MPCA Solid Waste Permit and results submitted to the MCPA. The following section describes groundwater monitoring in the Project area.

There are several monitoring wells adjacent to the Project area that are associated with three sperate monitoring well networks. The Dem-Con Landfill has an existing monitoring

well network that consists of eight wells. The closed Louisville Landfill has a monitoring well network that consists of 16 wells, 12 of these are active. The MJS project has a monitoring well network that consists of 15 wells. Monitoring wells are listed in Table 12-2. Figure 10 – Monitoring Well Networks, illustrates the location of the wells included in Table 12-2. Attachment 5 includes copies of well logs for the existing Dem-Con monitoring well network and the wells that are within the Project area.

Groundwater monitoring has been conducted at the Landfill in accordance with the Solid Waste Permit since 1999. The current Landfill monitoring well network and groundwater monitoring plan was established in accordance with the MPCA solid waste permit. Monitoring has been conducted for several parameters including metals and VOCs. Attachment 9 includes a copy of the current Landfill groundwater monitoring plan. The plan will be amended as part of the MPCA Solid Waste Permit to provide upgradient and down gradient coverage of the Project area. PFAS monitoring is described at the end of this section.

The existing Landfill groundwater monitoring network includes upgradient wells W-8, W-10, and W-120 and downgradient wells W-121, W-122, DC-117, DC-118, and DC-119. The three monitoring wells, DC-117, DC-118 and DC-119 are monitored as part of the Landfill and Louisville Landfill network, serving as downgradient wells for the Landfill and up gradient wells for the closed Louisville Landfill. These wells are at the interface between the Louisville Landfill and the Landfill.

Five additional monitoring wells are proposed to be added to the monitoring well network for the Project and include two upgradient wells and three downgradient wells. These wells will be phased into the monitoring well network prior to filling progressing into the Project area. The wells will be installed, and baseline data will be collected a minimum of one year prior to landfilling within the areas they will be monitoring. Proposed well locations are indicated on Figure 10, Monitoring Well Networks.

Dem-Con monitoring well network		
Name	Unique number	
W-8	Unknown	
W-10	151599	
W-120	595728	
W-121	595729	
W-122	Unknown	
DC-117	557378	
DC-118	557379	
DC-119	557380	

Table 12-3: Existing monitoring well networks

Closed Louisville landfill monitoring well network		
Name	Unique number	
W-3A	Unknown	
W-4	Unknown	
W-5		Unknown
W-9		Unknown
W-11		151598
W-111		151597
W-211	433615	(sealed 12-07-20004)
W-112	43361	L8 (sealed H227037)
W-113		433616
W-213		433617
W-114		433619
W-115	525943	
W-116		Unknown
DC-117 ¹⁵	557378	
Dc-118	557379	
DC-119	557380	
MJS Monitoring well ne	twork	
Name	Unique number	
MW-1-11	783158	
MW-04-11	783164	In Project Area
MW-6-11	783162	
MW-7-11	783165 In Project Area	
MW-8-11	783155	
MW-9-11	783159	
MW-11-11	783153	
MW-13-11	783154	
MW-16-11	783156	
MW-17-11	783160	

¹⁵ DC-117-DC-118 are part of both Dem-Con Landfill (downgradient of landfill)and Louisville Landfill (upgradient of landfill) Monitoring Networks

MW-19-11	783163
MW-20-11	783161
MW-21-11	783157
PW-14-11	786706
PW-15-11	786707

Groundwater monitoring is conducted on a quarterly basis, excluding winter quarter. Both upgradient and downgradient wells routinely have detections of Manganese, Barium, Boron, Chloride, Sulfate, Nitrate and Nitrite, and Iron above reporting limits. Low levels of VOCs are occasionally detected in both upgradient and downgradient wells except for DC-117. DC -117 is at the interface between the Louisville Landfill and the Landfill and past monitoring results indicate that groundwater at DC-117 has been influenced by the Louisville Landfill. DC-117 routinely has detections of about ten different VOCs. Concentrations of most of these VOCs are trending downward. Groundwater monitoring results are reported to the MPCA. The annual groundwater report includes a summary of the current years water quality monitoring, tabulation of the last five years of results, and graphs of contaminants that have been detected during the reporting year, which illustrate historical and recent trends. A copy of the 2021 Annual Groundwater Report is included as Attachment 6.

Several measures to increase protection of the groundwater have been implemented over the life of the Landfill. These include:

- The installation of a liner and leachate collection system in the northern fill area as part of initial phase construction.
- Installation of a liner and leachate collection system over in-place demolition fill materials in the central fill area. The liner as acts as a liner for future filling in this portion of the landfill and acts as an essentially impermeable cover over the underlying in place demolition waste.
- Construction of an enhanced final cover system over completed unlined portions of the southern landfill in 2019. The enhanced final cover system will be used over all portions of the landfill as they are brought to final grade and consists of a six-inch buffer layer overlain by a 40-mil LLDPE liner, a drainage geocomposite, 18 inches of rooting material and six inches of topsoil layer. This system significantly reduces the amount of precipitation that can enter the landfill and generate leachate. This system is particularly effective at protecting groundwater over the unlined portions of the original demolition landfill.

Existing Groundwater Impairments in the Surrounding Area: The Louisville Landfill is just north of the Project area. The Louisville Landfill opened in 1968 and was permitted for operation in 1971 as an unlined MSW landfill. The landfill operated until May 1990, when the state began requiring liners and leachate collection systems at all MSW landfills. Unlined MSW landfills contaminate groundwater resources when precipitation and/or groundwater seeps through this waste and produces leachate. Leachate is water contaminated from the various wastes that it comes in contact as it migrates through the

waste. Leachate passes through the waste and continues downward until it reaches and contaminates the groundwater beneath the landfill. As the contaminated groundwater moves away from the landfill, it forms a plume, and the contaminants are transported away from the landfill within the plume. State of the art landfill design now incorporates a liner and leachate collection system to prevent leachate from impacting underlying groundwater resources. Routine groundwater monitoring at the Louisville Landfill detected the presence of groundwater contamination and a remedial investigation was conducted in 1987. Volatile organic compounds (VOCs) were found in the groundwater sampled along the western edge of the landfill and low levels of 23 VOCs were found in off-site downgradient wells. Groundwater flow from the Louisville Landfill is to the west towards the discharge area associated with the Minnesota River.

The Louisville Landfill was closed in 1990 and has been part of the MPCA closed landfill program since 1999. The MPCA is responsible for the long-term closure care, existing groundwater impairments, and on-going groundwater monitoring associated with the Louisville Landfill. The Louisville Landfill was covered with an enhanced cover system that included a low-density polyethylene (LDPE) synthetic liner and landfill gas extraction system in 2003. Since installation of the enhanced final cover and gas extraction system, concentrations of most contaminants in the groundwater have declined but downgradient wells continue to detect low levels of VOCs.

The impaired groundwater is to the northwest of the Project area and has no impact on the Project. Dewatering or water appropriations are not proposed as part of the Project. The Project will not affect groundwater flow direction or contaminant transport associated with the unlined Louisville Landfill. The Project area will be constructed with a leachate liner and collection system that protects the underlying groundwater.

PFAS: The MPCA more recently conducted additional monitoring at the Louisville Landfill for emerging contaminants of concern including per- and polyfluoroalkyl substances, commonly known as PFAS at closed landfills across the state. According to the MPCA¹⁶. PFAS contamination was found in 97 percent of assessed closed landfills, including the Louisville Landfill. In February 2021, The MPCA, along with other state agencies, released Minnesota's PFAS Blueprint – a strategic, coordinated approach to protect families and communities from PFAS. With the discovery of PFAS contamination in groundwater, the MPCA will expand its water monitoring to ensure drinking water is monitored and the full extent and magnitude of the contamination is known.

In March of 2022, the MPCA developed a PFAS Monitoring Plan.¹⁷ The PFAS Monitoring Plan addresses PFAS monitoring at several different types of industries including Solid Waste Facilities. To implement the PFAS Monitoring Plan at Minnesota's solid waste facilities, the MPCA is requesting all landfills sample groundwater monitoring wells for PFAS over the next two years. MPCA developed two waves of testing based on facility and risk characteristics, including landfill design and operation, groundwater

¹⁶ https://www.pca.state.mn.us/news-and-stories/nearly-60-closed-landfills-in-41-counties-have-pfas-contamination-in-groundwater-that-exceeds-the 17 March 2022, PFAS Monitoring Plan, Minnesota Pollution Control Agency. Available online at https://www.pca.state.mn.us/sites/default/files/p-gen1-22b.pdf

contamination associated with the facility, and potential downgradient drinking water receptors. Based on this prioritization of facilities, the MPCA assigned the Landfill to the second wave. In July 2020, Wave 1 facilities received the request to conduct PFAS monitoring in 2023. The MPCA has not yet sent out monitoring requests to Wave 2 facilities. It is anticipated that Wave 2 facilities will monitor for PFAS in 2024.

- b. Describe effects from project activities on water resources and measures to minimize or mitigate the effects in Item b.i. through Item b.iv. below.
 - i. Wastewater For each of the following, describe the sources, quantities and composition of all sanitary, municipal/domestic and industrial wastewater produced or treated at the site.
 - 1) If the wastewater discharge is to a publicly owned treatment facility, identify any pretreatment measures and the ability of the facility to handle the added water and waste loadings, including any effects on, or required expansion of, municipal wastewater infrastructure.

The landfill design includes a synthetic liner and leachate collection system. Leachate is generated as precipitation falls on active cells and infiltrates through the waste. The liner is sloped to perforated collection pipes which drain to sumps. Leachate is pumped from the sumps to an above ground storage tank.

The leachate is hauled to the Blue Lake Wastewater Treatment Facility in Shakopee, Minnesota and discharged in accordance with a Metropolitan Council Industrial Discharge Permit (Special Discharges) Number 2284. Leachate contains several chemical compounds picked up as stormwater and snowmelt percolate through and contact the landfilled debris. Leachate is routinely sampled for several parameters as a condition of the MPCA solid waste permit. Results are submitted to the MPCA. The last five years of leachate monitoring results are tabulated in the 2021 Annual Groundwater Report included as Attachment 6. Volumes of leachate generated are also reported. Leachate sampling is also required by the Metropolitan Council and regulated through the Metropolitan Council Environmental Services Industrial Discharge Permit. The permit contains monitoring requirements as well as discharge limitations for certain parameters.

Leachate is routinely sampled for several chemical constituents as a condition of both the MPCA solid waste permit and the Metropolitan Council Discharge Permit. Volumes of leachate generated are also reported.

The volume of leachate generated each year is dependent upon the size of active fill area and precipitation. The Existing Landfill generates between 4 to 10 million gallons per year. The Project is not expected to change the volume of leachate generated because the size of the open active cells in the expansion area will be consistent with the existing Landfill's open active cell areas. Maximum leachate is generated during a transition from one active cell to the next as filling in one cell is being completed and filling in a new cell is being initiated. Leachate generation rates could increase if annual precipitation increases during the life of the Project.

2) If the wastewater discharge is to a subsurface sewage treatment system (SSTS), describe the system used, the design flow, and suitability of site conditions for such a system. If septic systems are part of the project, describe the availability of septage disposal options within the region to handle the ongoing amounts generated as a result of the project. Consider the effects of current Minnesota climate trends and anticipated changes in rainfall frequency, intensity, and amount with this discussion.

The Landfill offices are off-site and served by a SSTS system. Portable facilities are used in the field as needed. Currently there are no plans to develop an SSTS on-site. However, in the future as operations progress to the south, it is possible that a building is constructed and an SSTS for normal domestic sewage is developed. These soils have been previously identified as being suitable for SSTS development in a Site Suitability soil suitability investigation by Feser Environmental conducted for the MJS EIS, Feser concluded in the section referencing the unmined portion of the Bryan Rock Property south of 145th Street¹⁸:

"The area along the south and southwestern boundary of this site, below the 760 ft. elevation line, had areas that could support a Type 1 SSTS. The depth of natural, undisturbed soil over limestone documented in these areas were 12 inches to 41 inches. Preliminarily, this area could support approximately six 5,000 square foot areas or three 10,000 square foot areas."

Preserving the soils that have the potential to support an SSTS was a condition of the Bryan Rock mine permit issued by Scott County. The location of the suitable soils identified in the Feser Report are illustrated on Plan Sheet C.1.3 The Project also preserves these soils so that they may be available for development of an SSTS in the future. Any SSTS system would require a permit from Scott County and would be required to meet County and State design standards at the time of construction.

3) If the wastewater discharge is to surface water, identify the wastewater treatment methods and identify discharge points and proposed effluent limitations to mitigate impacts. Discuss any effects to surface or groundwater from wastewater discharges, taking into consideration how current Minnesota climate trends and anticipated climate change in the general location of the project may influence the effects.

Not Applicable because the Project will not result in a wastewater discharge to a surface water.

ii. Stormwater - Describe the quantity and quality of stormwater runoff at the site prior to and post construction. Include the routes and receiving water bodies for runoff from the site (major downstream water bodies as well as the immediate receiving waters). Discuss any environmental effects from stormwater discharges. Describe stormwater pollution prevention plans including temporary and permanent runoff controls and potential BMP

^{18 2019} Feser Environmental Site Suitability for Septic Systems Merriam Junction Sands, LLC on property owned by Bryan Rock Products and Malkerson Sales, Inc, Available as Attachment 5 of the 2020 MJS FEIS. The MJS FEIS is available online at https://www.scottcountymn.gov/506/Merriam-Junction-Sands

site locations to manage or treat stormwater runoff. Identify specific erosion control, sedimentation control or stabilization measures to address soil limitations during and after project construction. Stormwater - Describe changes in surface hydrology resulting from change of land cover. Describe the routes and receiving water bodies for runoff from the project site (major downstream water bodies as well as the immediate receiving waters). Discuss environmental effects from stormwater discharges on receiving waters post construction including how the project will affect runoff volume, discharge rate, and change in pollutants. Consider the effects of current Minnesota climate trends and anticipated changes in rainfall frequency, intensity, and amount with this discussion. For projects requiring NPDES/SDS Construction Stormwater permit coverage, state the total number of acres that will be disturbed by the project and describe the stormwater pollution prevention plan (SWPPP), including specific best management practices to address soil erosion and sedimentation during and after project construction. Discuss permanent stormwater management plans, including methods of achieving volume reduction to restore or maintain the natural hydrology of the site using green infrastructure practices or other stormwater management practices. Identify any receiving waters that have construction-related water impairments or are classified as special as defined in the Construction Stormwater permit. Describe additional requirements for special and/or impaired waters.

Topography of the Project area before development consisted of a terrace landscape that gently sloped to the west. Figure 11 – Pre-Settlement Site Drainage Areas, illustrates the pre-mining drainage patterns of the Site. Figure 12 – Proposed Site Drainage Areas, illustrates the existing drainage patterns of the Project area. These figures also illustrate the routes and receiving water bodies for runoff from the Project including major downstream water bodies as well as the immediate receiving waters. There are three distinct drainage areas across the Project area, the northern regional, central, and southern drainage areas.

In the northern portion of the Project area, regional stormwater drainage originating in the bluff area runs into and through the northern portion of the Project. Permanent stormwater management ponds were constructed on the east side of US Highway 169 in conjunction with the 2020 construction of the frontage road (Louisville Road) system. A regional hydrologic model was developed by the County that incorporates these improvements. The model includes tributary drainage areas that flow into the northern portion of the Project from east and northwest of US Highway 169. The Regional Model was used as the basis for modelling the regional stormwater drainage through the Project area. Stormwater from the east through a culvert system under US Highway 169 and into the Project near the northwest property corner. This stormwater combines with additional stormwater runoff from the subwatershed north of the Project and west of US Highway 169 and flows over the Project's northern driveway into a ditch system that also conveys water from the existing landfill and the Dem-Con environmental campus area. Stormwater enters an existing stormwater pond (DC-2) at the southern end of the existing Landfill. Overflow from DC-2 is through an outlet structure into a ditch system that straddles the common property line between the Louisville Landfill and the Project. There is an existing sedimentation basin (DC-3) in the northwest corner of the Project area, which discharges via overland flow to the west into the UP railroad right of way and through a large box culvert beneath the track and onto the adjacent property to the west (Malkerson Sales Property). The drainage continues

through a series of pipes and ditches across the floor of a limestone quarry on the property and into a final sedimentation basin prior to discharging into a large wetland complex associated with the floodplain of the Minnesota River.

In the central drainage area, mining has reduced the grade in most of the drainage area. Most of this drainage area originally drained to the west but now most of the area drains internally. A small portion of the central drainage area along the setback of the mine drains to the US Highway 169 right of way.

The southern drainage area originally drained to the south. Most of this drainage area north of 145th Street flows to a box culvert under 145th Street. The portion property south of 145th Street sheet flows to the south. A small portion of the drainage area flows to the US Highway 169 right of way. Stormwater runoff from the southern drainage area on site generally flows to the southwest towards a large culvert that runs under 145th Street just to the west of the Project Boundary and into a landlocked basin. Figure 11 - Pre-Settlement Site Drainage Areas, illustrates the pre-mining drainage patterns of the Project. Figure 12 – Proposed Site Drainage Areas, illustrates the existing drainage patterns of the Project.

The Project will alter the topography of the Project area. As mining lowers the grade across the Project area, landfilling will raise the grade across the Project area. The northern regional drainage area will be maintained and is outside of the landfill footprint. The central and southern drainage areas will continue to discharge to the west and south.

The cover system is designed to accept water into the rooting zone to sustain healthy vegetation and to prevent excess precipitation from penetrating the liner and entering the waste. Therefore, development of the landfill, (without stormwater controls) would increase the uncontrolled rate and volume of stormwater runoff from the landfill. A stormwater management system has been designed that includes stormwater treatment, rate control, and volume control to mitigate these impacts. Additional stormwater basins will be constructed to treat stormwater runoff, control peak rates of runoff, and provide infiltration to mitigate increases in the volume of runoff generated from the Project.

Stormwater Management will meet the Scott County and MPCA Stormwater management standards for landfills. The regional stormwater drainage patterns will be preserved. The County Standards are fully articulated in Chapter Six of the Scott County Zoning Ordinance. Some of the key design standards are as follows:

- The Project will control peak rates of runoff for the 2, 10, and 100 year 24-hour rainfall events to pre-settlement conditions.
- The wet detention basins are designed in accordance with the W.W. Walker Method (1987) described in the Best Management Practices and provide: (1). A permanent wet pool with dead storage greater than or equal to the runoff from a 2.5-inch storm event; (2). Pond outlets are designed to prevent short circuiting of the flow from pond inlets to the outlets; (3). An outlet skimmer to prevent migration of floatables and oils for at least the 1-year storm event; and (4). Access for future maintenance.
- Infiltration practices for control of stormwater runoff volume are designed to be capable of infiltrating a volume of runoff equivalent to the depth of one (1) inch of runoff over the area of all new impervious surfaces within the development within forty-eight (48) hours.

- Pretreatment is provided prior to the infiltration basins and is designed to protect the infiltration system from clogging and to protect groundwater quality.
- The infiltration systems are designed to bypass higher flows.
- All drainage systems and facilities are designed to convey at least a 25-year rainfall event and to withstand the runoff from the critical one hundred (100) year event without damage to the system or facility, downstream areas and/or significant risk to human health and safety.

Regional drainage patterns will be maintained along the northern portion of the Project. The existing vegetated outlet will be reconstructed to stabilize the outlet and reduce the erosion potential associated with the current vegetated outlet. Table 12-3 summarizes existing and proposed peak rates of runoff for the Project.

24-HR, event	Pre-settlement runoff (cfs)	Proposed runoff (cfs)					
North Regional drainage area							
2-YR	38.19	31.4					
10-YR	80.22	77.91					
100-YR	304.56	303.4					
Central drainage area							
2-YR	0.11	0					
10-YR	7.49	5.67					
100-YR	116.61	24.30					
	Southern drainage area						
2-YR	2.38	0					
10-YR	4.69	0.55					
100-YR	40.65	15.02					

Table 12-4: Peak runoff rates

If the modelled increase in precipitation comes in increased intensity and frequency of rainfall events, the potential for increased flooding and sedimentation may occur. Once soils become saturated, almost all the additional precipitation produces runoff, rather than soaking into pervious soils. The Project has been designed with stabilized emergency overflows to accommodate storms that exceed the 100-year event or the ponds outlet capacity. The Project is separated from the Minnesota River floodway at approximately 723 msl by a topographic divide along the UP railroad at an elevation of approximately 760 msl. The Project is not expected to change stormwater pollutants.

Pollutants of concern are suspended solids and nutrients which can enter the stormwater runoff from exposed soils and impervious surfaces. The landfill operates under a NPDES/SDS Industrial Stormwater Permit (MNR053453) and a site-specific Stormwater Pollution Prevention Plan (SWPPP). Dem-Con's SWPPP will be updated to include the expansion area. The Project is also required to operate under a Scott County Natural Resources Plan that meets the County's ordinance requirements for erosion and sediment control including

perimeter controls, energy dissipation, rate, and volume control. The Scott County erosion and sediment control standards are fully articulated in Chapter 6 of the Scott County Zoning Ordinance. The Project incorporates erosion control measures including slope stabilization vegetation and seeding, perimeter controls including use of silt fence and vegetated filter strips, diversion berms and swales, energy dissipation, and riprap. The Project design incorporates sediment control measures including stormwater conveyance channels, stormwater diversion berms, sediment traps and sedimentation basins and infiltration basins to trap sediment onsite so that land disturbing activity does not create negative offsite impacts and to protect properties adjacent to the site from sediment deposition. Volume control is achieved through infiltration. The timing of the implementation of the various erosion and sediment control best management practices will vary as the Project is developed. Temporary measures may be installed to control active areas of Project construction and permanent practices will be installed to accommodate the progression of landfilling. Initially the construction work and landfilling activity will be recessed in the floor of the quarry. As perimeter phases are filled to above the surrounding grades, permanent best management practices will be implemented to control off-site discharges so that effective stormwater management and erosion and sediment control is maintained throughout the life of the Project. The stormwater management plan for the Project is submitted for review and approval as part of the MPCA's MSW permit application and as part of the Scott County CUP application.

Permanent best management practices including sedimentation basins for pre-treatment and infiltration ponds for water quality treatment and volume control have been designed to manage stormwater runoff from the landfill. Stormwater falling on the active landfill operations is managed to reduce pollutant loads by applying intermediate cover on inactive areas, using berms and swales to divert runoff away from active fill areas and to prevent runoff that does contact fill material from leaving the active cell. Flow interruption berms are constructed on top of the final cover system to interrupt flow across the slopes of the final cover and direct water to the perimeter ditch system, increasing the stability of the final cover system and reducing erosion potential.

Increased rainfall and extreme flooding events could create conditions where the flow interruption berms are overtopped leading to erosion of the final cover system, which would require repair and maintenance. Higher velocity flows in the perimeter drainage system could create higher erosion potential, the capacity of the outlets on the ponds that discharge stormwater off site could be exceeded, which would divert water to the reinforced emergency overflows. Increased events could also cause greater flows coming into the site from the regional drainage system as well as greater flows leaving the Project. The Project area is outside of the regional (100-yr) floodplain of the Minnesota River and is also outside of the extent of the 500-year floodplain.

The total area that will be disturbed by the Project is 238 acres. Areas of disturbance are illustrated on Sheet C-2 and C-3 of the Plan Set. Landfilling is a progressive activity, and the Project is developed in phases so that only a small portion of the Project is active at any one time. The 238 acres that will be disturbed includes the landfill footprint, perimeter setback areas, stormwater management including ponds and swales and landscaped perimeter areas. Past mining activity will have previously disturbed all the 238 acres. The

very southern portion of the Project area will be protected from disturbance to preserve potential future SSTS sites.

iii. Water appropriation - Describe if the project proposes to appropriate surface or groundwater (including dewatering). Describe the source, quantity, duration, use and purpose of the water use and if a DNR water appropriation permit is required. Describe anywell abandonment. If connecting to an existing municipal water supply, identify the wells tobe used as a water source and any effects on, or required expansion of, municipal water infrastructure. Discuss environmental effects from water appropriation, including an assessment of the water resources available for appropriation. Discuss how the proposed water use is resilient in the event of changes in total precipitation, large precipitation events, drought, increased temperatures, variable surface water flows and elevations, and longer growing seasons. Identify any measures to avoid, minimize, or mitigate environmental effects from the water appropriation. Describe contingency plans should theappropriation volume increase beyond infrastructure capacity or water supply for the project diminish in quantity or quality, such as reuse of water, connections with another water source, or emergency connections.

Dem-Con does not propose to appropriate surface or groundwater

- iv. Surface Waters
 - 1) Wetlands Describe any anticipated physical effects or alterations to wetland features such as draining, filling, permanent inundation, dredging and vegetative removal. Discuss direct and indirect environmental effects from physical modification of wetlands, including the anticipated effects that any proposed wetland alterations may have to the host watershed, taking into consideration how current Minnesota climate trends and anticipated climate change in the general location of the project may influence the effects. Identify measures to avoid (e.g., available alternatives that were considered), minimize, or mitigate environmental effects to wetlands. Discuss whether any required compensatory wetland mitigationfor unavoidable wetland impacts will occur in the same minor or major watershed and identify those probable locations.

There are no wetlands on site and no physical wetland impacts are proposed. See Section 12.a.i for a description of wetlands adjacent to the site. Climatic trends are predicted to create a wetter climate with flashier events, which may increase the volume of runoff from the landfill. Increased runoff may decrease the effectiveness of erosion and sediment control Best Management Practices (BMPs) resulting in stormwater discharges with higher concentrations of total suspended solids, which then enter adjacent wetlands. Stormwater discharges eventually drain to wetlands downstream. This could increase sedimentation in the wetlands and negatively impact the quality of the wetland.

2) Other surface waters- Describe any anticipated physical effects or alterations to surface water features (lakes, streams, ponds, intermittent channels, county/judicial ditches) such as draining, filling, permanent inundation, dredging,

diking, stream diversion, impoundment, aquatic plant removal and riparian alteration. Discuss direct and indirect environmental effects from physical modification of water features, taking into consideration how current Minnesota climate trends and anticipated climate change in the general location of the project may influence the effects. Identify measures to avoid, minimize, or mitigate environmental effects to surface water features, including in-water Best Management Practices that are proposed to avoid or minimize turbidity/sedimentation while physically altering the water features. Discuss how the project will change the number or type of watercraft on any water body, including current and projected watercraft usage.

The Project will not physically alter any lakes, streams, or county or judicial ditches. There are no nearby lakes, county or judicial ditches that receive runoff from the Project. The Minnesota River is approximately 3,000 feet from the Project, which will not drain, fill, cause changes in permanent inundation, dredge, dike, divert, impound, remove aquatic plants, or cause riparian alterations. The existing drainage system along the northern boundary of the Project will be improved. The existing drainage system conveys regional stormwater from the east through the site to the Minnesota River. It consists of a channel that will be cleaned out and regraded to an engineered cross-section designed to pass 100-year peak flows. Sedimentation pond P3, an existing ponding area in the northwest corner of the Quarry (See Figure 12) will be reconfigured within the existing stormwater easement. The P3 outlet will be improved to provide increased stabilization. The improvements include a stabilized overflow with reinforced geotextile, riprap outflow channel and a reinforced emergency spillway. The existing outlet is an unreinforced and unarmored grassed spillway. The improvements will maintain the current regional drainage patterns and reduce the potential for erosion and downstream sedimentation during large rainfall events that may occur on a more frequent basis because of climate change. The channel is indicated on Sheet C-3.2 Final Grade Expansion Area.

13. Contamination/Hazardous Materials/Wastes:

a. Pre-project site conditions - Describe existing contamination or potential environmental hazards on or in close proximity to the project site such as soil or ground water contamination, abandoned dumps, closed landfills, existing or abandoned storage tanks, and hazardous liquid or gas pipelines. Discuss any potential environmental effects from pre-project site conditions that would be caused or exacerbated by project construction and operation. Identify measures to avoid, minimize or mitigate adverse effects from existing contamination or potential environmental hazards. Include development of a Contingency Plan or Response Action Plan.

Documented existing contamination in the area is associated with the closed Louisville Landfill. The Louisville Landfill is just north of the expansion area and just west and south of the existing Dem-Con Landfill. The Louisville Landfill opened in 1968 and was permitted for operation in 1971 as an unlined MSW landfill. The landfill operated until May 1990 with a waste footprint of approximately 56 acres.

Routine groundwater monitoring at the Landfill detected the presence of groundwater contamination and a remedial investigation was conducted in 1987. Volatile organic compounds

(VOCs) were found in the groundwater sampled along the western edge of the landfill and low levels of 23 VOCs were found in off-site downgradient wells.

The Louisville Landfill was closed in 1990 and has been part of the Minnesota Pollution Control Agency (MPCA) closed landfill program since 1999. The State of Minnesota owns the Louisville Landfill and MPCA is responsible for the long-term closure care, existing groundwater impairments, and on-going groundwater monitoring associated with the Louisville Landfill. The Louisville Landfill was covered with an enhanced cover system that included a low-density polyethylene (LDPE) synthetic liner and landfill gas extraction system in 2003. Groundwater has typically been sampled at least annually and up to three times per year by the MPCA. The current groundwater monitoring network at the Louisville Landfill consists of twelve upgradient and downgradient monitoring wells that are routinely sampled by the MPCA.

More recent sampling, MPCA reported in March 2021 that seven out of 12 active groundwater monitoring wells at Louisville Landfill reported PFAS exceedances, some at concentrations that exceed state health guidelines by 22 times.¹⁹ The MPCA is planning on sampling nearby residential water supply wells as well as Gifford Lake and the Minnesota River as they continue to investigate these contaminants of concern.

Since installation of the enhanced final cover and gas extraction system, concentrations of most of the VOCs in the groundwater have declined, however downgradient wells continue to detect low levels of VOCs. Because PFAS was not part of the routine landfill monitoring sampling parameters, historical data on the trends of these contaminants is not available.

Impacted groundwater is northwest of the Project area. The Project does not propose to dewater or appropriate groundwater. There will be no impacts or alteration of groundwater flow direction or gradients that would exacerbate existing impacted groundwater conditions because of the Project.

To protect groundwater from potential impacts from the Dem-Con Landfill, an enhanced final cover system will be constructed over the entire landfill. The enhanced cover system goes beyond the minimum cover system required under solid waste rules and includes a synthetic cap, a protective rooting layer, topsoil, and vegetation. The synthetic cover prevents precipitation from infiltrating into the underlying waste, thereby reducing or eliminating the generation of leachate, which provides increased protection of groundwater. The liner and leachate collection system installed in all new fill areas constructed since 2005 also provides groundwater protection. A liner and leachate collection system were also installed over the existing partially filled unlined demolition waste fill areas. Airspace associated with unlined portions of the existing Dem-Con Landfill has been filled and final cover or a liner and leachate collection system, which acts as a cap over the underlying waste, has been constructed over the unlined fill area. A liner and leachate collection system will be constructed over the entire expansion area as well.

b. Project related generation/storage of solid wastes - Describe solid wastes generated/stored during construction and/or operation of the project. Indicate

¹⁹ https://www.pca.state.mn.us/news-and-stories/nearly-60-closed-landfills-in-41-counties-have-pfas-contamination-in-groundwater-that-exceeds-the

method of disposal. Discuss potential environmental effects from solid waste handling, storage, and disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of solid waste including source reduction and recycling.

Collected leachate, which is classified as a solid waste and is not classified as a hazardous material, is generated at the Landfill. Collected leachate is pumped through a double walled force main, to minimize the potential for an accidental release from the piping to an above ground leachate storage tank. The leachate storage tank is within a concrete secondary containment structure. The secondary containment structure will prevent a release to the environment in the event of an accidental spill, leak, or rupture of the tank. Secondary containment is designed to hold 110% of the tank volume to provide freeboard and excess volume for direct precipitation. The existing leachate storage tank is a field erected steel tank with a capacity of 300,000 gallons that was constructed in 2006. A new field erected steel leachate storage tank will be constructed with on the west side of the Project area. The new tank will have a capacity of approximately 300,000 gallons and be within a secondary containment structure.

The Project is a demolition landfill that accepts wastes for disposal. Materials are also accepted at the landfill, stored on site, and transported to Dem-Con's adjacent environmental campus. Materials accepted for recycling at the landfill are indicated in Table 13-1 below. The landfill is immediately adjacent to Dem-Con's environmental campus which includes a construction and demolition materials recovery facility, single-stream recycling facility, shingle processing yard, wood processing facility, metal processing facility, MSW & C&D transfer stations, roll-off container services, and Dem-Con's Green Grades Educational Program. All these facilities and programs are directed at promoting and facilitating source reduction and recycling.

Waste type	Storage available	Annual	Storage method
		amount removed	
		from site	
Tires	500 units	6000 units	stockpile/bin
Appliances	100 units	1,000 units	stockpile/bin
Metals	2,000 Tons	10,000 tons	Roll off box, shop, stockpile
Concrete/asphalt	50,000 tons	200,000 tons	Stockpile
Shingles	50,000 tons	100,000 Tons	Stockpile
Batteries	50 units	500 units	Covered leakproof container
Electronics	200 units	5000 units	Covered container
Cardboard	5,000 tons	20000 tons	Stockpile
Wood	2,000 tons	5000 tons	Stockpile

Table 13-1: Material wastes

c. Project related use/storage of hazardous materials - Describe chemicals/hazardous materials used/stored during construction and/or operation of the project including method of storage. Indicate the number, location and size of any new above or below ground tanks to store petroleum or other materials. Indicate the number, location, size and age of existing tanks on the property that the project will use. Discuss potential environmental effects from accidental spill or release of hazardous materials. Identify measures to avoid, minimize or mitigate adverseeffects from the use/storage of chemicals/hazardous materials including source reduction and recycling. Include development of a spill prevention plan.

Dem-Con does not accept hazardous wastes for disposal or storage. Mobile fuel tanks are used throughout the Project area. Spill kits and equipment needed to clean up spills are available onsite. Although no permanent fuel tanks are anticipated, if any permanent fuel tanks are installed in the Project area, they will be double walled and comply with MPCA's fuel storage regulations. In the event of a spill Dem-Con will notify the Minnesota Duty Officer to report the spill.

d. Project related generation/storage of hazardous wastes - Describe hazardous wastes generated/stored during construction and/or operation of the project. Indicate method of disposal. Discuss potential environmental effects from hazardous waste handling, storage, and disposal. Identify measures to avoid, minimize or mitigate adverse effects from the generation/storage of hazardous waste including source reduction and recycling

Dem-Con does not accept, generate, or store a hazardous waste and hazardous wastes will not generated during the life of the Project. Incidental hazardous wastes are removed from incoming loads as part of waste screening. Most of these wastes are taken back by the hauler. Occasionally hazardous waste residuals are found after the hauler has left the unloading area. These items such as paint, florescent ballasts and bulbs, etc. are stored inside in compliance with storage requirements for the materials and then hauled to an appropriate disposal or recycling facility. Dem-Con operates a maintenance shop off site that is a licensed very small quantity hazardous waste generator.

14. Fish, wildlife, plant communities, and sensitive ecological resources (rare features):

a. Describe fish and wildlife resources as well as habitats and vegetation on or in near the site.

The Project is on an active limestone quarry. Approximately two-thirds of the quarry has been mined to date and the remaining one-third, on the southern portion of the Project area, has been permitted. The unmined portion of the Project area provides limited habitat for wildlife resources and native plant communities. Results of a natural resource survey of the Project and surrounding are described in section 14.b.

 Describe rare features such as state-listed (endangered, threatened or special concern) species, native plant communities, Minnesota County Biological Survey Sites of Biodiversity Significance, andother sensitive ecological resources on or within close proximity to the site. Provide the license agreement number (LA-_____)

and/or correspondence number (ERDB 20220026) from which the data were obtained and attach the Natural Heritage letter from the DNR. Indicate if any additional habitat or species

survey work has been conducted within the site and describe the results.

A copy of the Natural Heritage Review letter from the MDNR is included as Attachment 10. A natural resource survey, of the property was conducted by Barr Engineering as part of the 2020 MJS FEIS²⁰. Barr conducted field surveys to identify and map wetlands, land cover, vegetation, plant communities, and wildlife habitat; identify onsite wildlife; and survey for the presence of federally and state-listed threatened and endangered plant species. Barr conducted the field surveys in accordance with a Natural Resources Survey Plan (Survey Plan) submitted to the MDNR and included additional target species and communities, as well as specific requirements for field survey and reporting requested by the MDNR. All survey protocols followed those described in the Survey Plan and recommendations from the MDNR. The report included the expansion area property as well as additional adjacent lands associated with the NM MJS project. The following information discusses the survey results relevant to the Project and surrounding area.

Fish resources: The Minnesota River is over 3,000 feet west of the Project. Erosion and sedimentation control practices will be implemented including permanent stormwater ponds and infiltration areas to protect downstream water quality. The Project is not anticipated to adversely affect the river ecosystem, fish, or mussel populations.

Wetlands: No regulated wetlands were identified in the Project area. There are some isolated wetland basins and larger wetland complexes associated with the floodplain of the Minnesota River on surrounding properties (See Figure 11).

Sites of biodiversity significance: The Minnesota Biological Survey (MBS) identifies and maps sites of biodiversity significance in the state and assigns rankings to these sites to estimate the statewide importance of the native biodiversity for each area. Rankings guide conservation and management of natural resources. Rankings include sites of Outstanding, High, Moderate, and Below Biodiversity Significance. The Project does not include any areas identified as Outstanding, High or Moderate Biodiversity Significance by the MBS²¹. Portions of the Project are ranked as areas "Below". See Inset 14.1 Areas of Biodiversity Significance. The Below ranking indicates that the property lacks occurrences of rare species and natural features or does not meet MBS standard for statewide significance. Areas ranked as Below do however serve as habitat for native plants and animals. The inset shows the location of the Below site of biodiversity significance. The area encompasses unmined portions of the Project area. This area will be mined prior to landfilling.

http://files.dnr.state.mn.us/eco/mcbs/maps/areas of biodiversity significance.pdf

²⁰ Vegetation, Wildlife, and Protected Species Report . Merriam Junctin of Ecological and Water Resources, 06/2014. St. Paul, Minnesota. Retrieved online from:

²¹ Minnesota Department of Natural Resources, 2014. Areas of Biodiversity Significance in Minnesota as determined by the MBS, 1987-2014. Division of Ecological and Water Resources, 06/2014. St. Paul, Minnesota. Retrieved online from:

Inset 14.1 areas of biodiversity signicance within Project area

Rare features: state and federal regulations: Endangered species regulations are designed to protect populations of threatened and endangered plant and animal species.

Three federal laws provide protection of certain species, and each is administered by the U.S. Fish and Wildlife Service for non-marine species. First, the Endangered Species Act (ESA) of 1973 (16 U.S.C. §1531) protects federally listed threatened or endangered species, which are designated under federal law (16 U.S.C. § 1532). Second, the Migratory Bird Treaty Act (16 U.S.C. §§ 703711) is a treaty between the United States and other nations for the protection of birds that cross country borders during spring and fall migration. Third, the Bald and Golden Eagle Protection Act (16 U.S.C. §§ 668-668d) provides for the protection of eagles.

Another level of protection for certain species is administered by the MDNR. Minnesota's Endangered Species Statute (Minnesota Statutes, § 84.0895) and associated rules (Minn. R. part 6212.1800 to 6212.2300 and 6134) protect plant and wildlife species designated as threatened or endangered. A third category of listed species is "special concern." State special concern species have no legal protection but because they are uncommon, have highly specific habitat needs, or are recovering from a delisting from threatened

or endangered status, they are monitored by the state.

Threatened or endangered species: No state or federally listed threatened or endangered plant or animal species were identified in the Project area or are expected to occur in the Project area. Kitten-tails (Besseya bulli), a state threatened plant was found on property within one-half mile of the Project, but no evidence of the plant population was found in the Project area. The Loggerhead Shrike, a state listed endangered bird, and the Lark Sparrow, and Purple Martin, both state-listed bird species of special concern have also been identified in the vicinity of the Project. The Barr survey included a calling station in the southern portion of the Project. Lark Sparrow was identified at multiple times approximately one mile from the Project, but not on the Project itself. Neither the Loggerhead Shrike or Purple Martin were not observed in the Project area or in the surrounding survey area during the field survey work.

Other wildlife species of special concern: Three wildlife species of concern were identified near the Project but not on the Project during the Barr Engineering field studies; the bald eagle, the

brown myotis and big brown bat.

Bald Eagle: Historically, the bald eagle was on the federal list of threatened and endangered species and was also listed as threatened in Minnesota. However, due to a successful recovery plan, the number and range of bald eagles has expanded in Minnesota, other states, and Canada. As a result, in 1996 the state status of bald eagles was changed from threatened to special concern. In 2007, the bald eagle was delisted from the federal list of threatened and endangered species. Bald eagles and their nests are still protected under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act.

Initial wildlife field surveys identified one adult and three juvenile bald eagles in the Project area within floodplain forest along the eastern edge of Gifford Lake, about one-half mile northeast of the Project. As a follow up, Barr conducted a stick nest survey²² following a work plan detailing survey methods which was reviewed by the USFWS. The survey identified one eagle stick nest within one mile of the Project near a snowmobile/horse/biking/hiking trail along the Minnesota River.

Brown Myotis and Big Brown Bat: According to the biotics database review for the Project, there is likely a colony of little brown myotis and big brown bats along Gifford Lake, about one-half mile northwest of the Project. These two species of bats are listed as species of special concern in Minnesota. Special concern species are not regulated and do not have any special legal protections under state law. No bats were observed during the field surveys, which were conducted during daylight hours. Potential bat habitat, forests and woodlands on the Project are likely suitable for summer roosting sites and foraging habitat for both species, especially over the open water areas of Gifford Lake. Both species of bats over-winter in caves, which are not present on or near the Project.

Northern Long Eared Bat: While not identified in the area, the northern long eared bat is a Minnesota listed species of special concern which was also designated a federally threatened species by the USFWS in April 2015. The federal listing is a result of a significant population decline due to the white nose syndrome. In areas of the country impacted by white nose syndrome, which includes Minnesota, incidental take is prohibited if it occurs within a hibernation site for the northern long-eared bat.

The range of the northern long eared bat includes Scott County. No roost trees were identified in the Project area or within the filed survey by Barr. However, according to the MDNR, there are known roost trees within 3/4 mile of the Project. Tree removal of an occupied maternity roost tree, or any other trees within 150 feet of that maternity roost tree, during the puprearing season (June 1 through July 31) is prohibited.

Native plant communities

Native plant communities are groups of native plants that have not been greatly altered by human activity over space and time. Walk-over surveys were conducted on the Project to document plant communities and vegetation structure and composition, and to search for rare

²² Barr Engineering Company 2012. Bald Eagle Stick Nest Survey Report. Merriam Junction Sands Project Scott County, Minnesota. March 2012. Minneapolis, MN.

and protected plant species. Native plant community searches on the Project specifically targeted prairie, which had previously been identified in the Project area. Prior to field studies, reviews were conducted of preferred habitats, plant associations, and characteristics of species most likely to be in the area.

Vegetation was designated as a native plant community when sufficient native species were present to allow classification based on the Ecological Classification System developed by the MDNR and USFWS for ecological mapping and landscape classification. The system uses associations of biotic and environmental factors, including vegetation, hydrology, landforms, soils, and natural disturbance regimes.

Substantial portions of the Project area have been disturbed and support non-native plant communities or highly degraded native plant communities. There was one native plant community type identified on-site: dry prairie.

Dry Prairie (Ups 13b)

About 48.8 acres of dry sand-gravel prairie (Southern) communities were mapped in the southern portion of the Project, primarily just north of 145th Street as well as a small area on the western boundary of the portion of the Project south of 145th Street. The dry prairie community type has a conservation rank S2, imperiled²³. This unit is characterized by well drained soils over shallow bedrock with rock exposures on top of small knobs.

The dry prairie found on the Project is degraded and somewhat variable. The condition of the native prairie communities was ranked according to the MBS Upland Prairie System – Condition Ranking System²⁴. The dry prairie community on the Project is considered D-ranked (poor condition) primarily because of the heavy invasion of woody plants (e.g., smooth sumac, red cedar, and prickly ash). D-ranked prairies have enough native species to be recognizable as a particular native plant community, but typically have a predominance of non-native plant species and a low diversity native species, including few sensitive species. Most of the map unit is dominated by shrubs and is mapped as shrubland in the land cover and wildlife habitat sections of the Wildlife and Vegetation Report.

^{23 &}quot;MCBA Upland Prairie System – Condition Ranking System." Minnesota Biological Survey. Minnesota Department of Natural Resources. September 2014 version. <u>http://files.dnr.state.mn.us/eco/mcbs/upland_prairie_system_ranking_quidelines.pdf</u>

^{24 &}quot;MCBA Upland Prairie System – Condition Ranking System." Minnesota Biological Survey. Minnesota Department of Natural Resources. September 2014 version. <u>http://files.dnr.state.mn.us/eco/mcbs/upland_prairie_system_ranking_guidelines.pdf</u>

Native grasses found in this community include predominantly big bluestem and Indian grass. Other common native grasses that are present in this community include side-oats grama, little bluestem, bracted sedge, blue vervain, awl aster, field goldenrod, bird's foot violet, and wolfberry. Grazing sensitive species including purple prairie clover, false boneset, and dropseed

Inset 14-2 dry prairie plant community dominated by shrubs

are present but uncommon. Nonnative grasses identified within this community include smooth brome, Kentucky bluegrass, quack grass, and timothy.

Without recurrent fire, the native prairie community is susceptible to succession to woodland or forest through the invasion of trees and shrubs, which is the case of the native prairie communities on the Project. Inset 14-2 illustrates the predominance of shrubs in the area delineated as Dry Prairie (Ups13b) in the Vegetation and Wildlife Report.

Rock Outcrops (ROs12): No rock outcrop native plant communities are on-site. Shallow rocky soils were observed at several locations in prairie remnants but lack rock outcrop specialist species.

c. Discuss how the identified fish, wildlife, plant communities, rare features and ecosystems may be affected by the project including how current Minnesota climate trends and anticipated climate change in the general location of the project may influence the effects. Include a discussion on introduction and spread of invasive species from the project construction and operation. Separately discuss effects to known threatened and endangered species.

Limited potential exists for impacts to fish wildlife, plant communities and rare features or ecosystems. The portion of the Project that has been identified as poor-quality Dry Prairie will be disturbed by mining activity prior to landfilling. Mining activity is regulated by Scott County and occurs under a separate local land use permit that has been issued by the County. Climate trends may cause more intense rainfall events, maintenance of stormwater facilities may be required on a more frequent basis to maintain their treatment effectiveness and minimize the potential for increased downstream sedimentation. The Project will not have direct or indirect impacts to the off-site wetland complexes or surrounding upland habitats that support fish, wildlife, plant communities, rare features, and ecosystems. Potential impacts are limited to surface water degradation that could occur if stormwater with a high suspended solids load is discharged from the Project. Stormwater controls are designed as part of the Project to control erosion, prevent sedimentation, and treat stormwater to reduce total suspended solids in any stormwater discharging off-site. The Project is subject to a pollution prevention plan, stormwater monitoring of outfalls, compliance with benchmark monitoring, and stormwater quality standards established in the MPCA's NPDES Permit. The stormwater pollution prevention plan is amended as needed to add BMPs as needed to address changing climatic trends. Specific BMPs would be implemented depending upon the actual condition that needed to be addressed but could include for example, changing vegetation to a more heat tolerant, drought resistant seed mix, or installing additional erosion control measures within the perimeter stormwater ditches to carry higher velocity flows caused by larger and more frequent rainfall events, without increased erosion, or adding increased infiltration opportunities.

d. Identify measures that will be taken to avoid, minimize, or mitigate the adverse effects to fish, wildlife, plant communities, ecosystems, and sensitive ecological resources.

Given the potential for Loggerhead Shrikes to be found, tree and shrub removal will not occur during the breeding season, April through July, unless Dem-Con contacts the MnDNR to determine if a survey for active nests is necessary prior to any tree or shrub removal.

Given the potential for Lark Sparrows to be found, any ground disturbance of grassland (potential nesting habitat) between May 15 through August 15 will be avoided. Grassland areas are currently limited to the very southern portion of the Project south of 145th Street.

15. Historic properties:

Describe any historic structures, archeological sites, and/or traditional cultural properties on or inclose proximity to the site. Include: 1) historic designations, 2) known artifact areas, and 3) architectural features. Attach letter received from the State Historic Preservation Office (SHPO). Discuss any anticipated effects to historic properties during project construction and operation. Identify measures that will be taken to avoid, minimize, or mitigate adverse effects to historic properties.

The Project is within the Minnesota river valley where there is potential for cultural resources to exist due to the proximity to the river. SHPO provided a list of Archaeological Site locations and a History/Architectural Inventory (Attachment 11). Summit Envirosolutions conducted a Phase 1 Cultural Resources Investigation (Summit Phase 1) as part of the 2020 MJS FEIS²⁵. The Phase 1 Cultural Resources Investigation encompassed an Area of Potential Effects (APE) that encompassed 682 acres including the entire Project area that is the subject of this EAW, as well as adjacent property.

The stated purpose of the cultural resources study as excerpted from the Summit Phase 1 was as follows:

"The principal objectives of the Phase I cultural resources survey were twofold: to identify archaeological resources within the archaeology APE that are listed in or are eligible for listing in the National Register of Historic Places (NRHP) in accordance with the Minnesota Field Archaeology Act and Private Cemeteries Act; and historic properties within the architectural history APE that are listed in the NRHP, in accordance with the Minnesota Historic Sites Act. The potential for archaeological resources was assessed by means of a literature search and systematic in-field

²⁵ Phase 1 Cultural Resources Investigation for the Meriam Junction Sands Project, Louisville, Township, Scott County, Minnesota. Summit Envirosolutions, Inc. March 2015. Available as Attachment 13 of the MJS FEIS. The MJS FEIS is available online at https://www.scottcountymn.gov/506/Merriam-Junction-Sands

inspection and testing."

The investigation included both a literature search and a field survey component. "The archaeological field survey consisted of visual assessment as well as systematic pedestrian reconnaissance and shovel testing in those portions of the archaeology APE considered to have moderate to high archaeological potential."

The literature search consisted of background research at the SHPO, the Minnesota Historical Society (MHS) library, and the University of Minnesota. Research was conducted at the SHPO in September 2011 and March 2015 to identify previously recorded cultural resources and cultural resource surveys previously conducted in the vicinity of the project area. In addition, topographic maps, soil surveys, aerial photographs, and historical maps were consulted to obtain historical information about the APEs and their potential to contain previously unidentified cultural resources.

According to the Summit Phase 1, "The assessment of an area's potential to contain precontact archaeological resources is based on the analysis of the terrain, water sources, and other natural resources in and adjacent to that area. Permanently wet areas (e.g., wetlands and streams), poorly drained areas, and areas with slopes greater than 20 percent are generally considered inhospitable to human occupation and are unlikely to contain cultural resources. In general, areas with higher precontact archaeological potential are in proximity to a relatively substantial water source, typically within 500 feet, though the exact distance often varies according to environmental conditions such as the size of the body of water, the nature of the water source (perennial versus intermittent), and the extent of the floodplain. Topographic prominence and proximity to previously recorded precontact sites are also typically indicative of high precontact archaeological potential."

"Areas in proximity to historic-period buildings or structures (standing or ruins) are considered to hold higher potential for containing historic-archaeological resources. These areas are not limited to the locations of buildings, as often the most important information comes from deposits within associated features, such as privies, cisterns, or middens, which were located away from primary buildings. Additional research was conducted to develop historic contexts for the project area and to assess whether any potential historic-archaeological resources in the project area might be historically significant. County histories, historic topographic maps, historic aerial photographs, and General Land Office survey maps and tract books were consulted in this regard. Historic maps were also used for comparison with existing buildings and structures in the field. "

In addition to the literature review, the Summit Phase 1 included an archaeological field investigation that involved a visual assessment, systematic pedestrian survey, and shovel testing. A suitable strategy for the field work was developed based on input from staff from the Office of the State Archaeologist. Areas demonstrably disturbed through previous construction or other modern land-use practices were excluded from survey unless the potential existed for intact cultural deposits beneath the disturbance. The Project area is property that has been mined for the last several decades and the northern two-thirds of the property had been disturbed at the time of the field work.

The Summit Phase 1 did not identify any archaeological resources on the Project area. Phase 1 identified potential mound complexes located adjacent to the Minnesota River. The Summit Phase 1 concluded "During the Phase 1 archaeological survey, no archaeological sites were identified within the Project area. Mounds likely associated with sites 21SC0029 sand 21SC0030 were observed, however, just outside of the Project area. It is recommended, therefore, that a 50-foot buffer be

established around the maximum extent of these sites within which no surface or subsurface disturbance may occur." The mounds that are referenced in the report are situated approximately 3,000 west of the Project area. The Project will not cause any surface or subsurface disturbance of the mounds or in the immediate vicinity of the mounds.

Historic properties

The Carver Historic District and the Walnut Street Historic District in Chaska, which are both in the National Register of Historic Places (NRHP), are over one mile from the Project and are not anticipated to be impacted by the Project.

As part of the Summit Phase 1, background research was conducted for previously inventoried properties to determine if any properties listed in the NRHP may be affected by the Project. No historic properties were identified on the Project itself. Three historic properties were identified within one mile of the Project. None of these historic properties are listed on the NRHP. These historic facilities include:

SC-LOU-001	Merriam Junction Depot
SC-LOU-004	A group of structures in extreme state of ruin
SC-LOU-007	A stone residence and barn

The Merriam Junction Depot is identified in the SHPO database, however, aerial photographs from Scott County GIS show that the Depot is no longer present. SC-LOU-004 is a group of 5 structures in a state of ruin. The SHPO records include a letter dated 5/7/1980 from Ted Lofstrom, SHPO Archeologist, and Charles W. Nelson, SHPO Historical Architect which determines that the structures are not eligible for nomination to the National Register. The letter recommends that the structures be removed immediately. The letter also determines that due to the extent of deterioration of the structures, SC-LOU-07 does not appear to be eligible for nominating to the NRHP. Review of Aerial photography shows that the structures have collapsed or are otherwise demolished.

Archaeological and cultural resources: The Summit Phase 1 archaeological investigation did not identify any Archaeological Resources in the Project area. A literature search determined that the only areas of considered to have moderate to high archaeological potential were on property west of the proposed expansion area.

No state or federally protected historic properties, architectural, archaeological sites or cultural materials were identified within the Project area during construction and operations and measures that will be taken to avoid, minimize, or mitigate adverse effects to historic properties are not relevant.

16. Visual:

Describe any scenic views or vistas on or near the project site. Describe any project related visual effects such as vapor plumes or glare from intense lights. Discuss the potential visual effects from the project. Identify any measures to avoid, minimize, or mitigate visual effects.

The Project area is zoned industrial and is adjacent to industrial and commercial land uses to the northeast, east, and south with major transportation corridors along the eastern and northwestern boundaries of the Project. The final elevation of the Project area is 910 feet above msl and the approved final elevation of the existing landfill is 932 msl. The Project will be adjacent to the US

Highway 169 corridor and will be more visible than the existing landfill from the travelled roadway. Viewsheds are included in Attachment 12 that illustrate the view of the Project from north and southbound 169, the closest residence across 169 and from the residential area on the bluff east of 169.

Landscape plans will be submitted to the County for review and approval as part of the County Conditional Use Permit process. Due to the progression of filling of the Project and the length of time for the Project to reach final grades, the approach to landscape and screening was considered in two phases. An interim berming and screening plan will be implemented along the setback area along US Highway 169. The interim plan will be in effect to provide screening along the US Highway 169 corridor during most of the Project construction. The berm will be planted with a smaller native plant material that will mature through time. The plantings should reach maturity over the course of 20 years where they will be well established at time of peak operations of the Project. These planting can be also utilized if desired by transplanting them into the final landscape plan. A preliminary concept of a typical berm section within the Project setback is illustrated below. Landscaping will be addressed in the County CUP.

(PP) I	16				
			104	AG (50) 32	
	23/28	10	1	1	
	See Sec	C Cure C	5 926	AND DECOM	
······································	Wester were	A LANGE	2 40		Cor 112
	and the state	新潮	· ※		A AND
		_		1 A.	· · · · · · · · · · · · · · · · · · ·
				-M-MINE IN	- Office
	PLANT				HEIGHT
	PLANT				
	QUANT		AL. ROOT TYPE	ODMINON NAME BOTANICAL NAME	×
dvend TRE	QUANT			ODMMONI NAME BOTANCAL NAME	×
	OUANTI E6	TY DIZE	ROOT	QUAKING ASPEN	* WOTH
	QUANT				×
0	CUANTI TORY 10 QA 46	TY DIZE	ROOT	QUAKING ASPEN	* WOTH
	OUANTI FDRY E6 QA 46 RECTII	4 HT	ROOT TVFE	QUANNO ASPEN Populus inemvia das	× woth 80' x 25'
	OLANTI TORY E8 OA 46	TY DIZE	ROOT	OUAKING AGPEN Popula instruio ideo RED PINE	* WOTH
0	CUANTI TORY TORY CA 46 REC11 9 1 0A 46 REC11 9 1 1 6	1Y 0420 4 HT 27 HT	ROOT TVPE BR POT	GUANNG ASPEN Populus translokido RED PINE Pina rearrosal	x wony s0 x 29 s0 x 40
	OLANTI TORY E8 OA 46	4 HT	ROOT TVFE	OUXINIG ASPEN Popular instrutionides PED PINE Prind received Societier Inite	× woth 80' x 25'
	CLANTI 1087 100 46 9 116 9 116 9 116 9 112	1Y 0420 4 HT 27 HT	ROOT TVPE BR POT	GUANNG ASPEN Populus translokido RED PINE Pina rearrosal	x wony s0 x 29 s0 x 40
	CLANTI 1087 100 46 9 116 9 116 9 116 9 112	1Y 0420 4 HT 27 HT	ROOT TVPE BR POT	OUXINIG ASPEN Popular instrutionides PED PINE Prind received Societier Inite	x work

Typical interim berming and landscaping along US Highway 169 corridor

The final landscape plan accommodates the perimeter stormwater management system and will be constructed in phases as portions of the Project reach final cover and are ready for final capping. The interim berm and plantings will be removed as part of the final cap construction. The final landscaping design focusses on using native plants and stone along the stormwater channel designed to convey stormwater runoff from the capped landfill to stormwater management ponds. Stone and rock will give the visual appearance of a stream and will be framed with natural plantings on both sides of the swale. The rock will come from the Bryan Rock Quarry and will be used for erosion, soil retention as part of the natural native landscape. The plantings will also be of the region and include evergreen and deciduous trees, also with native sumac, wild-flower, and grasses. All plantings will naturalize the swale and stabilize the soils will low maintenance groupings of the

material. An access drive will be incorporated into the plan for the US Highway 169 corridor. A preliminary concept of the final landscaping plan along the US Highway 169 corridor is illustrated below.

	20	الم الم		162	96	12 HOL 00 ×
A CONTRACTOR OF A CONTRACTOR O	20- 000	and the second s			96	- H X
	20	àp-re			96	- H X
	allen en allen Allen en allen	and			96	- H X
	eres An eres	Ť-	na.		60	80:
	2	A.	02.		00	And Contract
	200 000		10	and the	300	Contraction of the contraction o
	~			- alles	300	Contraction of the second
		E.		- column	do	Company and
x						
x0) \$						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PLANT MATERIAL	HEIGHT					
	×					
QUANTITY SIZE ROOT COMMON NAME	WIDTH					
	- (<u> </u>		-	-	1	
VERSTORY TREES		DHRUDD				_
NORTHWOOD MAPLE		~				STAGHORN SUMAC
	50' x 35'	503 50	6.5	#5 CONT	pot	Rhus typhina
Accession Meetinged	00 100	~			-	ARCTIC FIRE DOGWOOD
Ader nubrum "Northwood"		10000		#3 CONT	pot	Comus stolonfera Tarrow
Acer nutrum Northwood'	50' x 25'	() AT	308	#2 LONI		Lonius scolonitera 1 arrow
OA 41 IO'HT BeB Country Northwood • OA 41 IO'HT BeB Populus tremulaides			305	#3 LONI	-	
OA 41 10° HT BeB Country Technicol • OA 41 10° HT BeB Populus tremulaides		AF O AM	308	#3 CONT	pot	
OA 41 10'HT B#B GUAKING ASPEN CROACTIN CRUAKING ASPEN Populis tremulaides		O AM			pot	Aronia melanooarpa 'Autumn Ma
OA 41 IO'HT BeB Outwin Northwood OA 41 IO'HT BeB Outwins Aspens CROARDN CRUARING ASPEN Populus tremulaides RED RED PINE RED PINE		O AM		#3 CONT	pot pot	AUTUMN MAGIC CHOREBERRY Aronia melanoaarpa 'Autumn Ma GRO-LOW FRAGRANT SUMAC
OA 41 IO'HT Bab GUARNIG ASPEN CROBELN IRELD <td>50' x 25'</td> <td>O AM</td> <td>134</td> <td></td> <td>- 20049</td> <td>Aronia melanooarpa 'Autumn Ma</td>	50' x 25'	O AM	134		- 20049	Aronia melanooarpa 'Autumn Ma
OA 41 IO'HT BeB Outwin Northwood OA 41 IO'HT BeB Outwins Aspens CROARDN CRUARING ASPEN Populus tremulaides RED RED PINE RED PINE	50' x 25'	O AM	134	#3 CONT	- 20049	Aronia melanooarpa 'Autumn Ma GRO-LOW FRAGRANT SUMAC

Typical final landscaping section along US Highway 169 corridor

As filling progresses from the recessed floor of the quarry to the surrounding grade, 8–10-foot perimeter berms will be constructed along the outer edge of the active fill area to screen the active face view. These berms are temporary in nature and will be constructed throughout the landfill in conjunction with the location of active fill areas.

Lighting is limited to portable light kits used to illuminate the tipping area. The light kits are necessary for safety and are used primarily during early morning hours during shorter days of the year. The light kits are shrouded, and down cast and the perimeter berms described above that are constructed at each working face minimize visible light emissions from the Project. The berms also block headlights from the vehicles accessing the tipping area. The Project will not generate plumes. The portable light kits have been in use at the Landfill for years in the manner described above and there have not been any lighting complaints.

The setback area along US Highway 169 will be landscaped with groupings of native shrubs. The setback area will be graded to accommodate a perimeter swale and stormwater controls, and perimeter access. The drainage swale will be incorporated into the landscape plan and will incorporate native limestone rock and boulders to provide visual interest.

17. Air:

a. Stationary source emissions - Describe the type, sources, quantities and compositions of any emissions from stationary sources such as boilers or exhaust stacks. Include any hazardous air pollutants, criteria pollutants. Discuss effects to air quality including any

sensitive receptors, human health or applicable regulatory criteria. Include a discussion of any methods used assess the project's effect on air quality and the results of that assessment. Identify pollution control equipment and other measures that will be taken to avoid, minimize, or mitigate adverse effects from stationary source emissions.

The MPCA issued an air applicability determination on May 3, 2022, that Project is not subject to air permitting. The air applicability determination is included as Attachment 15.

The landfill is in a rural industrial area. The nearest residential receptors are approximately 1,000 feet from the Project.

The Project will not generate stationary source air emissions from boilers or exhaust stacks. Stationary sources associated with the Project are limited to six passive landfill gas vents that will be installed as part of the final cover construction. The passive vents are a cover maintenance measure. The purpose of the passive venting system is to allow venting of any landfill gas generation that may occur and allow the landfill to exchange air between the landfill cover system and the atmosphere with air moving both in and out. The passive vents prevent pockets or bubbles from forming under the synthetic liner when temperature differentials exist that drive warm air up, or barometric pressure changes create an upward pressure gradient between the landfill and the atmosphere. Without passive vents, pockets of air could form and displace the synthetic liner, drainage composite, rooting soils, and vegetation. The vents themselves are not connected to a fan, vacuum system, or any type of mechanical or electrical system typical of an MSW landfill gas extraction system. There is no combustion or flaring of vented air.

Because there is no combustion with the passive venting system, the composition of stationary source emissions from the passive vents is limited to gasses produced by the decomposition of the waste. Because C&D wastes do not contain much organic matter, which is necessary to produce landfill gas, fugitive air emissions are typically low²⁶. Most waste types landfilled at the Project are either inert or have very low decomposition rates under anaerobic conditions. Based on an MPCA materials composition study²⁷, which included a survey of the composition of waste tipped at the Landfill, approximately 75% of the material at the Landfill is inert material (concrete, shingles, brick, dirt, plastics, rubber, metal), 15% is wood, (treated, painted, and processed wood as well as untreated dimensional lumber and untreated engineered wood), and 10% is drywall or gypsum board.

Inert materials do not decompose or generate landfill gas. Landfill gas released from the decomposition of wood products is composed of approximately 50% Methane and 50% Carbon Dioxide.²⁸ However, wood products have very slow decomposition rates. According to the EPA's

^{26 2001,} Landfill Gas Primer An Overview for Environmental Health Professionals. Agency for Toxic Substances and Disease Registry Department of Health and Human Services. Chapter 2 Landfill Gas Basics.

²⁷ Construction and Demolition Materials Study. Minnesota Pollution Control Agency. November 2020.

²⁸ Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WWAM Management Practices Chapters. US EPA. November 2020 WAste Reduction Model (WARM) v. 15. November 2020 Landfilling 6-7

Waste Reduction Model (WARM) management practices manual,²⁹ wood products contain between 43-49% biogenic carbon content, much of which is in a form (lignin) that is not metabolized by anaerobic bacteria and does not significantly decompose in landfills.³⁰ According to the WARM Model emission factors are based on 1-5% of the initial carbon content lost to landfill gas emissions³¹. Because the vents are passive air, flow rates are low, driven only by temperature and pressure gradients. Decomposition rates of the organic fraction of the landfill are expected to decrease over time once the final cover system is constructed and the moisture content of the waste decreases.

Gypsum is a common mineral component of drywall. Gypsum is hydrated calcium sulfate that under specific conditions can biodegrade to produce Hydrogen sulfide gas (H₂S). H₂S is a hazardous, colorless gas known for its 'rotten egg' odor that is detectable even at low levels.³² H₂S gas can be generated only when all the following conditions exist: Water, organic material, sulfate ions, anaerobic conditions, presence of sulfur reducing bacteria, pH of 4-9 and optimum temperature range.³³

Management of landfilling operations at the Landfill are conducted to eliminate the required environmental conditions for H₂S production. Several years ago, Dem-Con adopted the practice of using C&D fines as a cover material. C&D fines include a high concentration of drywall and gypsum board and consist of small particles that have a high surface area to volume ratio. The cover material was placed in approximately six-to-eight-inch lifts at least every 30 days and sometimes more frequently. The final cover was exposed to precipitation as well as watering for dust control. The water picked up sulfate ions as it made its way through the cover materials and into the fill. H₂S was produced in the resulting leachate. The H₂S was detectable by its odor when transferring leachate from the site. Dem-Con installed a pretreatment system to raise the pH of the leachate, so the sulfur was not released as H₂S but existed as the anions SH- (bisulfide) and S2- (sulfide) which are odorless. The practice of using C&D fines as cover material was stopped due to the increased H₂S gas generation. Under Dem-Con's current landfill operational methods, significant levels of H₂S are no longer in the leachate and pre-treatment is no longer required.

The MPCA recently adopted guidance for air assessment practices for projects undergoing environmental assessment worksheets where the MPCA is the RGU.³⁴ In accordance with the guidance, the Project's potential impact to air quality from the National Ambient Air Quality Standards (NAAQS) criteria air pollutants (Carbon Monoxide, Particulate Matter, Nitrogen Dioxide, and Sulfur Dioxide) or the Minnesota Ambient Air Quality Standards (MAAQS) criteria pollutant (Hydrogen Sulfide) must be assessed. Barr Engineering (Barr Assessment) preformed

²⁹ Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WWAM Management Practices Chapters. US EPA. November 2020 WAste Reduction Model (WARM) v. 15. November 2020 Landfilling 6-7

³⁰ Micales, et. Al. Decomposition of Forest Products in Landfills UUSDA Forest Service Forest Products Laboratory. Printed in International Biodeterioration & Biodegradation Vol. 39, No. 2-3 (1997) p. 145-158.

³¹ WAste Reduction Model (WARM) v. 15. November 2020 Landfilling 6-7

^{32 &}quot;Hydrogen Sulfide - PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information

³³ Treatment and disposal of Gypsum Board Waste Part II. Gypsum Association Washington DC. Reprinted in Construction Dimensions. March 1992.

³⁴ May 2022 Environmental Review Unit Environmental Assessment Worksheet Air Assessment Practices. Minnesota Pollution Control Agency p-ear1-10

the assessment in accordance with the Environmental Review Unit Environmental Assessment Worksheet air assessment practices and concluded that "It was determined that NAAQS criteria pollutants or MAAQS criteria pollutant emissions are not expected from the landfill vents. Generation and emission of Hydrogen Sulfide (H₂S, a MAAQS pollutant) would be indicative of an upset to the disposal methodology and not part of expected operations at the landfill. Therefore, the Project is not expected to create significant air emissions."

 b. Vehicle emissions - Describe the effect of the project's traffic generation on air emissions. Discuss the project's vehicle-related emissions effect on air quality. Identify measures (e.g. traffic operational improvements, diesel idling minimization plan) that will be taken to minimize or mitigate vehicle-related emissions.

An increase in traffic and congestion results in an increase in vehicle emissions. The Project will not significantly increase the volume of traffic generated by the operation of the Landfill. The Project is adjacent to two major vehicle transportation corridors, US Highway 169 and TH 41. Vehicle emissions along these corridors affect air quality by emitting airborne pollutants. Recent traffic improvements along the US Highway 169 and TH 41 corridors have reduced traffic congestion through the area. Dem-Con added second inbound and outbound scales in 2018 and 2019 to better accommodate truck traffic through the Landfill, which resulted in reduced idling times and minimizes vehicle related emissions.

c. Dust and odors - Describe sources, characteristics, duration, quantities, and intensity of dust andodors generated during project construction and operation. (Fugitive dust may be discussed under item 17a). Discuss the effect of dust and odors in the vicinity of the project including nearby sensitive receptors and quality of life. Identify measures that will be taken to minimize ormitigate the effects of dust and odors.

In general, C&D waste does not produce significant quantities of landfill gas, and associated odor³⁵, due to its low organic content. However, C&D waste does contain gypsum drywall, which can produce H₂S gas when exposed to moisture in an anerobic conditions. Excessive production of H₂S gas can create odor issues, which is mitigated through proper operational techniques including limiting moisture infiltration, waste placement, and proper cover practices. H₂S gas generation is addressed in Section 17.a above. Dem-Con personnel are available to address any complaints or concerns. Dem-Con may be contacted directly or notified by the County or Township if a complaint occurs. Dem-Con also routinely attends Township meetings where they can address public concerns. If odor complaints are received, the source of the odor will be investigated. Operations will be reviewed to evaluate potential operational changes to implement to address the odors.

^{35 2001,} Landfill Gas Primer An Overview for Environmental Health Professionals. Agency for Toxic Substances and Disease Registry Department of Health and Human Services. Chapter 2 Landfill Gas Basics.

- 18. Greenhouse gas (GHG) emissions/carbon footprint
 - a. GHG Quantification: For all proposed projects, provide quantification and discussion of project GHG emissions. Include additional rows in the tables as necessary to provide project-specific emission sources. Describe the methods used to quantify emissions. If calculation methods are not readily available to quantify GHG emissions for a source, describe the process used to come to that conclusion and any GHG emission sources not included in the total calculation.

The purpose of this greenhouse gas (GHG) emissions section is to collect information on the emissions that are made from the proposed demolition landfilling activity that contribute to global climate change. The following quantification of GHG emissions can be used by the public and decision makers to understand how the Project contributes to, or detracts from, achieving progress in meeting state and local GHG reduction goals as well as providing information to effectively mitigate climate change.

When GHG's are released from their sources, they get trapped in the Earth's atmosphere, act as a layer of insulation that prevents heat from escaping. This is known as the greenhouse effect, and results in a warming of the planet. Gases that contribute to the greenhouse effect are known as GHGs. GHGs are primarily carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), sulfur hexafluoride (SF₆), and two families of gases known as hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs). These gases trap Earth's heat and contribute to climate change. Greenhouse gases are typically measured in the units of metric tons of Carbon Dioxide Equivalents (CO2e), (all emissions are reported in CO2e short tons as requested in the EQB Revised Environmental Assessment Worksheet Guidance)³⁶. CO2e is a unit of measurement that standardizes the effects of the different GHGs to that of carbon dioxide. Each GHG has a specific Global Warming Potential (GWP), which means they remain in the atmosphere for various amounts of time. For the other GHG's to be comparable to CO₂, they are converted to units of CO₂ equivalents.

Annual GHG emissions were quantified on an annual basis using the EPA's Simplified GHG Emissions Calculator (SGEC) Version 7, June 2021, and landfill carbon sequestration factors from WARM Version 15³⁷ as a guide. The boundaries of the analysis were defined as the Landfill, administrative facilities, and the Project.

Sources of emissions are categorized as Scope 1, Scope 2, or Scope 3. Scope 1 emissions are released directly from properties owned or under the control of Dem-Con. Scope 2 emissions are produced from off-site sources such as off-site generation of electricity used to run the Project and off-site steam production. Scope 3 emissions include indirect emissions such as employee transportation and end of life disposal. Scope 3 emissions are not considered in the EAW analysis. In this analysis, landfilled wastes are categorized as Scope 1 direct emissions because the business is a landfill. The emission factors used in SGEC include emissions from transportation of waste to the Project and direct sources from biodegradation and operation of

³⁶ Environmental Quality Board. (n.d.). Revised Environmental Assessment Worksheet (EAW) Guidance. Retrieved from Minnesota Environmental Quality Board: <u>https://www.eqb.state.mn.us/sites/default/files/documents/EQB_Revised%20EAW%20Form%20Guidance_Climate_Sept%202021_1.pdf</u>

³⁷ Available online at https://www.epa.gov/warm/versions-waste-reduction-model-warm

landfill equipment. Landfills also sequester biogenic carbon resulting in a carbon sink. Landfilled wastes make up the biggest component of GHG emissions and sinks.

The Project is the continuation of the operation of the Landfill. The life of the Landfill will be extended with the Project so the duration of the emissions associated with the construction and operation of the Landfill will increase. No changes in operations are proposed so existing annual GHG emissions are expected to be the same as Project related emissions and only one set of emissions calculations were performed. Greenhouse gas calculations are included as Attachment 15.

Scope 1 Emissions:

- Landfilling activity (Landfilling waste is typically considered an indirect source of GHG emissions but for landfills and this analysis it is categorized as a direct source. Emission Factors include collection vehicles and operation of landfill equipment³⁸.)
- 2. Construction Emissions Mobile source combustion (construction equipment)
- 3. Stationary combustion (natural gas used to heat the office and scale house)
- 4. Fugitive Sources:
 - 4.1 A/C (Office and vehicle units)
 - 4.2 Fire suppression (Fire extinguishers)
 - 4.3 Purchased Gases

Scope 2 Emissions:

1. Purchased electricity

Scope 3 Emissions:

1. Emissions from transportation of waste generated at the facility (Leachate transport)

Benefits (sinks):

1. Carbon storage in landfill

The sources and sinks are described below.

Scope 1 Emissions:

1. Landfilling activity:

Direct emissions from the landfilling activity result when carbon containing materials are placed in the landfill and the carbon exists either as CH_4 , CO_2 , or VOC gas that is generated as biodegradable materials decompose, exists as volatile organic compounds (VOCs) in the leachate, or remains stored in the landfill. The rate of decomposition is highly dependent on the waste type, moisture content, pH, and temperature.

³⁸ Waste Reduction Model (WARM) V. 15 US EPA. November 2020

Demolition and construction landfills accept primarily inert materials such as dirt and concrete. Emissions associated with these materials are related to fossil fuels burned to transport and operate landfill equipment. Other materials typically found in a C&D waste stream include materials that biodegrade slowly in the landfill environment such as dimensional lumber, drywall, and packaging. Carbon in these materials is stored in the landfill. Materials that would normally decompose if they were not landfilled are considered sequestered and are counted as a GHG sink. Other carbon containing materials, such as plastics which slowly decompose in or out of a landfill are not considered a sink.

The SGEC emissions inventory calculates emissions for individual waste types. Dem-Con participated in a waste composition study³⁹ in 2020 which provided a basis for estimating the amount of each category of waste typically landfilled each year. Volumes from the 2020 annual report and conversion factors from the EPA's Volume to weight Conversion Factors April 2016 publication were used to develop annual weight of each material type landfilled. Attachment 15 includes a breakdown of estimated emissions based on the waste stream.

Emission factors for landfilled wastes used in the SGEC include emissions from transporting the waste to the landfill and operation of the landfill equipment. Even though a waste is inert and does not decompose and release GHG's, an emission factor is still applied to inert material to account for fossil fuel combusted to collect and transport material to the landfill facility and to operate landfill operational equipment.

2. Construction emissions - Mobile source combustion:

The calculations assume that emissions associated with landfill construction are not included in the emission factors applied to landfilling the waste. Mobile sources from equipment used to construct the liner and cover systems were calculated on an annualized basis. The landfill will develop in phases with some construction activity likely to occur annually whether it is to construct a liner cell or complete a final cover over a completed portion of the landfill.

3. Stationary combustion:

Stationary combustion emissions include burning natural gas to heat the portion of the office building attributed to Dem-Con Landfill's operation. The calculations assume that the landfilling emission factors did not include ancillary operations, but this could not be verified.

- 4. Fugitive sources
 - 4.1 AC and vehicle units:

The calculations assume one commercial AC unit associated with the office space and shop. Commercial air-conditioning units are designed to use a given charge of a refrigerant, and not to emit that refrigerant to the atmosphere. However, emissions can occur due to leaks or other equipment malfunction. Calculations assume 4% of the factory charge per year.

Refrigerants are added to landfill AC equipment as part of equipment repair and

³⁹ MPCA. November 2020. Construction and Demolition Materials Composition Study

upkeep. The volume of replacement gasses used per year was estimated at one piece of equipment per year at a volume two times that of a light duty truck.

4.2. Fire suppression systems:

Fire suppression systems used to support landfill operations are portable fire extinguishers. The extinguishers are inspected on an annual basis by a third-party contractor. Fire extinguishers are carried on the landfill equipment. Their use is limited to occasional use on a small fire on a piece of equipment. The extinguishers contain ABC Dry Chemical Extinguishant composed of an ammonium phosphate-based powder. According to the IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System⁴⁰, "multipurpose dry-chemical extinguishers, such as ammonium phosphate-based powder, are rated for use on Class A, B and C fires. ... They produce no direct greenhouse-gas emissions (HTOC, 1999b)."

4.3. Purchased gases:

Dem-Con uses welding gasses that include a 75% Argon/CO2 gas mixture. The annual CO2 use was input into the purchased gasses tab to determine emissions from purchased gasses.

Scope 2 Emissions:

1. Electricity:

Emissions include electricity used in the office and shop and to axillary equipment (e.g., Leachate pumps). Annual electrical use based on past invoices were used to determine annual electrical use.

Scope 3 Emissions:

1. Leachate Transport: Emissions associated with hauling leachate to the Blue Lake Wastewater Treatment Plant. Transporting recyclable material tipped and separated at the landfill is included in the emission factor for recycling and therefore is not included here.

Benefits (sinks):

 Landfill Carbon Sequestration: Landfills store carbon when biodegradation is slowed down or eliminated when material is landfilled. Certain items that are landfilled at Dem-Con are considered a GHG sink. The EPA's WARM model Waste Reduction Model (WARM)⁴¹ identifies landfill carbon sequestration factors for corrugated containers, dimensional lumber, mixed paper, drywall, and wood flooring wastes that are landfilled. Sequestration rates were calculated for each of these materials using the WARM emission factors.

Results are summarized below in Table 18.1 and applicable tabs of the SGEC inventory and

⁴⁰ IPCC/TEAP, 2005 – Bert Metz, Lambert Kuijpers, Susan Solomon, Stephen O. Andersen, Ogunlade Davidson, José Pons, David de Jager, Tahl Kestin, Martin Manning, and Leo Meyer (Eds) Chapter 9. Cambridge University Press, UK. pp 478. Available from Cambridge University Press, The Edinburgh Building Shaftesbury Road, Cambridge CB2 2RU ENGLAND,

⁴¹ Available online at https://www.epa.gov/warm/versions-waste-reduction-model-warm#15

sequestration calculations are included as Attachment 15.

Table 18.1: Summary of Dem-Con Landfill's annual GHG emissions

Construction emissions

Scope	Type of emission		Project-related CO ₂ e emissions	Calculation method(s)
			(short tons/year)	
Scope 1	Combustion	Mobile Equipment	17.13	SGHC Calculator
TOTAL				

Operational emissions

Scope	Type of emission	Emission sub- type	Project- related CO2e emissions	Calculation method(s)
			(short tons/year)	
Scope 1	Landfilling	Mobile Equipment and Area	12,269	SGHC Calculator
Scope 1	Combustion	Heating Stationary Equipment	4.96	SGHC Calculator
Scope 1	Fugitive	AC Stationary and mobile	0.02	SGHC Calculator
Scope 1	Fugitive	Purchased Gases	0.04	SGHC Calculator
Scope 2	Off-site Electricity	Grid-based	59.74	SGHC Calculator
Scope 3	Off-site Waste Management	Transportation Mobile Equipment	24.30	SGHC Calculator
SINK	Carbon Sequestration		(19,850)	WARM Carbon Storage Factors
TOTAL			(7,474.81)	

b. GHG assessment

i. Describe any mitigation considered to reduce the project's GHG emissions.

- 1. Development of a brownfield site. The Project will result in a land conversion from barren land (quarry floor) to vegetated land (vegetated final cover system) increasing terrestrial biogenic carbon.
- 2. Purchasing electricity from a supplier that meets or exceeds the state's 20% renewable energy mandate.
- 3. Committing to utilizing an enhanced final cover system as a part of the cap construction,

which reduces infiltration through the cap and into the landfilled materials, thus reducing the volume of leachate generated, pumped, and transported off site (reduced material transport emissions) and reducing the moisture within the landfill, which results in lower rates of biodegradation and increases carbon storage for carbon containing materials.

- 4. Energy reduction measures including routine maintenance of HVAC systems to maximize efficiency and reduce energy use, use of LED light bulbs and energy efficient lighting, and promotion of enhanced materials recycling through Dem-Con's adjacent environmental campus and Green Grades educational program.
- 5. Planting trees and shrubs along setback areas of the landfill.

ii. Describe and quantify reductions from selected mitigation, if proposed to reduce the project's GHG emissions. Explain why the selected mitigation was preferred.

The mitigations selected are described above. They are not quantified. The mitigation measured were preferred because they are feasible and cost effective for long term operations.

iii. Quantify the proposed projects predicted net lifetime GHG emissions (total tons/#of years) and how those predicted emissions may affect achievement of the Minnesota Next Generation Energy Act goals and/or other more stringent state or local GHG reduction goals.

The expansion will add an estimated 50-60 years to the life of the Landfill based on current fill rates. Net lifetime predicted emissions are (373,740) to (448,489) CO2e short tons/life of the Project. Because the Landfill acts as a carbon sink it should help to achieve any CO2e reduction goals.

19. Noise

Describe sources, characteristics, duration, quantities, and intensity of noise generated during project construction and operation. Discuss the effect of noise in the vicinity of the project including 1) existing noise levels/sources in the area, 2) nearby sensitive receptors, 3) conformance to state noise standards, and 4) quality of life. Identify measures that will be taken to minimize or mitigate the effects of noise.

The dominant noise source in the vicinity of the Project is from the US Highway 169 corridor. Noise is also generated from the existing industrial activities on the Project and in the surrounding area. Noise sources from landfill operations are associated with vehicle traffic arriving at the landfill, emptying their loads, and exiting the landfill and by compactors and other landfill equipment. Landfill equipment and haul trucks operate with standard back up alarms as required by the Occupational Safety and Health Administration (OSHA). The landfill expansion is not expected to change overall noise sources. Landfilling activity will progress into the expansion area, but the equipment and number of pieces of equipment used to operate the landfill will remain the same. The Project will redistribute the location of some of the noise sources, generally bringing them closer to some of the nearby residential receptors. Since noise attenuates with distance from the source, this may result in higher sound levels at some residential receptors.

Minn. R. 7030, Noise Pollution Control, regulates noise. These standards have been established based on preservation of public health and welfare and are consistent with speech, sleep, annoyance, and hearing conversation requirements (Minn. R. 7030.0040, subp. 1). The rules define a Noise Area Classification (NAC) system, which establishes applicable daytime and nighttime noise standards based on the land use activity at the location of the receiver or receptor. Standards vary depending upon the NAC. Residential and sensitive land uses, including rural residences, are classified as NAC-1 and are subject to the strictest noise standards. Commercial land uses, parks, and recreational activities are classified as NAC-2. Industrial land uses, manufacturing, mining, fairgrounds, and agricultural activities are classified as NAC-3. NAC-4 land uses are not subject to noise standard and include undeveloped and unused land and water areas.

The rules establish acceptable noise levels for each both the L50, the sound level that must not be exceeded for more than 50% of any given hour (30 minutes) and the L10, the sound level that must not be exceeded for more than 10% of any given hour (6 minutes). There is not a limit on maximum noise. Within NAC-1, there are two sets of standards, one for daytime and one for nighttime. (The NAC-1 daytime standards apply during nighttime if the land use activity does not include overnight lodging.) The Minnesota Noise Standards define daytime hours as 7:00 a.m. to 10:00 p.m. and nighttime from 10:00 p.m. until 7:00 a.m. The landfill operates within both the daytime and nighttime hours, therefore, both Minnesota daytime and nighttime standards are applicable. Noise standards are indicated on Table 19-1. Dem-Con is permitted to operate 24 hours a day and therefore is subject to the nighttime standard from 10pm-7 am.

	Daytime (7 ar	m - 10 pm)	Nighttime (10 pm - 7 am)	
Noise area	L50	L10	L50	L10
classification	dBA	dBA	dBA	dBA
1	60	65	50	55
2	65	70	65	70
3	75	80	75	80

Table 19-1: Minnesota	a noise standards

Nearby receptors in the NAC-1 category include residences east of the US Highway 169 corridor. There are 31 residential receptors within one-half mile of the Project. Figure 14- Residential Noise Receptors, illustrates the location of these residences with respect to the Project. All the residences are east of US Highway 169, a major regional transportation corridor, which is the dominant noise source in the area.

Sound level energy attenuates with distance from the source. Topography such as earthen berms, hillsides, etc. can deflect sound waves and absorb energy also effectively reducing noise emissions from the Project. Topographic shields that are closer to the noise source are more effective at reducing noise emissions than those setback greater distances.

Initial fill activities will occur in recessed areas of the Project. The surrounding walls of the reclaimed quarry will provide topographic shielding and absorption of sound energy reducing overall site sound level emissions. As filling progresses, the activity will rise to the same elevation as the

perimeter area and eventually will rise above grade. Once these at grade or elevated conditions occur, an 8–10-foot perimeter berm is constructed along the eastern edge of the active fill area. This berm serves to screen the view of the working face as well as to provide noise mitigation.

The landfilling activities will replace mining and processing activities currently occurring within the Project area. Noise monitoring performed for the MJS FEIS collected ambient noise levels, which included landfill operations and US Highway 169 operations. Typically, one landfill compactor is working at each active fill area and there may be two active fill areas at any given time. The sound level from a landfill compactor is estimated at 78 dBA 50 feet from the source.⁴² Noise attenuates with distance from the source and is perceived as the sound becoming guieter. Sound levels decrease by six decibels when a distance from a point source is doubled. The closest residential receptors to the Project are four homes 1,000-1,100 feet from the Project area property line resulting in an estimated sound pressure level of 52 dBA at the residences. This assumes no barriers or reflective surfaces between the landfill and the homes. As part of landfill operating procedures, there will be a berm constructed along the perimeter of the working face. This berm serves to screen the activity from the land uses to the east. The berm also serves as a barrier and absorbs and deflects sound energy. The amount of sound level reduction depends upon the height of the berm and the distance of the source from the berm. The closer the source is to the berm the more effective the berm is. At the landfill the berm will be very close to the operating equipment. A 3 dBA reduction is typically applied to predicted sound levels to account for berms which would bring the predicted sound levels below the nighttime standard.

20. Transportation

a. Describe traffic-related aspects of project construction and operation. Include: 1) existing and proposed additional parking spaces, 2) estimated total average daily traffic generated, 3) estimated maximum peak hour traffic generated and time of occurrence, 4) indicate source of trip generation rates used in the estimates, and 5) availability of transit and/or other alternativetransportation modes.

Traffic generated by the Landfill consists of trucks hauling to and from the Landfill, employee trips, and construction activity. With a landfill, Project construction is not a specific period of time that occurs at the onset of a project to make the Project operational, rather construction related activities are ongoing and progressive and an integral part of the operation of the Project. As an area is prepared for liner construction, filling and grading of the subgrade takes place. Construction traffic will be generated during when loads of clean fill are periodically brought to the Project to support these operations. Construction traffic will also be generated when a liner construction crew or a cap construction crew are periodically active on the Project.

The existing haul route and scales will continue to be utilized to serve the Project. The Project area will be accessed by building a new haul road along the eastern perimeter of the existing Landfill. Figure 14 Haul Road Concept illustrates the layout of the haul road system. The road will be a private haul road constructed to accommodate the haul trucks. Landfill traffic makes up

⁴² July 2010. Final EIS Cedar Hills Regional Landfill 2010 Site Development Plan Chapter 8 Noise and Vibration King County Department of Natural Resources and Parks Solid Waste Division

about 65% of the environmental campus traffic. Eventually once mining is complete in the southern portion of the Project, some portion of the landfill traffic may be diverted to the southern entrance of the Project off Red Rock Drive. Construction related traffic will utilize the right-in/right-out US Highway 169 access to the Project. The Project access points will be secured with locking gates and access will be managed and monitored by Dem-Con personnel. Security cameras may be utilized as needed.

The Project is not expected to increase annual traffic generation rates. Traffic counts at the Landfill vary from year to year. Incoming volumes of waste are subject to fluctuations caused by economic factors that drive construction and redevelopment, as well as other factors such as large storms and accessibility of other disposal options.

SRF Consulting Group (SRF)conducted a traffic review of the Project, which is included as Attachment 8. The review includes figures that represent traffic patterns and haul routes associated with the Project.

- 1) There will be no additional parking spaces added because of the Project,
- 2) Estimated total average daily traffic generated, and
- 3) estimated maximum peak hour traffic generated and time of occurrence.

Land use	A.M. peak hour	r	P.M. peak hour	Daily trips Out 17 1,270 1,270		
	In	Out	In	Out		
Dem-Con Landfill and Campus	57	57	17	17	1,270	
(Landfill = 65% of total)						
Bryan Rock Quarry	25	25	20	20	486	
Reclamation/ Construction Fill (1)	7	7	6	6	154	

Table 20-1: Truck trip generation estimates

(1) Reclamation/construction fill trips are expected to utilize the US Highway 169 right-in/right-out. These are expected to only occur over a 2- or 3-month period and are expected to continue after mining is completed.

4) Source of trip generation rates used in the estimates:

The Dem-Con trip generation is based on the number of truck tickets at the Landfill from May 1, 2020, to July 25, 2021, which was historically high year for the Landfill as indicated in the traffic study included as Attachment 16 and includes estimates of annual construction related traffic generated from annual limestone production. The southern portion of the quarry will remain active for several years while landfilling begins in the northern portion of the Project. Traffic generated from the mining operations utilizes a scale and access of Red Rock Drive to the south. Traffic numbers attributed to the quarry operation are based on a production level of 1,000,000tons/year. Eventually the quarry mining will be complete, and this component of traffic generation will be eliminated, but some of the landfill traffic may

be diverted to the southern entrance.

5) Availability of transit and/or other alternative transportation modes.

No other transportation modes are available.

b. Discuss the effect on traffic congestion on affected roads and describe any traffic improvements necessary. The analysis must discuss the project's impact on the regional transportation system. If the peak hour traffic generated exceeds 250 vehicles or the total daily trips exceeds 2,500, a traffic impact study must be prepared as part of the EAW. Use the format and procedures described in the Minnesota Department of Transportation's Access Management Manual, Chapter 5 (available at: http://www.dot.state.mn.us/accessmanagement/resources.html) or a similar local guidance.

Landfill site-generated trips are not expected to significantly increase (the expansion only adds more area to deposit waste materials) and the current truck haul routes are not expected to change within the near future. Truck volumes are expected to decrease in the study area as Bryan Rock mining activity is completed. Based on the decreasing number of trucks and recent roadway system improvements (TH 169/TH 41 and TH 169/CSAH 14), no significant traffic issues are expected with the Project. Based on findings of the SRF review, the Project does not represent a significant traffic impact to the study area.

Cumulative potential effects related to traffic were reviewed. Traffic patterns and generation rates from the mining activity, which will be concurrent in the southern portion of the Project with landfilling activity in the northern portion of the Project was included in the traffic review. Aggregate hauling utilizes a separate existing access point off Red Rock Drive to eliminate conflict with landfill traffic. The right-in/right-out access off US Highway 169 in the northern portion of the Project will be used on a limited basis by both Bryan Rock and Dem-Con for reclamation and construction related activity. This traffic was also accounted for in the traffic review.

Cumulative effects analysis also included traffic generated from the nearby Minnesota Renaissance Festival, Sever's Festivals, and the proposed Shakopee Mdewakanton Sioux Community (SMSC) organics composting facility off TH 41 near Dem-Con Drive. The festivals typically operate during the weekend when landfill traffic is at a minimum and most trips occur in the morning when the festival traffic is at its lightest. The mining operation typically stops hauling by late morning during the Renaissance Festival's day of operation to avoid congestion created by festival traffic.

The SMSC site is still in planning stages, but a traffic review prepared by Bolton and Menk, dated June 2021 indicates that the project is proposing traffic improvements (northbound and southbound left-turn lanes) at their entrance, which is northwest of Dem-Con Drive. These recommended improvements are expected to mitigate any conflicts associated with additional traffic from the Project.

c. Identify measures that will be taken to minimize or mitigate project related transportation effects.

Area roadway improvements (TH 169/TH 41 and TH 169/CSAH 14) were recently completed. Potential improvements at the TH 41/SMSC Site Access were identified. With truck volumes decreasing in the study area as Bryan Rock mining activity is completed, the Project will not generate the need to study area roadway system improvements.

21. Cumulative potential effects: (Preparers can leave this item blank if cumulative potential effects are addressed under the applicable EAW Items)

- a. Describe the geographic scales and timeframes of the project related environmental effects thatcould combine with other environmental effects resulting in cumulative potential effects.
- b. Describe any reasonably foreseeable future projects (for which a basis of expectation has been laid) that may interact with environmental effects of the proposed project within the geographicscales and timeframes identified above.
- c. Discuss the nature of the cumulative potential effects and summarize any other available information relevant to determining whether there is potential for significant environmental effects due to these cumulative effects.

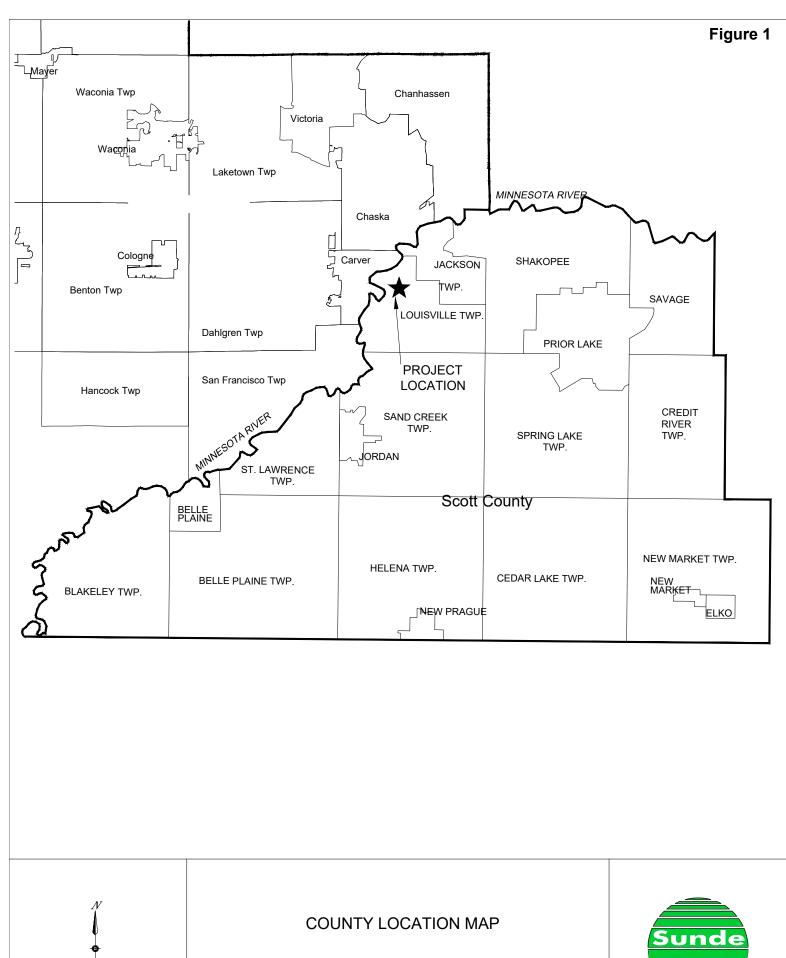
Cumulative potential effects were discussed under the applicable items of the EAW, specifically item 20, traffic.

22. Other potential environmental effects: If the project may cause any additional environmental effects not addressed by items 1 to 19, describe the effects here, discuss the how the environmentwill be affected, and identify measures that will be taken to minimize and mitigate these effects.

There are no other known additional environmental effects that would be caused by the Project.

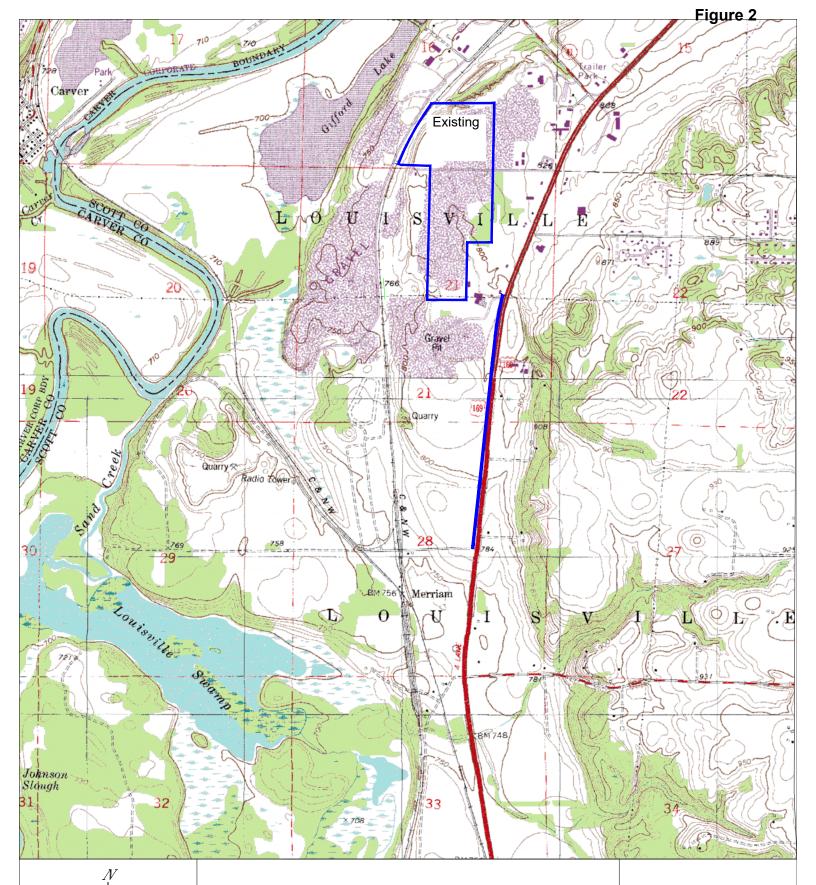
RGU CERTIFICATION

I hereby certify that:


- The information contained in this document is accurate and complete to the best of my knowledge.
- The EAW describes the complete project; there are no other projects, stages, or components other than those described in this document, which are related to the project as connected actions or phased actions, as defined at Minnesota Rules, parts 4410.0200, subparts 9c and 60, respectively.
- Copies of this EAW are being sent to the entire EQB distribution list.

Signature: Dan R. Card, P.E.

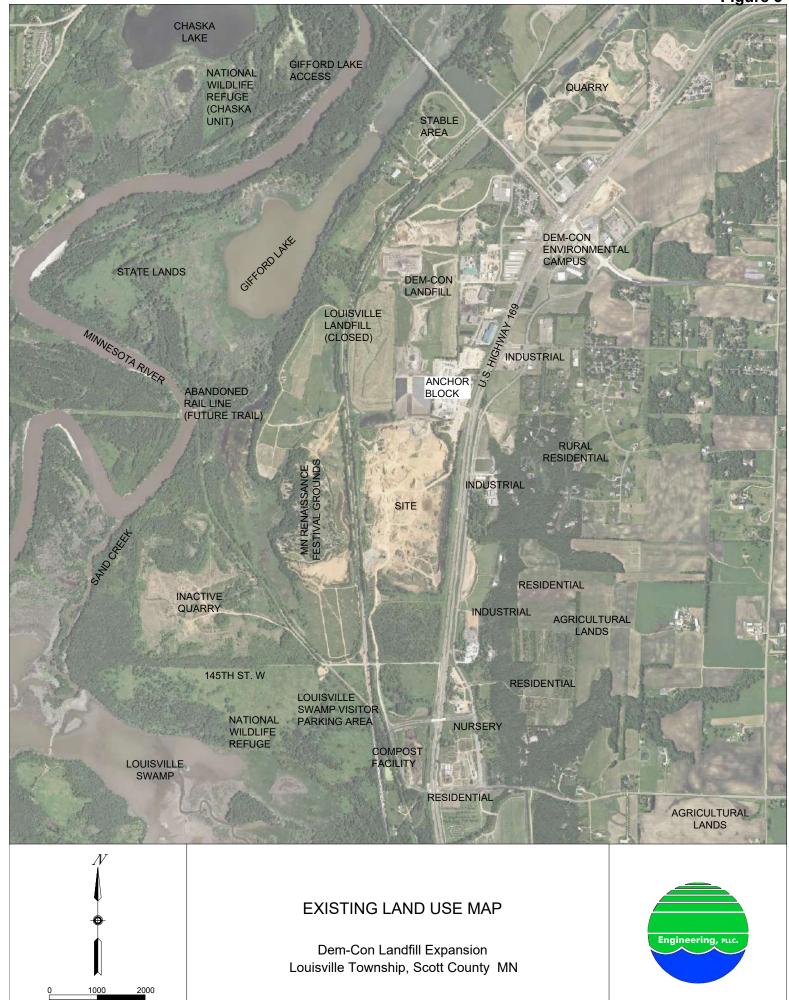
Date: 11/07/2022


Supervisor Environmental Review Unit Resource Management and Assistance Division

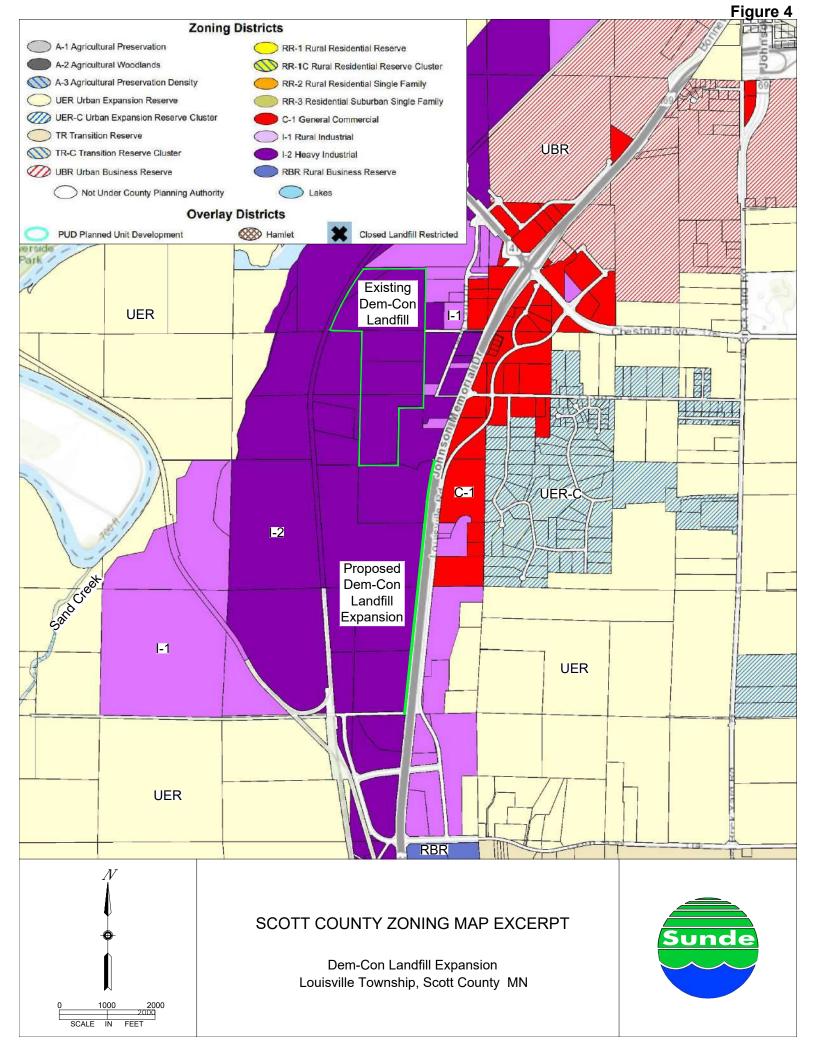
Figures 1-14

Dem-Con Landfill Expansion Louisville Township, Scott County MN

NOT TO SCALE


USGS QUAD MAP EXCERPT

Dem-Con Landfill Expansion Louisville Township, Scott County MN



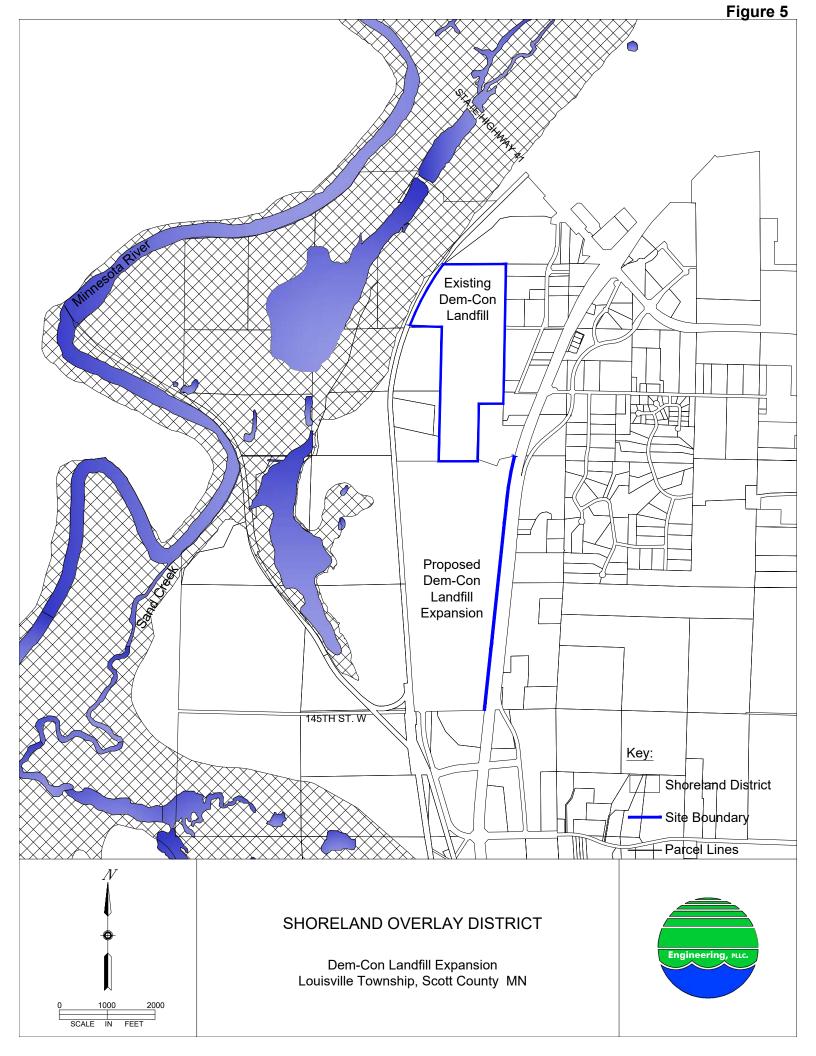
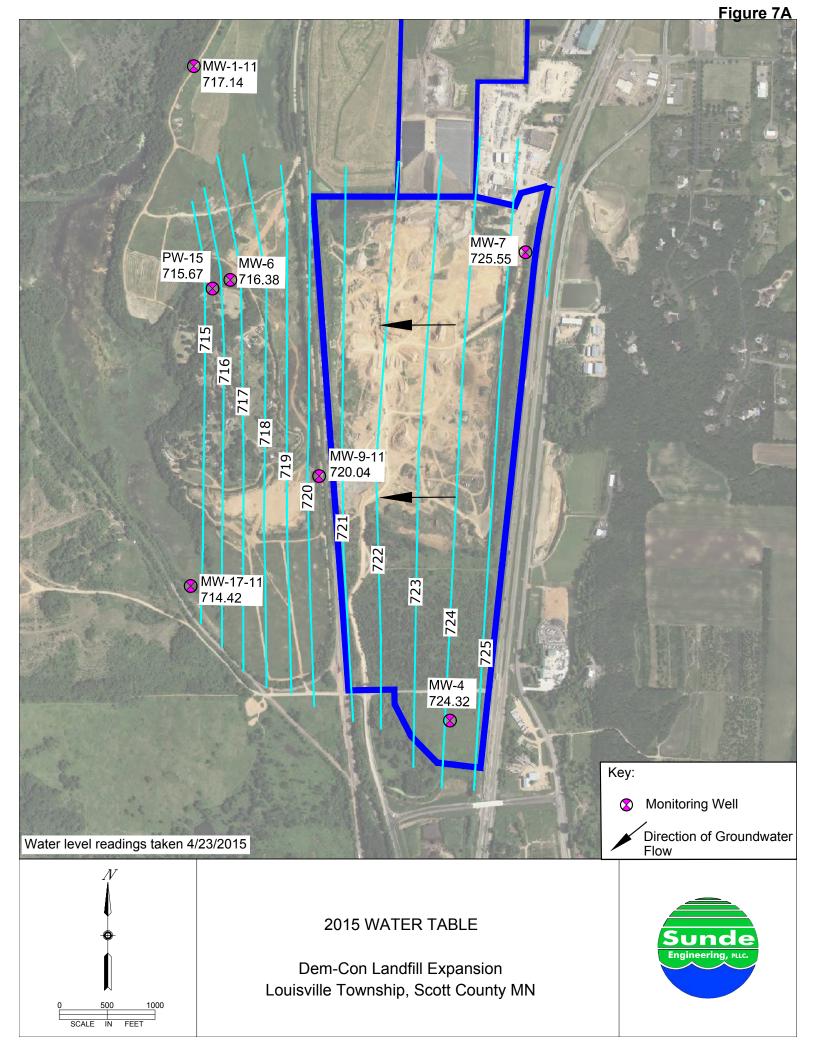
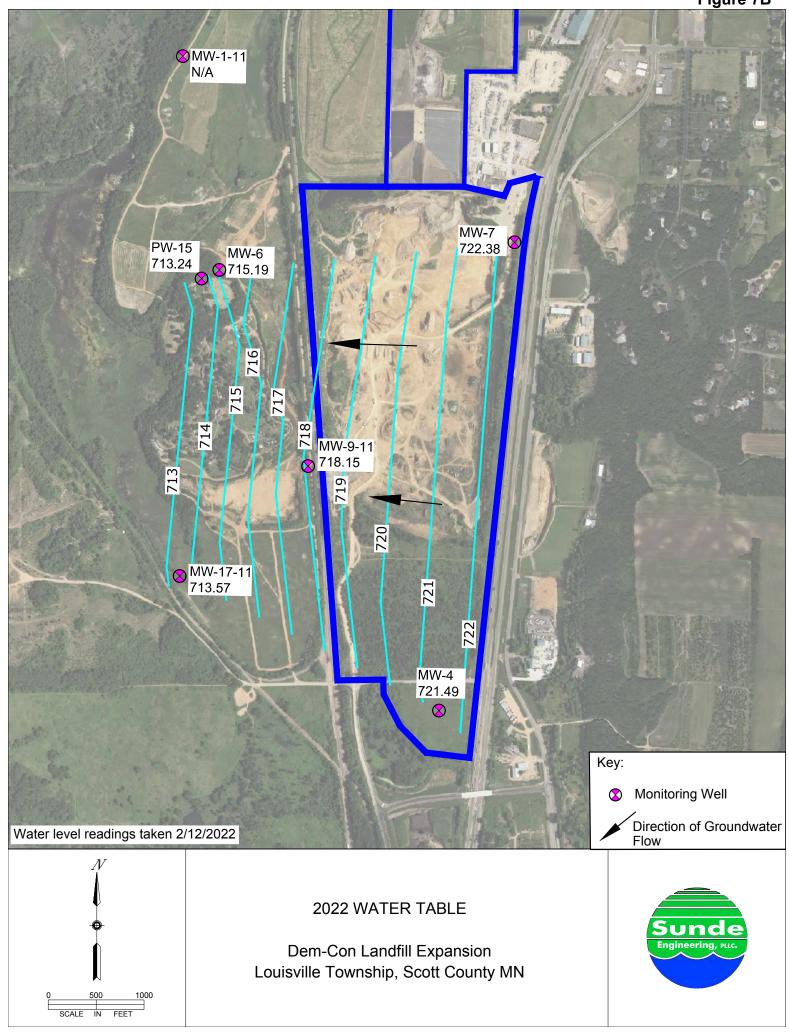
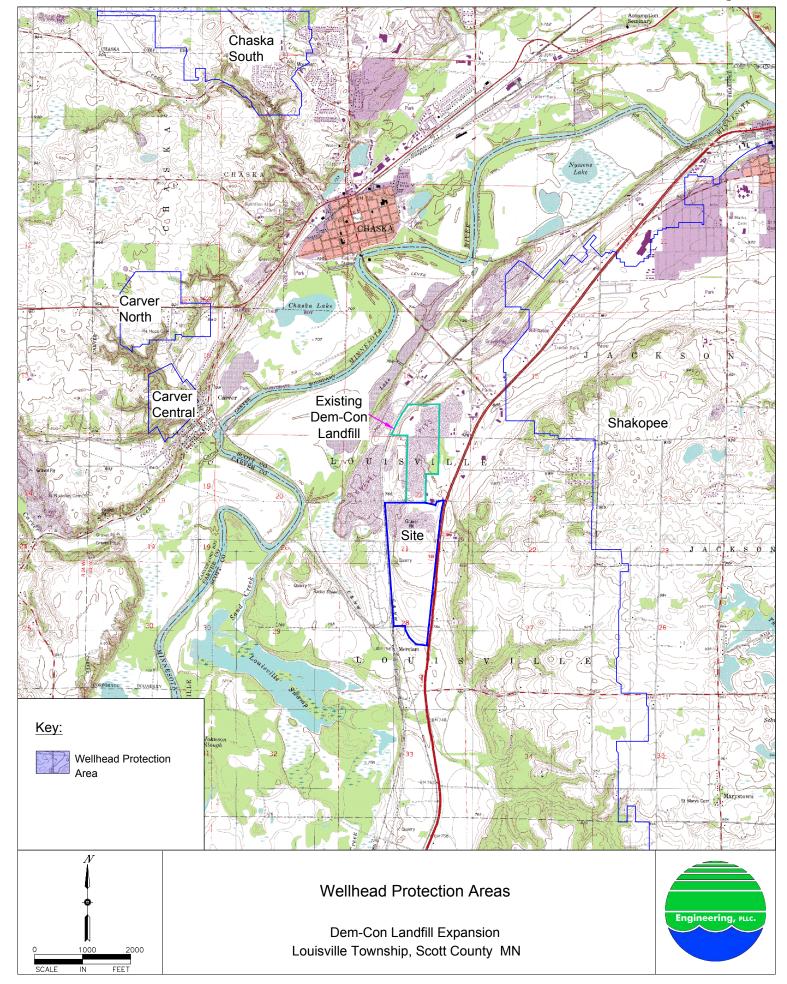
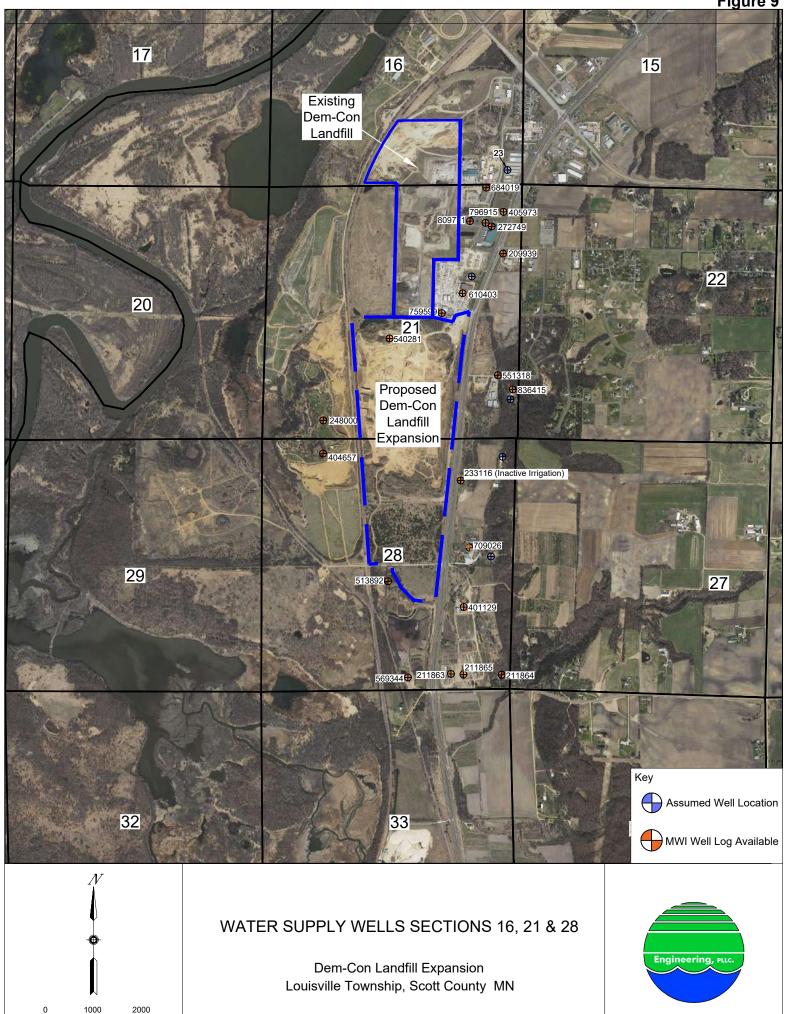
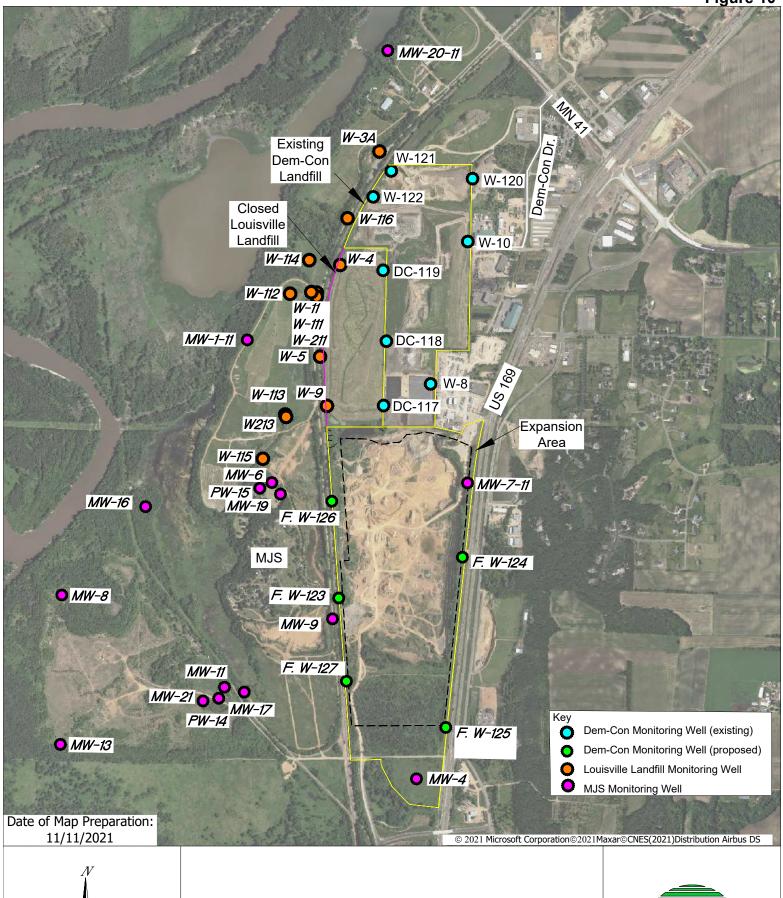

1000 2000 SCALE IN FEET


Figure 3

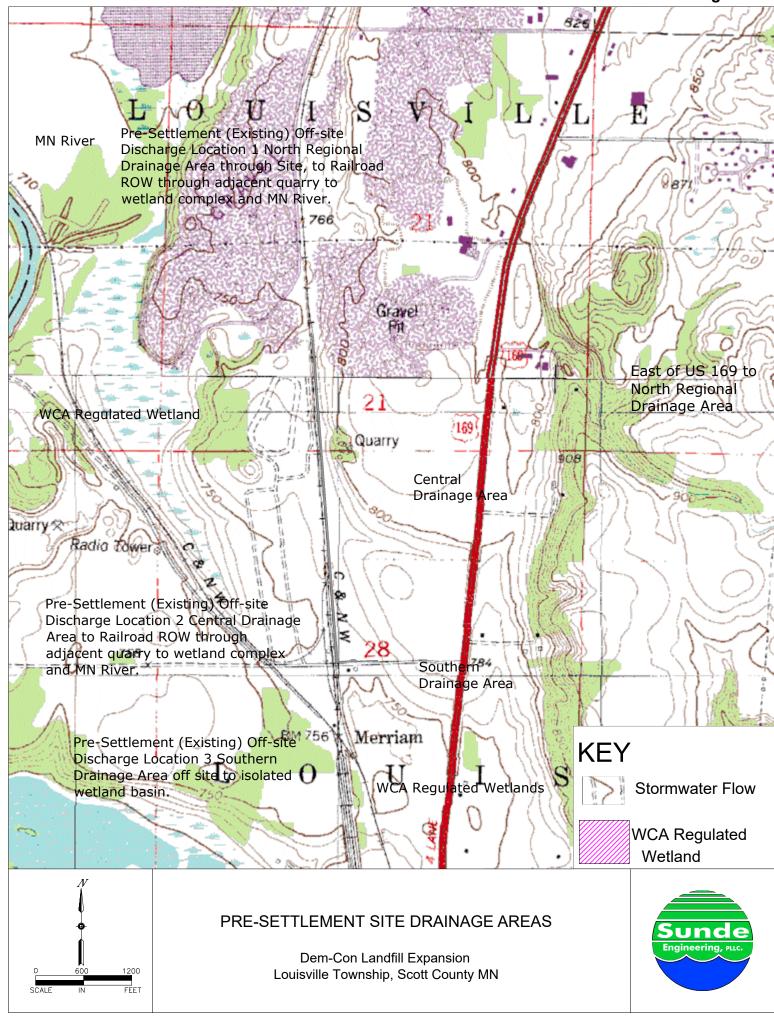
SCALE IN FEET

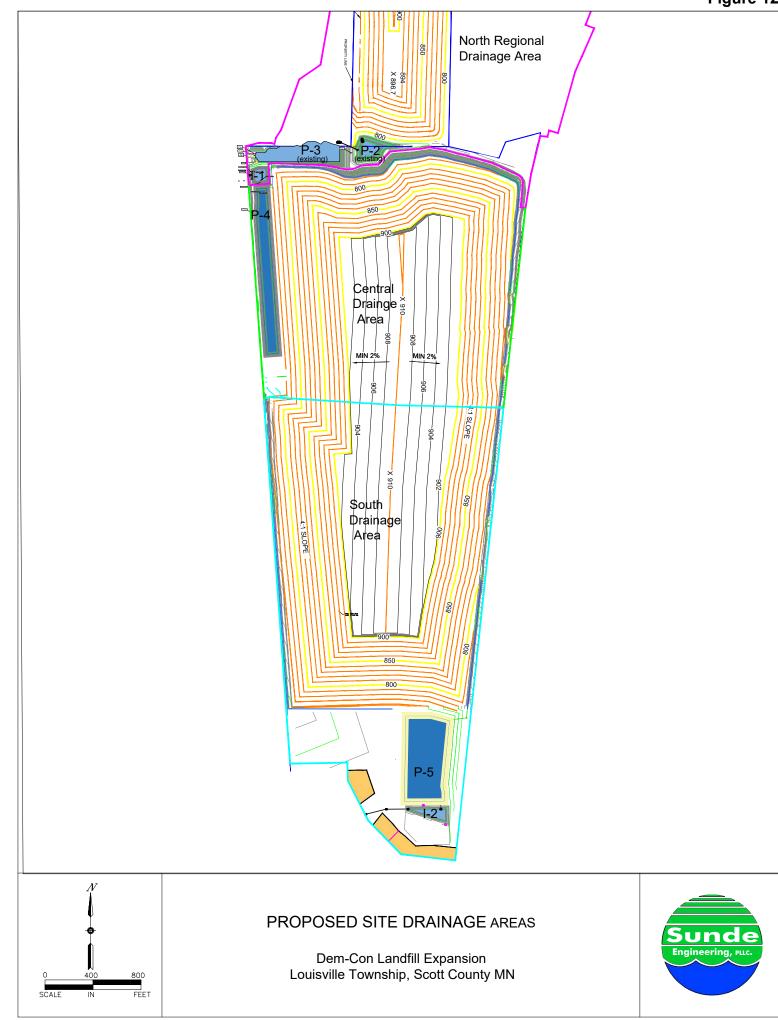





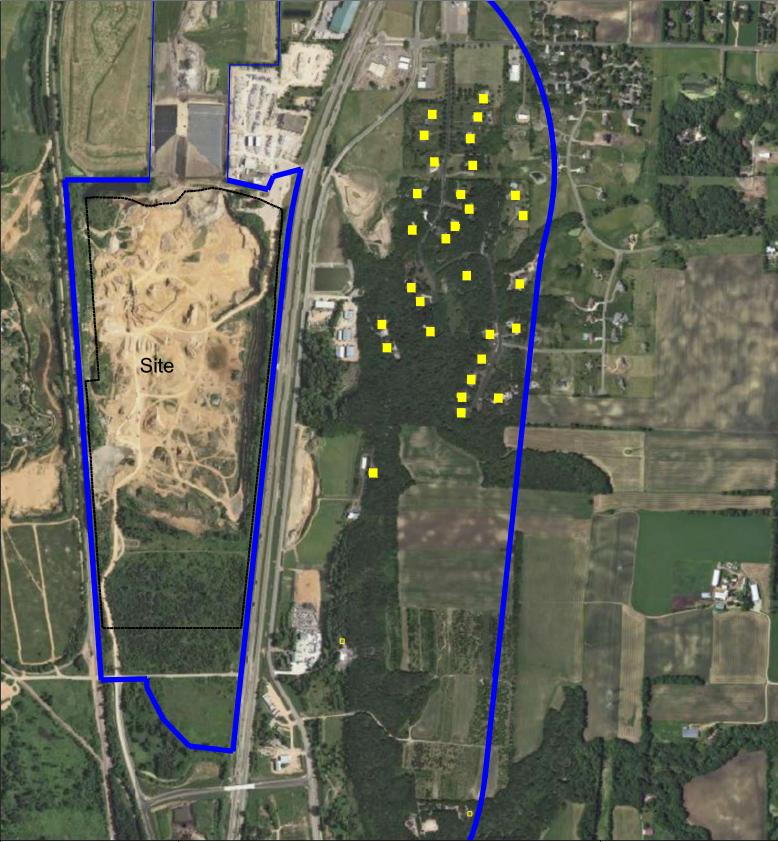

Figure 7B

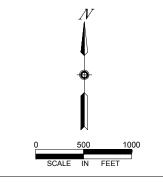
SCALE IN FEET

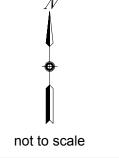
MONITORING WELL NETWORKS


Dem-Con Landfill Expansion Louisville Township, Scott County MN


1500

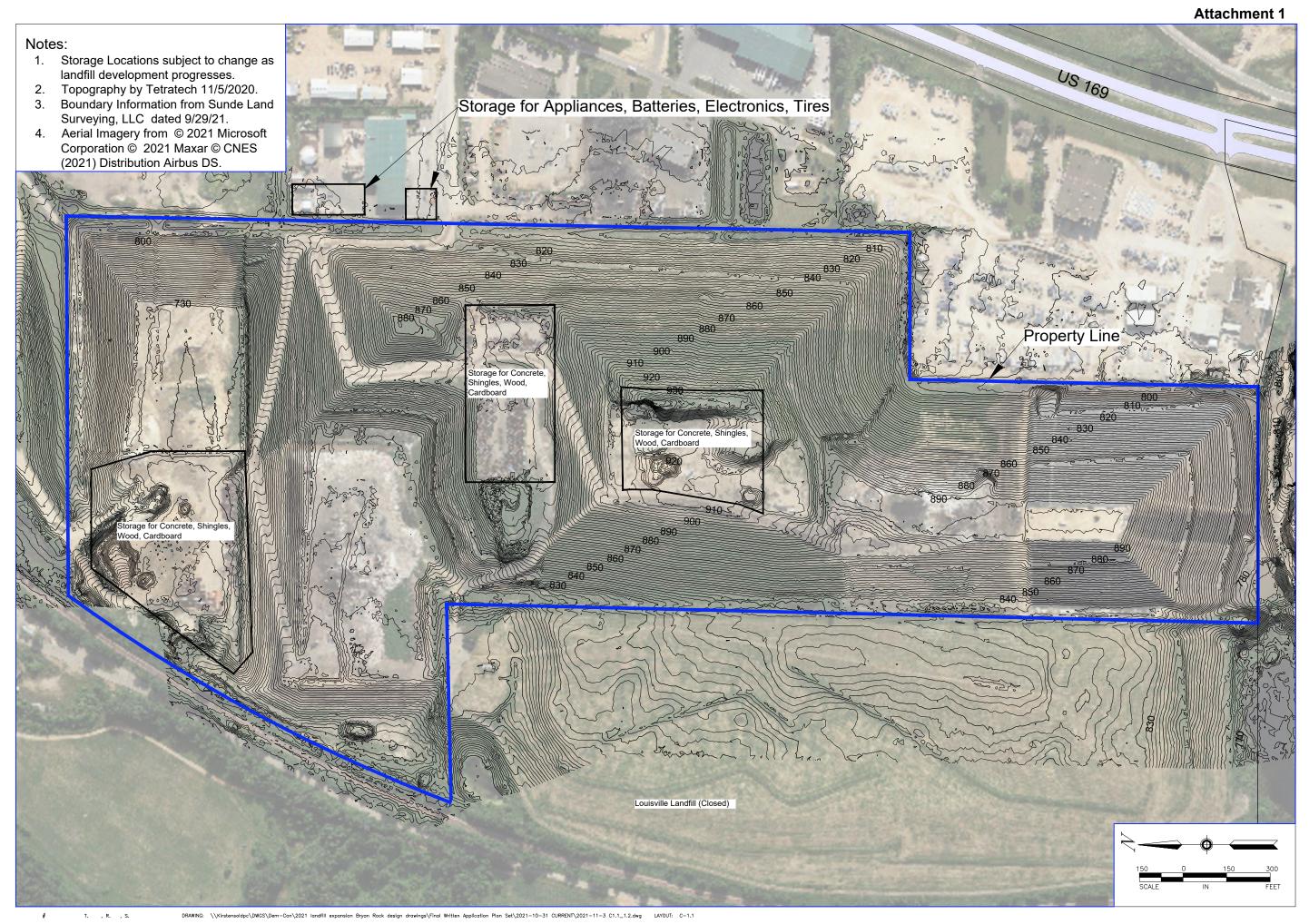

FEET


SCALE



Residential Noise Receptors within $\frac{1}{2}$ Mile of Expansion Area

Dem-Con Landfill Expansion Louisville Township, Scott County MN



Haul Road Concept

Dem-Con Landfill Expansion Louisville Township, Scott County MN

Attachments 1-16

CONSULTING CIVIL ENGINEERS 10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (952) 881-3344 TELEPHONE (952) 881-1913 FAX www.sundecivil.com

Dem-Con Expansion

Scott County, Minnesota

DATE	REVISION
DATE	REVISION

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

Kurster Panky		
rsten Pauly		
ATE: 11/22/2021	REG. NO .:	2

 INFORMATION:

 PROJECT NO:

 DRAWN BY:

 CHECKED BY:

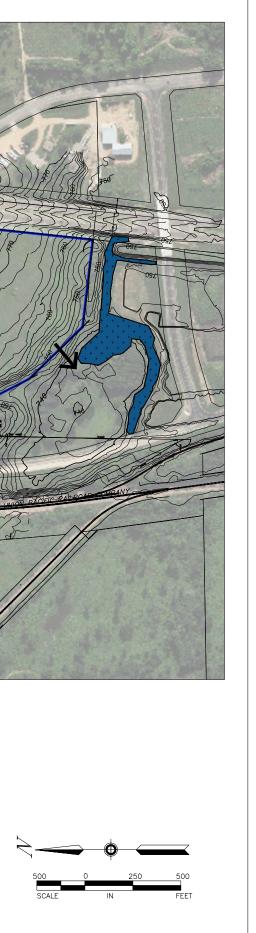
 APPROVED BY:

 SCALE:

 DATE:

DESCRIPTION:

SHEET NO:


C1.1

Notes:

#

- Boundary Information from Proposed Registration Description for Bryan Rock Companies by Sunde Land Surveying dated 8/14/2015.
 Topography of Existing Quarry from UAS dated April 29, 2019. Topography for remainder of site from 2010 LiDAR
 Wetland boundary from 169/41/78/147th Final Drainage Report WSB January 2018.
 Aerial Imagery from © 2021 Microsoft Corporation © 2021 Maxar © CNES (2021) Distribution Airbus DS.

CONSULTING CIVIL ENGINEERS 10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (952) 881-3941 TELEPHONE (952) 881-1913 FAX www.sundecivil.com

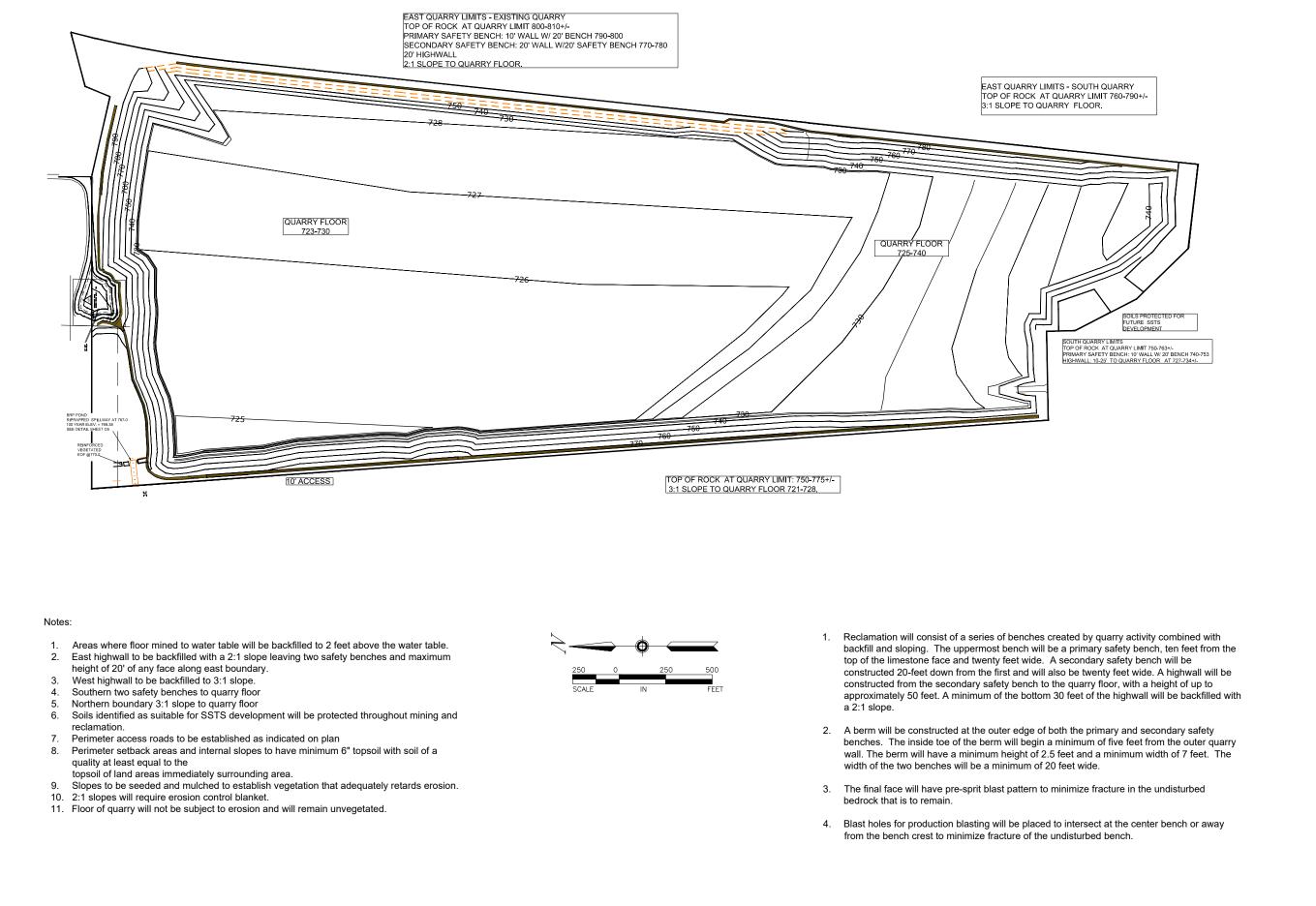
Dem-Con Expansion

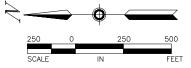
Scott County, Minnesota

DATE

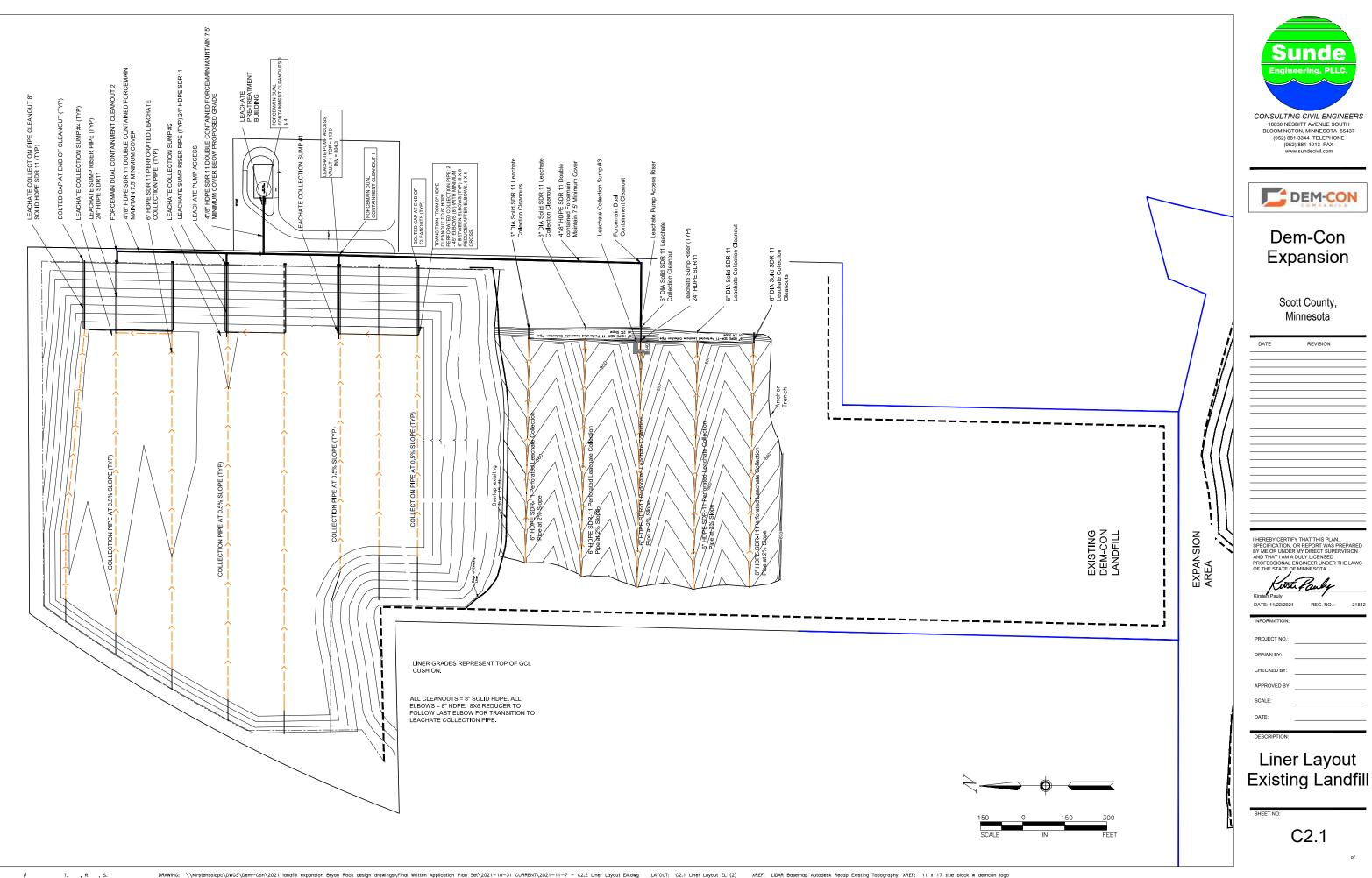
REVISION

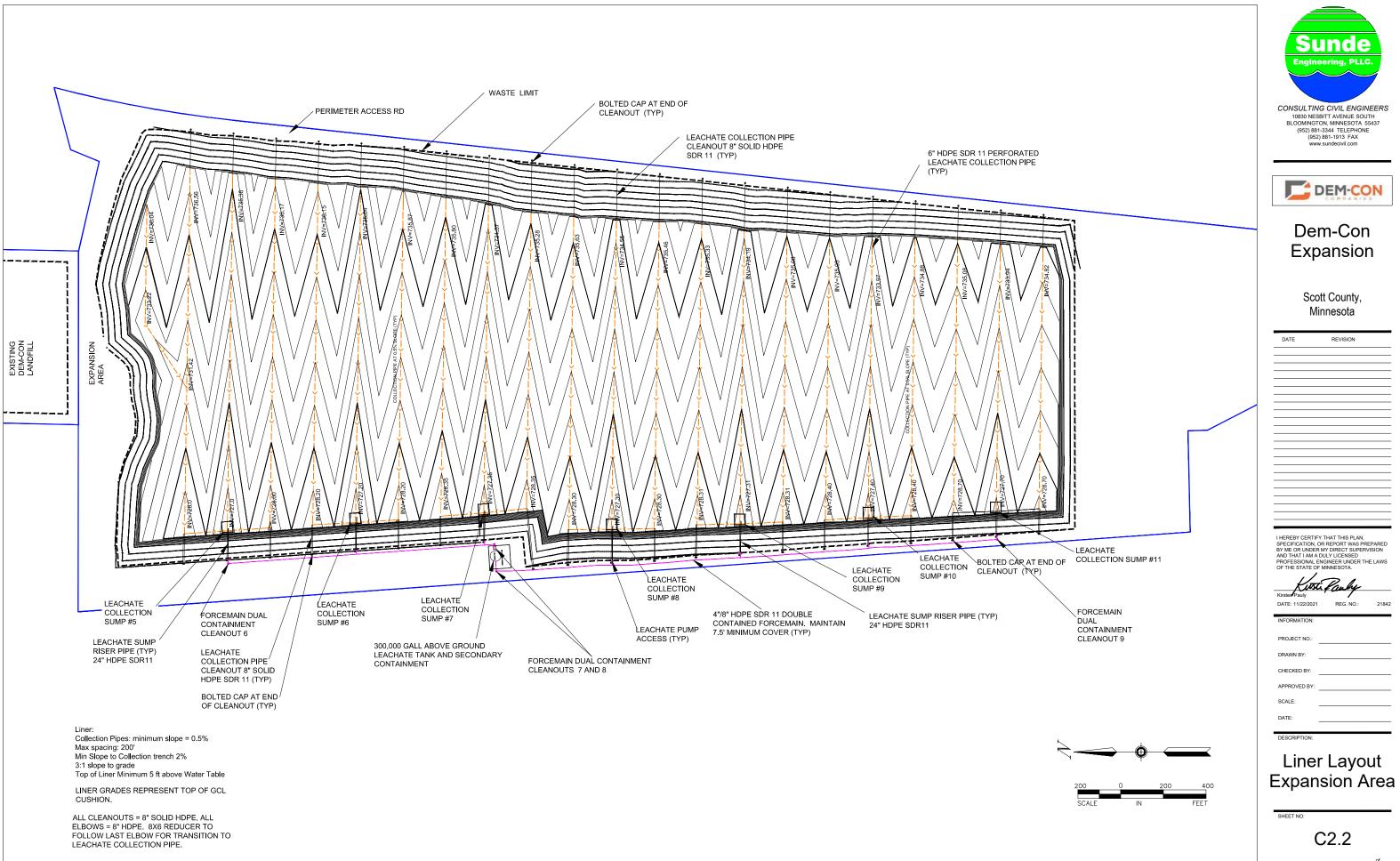
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT IAM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.


Kust Pa	he
Kirsten Pauly	
DATE: 11/22/2021	REG


INFORMATION:	
PROJECT NO .:	
DRAWN BY:	
CHECKED BY:	
APPROVED BY:	
SCALE:	
SCALE.	
DATE:	
DESCRIPTION:	
_	iotina

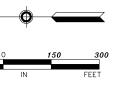
SHEET NO


C1.2



#

Suedo
Engineering, PLLC.
CONSULTING CIVIL ENGINEERS
10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (952) 881-3344 TELEPHONE (952) 881-1913 FAX
www.sundecivil.com
DEM-CON
Dem-Con
Expansion
Scott County, Minnesota
DATE REVISION
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
Kuste Panky
Mrsten Pauly DATE: 11/22/2021 REG. NO.: 21842
INFORMATION:
PROJECT NO.:
CHECKED BY:
APPROVED BY:
SCALE:
DATE:
Post Mining
Reclamation
Conditions
Expansion Area
SHEET NO:
C1.3



#

Final grades over existing landfill approved in 2016 Permit Reissuance.

T., R., S.

CONSULTING CIVIL ENGINEERS 10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (952) 881-3344 TELEPHONE (952) 881-1913 FAX www.sundecivil.com

Dem-Con Expansion

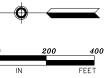
Scott County, Minnesota

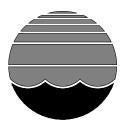
DATE	REVISION	
-		

I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MUY DIRECT SUPERVISION AND THAT INA A DULY LICENSED PROFESSIONAL ENSINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

Kusti Pa	uly
KIRSTEN PAULY	/
DATE: 11/22/2021	REG.

INFORMATION:	
PROJECT NO .:	
DRAWN BY:	
DRAWIN BT.	
CHECKED BY:	
APPROVED BY:	
SCALE:	Graphic
DATE:	10/29/21
DESCRIPTION:	


Final Grades Existing Landfill


SHEET NO:

C3.1

CONSULTING CIVIL ENGINEERS 10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (952) 881-3344 TELEPHONE (952) 881-1913 FAX www.sundecivil.com

..\.\2021 -7 APPLICATION DRAWINGS\DemConLogo.jpg

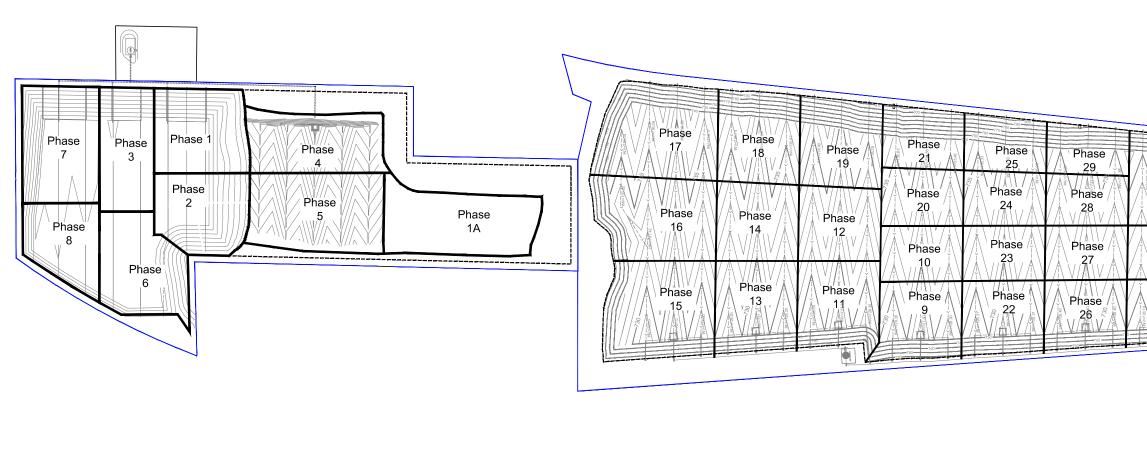
Dem-Con Expansion

Scott County, Minnesota

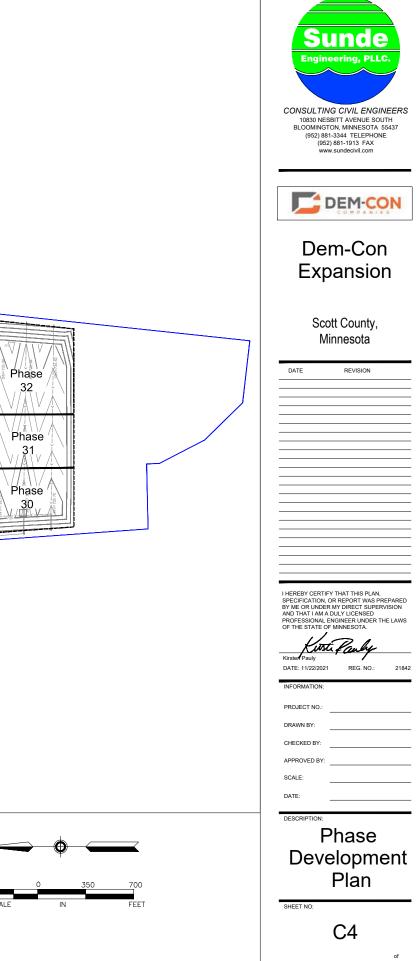
DATE	REVISION

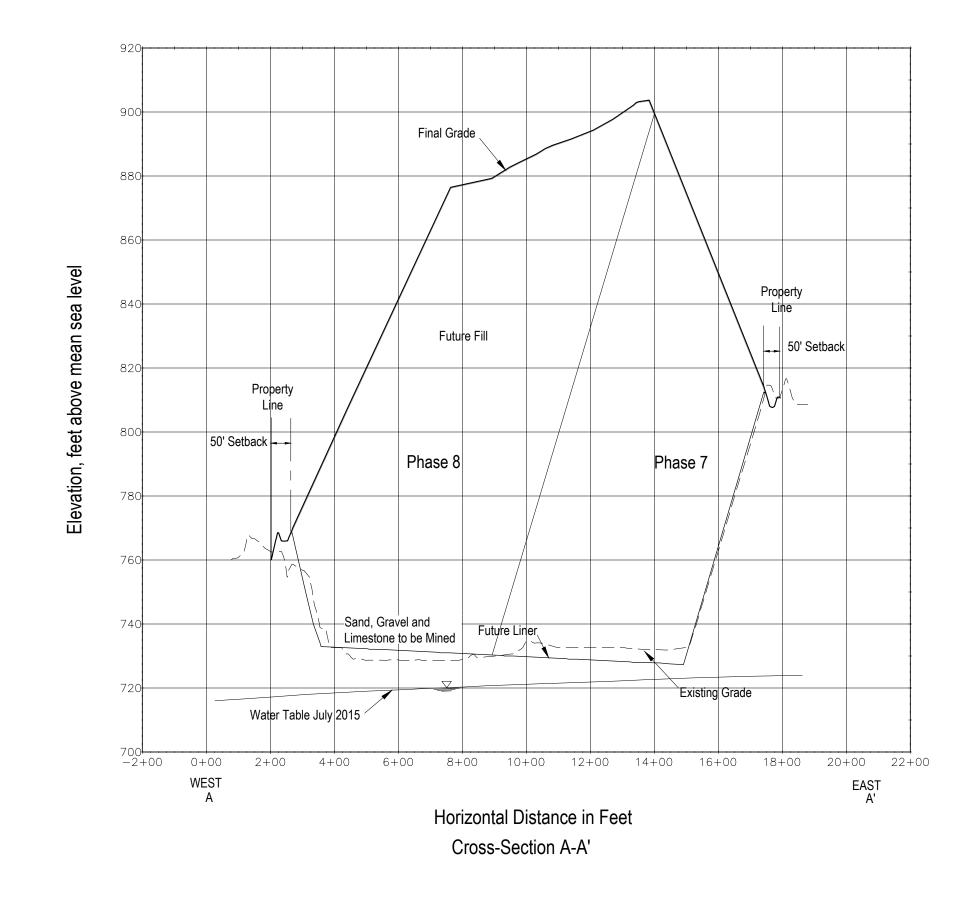
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

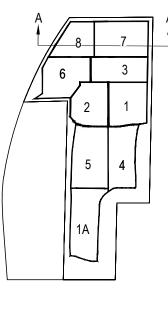
Kirst. Pauly		
KIRSTEN PAULY	. /	
DATE: 11/22/2021	REG. NO.:	21842


INFORMATION:	
PROJECT NO .:	
DRAWN BY:	
CHECKED BY:	
APPROVED BY:	
SCALE:	Graphic
DATE:	10/29/21

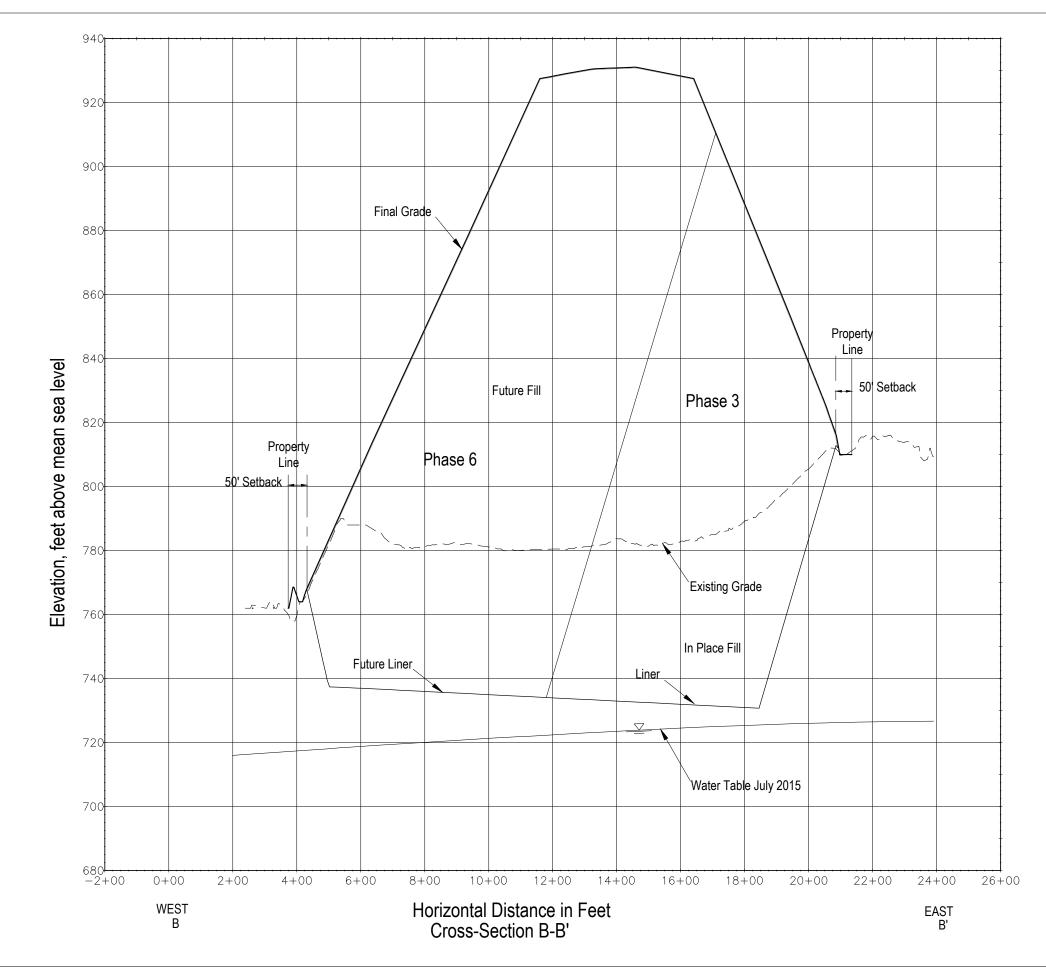
DESCRIPTION:

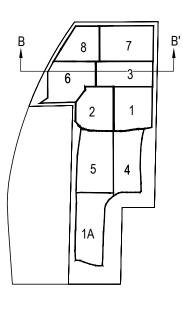

Final Grades Expansion Area

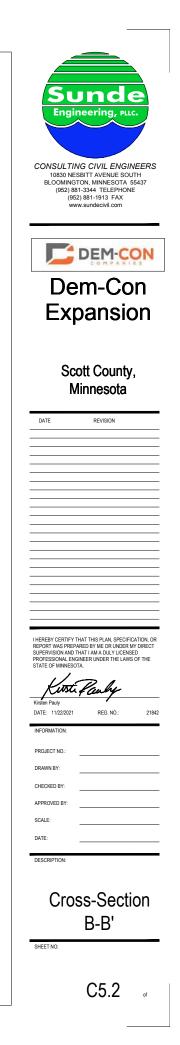

SHEET NO:

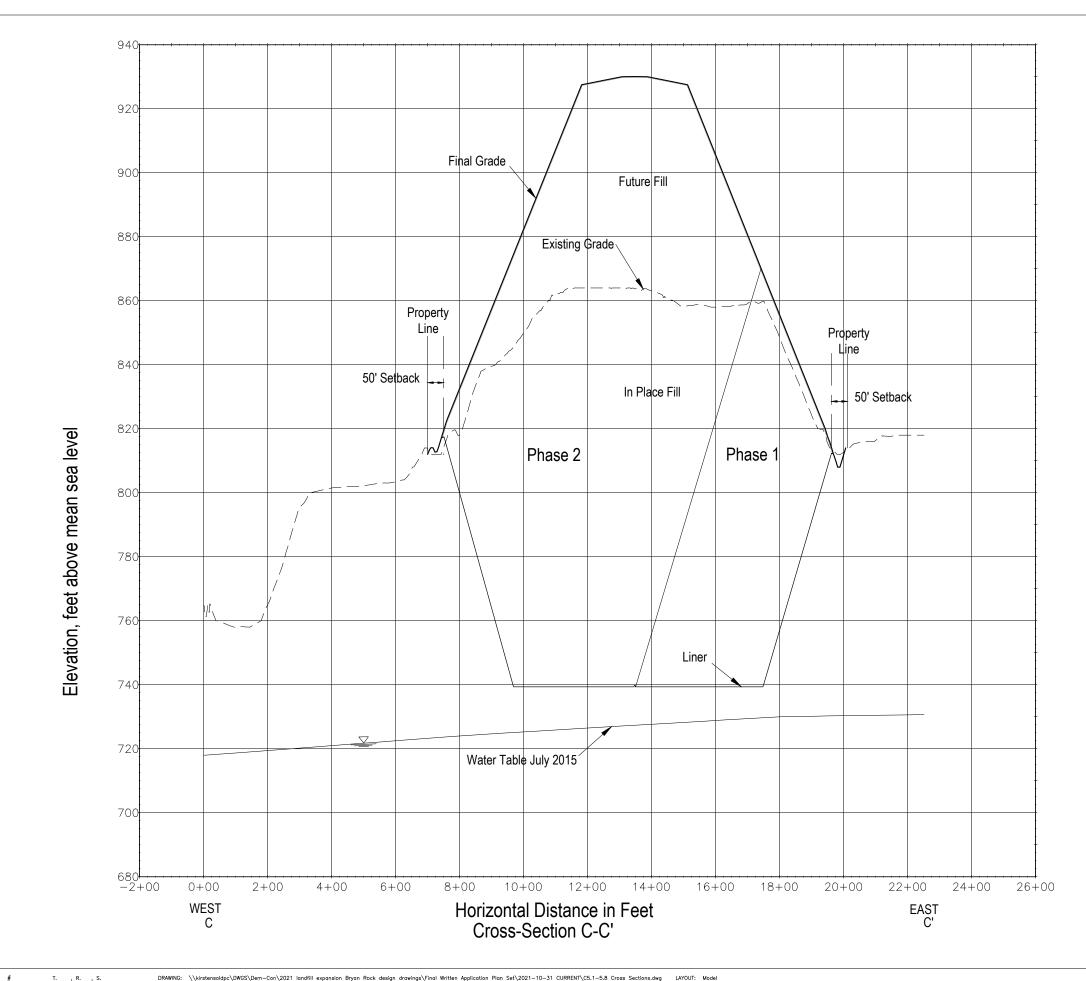

C3.2

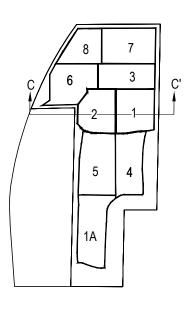


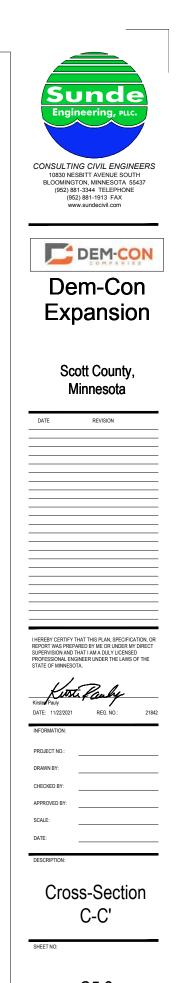

 \sim

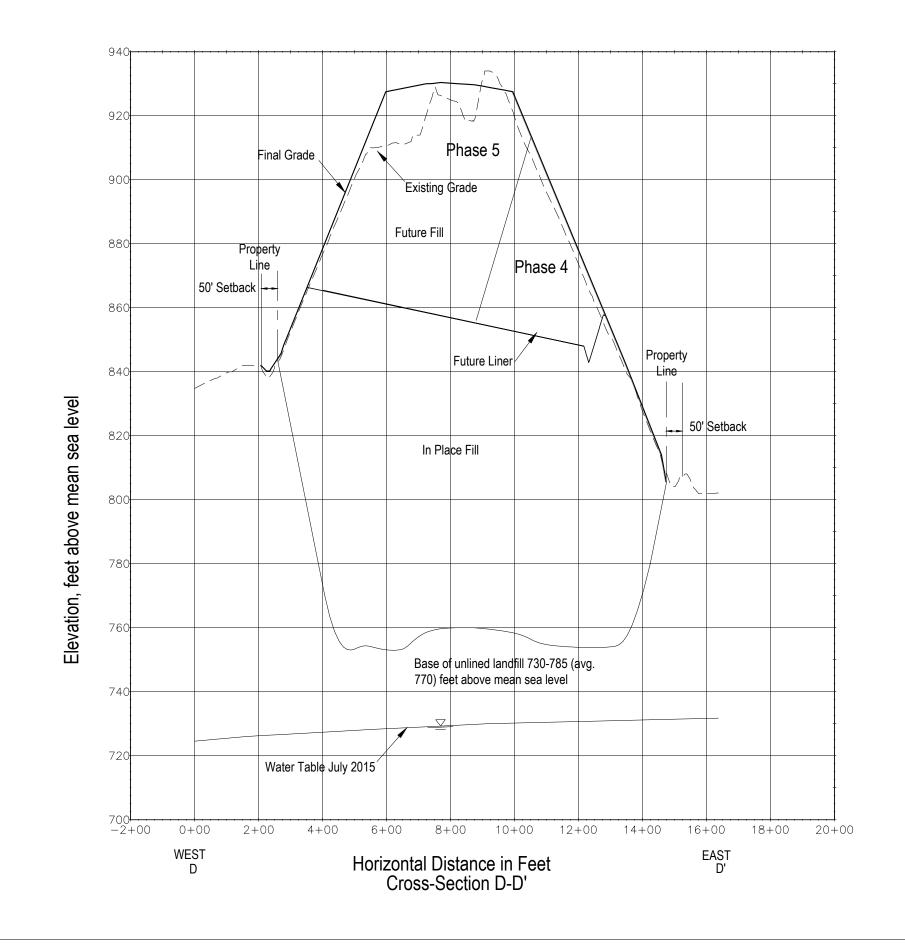


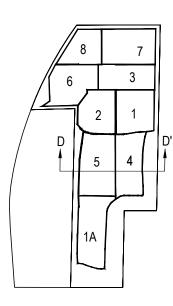


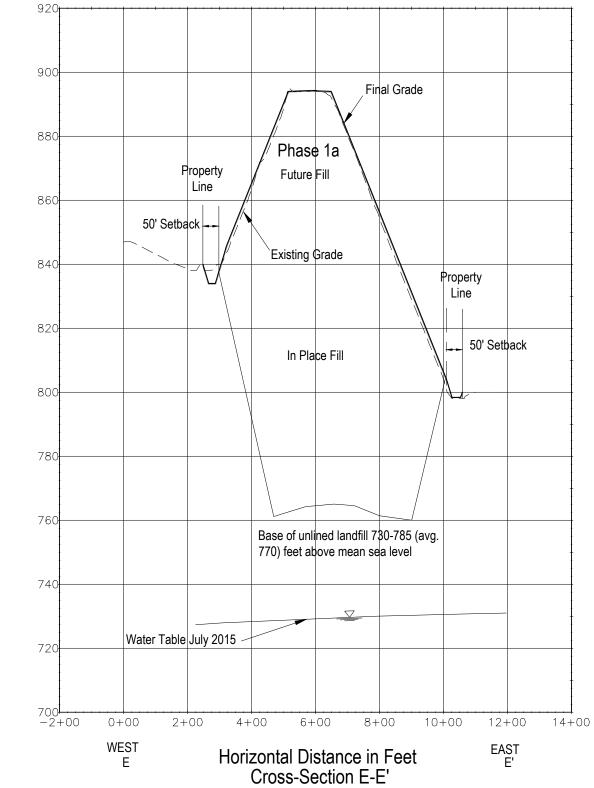




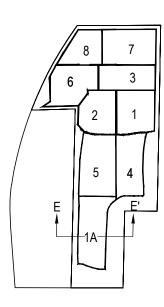


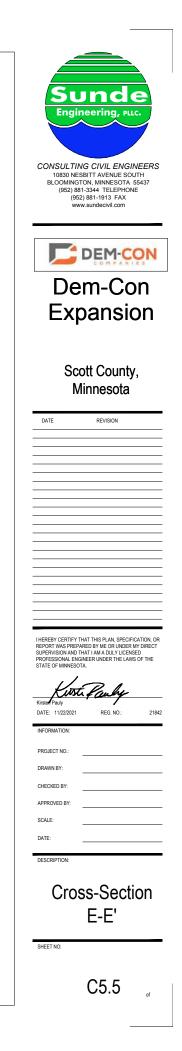


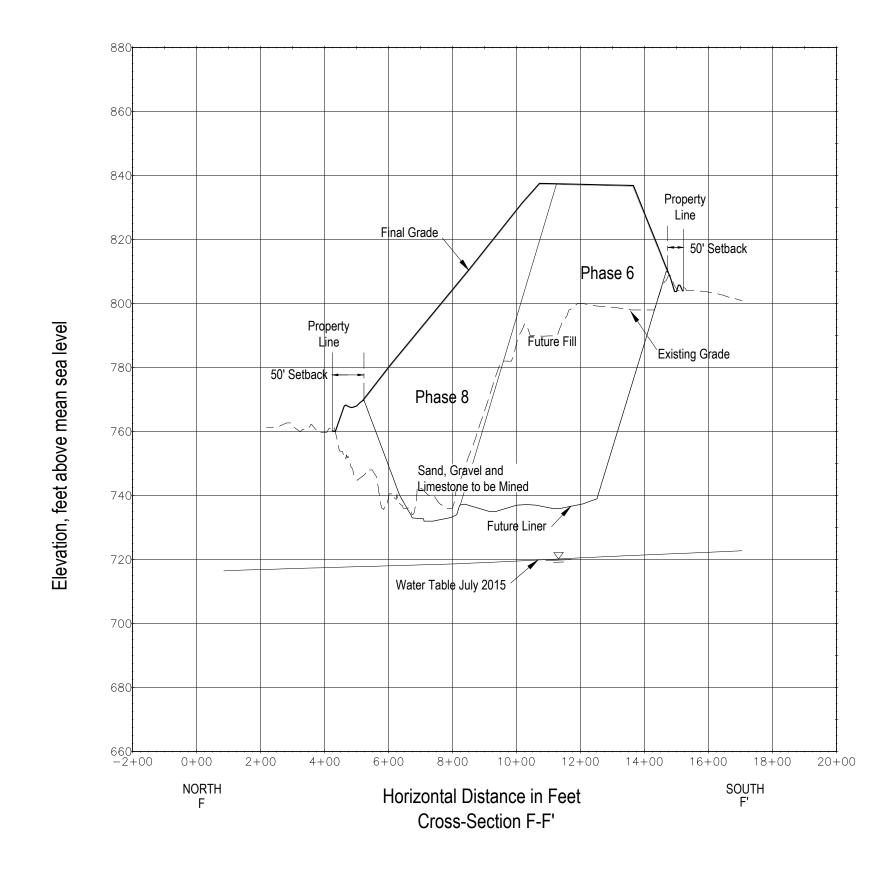



C5.3

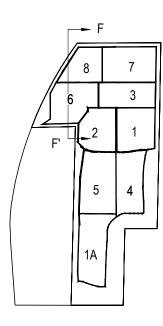
#

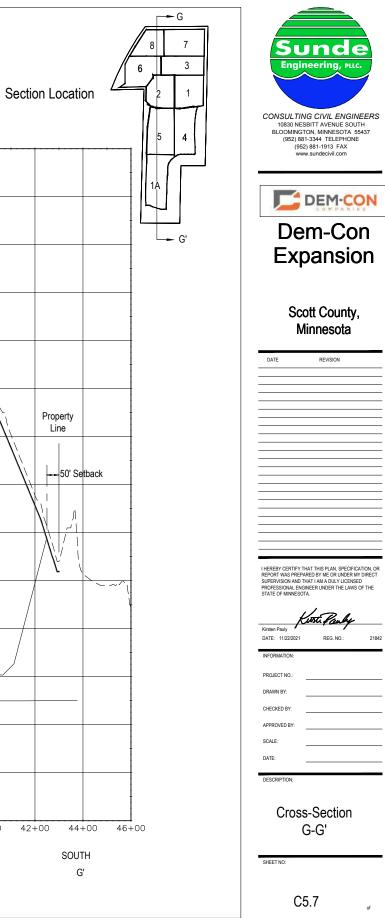


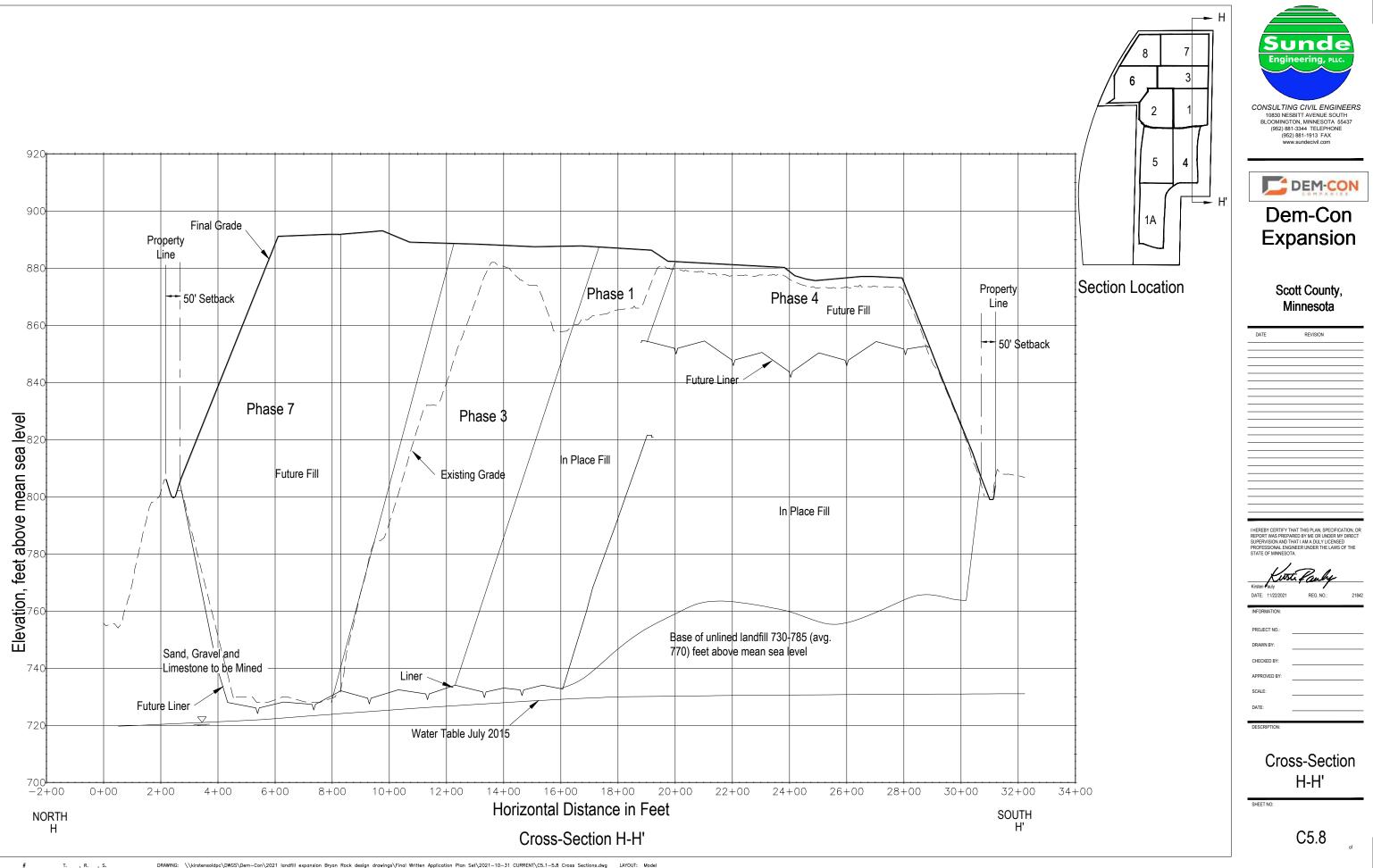


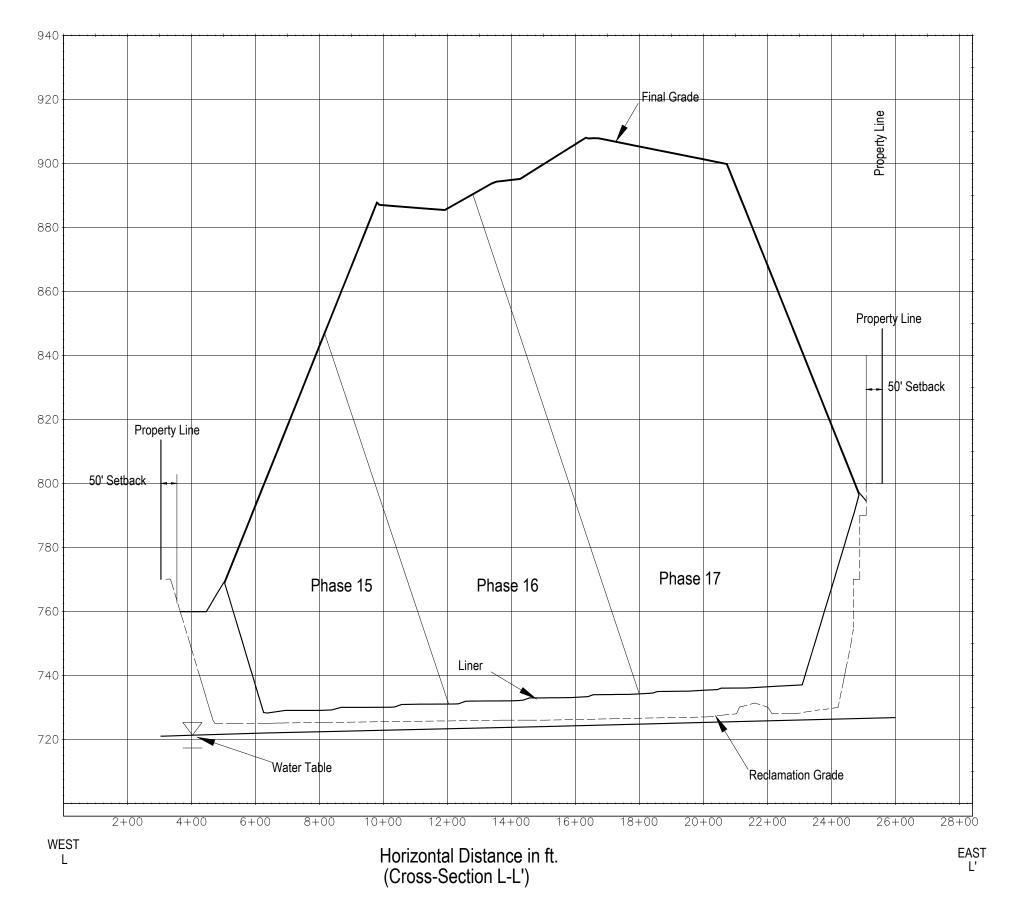


Elevation, feet above mean sea level

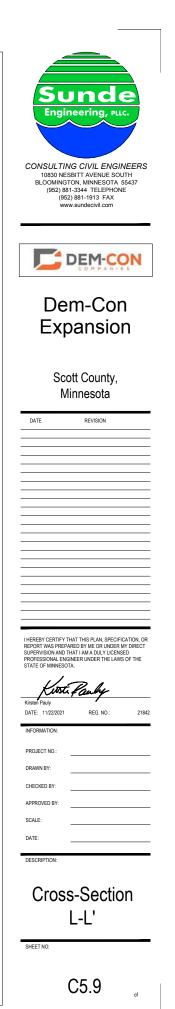

#

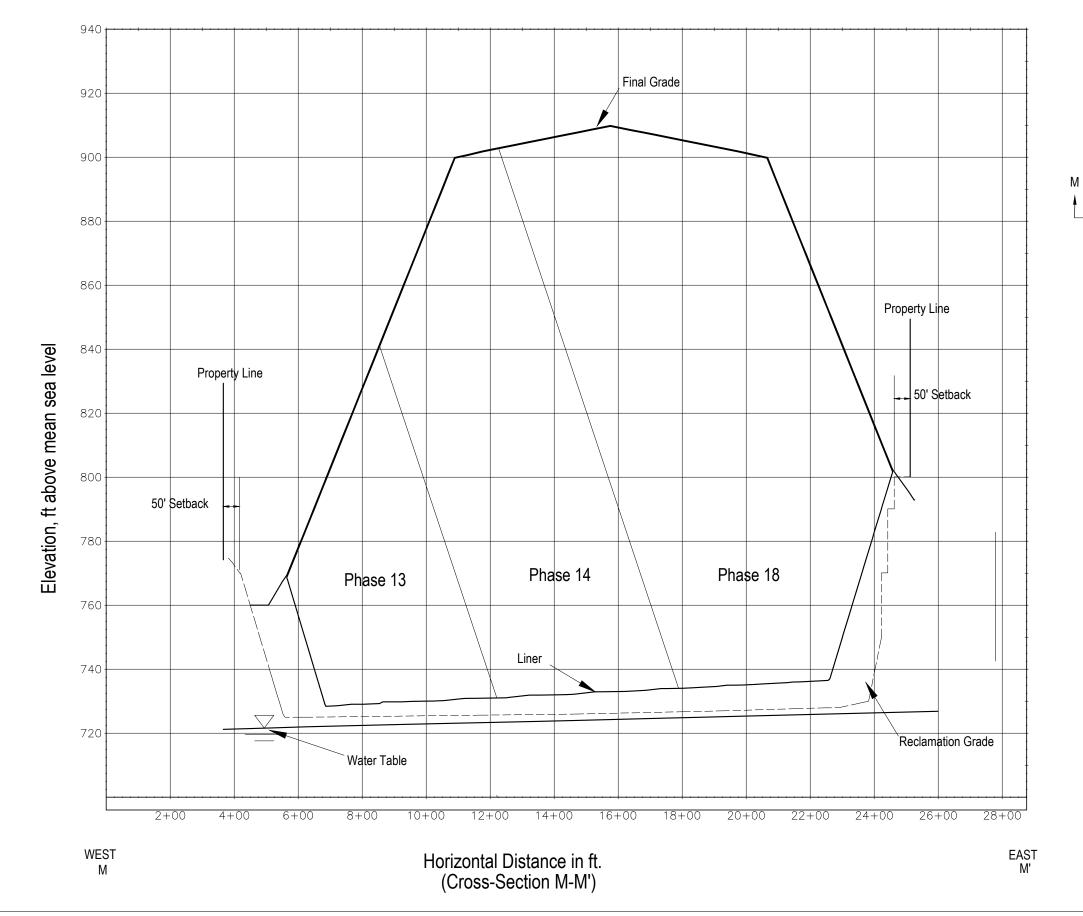


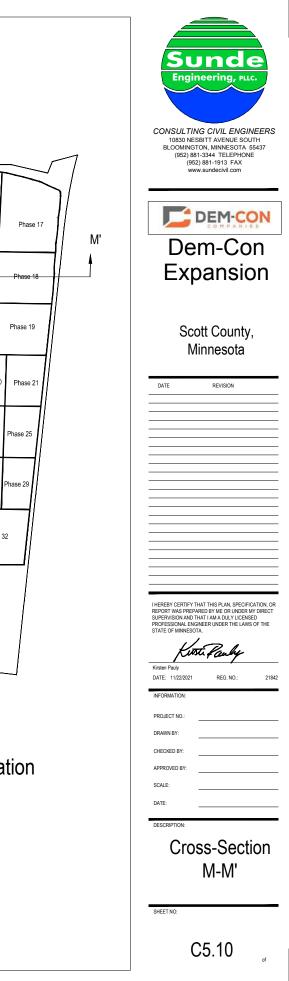

#

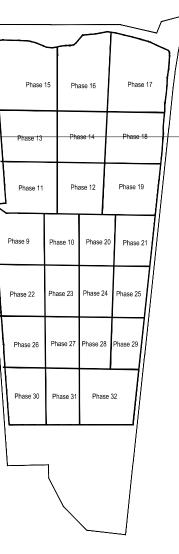


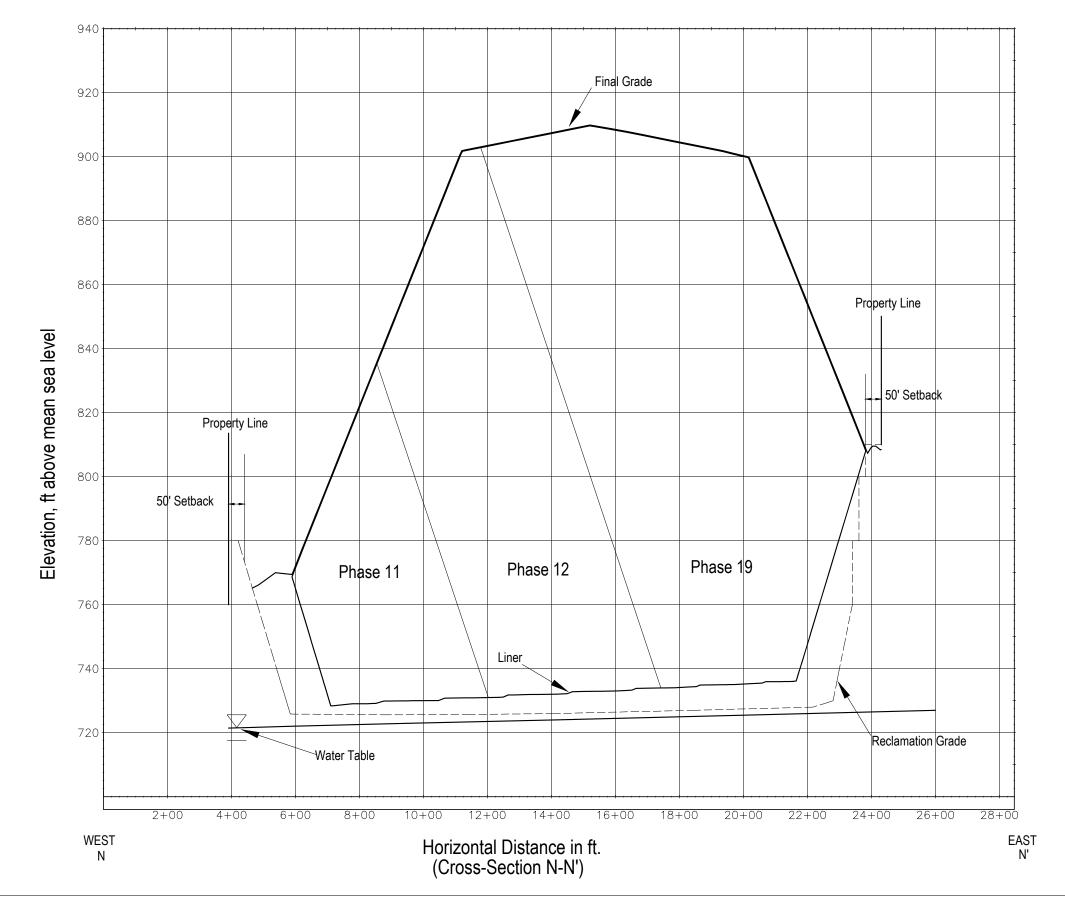
960 940 920 _ ^ . -900 \setminus 1/1/ Future Fill Final Grade Future Fill 880 Phase 5 r, Phase 1a Phase 2 Phase 6 86 Existing Grade Elevation, feet above mean sea level Existing Grade 84 Phase 8 82 Propert Line In Place Fill 50' Setback 80 ~ ~ _ In Place Fill Future Fill 780 760 Base of unlined landfill 730-785 (avg. 770) feet above mean sea level 11 Liner Sand, Gravel and 740 Limestone to be Mined ∇ \sim Future Liner / 720 Water Table July 2015 700 18+00 20+00 22+00 24+00 26+00 28+00 30+00 32+00 34+00 36+00 38+00 40+00 42+00 44+00 46+00 0+00 2+00 4+00 6+00 8+00 10+00 12+00 14+00 16+00 Horizontal Distance in Feet NORTH G Cross-Section G-G'

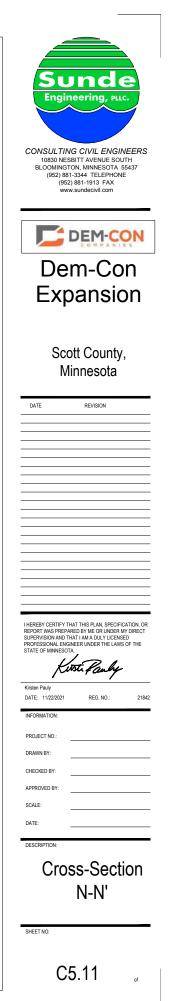


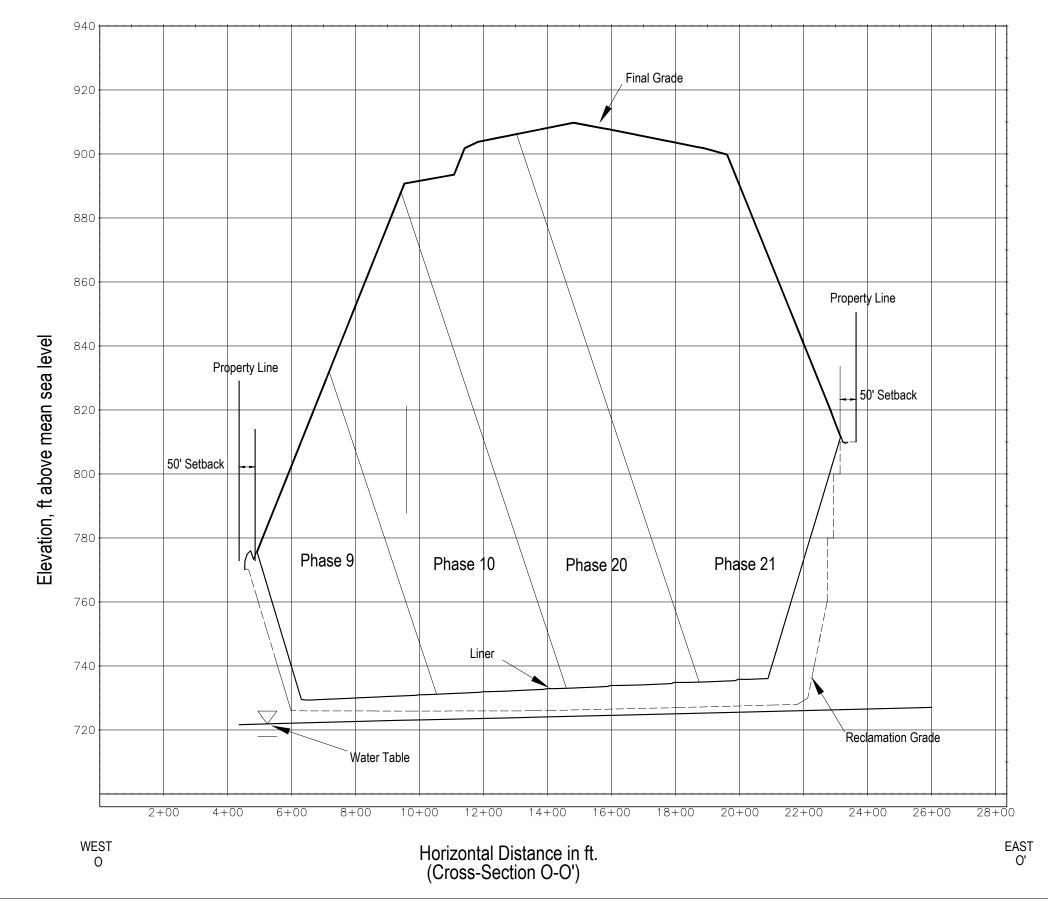






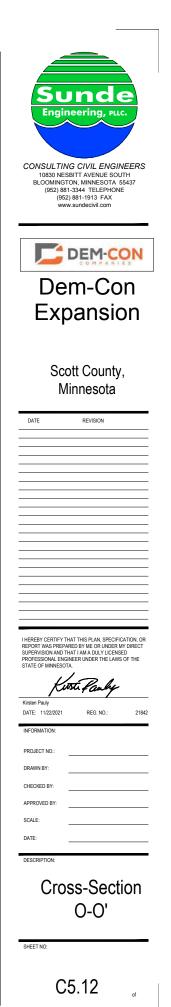

						(-1	
T	Phase	 15—	- Ph	ase 16	T	Phase 17		L'
	Phase 13		Pha	ase 14	Ī	Phase 18		
F	Phase 11		Ph	ase 12		Phase 19		
	Phase 9	Ph	ase 10	Phase	20	Phase 21		
	Phase 22	Ph	ase 23	Phase 2	24	Phase 25		
	Phase 26	Pł	ase 27	Phase 2	8	Phase 29		
	Phase 30	Ρ	hase 31	Pha	se 3	2		
Ca	ation	ſ						

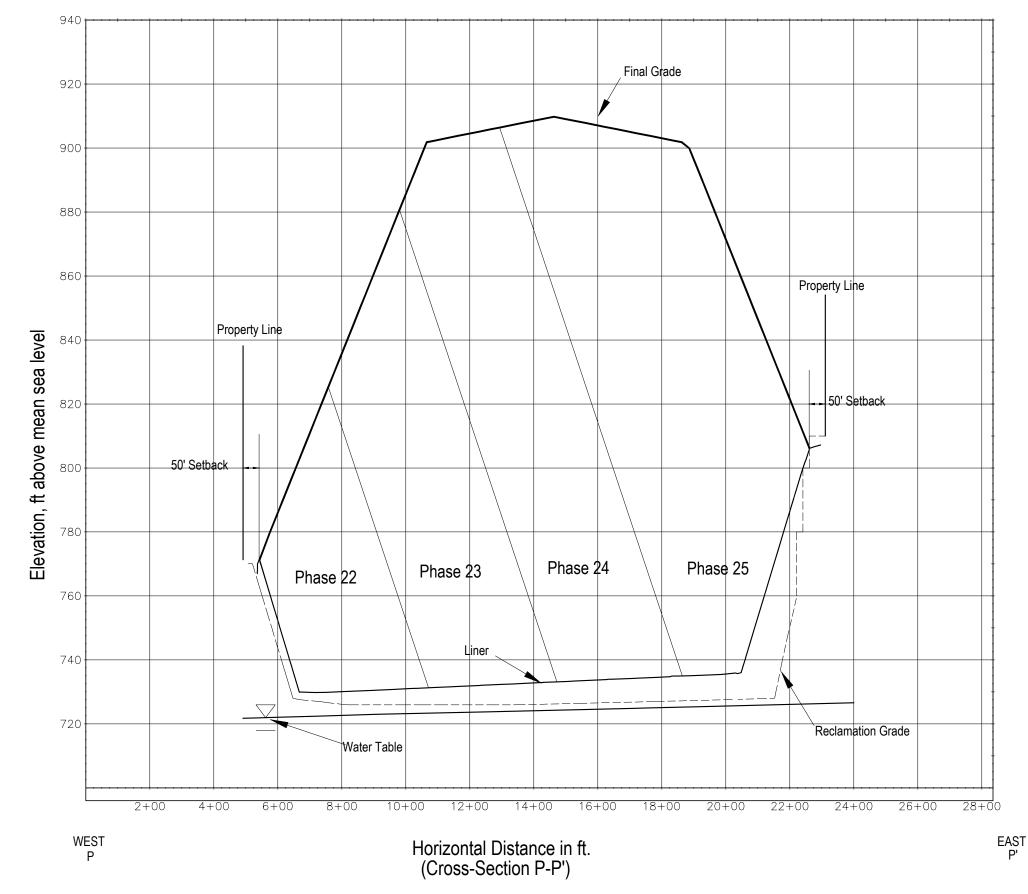




N

_								
Phase 15		Pha	ase 16	Phase 17				
Phase 13		Pha	ase 14	Phase 18 N'				
Phase 11		Phase 12		Phase 19				
Phase 9	Ph	ase 10	Phase 2	0 Phase 21				
Phase 22	Pha	ase 23	Phase 24	Phase 25				
Phase 26	Pł	nase 27	Phase 28	Phase 29				
Phase 30	P	hase 31	Phase	9 32				
Section Location								

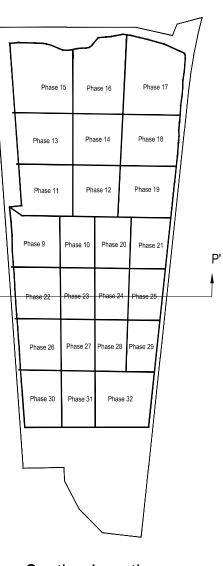




0

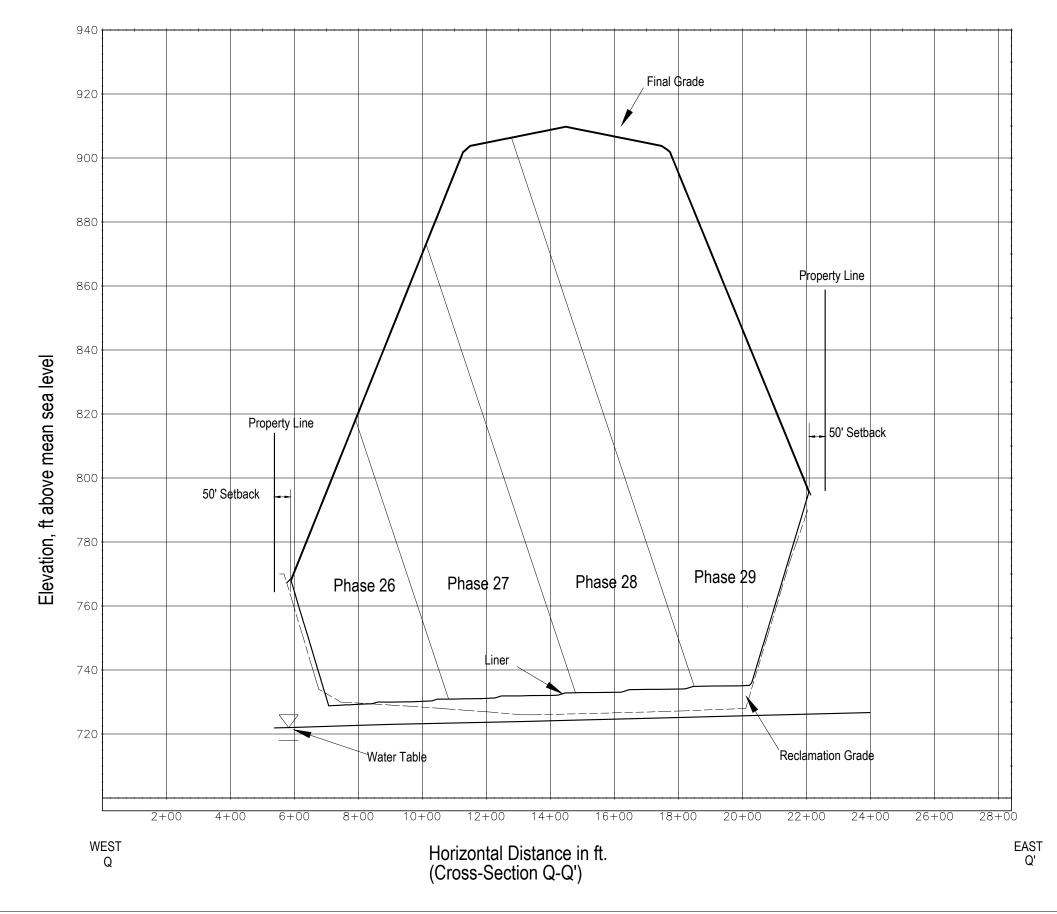
N

							-7
-		_			1		
	Phase 15		Phase 16			Phase 17	
	Phase 13		Phase 14			Phase 18	
	Phase 11		Pha	ase 12		Phase 19	0'
	Phase 9	Ph	ase 10	Phase	-20	Phase 21	
	Phase 22	Pha	ase 23	Phase 2	24	Phase 25	
	Phase 26	Ph	ase 27	Phase 2	8	Phase 29	
	Phase 30	PI	hase 31	Pha	se	32	
		l					
	Sect	io	n l	_0C	a	ition	

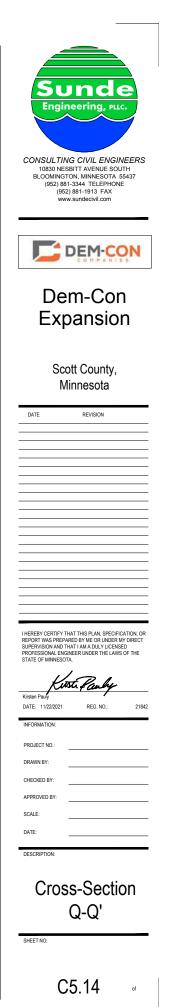

I HEREBY CERTIFY THAT THIS PLAN. SPECIFICATION. OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.

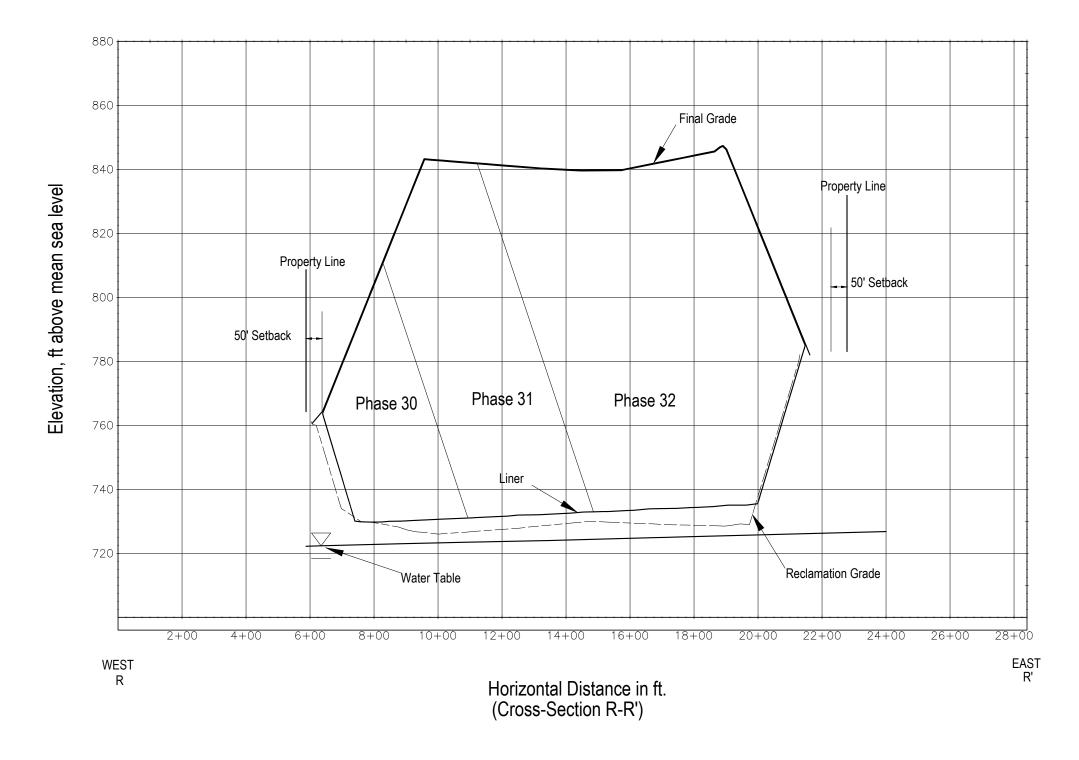
Kurs	, ti.fanhy	
Kirsten Pauly	/	
DATE: 11/22/2021	REG. NO .:	21842

	Cro	ss-Section P-P'
1	DESCRIPTION:	
	DATE:	
	DATE	
	SCALE:	
	APPROVED BY:	
	CHECKED BY:	
	DRAWN BY:	
	PROJECT NO .:	
	INFORMATION:	


SHEET	NO:	

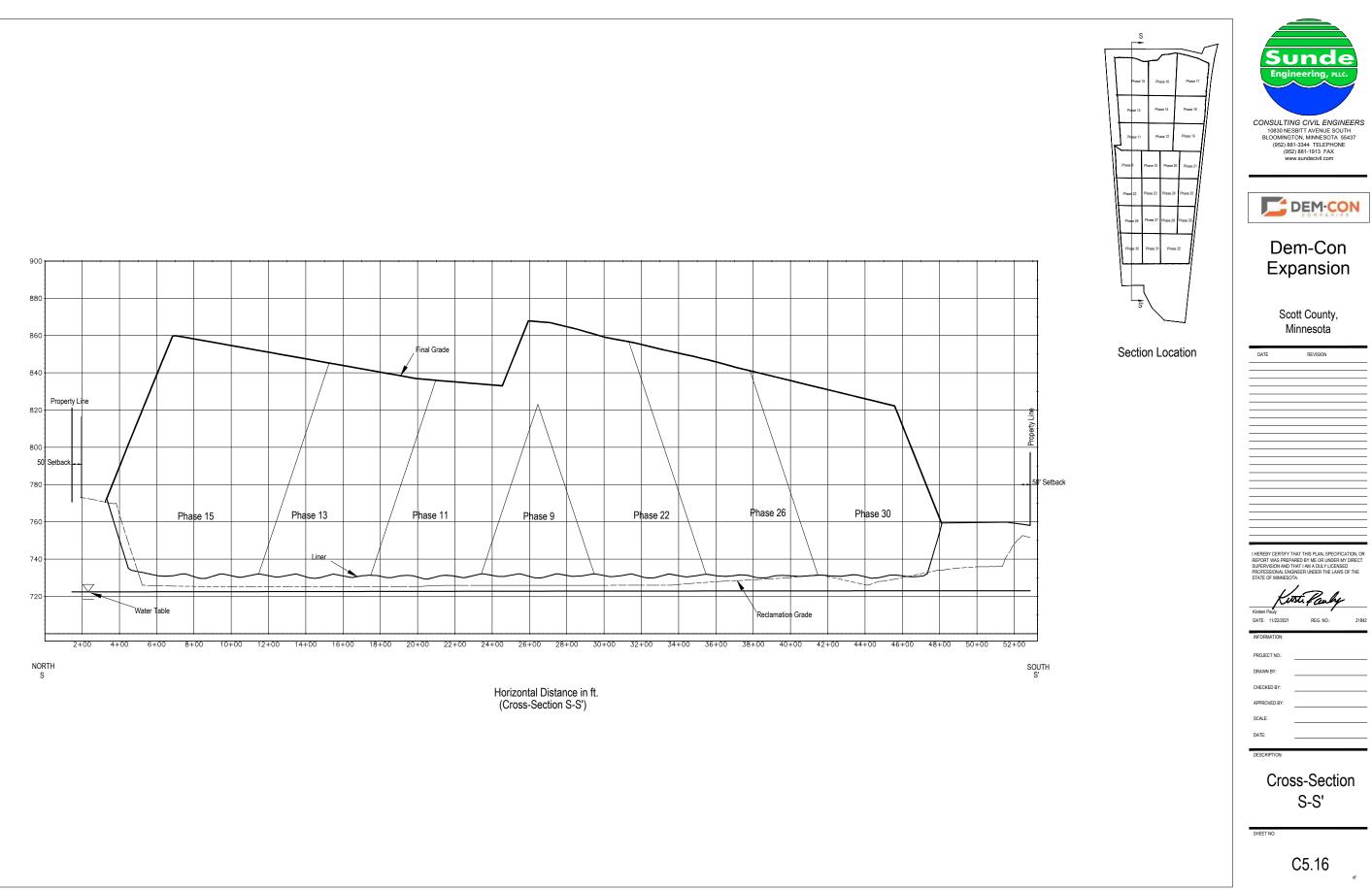
C5.13


Ρ

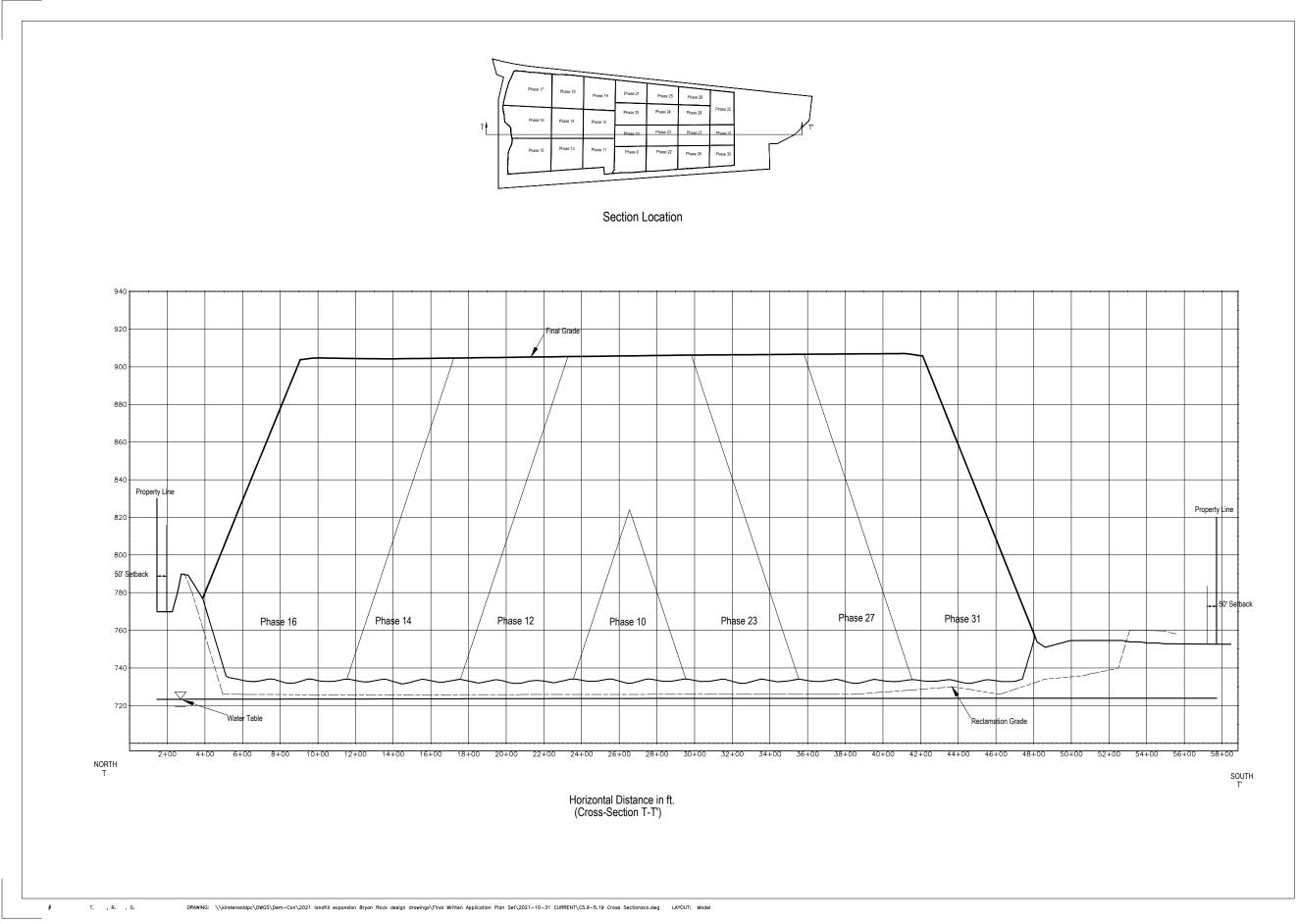

DRAWING: \\kirstensoldpc\DWGS\Dem-Con\2021 landfill expansion Bryan Rock design drawings\Final Written Application Plan Set\2021-10-31 CURRENT\C5.9-5.19 Cross Sectionsco.dwg LAYOUT: Model

Q

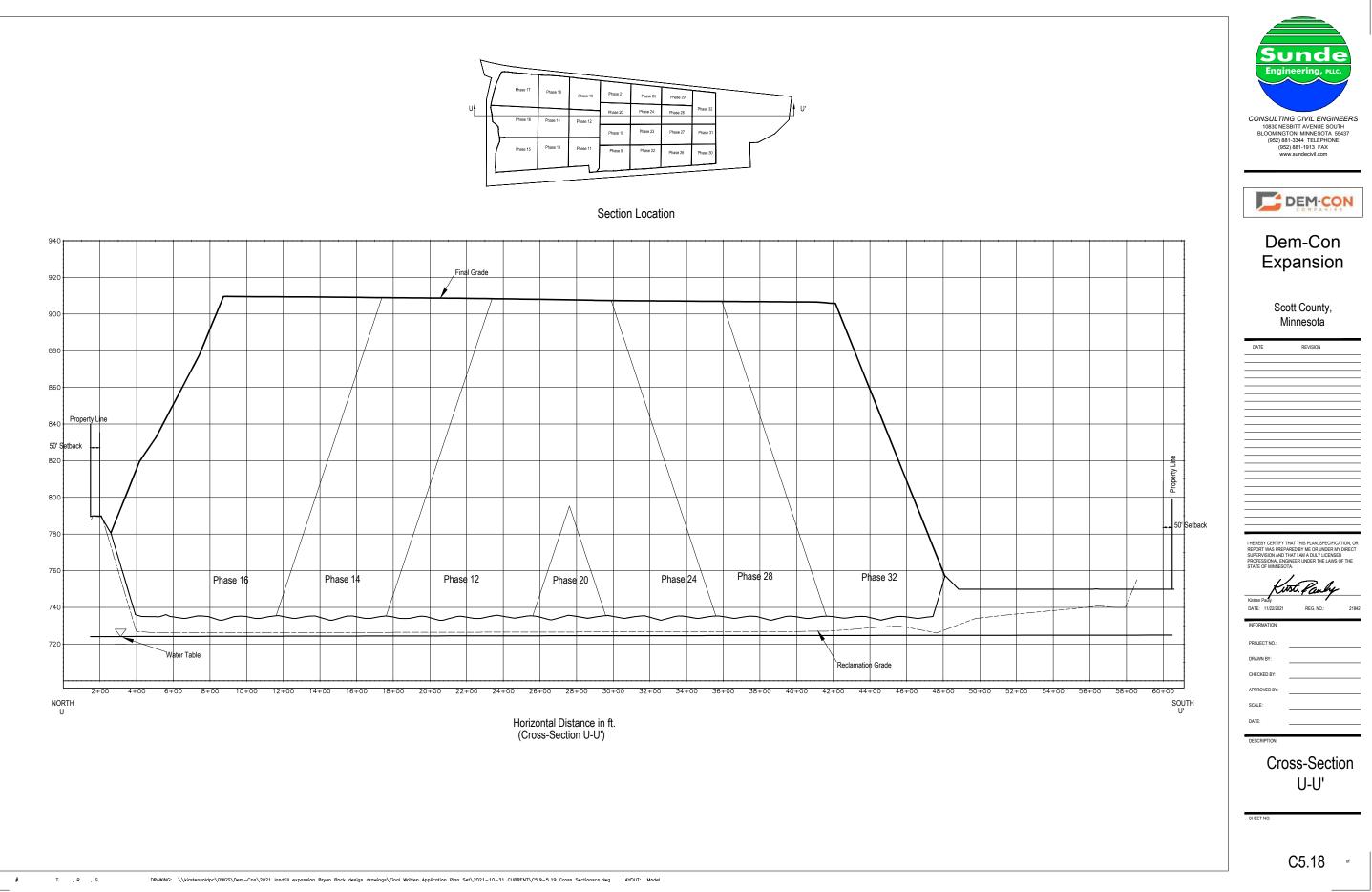
						r	-7	
	Phase	15	Ph	ase 16		Phase 17		
-	Phase 13		Pha	ase 14		Phase 18		
٢	Phase 11		Ph	ase 12		Phase 19		
	Phase 9	Ph	ase 10	Phase 2	20	Phase 21		
	Phase 22	Phi	ase 23	Phase 24	ţ	Phase 25		Q'
	Phase 26	Pł	nase 27	Phase 28		Phase 29]
	Phase 30	Ρ	hase 31	Phas	e 3	2		
		1						
			_					
	Sectio	on	i Lo	oca	ti	on		

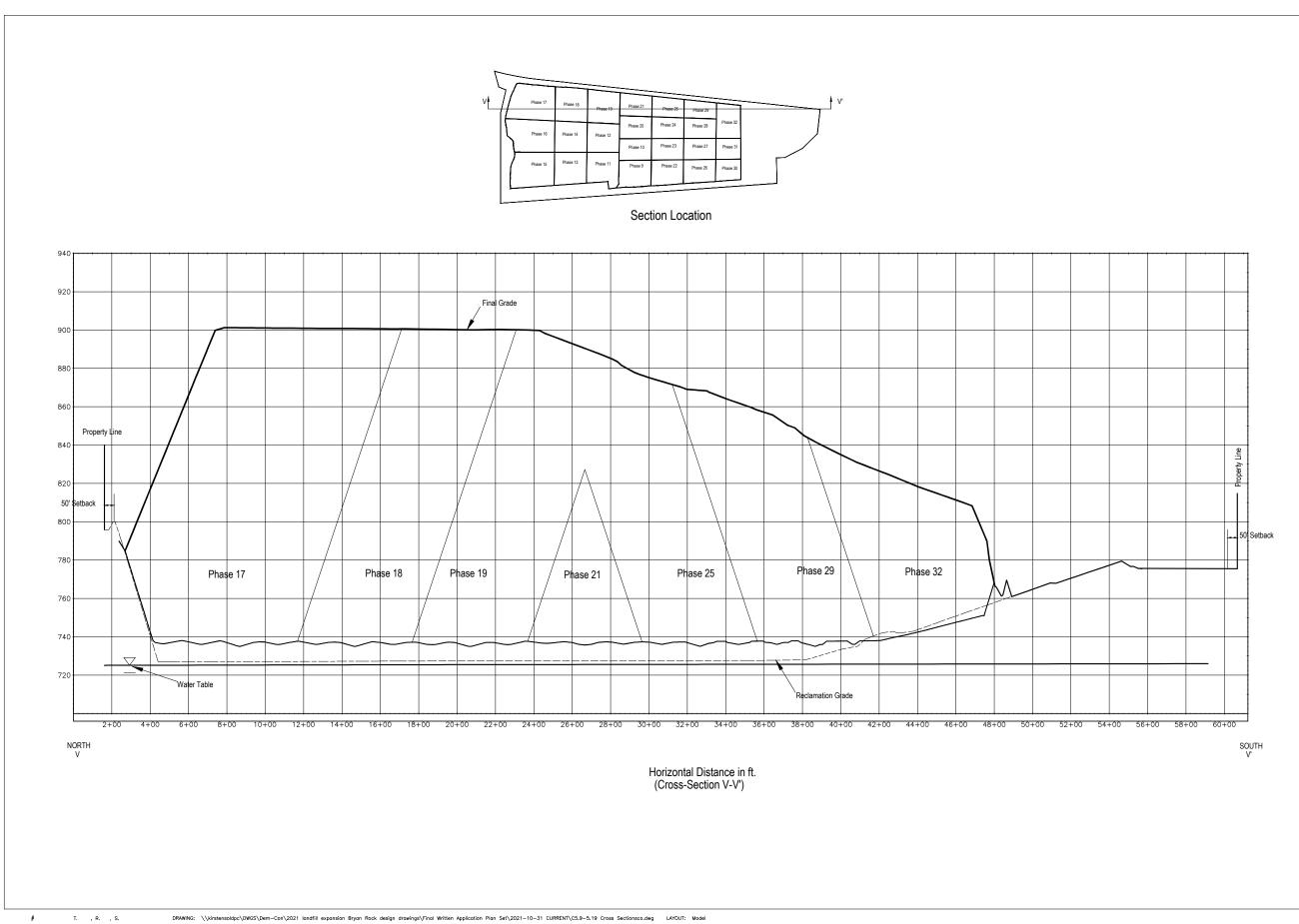


#


R ▲

Phase 15 Phase 16 Phase 17 Phase 13 Phase 14 Phase 18 Phase 11 Phase 12 Phase 19 Phase 22 Phase 10 Phase 20 Phase 21 Phase 22 Phase 23 Phase 24 Phase 25 Phase 26 Phase 27 Phase 28 Phase 29 Phase 30 Phase 31 Phase 32 Phase 32 Phase 31 Phase 31 Phase 32 Phase 32 Section Location Phase 31 Phase 31 Phase 31	<image/>
Section Location	SCALE:




T. , R. , S.

DRAWING: \\kirstensoldp<\DWGS\Dem-Con\2021 landfill expansion Bryan Rock design drawings\Final Written Application Plan Set\2021-10-31 CURRENT\C5.9-5.19 Cross Sectionsco.dwg LAYOUT: Model

Sunde Engineering, PLLC.
CONSULTING CIVIL ENGINEERS 10830 NESBITT AVENUE SOUTH BLOOMINGTON, MINNESOTA 55437 (1952) 881-3344 TELEPHONE (1952) 881-1913 FAX www.sundecivil.com
Dem-Con Expansion
Scott County, Minnesota
DATE REVISION
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
Kusti Pauly
Kirsten Pauly DATE: 11/22/2021 REG. NO.: 21842
INFORMATION:
PROJECT NO .:
DRAWN BY:
CHECKED BY:
APPROVED BY:
SCALE:
DATE:
DESCRIPTION:
Cross-Section V-V'
SHEET NO:
C5.19

CLIMATE ADAPTATION SOURCES

- Climate Explorer Map. *Minnesota Climate explorer* Available at: https://arcgis.dnr.state.mn.us/ewr/climateexplorer/main/historical. (Accessed: 17th November 2021)
- Minnesota Climate trends. *Minnesota Department of Natural Resources* Available at: https://www.dnr.state.mn.us/climate/climate_change_info/climate-trends.html. (Accessed: 17th November 2021)
- Climate vulnerability assessment. *Climate Vulnerability Assessment Metropolitan Council* Available at: https://metrocouncil.org/Communities/Planning/Local-Planning-Assistance/CVA.aspx. (Accessed: 17th November 2021)
- Flood Factor for Zip Code 55379. *Flood Factor* Available at: https://www.floodfactor.com/zip/55379/55379_fsid. (Accessed: 17th November 2021)



United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Scott County, Minnesota

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Scott County, Minnesota	13
CdB—Copaston silt loam, 2 to 6 percent slopes	13
CdB2—Copaston silt loam, 2 to 6 percent slopes, moderately eroded	14
DbB—Dickman sandy loam, 2 to 6 percent slopes	15
EaB—Estherville sandy loam, 2 to 6 percent slopes	17
Gp—Pits, gravel	18
Sc—Stony land	19
Ta—Terrace escarpments	19
TcA—Terril loam, 0 to 2 percent slopes	20
Soil Information for All Uses	22
Suitabilities and Limitations for Use	22
Land Classifications	22
Farmland Classification	22
Soil Properties and Qualities	29
Soil Qualities and Features	
Hydrologic Soil Group	29
References	35

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND			l de la construcción de	MAP INFORMATION		
Area of Interest (AOI)		Spoil Area		The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	st (AOI) 👌 Stony Spot		1:20,000.		
Soils	Soil Map Unit Polygons	03	Very Stony Spot	Please rely on the bar scale on each map sheet for map measurements.		
~	Soil Map Unit Lines	\$	Wet Spot			
	Soil Map Unit Points	\triangle	Other	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
Special Po	oint Features		Special Line Features	Coordinate System: Web Mercator (EPSG:3857)		
•	Blowout	Water Fea	itures			
-	Borrow Pit	\sim	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts		
	Clay Spot	Transport	ation Rails	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more		
\diamond	Closed Depression	~	Interstate Highways	accurate calculations of distance or area are required.		
X	Gravel Pit	~	US Routes	This product is generated from the USDA-NRCS certified data as		
0 0 0	Gravelly Spot	~	Major Roads	of the version date(s) listed below.		
0	Landfill	~	Local Roads	Soil Survey Area: Scott County, Minnesota		
A.	Lava Flow	Backgrou	nd	Survey Area Data: Version 16, Jun 5, 2020		
<u></u>	Marsh or swamp		Aerial Photography	Soil map units are labeled (as space allows) for map scales		
~	Mine or Quarry			1:50,000 or larger.		
0	Miscellaneous Water			Date(s) aerial images were photographed: May 30, 2020—Jul 3,		
0	Perennial Water			2020		
\vee	Rock Outcrop			The orthophoto or other base map on which the soil lines were		
+	Saline Spot			compiled and digitized probably differs from the background		
0 0 0 0	Sandy Spot			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
	Severely Eroded Spot					
\diamond	Sinkhole					
∌	Slide or Slip					
ø	Sodic Spot					

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CdB	Copaston silt loam, 2 to 6 percent slopes	4.1	1.7%
CdB2	Copaston silt loam, 2 to 6 percent slopes, moderately eroded	1.2	0.5%
DbB	Dickman sandy loam, 2 to 6 percent slopes	0.0	0.0%
EaB	Estherville sandy loam, 2 to 6 percent slopes	13.6	5.6%
Pits, gravel		4.3	1.8%
Sc Stony land		213.1	88.4%
a Terrace escarpments		2.1	0.9%
TcA Terril loam, 0 to 2 percent slopes		2.5	1.0%
Totals for Area of Interest		241.0	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Scott County, Minnesota

CdB—Copaston silt loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: gc9r Elevation: 700 to 1,200 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 155 to 200 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Copaston and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Copaston

Setting

Landform: Stream terraces Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvial sediment over bedrock

Typical profile

A - 0 to 13 inches: silt loam AB - 13 to 20 inches: silt loam Bw - 20 to 26 inches: loam 2R - 26 to 36 inches: unweathered bedrock

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 12 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: R103XY006MN - Bedrock Controlled Upland Prairies Forage suitability group: Sloping Upland, Low AWC, Acid (G103XS008MN) Other vegetative classification: Sloping Upland, Low AWC, Acid (G103XS008MN) Hydric soil rating: No

Minor Components

Joilet

Percent of map unit: 8 percent *Landform:* Stream terraces, flood plains *Hydric soil rating:* Yes

Tilfer

Percent of map unit: 7 percent Landform: Depressions Hydric soil rating: Yes

CdB2—Copaston silt loam, 2 to 6 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: gc9s Elevation: 700 to 1,200 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 155 to 200 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Copaston, moderately eroded, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Copaston, Moderately Eroded

Setting

Landform: Stream terraces Landform position (two-dimensional): Backslope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvial sediment over bedrock

Typical profile

A - 0 to 13 inches: silt loam AB - 13 to 20 inches: silt loam Bw - 20 to 26 inches: loam 2R - 26 to 36 inches: unweathered bedrock

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: 12 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None

Frequency of ponding: None *Calcium carbonate, maximum content:* 15 percent *Available water supply, 0 to 60 inches:* Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: R103XY006MN - Bedrock Controlled Upland Prairies Forage suitability group: Sloping Upland, Low AWC, Acid (G103XS008MN) Other vegetative classification: Sloping Upland, Low AWC, Acid (G103XS008MN) Hydric soil rating: No

Minor Components

Joilet

Percent of map unit: 8 percent Landform: Stream terraces, flood plains Hydric soil rating: Yes

Tilfer

Percent of map unit: 7 percent Landform: Depressions Hydric soil rating: Yes

DbB—Dickman sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2vvgr Elevation: 690 to 1,840 feet Mean annual precipitation: 24 to 37 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 140 to 180 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Dickman and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dickman

Setting

Landform: Outwash plains, terraces Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy glaciofluvial deposits over sandy outwash

Typical profile

Ap - 0 to 10 inches: sandy loam A - 10 to 12 inches: sandy loam Bw - 12 to 19 inches: sandy loam 2Bw - 19 to 33 inches: loamy sand 2C - 33 to 79 inches: sand

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: A Ecological site: R103XY003MN - Sandy Upland Prairies Forage suitability group: Sandy (G103XS022MN) Other vegetative classification: Sandy (G103XS022MN) Hydric soil rating: No

Minor Components

Hanska

Percent of map unit: 5 percent Landform: Outwash plains, terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Concave, linear Across-slope shape: Linear Ecological site: R103XY001MN - Loamy Wet Prairies Other vegetative classification: Level Swale, Neutral (G103XS001MN) Hydric soil rating: Yes

Estherville

Percent of map unit: 5 percent Landform: Outwash plains, terraces Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Ecological site: R103XY003MN - Sandy Upland Prairies Other vegetative classification: Sandy (G103XS022MN) Hydric soil rating: No

EaB—Estherville sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2tsjp Elevation: 690 to 1,840 feet Mean annual precipitation: 24 to 37 inches Mean annual air temperature: 43 to 52 degrees F Frost-free period: 140 to 180 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Estherville and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Estherville

Setting

Landform: Terraces, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Parent material: Loamy glaciofluvial deposits over sandy and gravelly outwash

Typical profile

Ap - 0 to 8 inches: sandy loam A - 8 to 13 inches: sandy loam Bw - 13 to 19 inches: sandy loam 2C - 19 to 79 inches: gravelly loamy coarse sand

Properties and qualities

Slope: 2 to 6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Ecological site: R103XY003MN - Sandy Upland Prairies Forage suitability group: Sandy (G103XS022MN) Other vegetative classification: Sandy (G103XS022MN) Hydric soil rating: No

Minor Components

Dickinson

Percent of map unit: 8 percent Landform: Terraces, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Ecological site: R103XY003MN - Sandy Upland Prairies Other vegetative classification: Sloping Upland, Neutral (G103XS002MN) Hydric soil rating: No

Wadena

Percent of map unit: 6 percent Landform: Terraces, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Linear Ecological site: R103XY003MN - Sandy Upland Prairies Other vegetative classification: Sloping Upland, Neutral (G103XS002MN) Hydric soil rating: No

Biscay

Percent of map unit: 1 percent Landform: Terraces, outwash plains Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Ecological site: R103XY007MN - Sandy Wet Prairies Other vegetative classification: Level Swale, Neutral (G103XS001MN) Hydric soil rating: Yes

Gp—Pits, gravel

Map Unit Setting

National map unit symbol: 21p43 Mean annual precipitation: 25 to 34 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 120 to 180 days Farmland classification: Not prime farmland

Map Unit Composition

Pits, gravel: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pits, Gravel

Setting

Landform: Moraines, outwash plains, stream terraces Parent material: Sandy and gravelly outwash

Sc—Stony land

Map Unit Setting

National map unit symbol: gcdt Elevation: 710 to 870 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 155 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Stony land and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stony Land

Setting

Landform: Terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Till

Properties and qualities

Depth to restrictive feature: More than 80 inches Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Rocky (G103XS019MN) Other vegetative classification: Rocky (G103XS019MN) Hydric soil rating: No

Ta—Terrace escarpments

Map Unit Setting

National map unit symbol: gcdv Elevation: 690 to 1,150 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F *Frost-free period:* 155 to 200 days *Farmland classification:* Not prime farmland

Map Unit Composition

Terrace escarpments and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Terrace Escarpments

Setting

Landform: Escarpments on terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Variable glacial sediments

Properties and qualities

Depth to restrictive feature: More than 80 inches Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Sloping; Fine Texture (G103XS023MN) Other vegetative classification: Sloping; Fine Texture (G103XS023MN) Hydric soil rating: No

TcA—Terril loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: gcf0 Elevation: 1,100 to 1,450 feet Mean annual precipitation: 23 to 35 inches Mean annual air temperature: 43 to 50 degrees F Frost-free period: 155 to 200 days Farmland classification: All areas are prime farmland

Map Unit Composition

Terril and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Terril

Setting

Landform: Moraines, stream terraces Landform position (two-dimensional): Footslope Down-slope shape: Concave Across-slope shape: Linear Parent material: Colluvium over till

Typical profile

Ap,A1 - 0 to 39 inches: loam

Bw - 39 to 47 inches: loam

C - 47 to 60 inches: loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: About 43 to 73 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water supply, 0 to 60 inches: High (about 11.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: B Ecological site: R103XY011MN - Footslope/Drainageway Prairies Forage suitability group: Sloping Upland, Neutral (G103XS002MN) Other vegetative classification: Sloping Upland, Neutral (G103XS002MN) Hydric soil rating: No

Minor Components

Le sueur

Percent of map unit: 8 percent Hydric soil rating: No

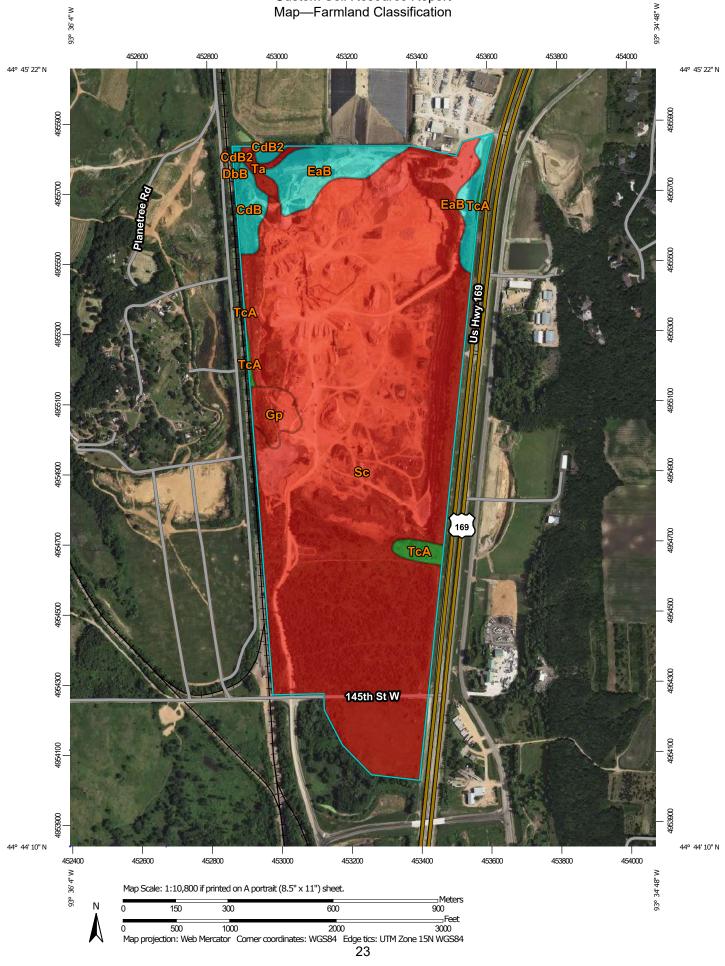
Glencoe

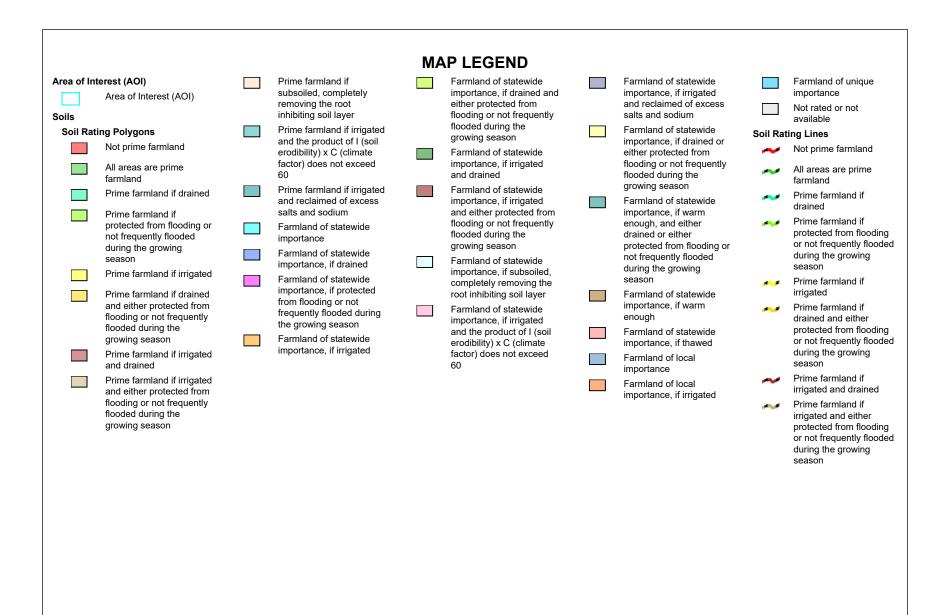
Percent of map unit: 7 percent Landform: Drainageways Hydric soil rating: Yes

Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.


Land Classifications


Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Farmland Classification

Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.

Custom Soil Resource Report Map—Farmland Classification

Custom Soil Resource Report

Prime farmland if Farmland of statewide Farmland of statewide Farmland of unique Prime farmland if 1 A الريادي -----subsoiled, completely importance, if drained and importance, if irrigated importance subsoiled, completely removing the root either protected from and reclaimed of excess removing the root Not rated or not available $\mathcal{F}^{(1)}(\mathcal{F})$ inhibiting soil layer flooding or not frequently salts and sodium inhibiting soil layer flooded during the Soil Rating Points Prime farmland if irrigated Farmland of statewide Prime farmland if arowina season and the product of I (soil importance, if drained or irrigated and the product Not prime farmland erodibility) x C (climate Farmland of statewide either protected from of I (soil erodibility) x C factor) does not exceed importance, if irrigated flooding or not frequently All areas are prime (climate factor) does not and drained flooded during the farmland exceed 60 60 growing season Prime farmland if irrigated Farmland of statewide Prime farmland if drained Prime farmland if --and reclaimed of excess importance, if irrigated Farmland of statewide irrigated and reclaimed -Prime farmland if salts and sodium and either protected from importance, if warm of excess salts and protected from flooding or flooding or not frequently enough, and either sodium Farmland of statewide ----not frequently flooded flooded during the drained or either Farmland of statewide importance during the growing growing season protected from flooding or importance Farmland of statewide not frequently flooded season a 🖬 Farmland of statewide Farmland of statewide importance, if drained during the growing Prime farmland if irrigated importance, if subsoiled. importance, if drained Farmland of statewide season completely removing the importance, if protected Prime farmland if drained Farmland of statewide root inhibiting soil layer Farmland of statewide from flooding or not and either protected from importance, if protected importance, if warm Farmland of statewide 100 frequently flooded during flooding or not frequently from flooding or not enough importance, if irrigated the growing season flooded during the frequently flooded during and the product of I (soil Farmland of statewide growing season the growing season Farmland of statewide 1990 B erodibility) x C (climate importance, if thawed importance, if irrigated Prime farmland if irrigated Farmland of statewide factor) does not exceed Farmland of local 1000 and drained importance, if irrigated 60 importance Prime farmland if irrigated Farmland of local ----and either protected from importance, if irrigated flooding or not frequently flooded during the growing season

Custom Soil Resource Report

	Farmland of statewide importance, if drained and either protected from		Farmland of statewide importance, if irrigated and reclaimed of excess		Farmland of unique importance	The soil surveys that comprise your AOI were mapped at 1:20,000.
	flooding or not frequently flooded during the growing season Farmland of statewide importance, if irrigated and drained		salts and sodium		Not rated or not available	
			Farmland of statewide importance, if drained or either protected from flooding or not frequently flooded during the growing season Farmland of statewide importance, if warm enough, and either	Water Features		Please rely on the bar scale on each map sheet for map measurements.
				· · · ·	\sim	Streams and Canals
_				Transportation		Source of Map: Natural Resources Conservation Service
_				+++	Rails	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
	Farmland of statewide importance, if irrigated and either protected from flooding or not frequently			~	Interstate Highways	Coordinate System. Web Mercator (EFSG.3637)
and flood flood				~	US Routes	Maps from the Web Soil Survey are based on the Web Mercator
	flooded during the growing season		drained or either protected from flooding or	\sim	Major Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
	Farmland of statewide importance, if subsoiled,		not frequently flooded during the growing season	~	Local Roads	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
	completely removing the root inhibiting soil layer			Background		······································
			Farmland of statewide	100	Aerial Photography	This product is generated from the USDA-NRCS certified data
	Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60		importance, if warm enough			as of the version date(s) listed below.
			Farmland of statewide			Soil Survey Area: Scott County, Minnesota
		_	importance, if thawed Farmland of local			Survey Area Data: Version 16, Jun 5, 2020
			importance			· · · ·
			Farmland of local			Soil map units are labeled (as space allows) for map scales
		_	importance, if irrigated			1:50,000 or larger.
						Date(s) aerial images were photographed: May 30, 2020—Jul 3, 2020
						The orthonhoto or other base man on which the soil lines were

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Farmland	Classification
----------------	----------------

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CdB Copaston silt loam, 2 to 6 percent slopes		Farmland of statewide importance	4.1	1.7%
CdB2	Copaston silt loam, 2 to 6 percent slopes, moderately eroded	Farmland of statewide importance	1.2	0.5%
DbB	Dickman sandy loam, 2 to 6 percent slopes	Farmland of statewide importance	0.0	0.0%
EaB	Estherville sandy loam, 2 to 6 percent slopes	Farmland of statewide importance	13.6	5.6%
Gp	Pits, gravel	Not prime farmland	4.3	1.8%
Sc	Stony land	Not prime farmland	213.1	88.4%
Та	Terrace escarpments	Not prime farmland	2.1	0.9%
TcA Terril loam, 0 to 2 percent slopes		All areas are prime farmland	2.5	1.0%
Totals for Area of Inter	est	241.0	100.0%	

Rating Options—Farmland Classification

Aggregation Method: No Aggregation Necessary

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The majority of soil attributes are associated with a component of a map unit, and such an attribute has to be aggregated to the map unit level before a thematic map can be rendered. Map units, however, also have their own attributes. An attribute of a map unit does not have to be aggregated in order to render a corresponding thematic map. Therefore, the "aggregation method" for any attribute of a map unit is referred to as "No Aggregation Necessary".

Tie-break Rule: Lower

Custom Soil Resource Report

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

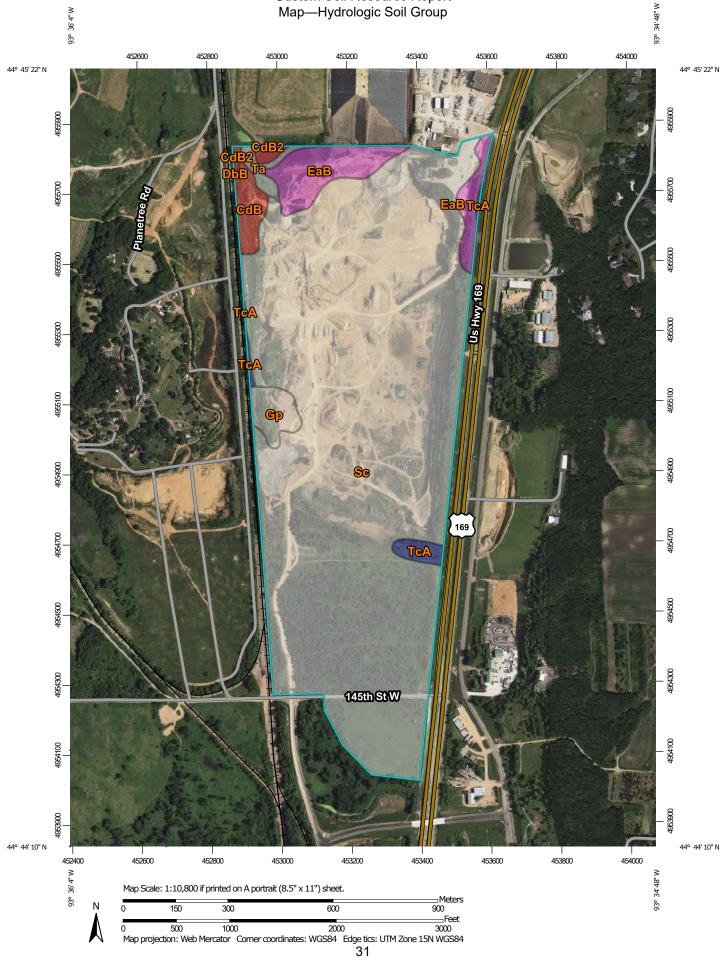
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

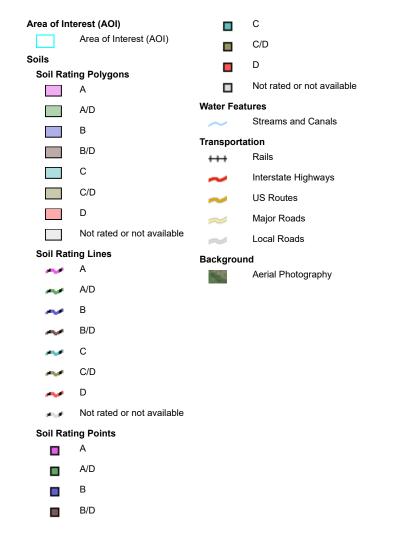
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Custom Soil Resource Report Map—Hydrologic Soil Group

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Scott County, Minnesota Survey Area Data: Version 16, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 30, 2020—Jul 3, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CdB	Copaston silt loam, 2 to 6 percent slopes	D	4.1	1.7%
CdB2	Copaston silt loam, 2 to 6 percent slopes, moderately eroded	D	1.2	0.5%
DbB	Dickman sandy loam, 2 to 6 percent slopes	A	0.0	0.0%
EaB	Estherville sandy loam, 2 to 6 percent slopes	A	13.6	5.6%
Gp	Pits, gravel		4.3	1.8%
Sc	Stony land		213.1	88.4%
Та	Terrace escarpments		2.1	0.9%
ТсА	Terril loam, 0 to 2 percent slopes	В	2.5	1.0%
Totals for Area of Inter	Totals for Area of Interest			100.0%

Table—Hydrologic Soil Group

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Attachment 4

SCOTT SOIL AND WATER CONSERVATION DISTRICT

"Helping Scott County Citizens Protect and Preserve Natural Resources since 1941"

VIA EMAIL

February 11, 2022

Kirsten Pauly, PE/PG Sunde Engineering, PLLC 10830 Nesbitt Avenue South Bloomington, Minnesota 55437-3100

Subject: Request for extension of Notice of Decision, PID 079210080, 079210120, 079280080, 079280070, 079280100, 079280042, Scott County

Dear Ms. Pauly:

The Scott Soil and Water Conservation District (SWCD) completed its review of your February 10, 2022, request to extend the Notice of Decision (NOD) dated Feb 15, 2012. The NOD approved a wetland delineation and No Loss decision prepared in 2011 for the Merriam Junction Sands Mine project (see Exhibit A). We found conditions relating to aquatic resources have not changed since 2012.

After consulting with the Local Government Unit representative, the SWCD hereby approves your request to extend the subject NOD for a period of five (5) years. It is now valid through February 11, 2027. This extension applies solely to Parcel IDs 079210080, 079210120, 079280080, 079280070, 079280100, 079280042 (see Exhibit B).

Please do not hesitate to contact me if you have any questions.

Sincerely,

Collin Schoenecker Resource Conservationist

C. John Weckman, Louisville Township, LGU Martin Schmitz, Scott County

Exhibit A

Minnesota Wetland Conservation Act Notice of Decision

Local Government Unit (LGU) Louisville Township		Address 92 Mallard Drive Shakopee, MN 55379		
	1. PROJECT INFO	RMATION		
Applicant Name Hunt Global Resources, Inc	Project Name Merriam Junction	1. 1. 1. 1	Date of Application 10/17/2011	Application Number
Attach site locator map.			1.	1
Type of Decision:				
⊠ Wetland Boundary or Type □ Replacem	🛛 No-Loss ent Plan	Exempt Exempt		Sequencing
Technical Evaluation Panel Findin	gs and Recommendation	ı (if any):		
Approve	Approve with co			Deny
Date of Decision: 2/15/ 2012	AL GOVERNMENT	l of the application	on with this exception of the second se	ption.
			<u></u>	And of the case
LGU Findings and Conclusions (a The proposed project encompasses Township 115 N Range 23 East (J An Application for Approval (for J	s approximately 938 acre Louisville Township).	es in parts of Sect		
in anticipation of continuing aggre mining in areas that are currently of include production of silica sand. A of 11/23/2011. The TEP met on-si per TEP request.	gate production in curre formant, and expanding A Notice of Application	ntly active minin operations in both was issued 11/1/2	g areas, reactivat h active and dorn 2011 with a com	ing aggregate nant areas to ment deadline
The Scott SWCD completed a deta application. Several minor elemen this information was corrected and applicant has met all requirements Township, as LGU, therefore appr	ts of information were for submitted with satisfact under WCA for Bounda	ound to be missin tory detail and ac ry/Type and No-	g or in error. Upo curacy. Consequ	on request, ently, the
1. Wetlands boundaries and t B3, B4, B5, B6, and B9 are subjec	ypes depicted on the atta	ached map are ap		

B10 are incidental and not regulated; and

2. This Notice is limited to approval of Boundary and Type and No-Loss findings. It does not provide approval or authorization for impacts upon regulated wetlands. If future mining activities should occur that directly or indirectly impact regulated wetlands, a separate application for sequencing and/or replacement must be submitted and approved prior to those impacts occurring. Note: indirect impacts may include, but are limited to, excavation activities outside that alter groundwater levels within a wetland, even though excavation itself may be outside the wetland.

For Replacement Plans using credits from the State Wetland Bank:

Bank Account #	Bank Service Area	County	Credits Approved for Withdrawal (sq. ft. or nearest .01 acre)
----------------	-------------------	--------	---

Replacement Plan Approval Conditions. In addition to any conditions specified by the LGU, the approval of a <u>Wetland Replacement Plan</u> is conditional upon the following:

Financial Assurance: For project-specific replacement that is not in-advance, a financial assurance specified by the LGU must be submitted to the LGU in accordance with MN Rule 8420.0522, Subp. 9 (List amount and type in LGU Findings).

Deed Recording: For project-specific replacement, evidence must be provided to the LGU that the BWSR "Declaration of Restrictions and Covenants" and "Consent to Replacement Wetland" forms have been filed with the county recorder's office in which the replacement wetland is located.

Credit Withdrawal: For replacement consisting of wetland bank credits, confirmation that BWSR has withdrawn the credits from the state wetland bank as specified in the approved replacement plan.

Wetlands may not be impacted until all applicable conditions have been met!

LGU Authorized Signature:

Signing and mailing of this completed form to the appropriate recipients in accordance with 8420.0255, Subp. 5 provides notice that a decision was made by the LGU under the Wetland Conservation Act as specified above. If additional details on the decision exist, they have been provided to the landowner and are available from the LGU upon request.

Name	Title		
John Weckman	Town Supervisor		
John E. Weckman	Date 2/15/12	Phone Number and E-mail 952-445-5363	

THIS DECISION ONLY APPLIES TO THE MINNESOTA WETLAND CONSERVATION ACT.

Additional approvals or permits from local, state, and federal agencies may be required. Check with all appropriate authorities before commencing work in or near wetlands.

Applicants proceed at their own risk if work authorized by this decision is started before the time period for appeal (30 days) has expired. If this decision is reversed or revised under appeal, the applicant may be responsible for restoring or replacing all wetland impacts.

This decision is valid for three years from the date of decision unless a longer period is advised by the TEP and specified in this notice of decision.

3. APPEAL OF THIS DECISION

Pursuant to MN Rule 8420.0905, any appeal of this decision can only be commenced by mailing a petition for appeal, including applicable fee, within thirty (30) calendar days of the date of the mailing of this Notice to the following as indicated:

Check one:

Appeal of an LGU staff decision.	Send 🛛
petition and \$ fee (if applicable)	to: pet

Appeal of LGU governing body decision. Send petition and \$500 filing fee to: Executive Director Minnesota Board of Water and Soil Resources 520 Lafayette Road North St. Paul, MN 55155

4. LIST OF ADDRESSEES

- SWCD TEP member: Troy Kuphal
 - BWSR TEP member: Ken Powell
- LGU TEP member (if different than LGU Contact):
- DNR TEP member: Melissa Doperalski
 - DNR Regional Office (if different than DNR TEP member)
- WD or WMO (if applicable): Paul Nelson
 - Applicant and Landowner (if different)
 - Members of the public who requested notice:

Corps of Engineers Project Manager

BWSR Wetland Bank Coordinator (wetland bank plan decisions only)

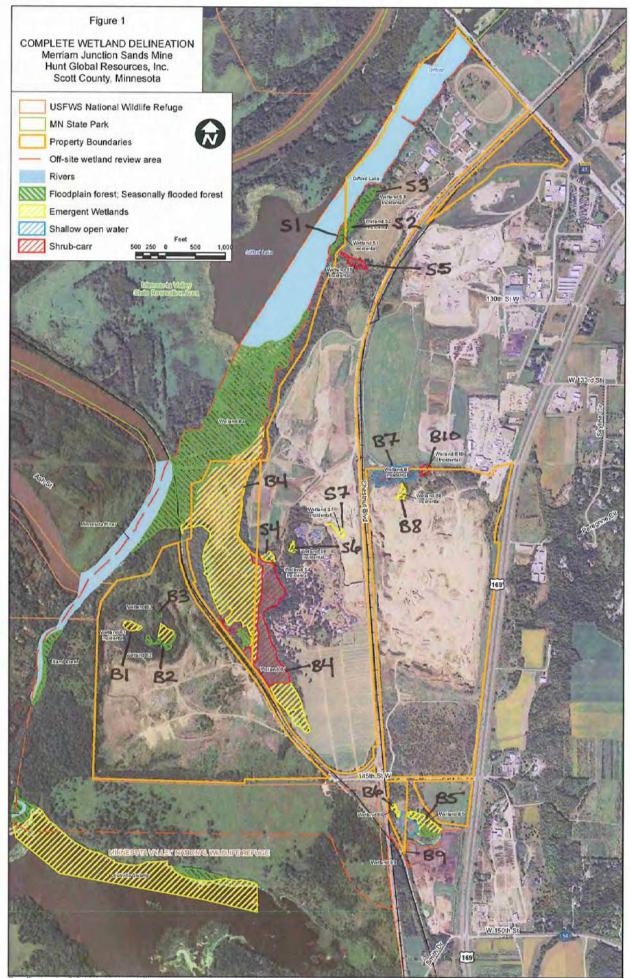
5. MAILING INFORMATION

>For a list of BWSR TEP representatives: www.bwsr.state.mn.us/aboutbwsr/workareas/WCA areas.pdf

>For a list of DNR TEP representatives: www.bwsr.state.mn.us/wetlands/wca/DNR_TEP_contacts.pdf

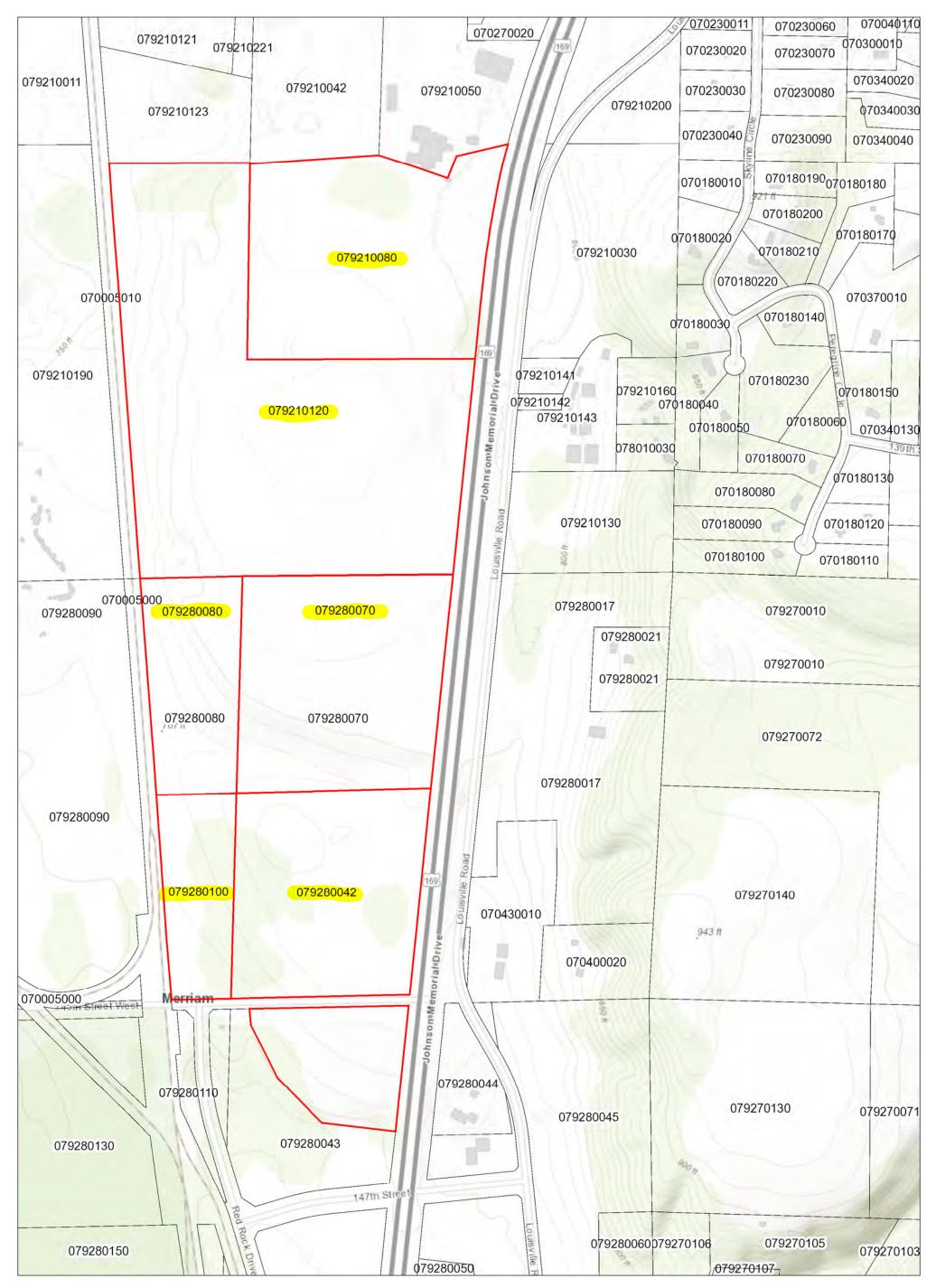
NW Region:	NE Region:	Central Region:	Southern Region:
Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol
Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources
2115 Birchmont Beach Rd.	1201 E. Hwy. 2	1200 Warner Road	261 Hwy. 15 South
NE	Grand Rapids, MN 55744		New Ulm, MN 56073
Bemidji, MN 56601	Contraction of the day and the state		

For a map of DNR Administrative Regions, see: http://files.dnr.state.mn.us/aboutdnr/dnr_regions.pdf


For a list of Corps of Project Managers: <u>www.mvp.usace.army.mil/regulatory/default.asp?pageid=687</u> or send to:

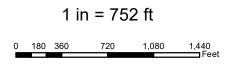
> US Army Corps of Engineers St. Paul District, ATTN: OP-R 180 Fifth St. East, Suite 700 St. Paul, MN 55101-1678

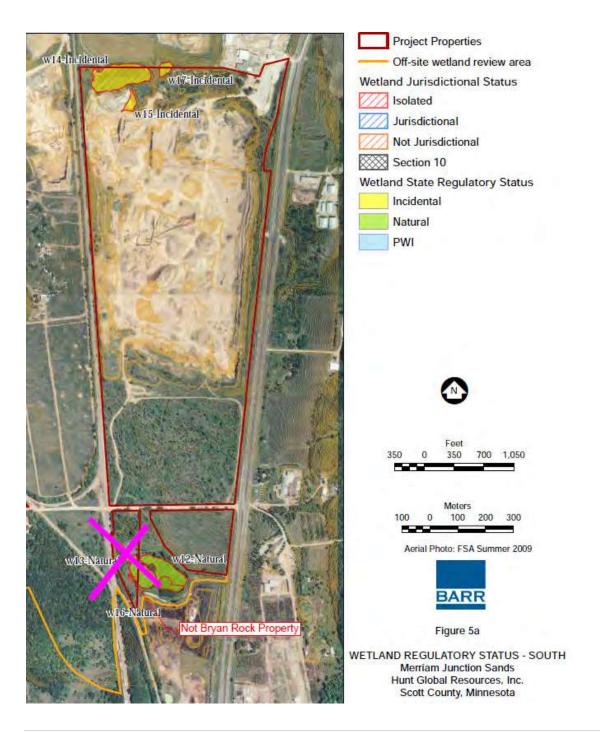
For Wetland Bank Plan applications, also send a copy of the application to: Minnesota Board of Water and Soil Resources Wetland Bank Coordinator 520 Lafayette Road North St. Paul, MN 55155


6. ATTACHMENTS

In addition to the site locator map, list any other attachments: Map showing wetlands with alph-numeric identification

Barr Footer: ArcGIS 10.0, 2011-11-3 File: I:\Projects\23\70\1021\Maps\Reports\Wetlands\Wetlands\Wetland Delineation _all_wetlands.mxd User: dmt2


Exhibit B Scott County


This drawing is neither a legally recorded map nor a survey and is not intended to be used as one. This drawing is a compilation of records, information, and data located in various city, county, and state offices, and other sources affecting the area shown, and is to be used for reference purposes only. Scott County is not responsible for any inaccuracies herein contained. If discrepancies are found, please contact the Scott County Surveyors Office.

Date: 2/9/2022

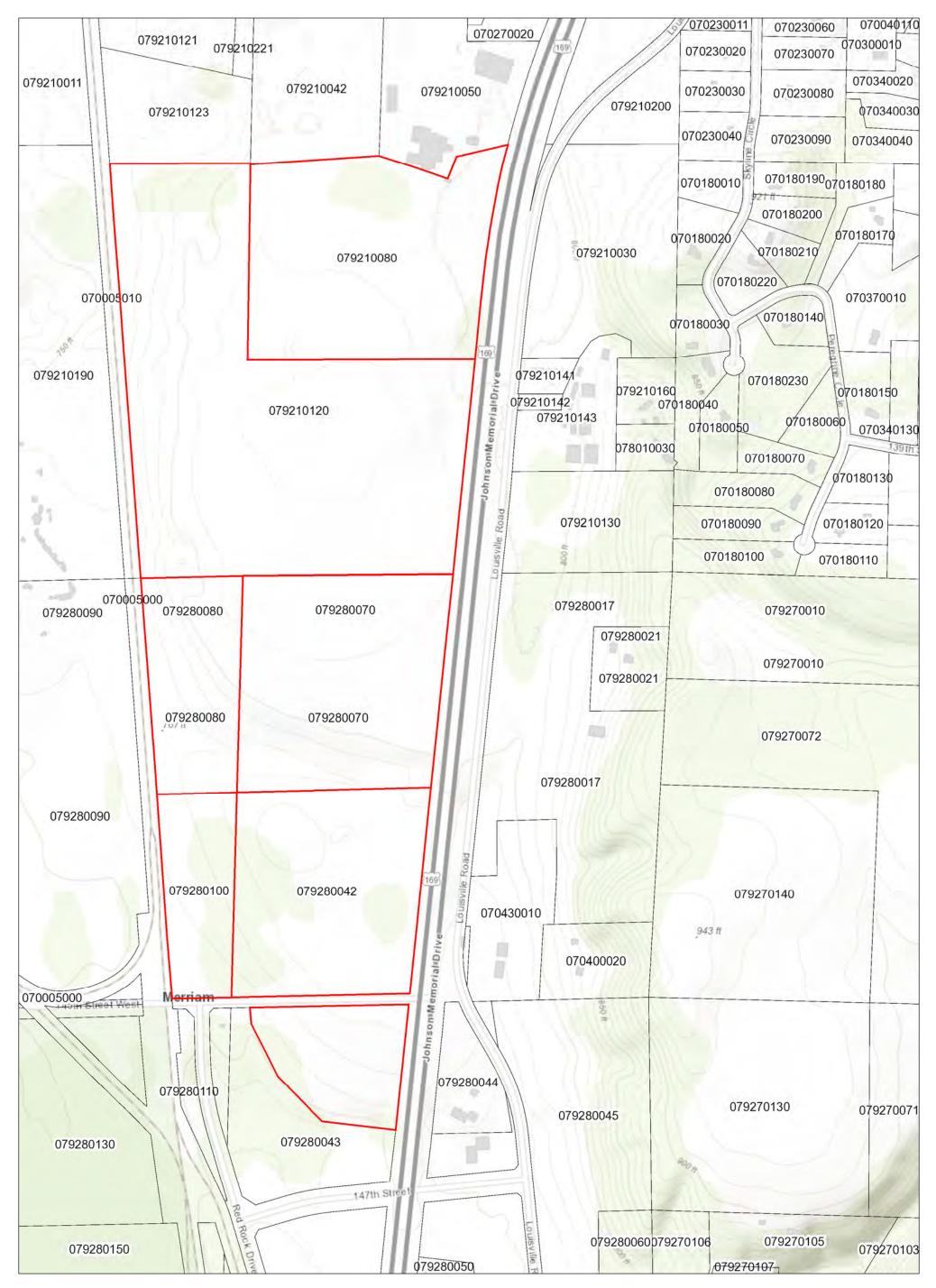
Wetlands 8 and 10 are higher in the watershed than 7. Wetland 10 has an outlet pipe that discharges into wetland 7 during heavy rain events. Wetland 7 may periodically overflow to the west over a low upland area, where it then would flow through a dry drainage channel and into a culvert under the railroad to the west. Despite recent heavy rains, the water in wetland 7 was well below this upland drainage. The upland sample point taken on the west end of the wetland was collected in the lowest area between wetland 7 and the dry drainage channel along the railroad to the west.

The technical support for extending the decision are as follows:

- No regulated wetlands were identified on the property during the original delineation so changes in wetland boundaries due to climate trends overtime would not be relevant.
- The facts relied on to make the original determination that the wetlands were incidental and not regulated (historical aerial photographs) have not changed.

Please do not hesitate to contact me if you have any questions or require any additional information.

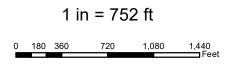
Sincerely,


Kiste Pauly

Kirsten Pauly, PE/PG

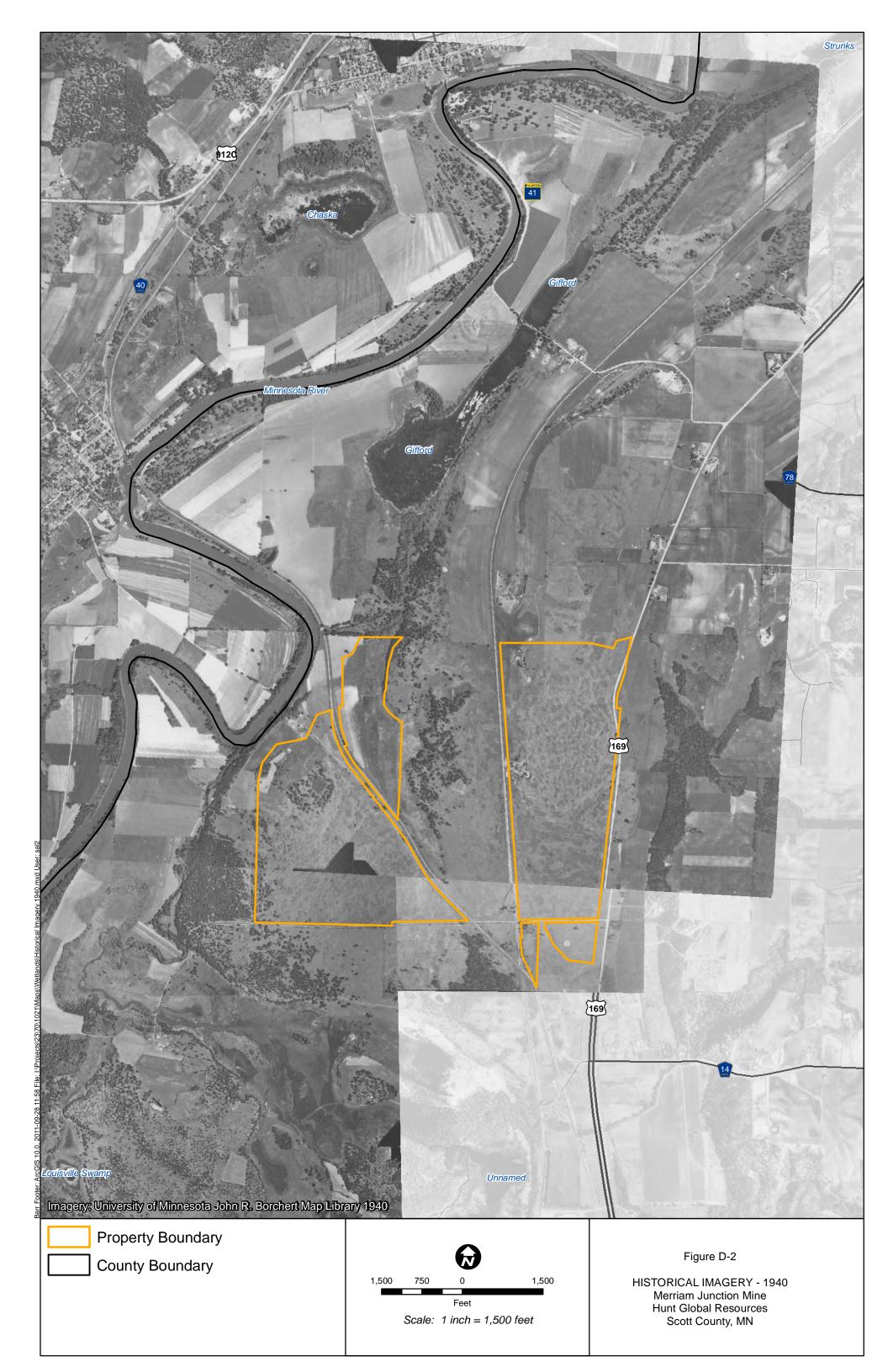
cc Mark Pahl, Dem-Con Landfill

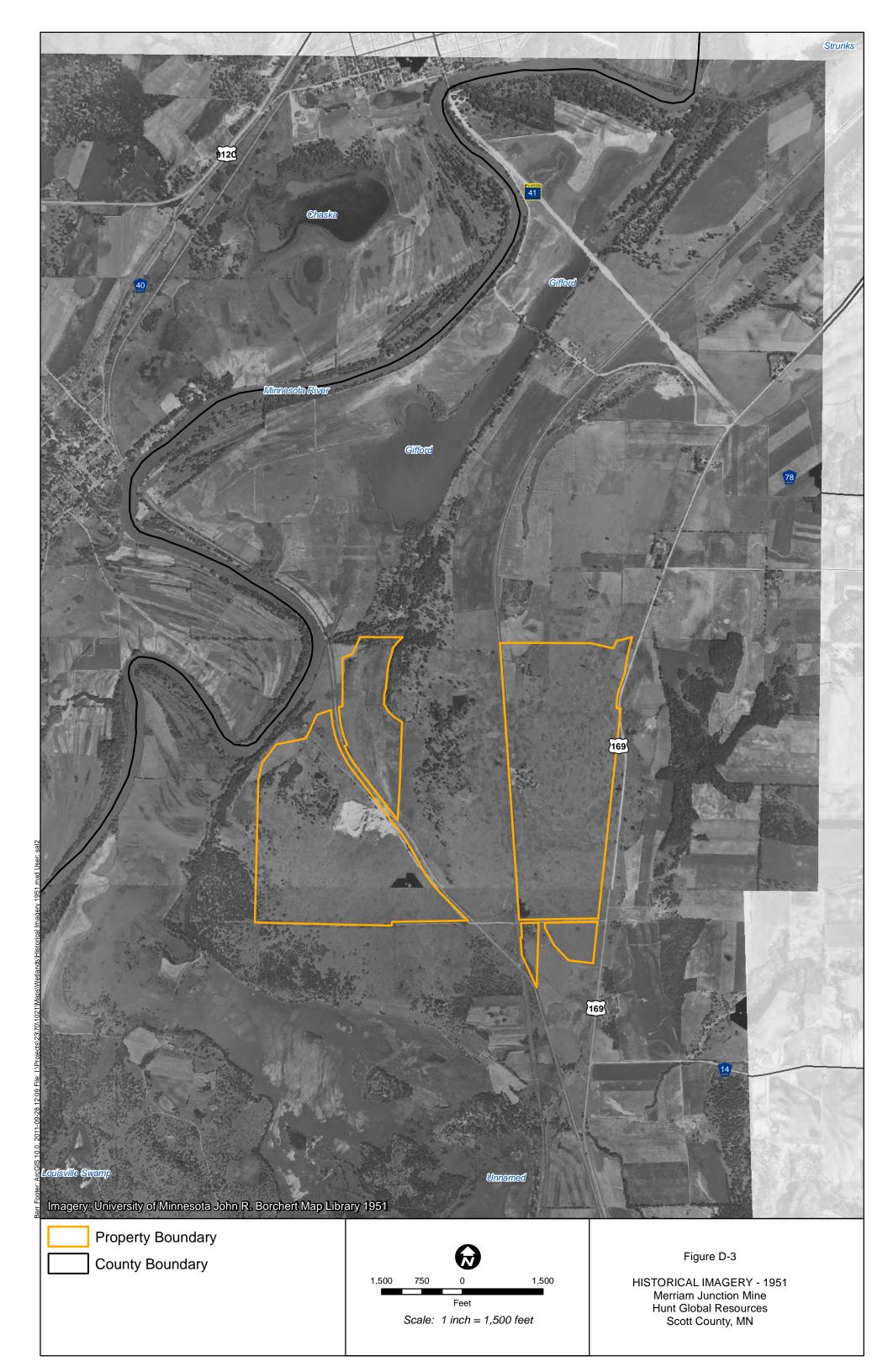
Attachments: PID Map, Historical Photos, NOD


Scott County

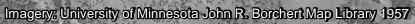
This drawing is neither a legally recorded map nor a survey and is not intended to be used as one. This drawing is a compilation of records, information, and data located in various city, county, and state offices, and other sources affecting the area shown, and is to be used for reference purposes only. Scott County is not responsible for any inaccuracies herein contained. If discrepancies are found, please contact the Scott County Surveyors Office.




Date: 2/9/2022

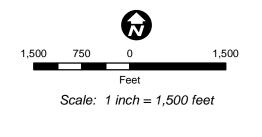
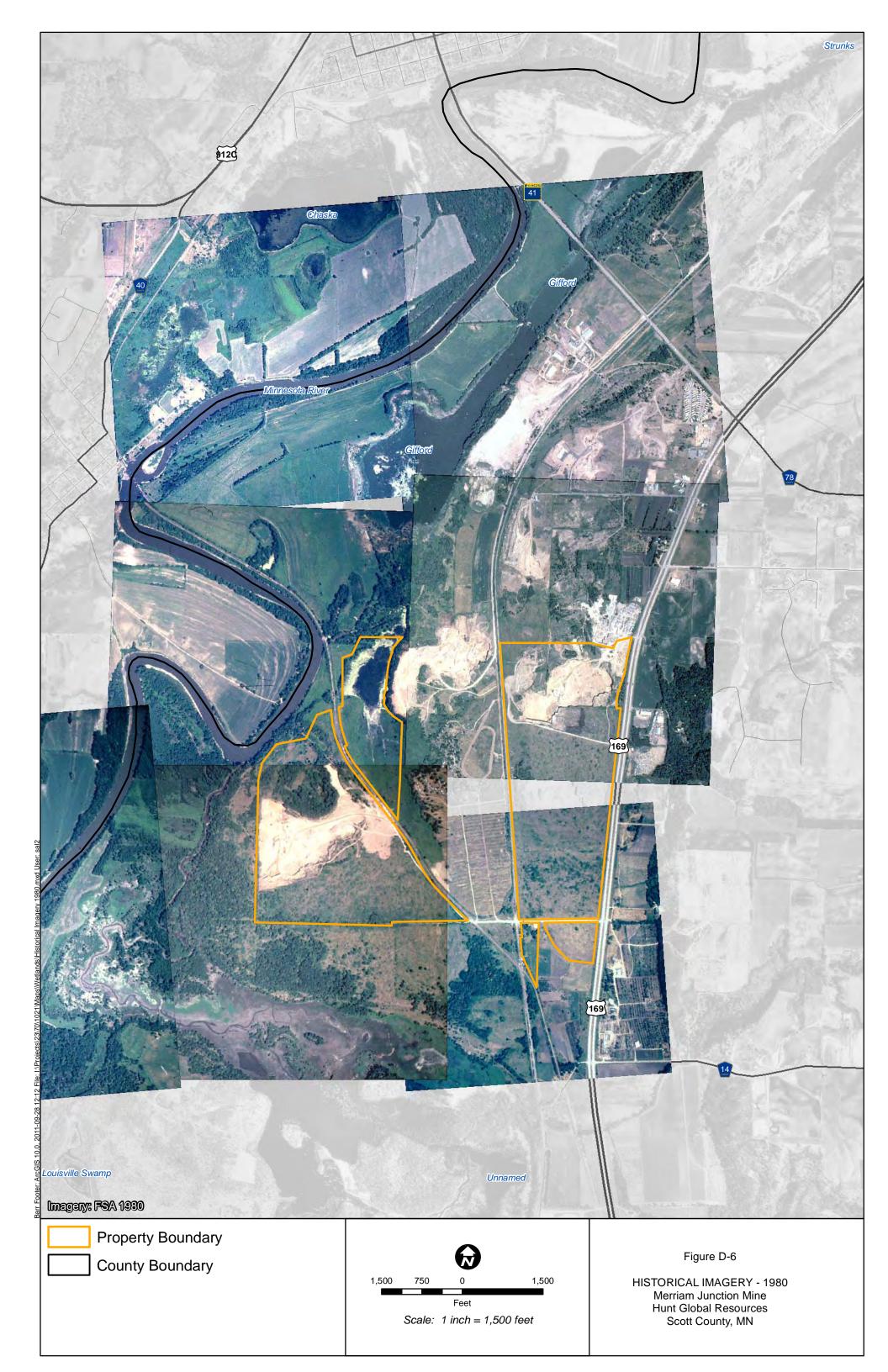


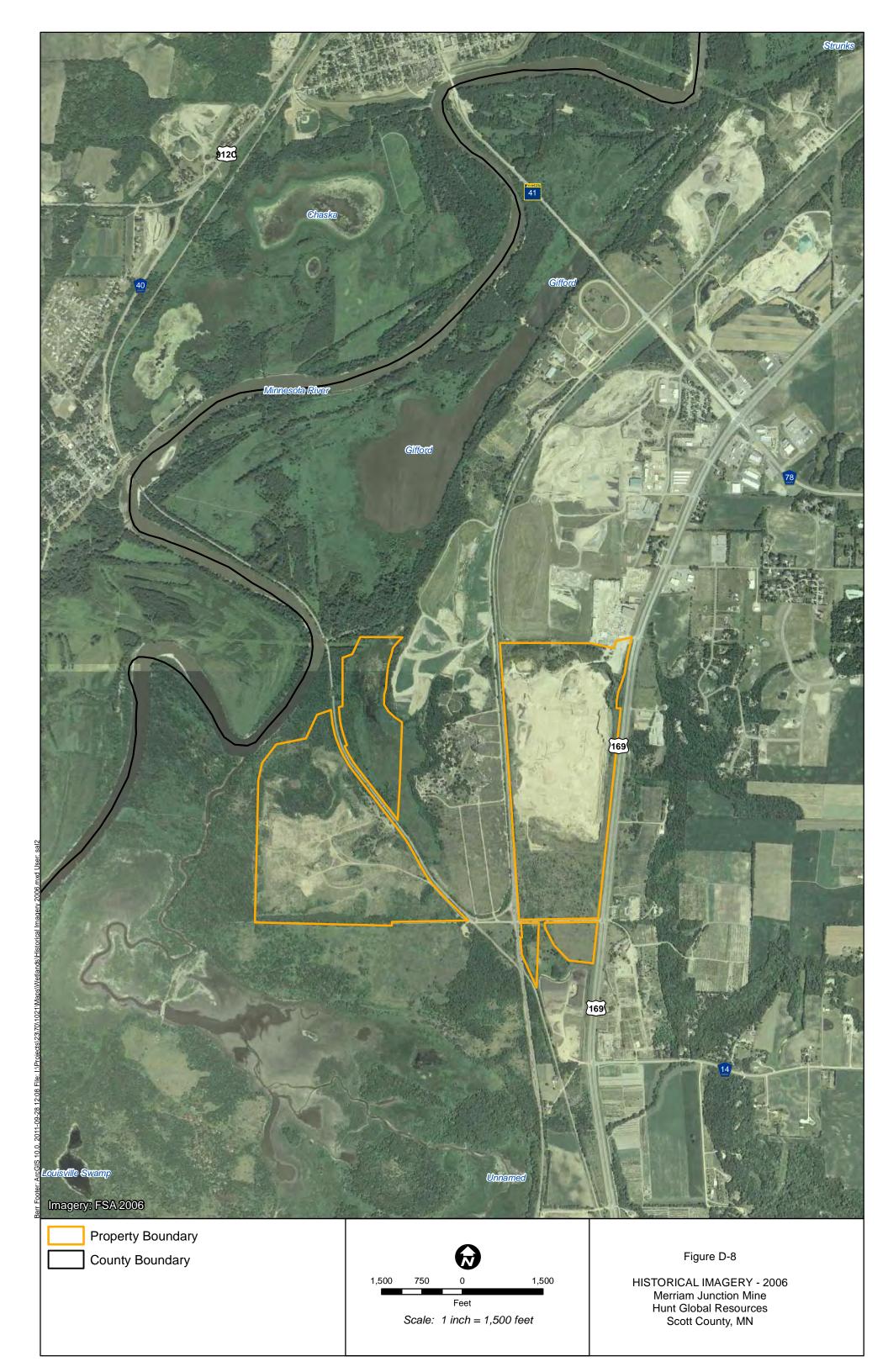
Appendix D


Historic Aerial Photographs

Property Boundary

County Boundary


Figure D-4

HISTORICAL IMAGERY - 1957 Merriam Junction Mine Hunt Global Resources Scott County, MN

Minnesota Wetland Conservation Act Notice of Decision

Local Government Unit (LGU) Louisville Township		Address 92 Mallard Drive Shakopee, MN 55379		
	1. PROJECT INFO	RMATION		11.0.0
Applicant Name Hunt Global Resources, Inc	Project Name Merriam Junction	Sands Mine	Date of Application 10/17/2011	Application Number
Attach site locator map.			1.5	
Type of Decision:				
Wetland Boundary or Type	🛛 No-Loss ent Plan	Exempt Exempt		Sequencing
Technical Evaluation Panel Findin	gs and Recommendation	ı (if any):		
Approve	Approve with co	nditions		Deny
evidence suggesting 2 of the 11 we therefore were not exempt. The TE 2. LOC Date of Decision: 2/15/ 2012		l of the application	on with this exce	
Approved	Approved with condition	ons (include below	w)	Denied
LGU Findings and Conclusions (a	ttach additional sheets as	s necessary):		
The proposed project encompasses Township 115 N Range 23 East (I	s approximately 938 acre		tions 16, 21, 21 a	nd 28 of
An Application for Approval (for lin anticipation of continuing aggremining in areas that are currently dinclude production of silica sand. A of 11/23/2011. The TEP met on-sidper TEP request.	gate production in curre formant, and expanding A Notice of Application	ntly active minin operations in bot was issued 11/1/2	g areas, reactivat h active and dorn 2011 with a com	ing aggregate nant areas to ment deadline
The Scott SWCD completed a deta application. Several minor element this information was corrected and applicant has met all requirements Township, as LGU, therefore appr	ts of information were for submitted with satisfact under WCA for Bounda	ound to be missin tory detail and ac ry/Type and No-	g or in error. Up curacy. Consequ	on request, ently, the
1. Wetlands boundaries and t B3, B4, B5, B6, and B9 are subjec				

B10 are incidental and not regulated; and

2. This Notice is limited to approval of Boundary and Type and No-Loss findings. It does not provide approval or authorization for impacts upon regulated wetlands. If future mining activities should occur that directly or indirectly impact regulated wetlands, a separate application for sequencing and/or replacement must be submitted and approved prior to those impacts occurring. Note: indirect impacts may include, but are limited to, excavation activities outside that alter groundwater levels within a wetland, even though excavation itself may be outside the wetland.

For Replacement Plans using credits from the State Wetland Bank:

Bank Account #	Bank Service Area	County	Credits Approved for Withdrawal (sq. ft. or nearest .01 acre)
----------------	-------------------	--------	---

Replacement Plan Approval Conditions. In addition to any conditions specified by the LGU, the approval of a <u>Wetland Replacement Plan</u> is conditional upon the following:

Financial Assurance: For project-specific replacement that is not in-advance, a financial assurance specified by the LGU must be submitted to the LGU in accordance with MN Rule 8420.0522, Subp. 9 (List amount and type in LGU Findings).

Deed Recording: For project-specific replacement, evidence must be provided to the LGU that the BWSR "Declaration of Restrictions and Covenants" and "Consent to Replacement Wetland" forms have been filed with the county recorder's office in which the replacement wetland is located.

Credit Withdrawal: For replacement consisting of wetland bank credits, confirmation that BWSR has withdrawn the credits from the state wetland bank as specified in the approved replacement plan.

Wetlands may not be impacted until all applicable conditions have been met!

LGU Authorized Signature:

Signing and mailing of this completed form to the appropriate recipients in accordance with 8420.0255, Subp. 5 provides notice that a decision was made by the LGU under the Wetland Conservation Act as specified above. If additional details on the decision exist, they have been provided to the landowner and are available from the LGU upon request.

Name	Title		
John Weckman	Town Supervisor		
John E. Weckman	Date 2/15/12	Phone Number and E-mail 952-445-5363	

THIS DECISION ONLY APPLIES TO THE MINNESOTA WETLAND CONSERVATION ACT.

Additional approvals or permits from local, state, and federal agencies may be required. Check with all appropriate authorities before commencing work in or near wetlands.

Applicants proceed at their own risk if work authorized by this decision is started before the time period for appeal (30 days) has expired. If this decision is reversed or revised under appeal, the applicant may be responsible for restoring or replacing all wetland impacts.

This decision is valid for three years from the date of decision unless a longer period is advised by the TEP and specified in this notice of decision.

3. APPEAL OF THIS DECISION

Pursuant to MN Rule 8420.0905, any appeal of this decision can only be commenced by mailing a petition for appeal, including applicable fee, within thirty (30) calendar days of the date of the mailing of this Notice to the following as indicated:

Check one:

Appeal of an LGU staff decision.	Send 🛛
petition and \$ fee (if applicable)	to: pet

Appeal of LGU governing body decision. Send petition and \$500 filing fee to: Executive Director Minnesota Board of Water and Soil Resources 520 Lafayette Road North St. Paul, MN 55155

4. LIST OF ADDRESSEES

- SWCD TEP member: Troy Kuphal
 - BWSR TEP member: Ken Powell
- LGU TEP member (if different than LGU Contact):
- DNR TEP member: Melissa Doperalski
 - DNR Regional Office (if different than DNR TEP member)
- WD or WMO (if applicable): Paul Nelson
 - Applicant and Landowner (if different)
 - Members of the public who requested notice:

Corps of Engineers Project Manager

BWSR Wetland Bank Coordinator (wetland bank plan decisions only)

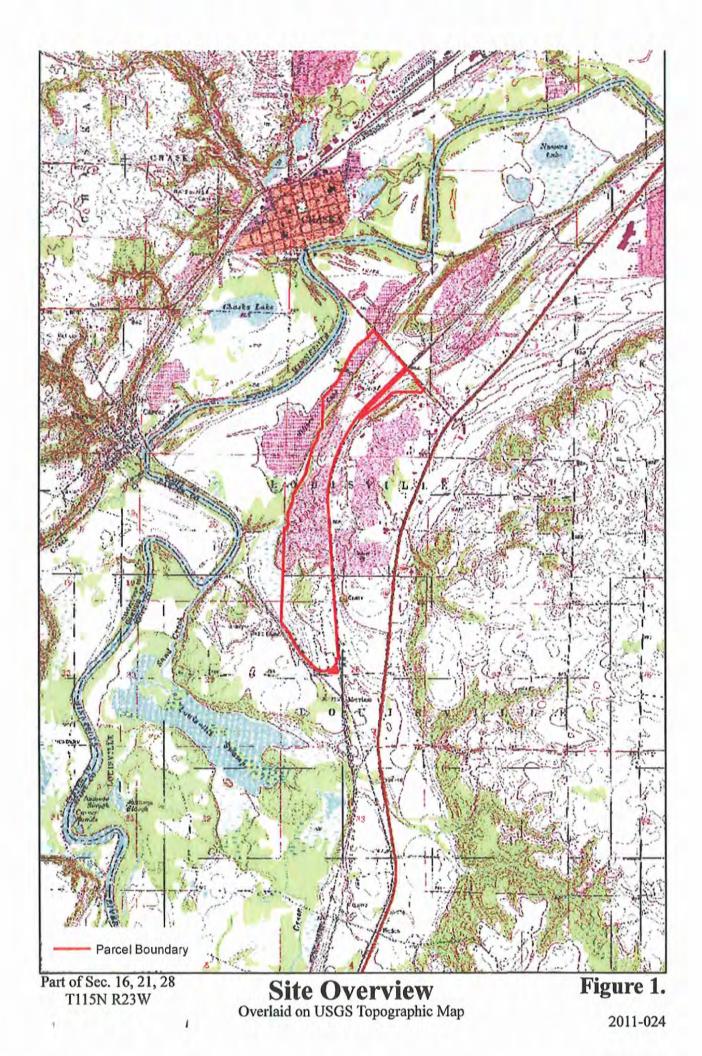
5. MAILING INFORMATION

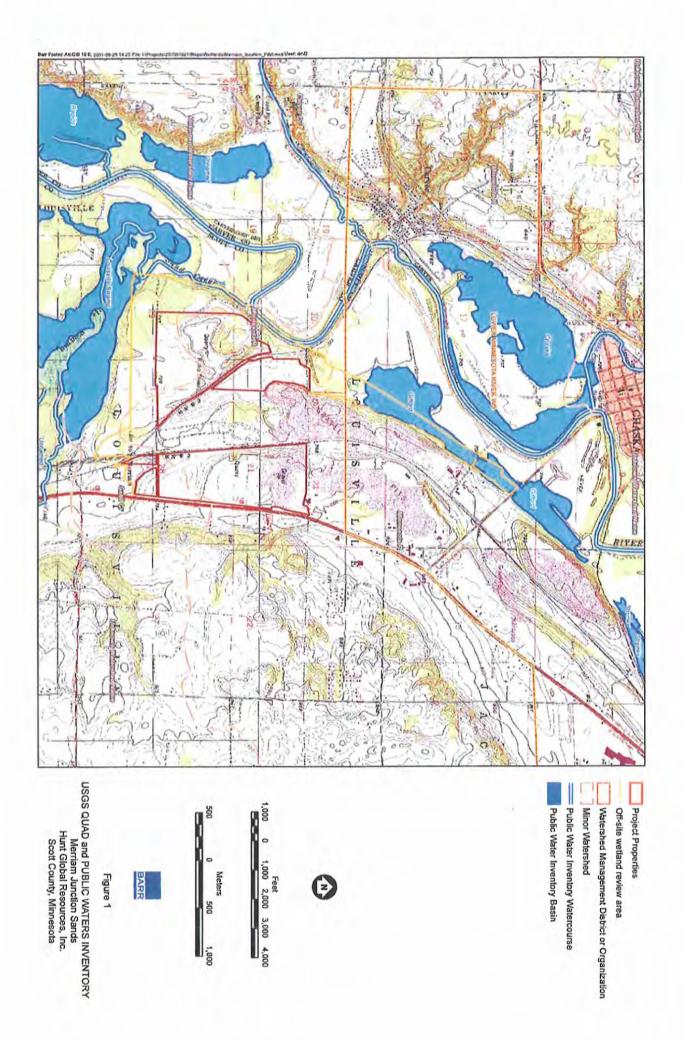
>For a list of BWSR TEP representatives: www.bwsr.state.mn.us/aboutbwsr/workareas/WCA areas.pdf

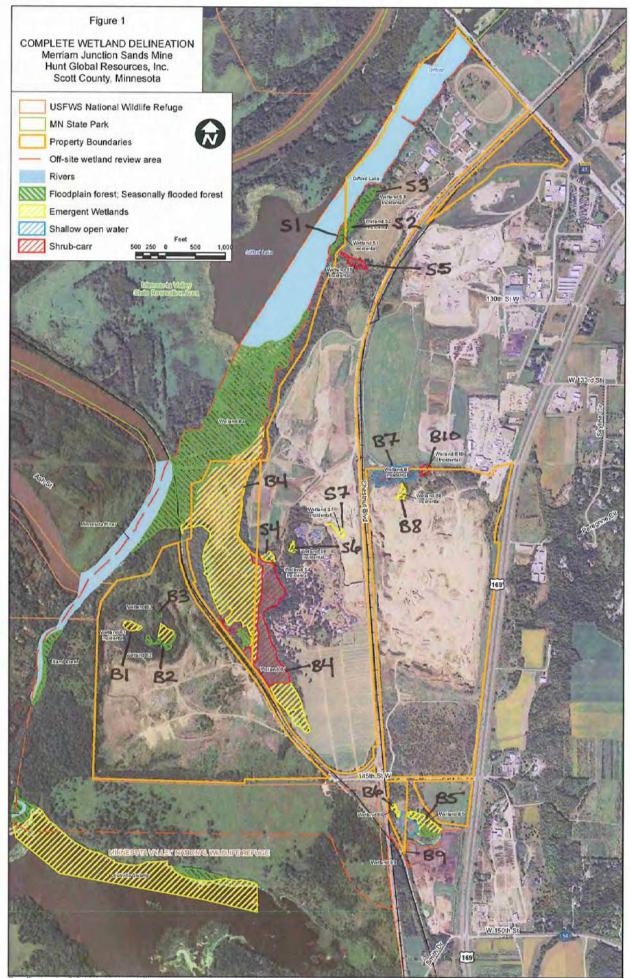
>For a list of DNR TEP representatives: www.bwsr.state.mn.us/wetlands/wca/DNR_TEP_contacts.pdf

NW Region:	NE Region:	Central Region:	Southern Region:
Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol
Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources
115 Birchmont Beach Rd.	1201 E. Hwy. 2	1200 Warner Road	261 Hwy. 15 South
NE			New Ulm, MN 56073
NE Bemidji, MN 56601	Grand Rapids, MN 55744	St. Paul, MN 55106	New Ulm, MN

For a map of DNR Administrative Regions, see: http://files.dnr.state.mn.us/aboutdnr/dnr_regions.pdf


For a list of Corps of Project Managers: <u>www.mvp.usace.army.mil/regulatory/default.asp?pageid=687</u> or send to:


> US Army Corps of Engineers St. Paul District, ATTN: OP-R 180 Fifth St. East, Suite 700 St. Paul, MN 55101-1678


For Wetland Bank Plan applications, also send a copy of the application to: Minnesota Board of Water and Soil Resources Wetland Bank Coordinator 520 Lafayette Road North St. Paul, MN 55155

6. ATTACHMENTS

In addition to the site locator map, list any other attachments: Map showing wetlands with alph-numeric identification

Barr Footer: ArcGIS 10.0, 2011-11-3 File: I:\Projects\23\70\1021\Maps\Reports\Wetlands\Wetlands\Wetland Delineation _all_wetlands.mxd User: dmt2

Minnesota Wetland Conservation Act Notice of Decision

Local Government Unit (LGU) Louisville Township		Address 92 Mallard Drive Shakopee, MN 55379		
	1. PROJECT INFO	RMATION		11.0.0
Applicant Name Hunt Global Resources, Inc	Project Name Merriam Junction	Sands Mine	Date of Application 10/17/2011	Application Number
Attach site locator map.			1.5	
Type of Decision:				
Wetland Boundary or Type	🛛 No-Loss ent Plan	Exempt Exempt		Sequencing
Technical Evaluation Panel Findin	gs and Recommendation	n (if any):		
Approve	Approve with co	nditions		Deny
evidence suggesting 2 of the 11 we therefore were not exempt. The TE 2. LOC Date of Decision: 2/15/ 2012		l of the application	on with this exce	
Approved	Approved with condition	ons (include below	w)	Denied
LGU Findings and Conclusions (a	ttach additional sheets as	s necessary):		
The proposed project encompasses Township 115 N Range 23 East (I	s approximately 938 acre		tions 16, 21, 21 a	nd 28 of
An Application for Approval (for lin anticipation of continuing aggremining in areas that are currently dinclude production of silica sand. A of 11/23/2011. The TEP met on-sidper TEP request.	gate production in curre formant, and expanding A Notice of Application	ntly active minin operations in bot was issued 11/1/2	g areas, reactivat h active and dorn 2011 with a com	ing aggregate nant areas to ment deadline
The Scott SWCD completed a deta application. Several minor element this information was corrected and applicant has met all requirements Township, as LGU, therefore appr	ts of information were for submitted with satisfact under WCA for Bounda	ound to be missin tory detail and ac ry/Type and No-	g or in error. Up curacy. Consequ	on request, ently, the
1. Wetlands boundaries and t B3, B4, B5, B6, and B9 are subjec				

B10 are incidental and not regulated; and

2. This Notice is limited to approval of Boundary and Type and No-Loss findings. It does not provide approval or authorization for impacts upon regulated wetlands. If future mining activities should occur that directly or indirectly impact regulated wetlands, a separate application for sequencing and/or replacement must be submitted and approved prior to those impacts occurring. Note: indirect impacts may include, but are limited to, excavation activities outside that alter groundwater levels within a wetland, even though excavation itself may be outside the wetland.

For Replacement Plans using credits from the State Wetland Bank:

Bank Account #	Bank Service Area	County	Credits Approved for Withdrawal (sq. ft. or nearest .01 acre)
----------------	-------------------	--------	---

Replacement Plan Approval Conditions. In addition to any conditions specified by the LGU, the approval of a <u>Wetland Replacement Plan</u> is conditional upon the following:

Financial Assurance: For project-specific replacement that is not in-advance, a financial assurance specified by the LGU must be submitted to the LGU in accordance with MN Rule 8420.0522, Subp. 9 (List amount and type in LGU Findings).

Deed Recording: For project-specific replacement, evidence must be provided to the LGU that the BWSR "Declaration of Restrictions and Covenants" and "Consent to Replacement Wetland" forms have been filed with the county recorder's office in which the replacement wetland is located.

Credit Withdrawal: For replacement consisting of wetland bank credits, confirmation that BWSR has withdrawn the credits from the state wetland bank as specified in the approved replacement plan.

Wetlands may not be impacted until all applicable conditions have been met!

LGU Authorized Signature:

Signing and mailing of this completed form to the appropriate recipients in accordance with 8420.0255, Subp. 5 provides notice that a decision was made by the LGU under the Wetland Conservation Act as specified above. If additional details on the decision exist, they have been provided to the landowner and are available from the LGU upon request.

Name	Title		
John Weckman	Town Supervisor		
John E. Weckman	Date 2/15/12	Phone Number and E-mail 952-445-5363	

THIS DECISION ONLY APPLIES TO THE MINNESOTA WETLAND CONSERVATION ACT.

Additional approvals or permits from local, state, and federal agencies may be required. Check with all appropriate authorities before commencing work in or near wetlands.

Applicants proceed at their own risk if work authorized by this decision is started before the time period for appeal (30 days) has expired. If this decision is reversed or revised under appeal, the applicant may be responsible for restoring or replacing all wetland impacts.

This decision is valid for three years from the date of decision unless a longer period is advised by the TEP and specified in this notice of decision.

3. APPEAL OF THIS DECISION

Pursuant to MN Rule 8420.0905, any appeal of this decision can only be commenced by mailing a petition for appeal, including applicable fee, within thirty (30) calendar days of the date of the mailing of this Notice to the following as indicated:

Check one:

Appeal of an LGU staff decision.	Send 🛛
petition and \$ fee (if applicable)	to: pet

Appeal of LGU governing body decision. Send petition and \$500 filing fee to: Executive Director Minnesota Board of Water and Soil Resources 520 Lafayette Road North St. Paul, MN 55155

4. LIST OF ADDRESSEES

- SWCD TEP member: Troy Kuphal
 - BWSR TEP member: Ken Powell
- LGU TEP member (if different than LGU Contact):
- DNR TEP member: Melissa Doperalski
 - DNR Regional Office (if different than DNR TEP member)
- WD or WMO (if applicable): Paul Nelson
 - Applicant and Landowner (if different)
 - Members of the public who requested notice:

Corps of Engineers Project Manager

BWSR Wetland Bank Coordinator (wetland bank plan decisions only)

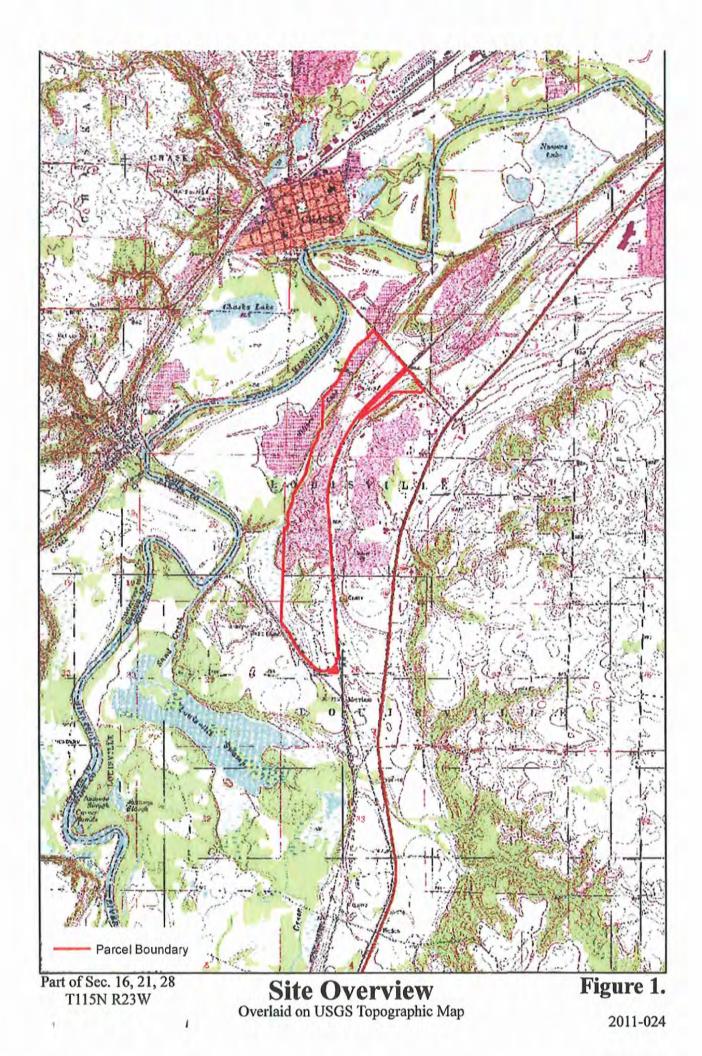
5. MAILING INFORMATION

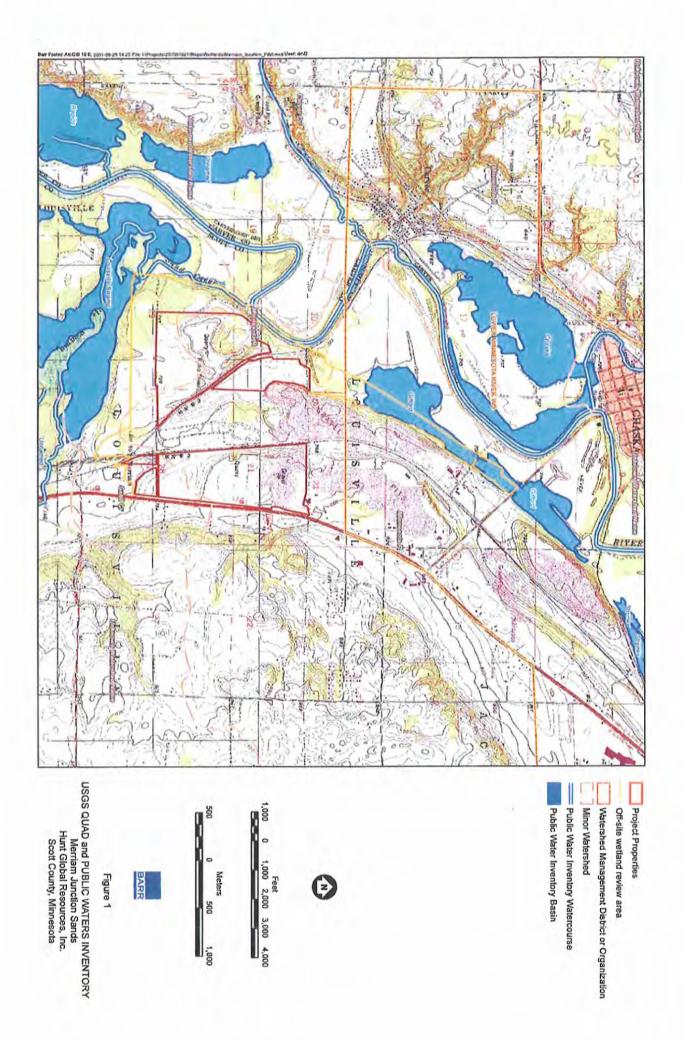
>For a list of BWSR TEP representatives: www.bwsr.state.mn.us/aboutbwsr/workareas/WCA areas.pdf

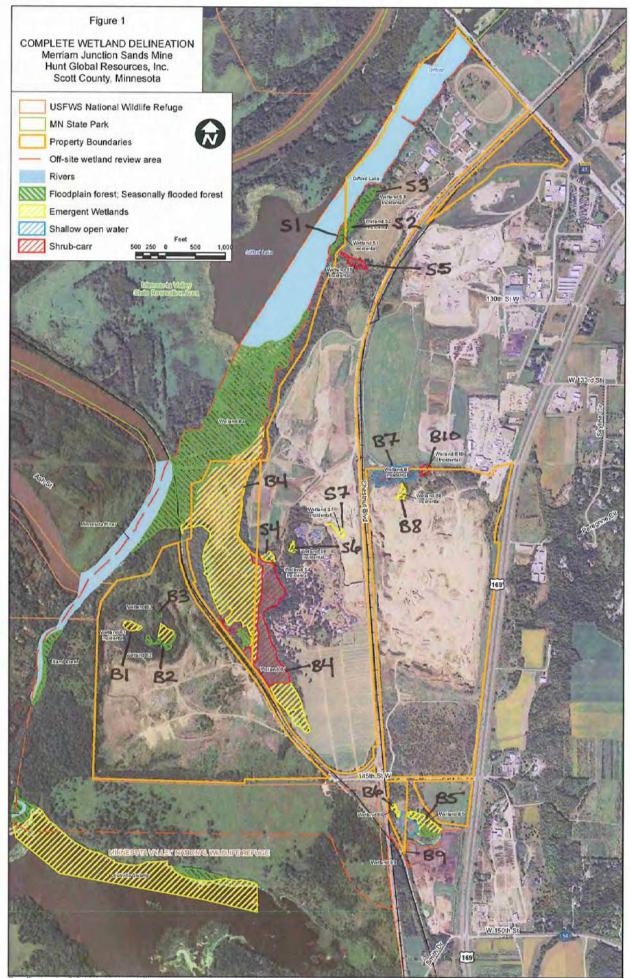
>For a list of DNR TEP representatives: www.bwsr.state.mn.us/wetlands/wca/DNR_TEP_contacts.pdf

NW Region:	NE Region:	Central Region:	Southern Region:
Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol.	Reg. Env. Assess. Ecol
Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources	Div. Ecol. Resources
115 Birchmont Beach Rd.	1201 E. Hwy. 2	1200 Warner Road	261 Hwy. 15 South
NE			New Ulm, MN 56073
NE Bemidji, MN 56601	Grand Rapids, MN 55744	St. Paul, MN 55106	New Ulm, MN

For a map of DNR Administrative Regions, see: http://files.dnr.state.mn.us/aboutdnr/dnr_regions.pdf


For a list of Corps of Project Managers: <u>www.mvp.usace.army.mil/regulatory/default.asp?pageid=687</u> or send to:


> US Army Corps of Engineers St. Paul District, ATTN: OP-R 180 Fifth St. East, Suite 700 St. Paul, MN 55101-1678


For Wetland Bank Plan applications, also send a copy of the application to: Minnesota Board of Water and Soil Resources Wetland Bank Coordinator 520 Lafayette Road North St. Paul, MN 55155

6. ATTACHMENTS

In addition to the site locator map, list any other attachments: Map showing wetlands with alph-numeric identification

Barr Footer: ArcGIS 10.0, 2011-11-3 File: I:\Projects\23\70\1021\Maps\Reports\Wetlands\Wetlands\Wetland Delineation _all_wetlands.mxd User: dmt2

Attachment 5

November 2021

Permit Reissuance and Modification

Dem-Con Landfill SW-290

LOUISVILLE TOWNSHIP SCOTT COUNTY, MINNESOTA

HYDROGEOLOGIC EVALUATION

Consulting Civil Engineers

Sunde Engineering, PLLC 10830 Nesbitt Avenue South • Bloomington, Minnesota 55437-3100 Phone: (952) 881-3344 • Fax: (952) 881-1913 • E-Mail: info@sundecivil.com

HYDROGEOLOGIC EVALUATION Dem-Con Landfill November 2021

1.0 Introduction:

The Dem-Con Landfill is an existing Class III construction and demolition debris landfill (C&D Landfill) located in Louisville Township, Scott County Minnesota (Facility). The landfill has been in operation since January 1986. The size of the existing landfill is situated on 121 acres. Dem-Con is proposing to expand the landfill onto an adjacent 241 acres located south of the existing landfill (Site). The entire expansion area is limestone quarry that has been active for the past 50 years. Dem-Con is proposing to develop the landfill in phases to accommodate that remining mining activity on the Site.

The quarry mines dolomite for construction aggregates from the Prairie du Chien Group. The Expansion Area was the subject of a proposal to mine the underlying Jordan Sandstone by Merriam Junction sands (MJS). An Environmental Impact Statement was completed for the MJS project and was declared adequate by the Scott County Board on July 7, 2020. The EIS included a Groundwater Assessment by Barr Engineering which included soil borings, monitoring wells, pump tests, geophysics, and development of a groundwater model. The study area included all of the Expansion Area as well as property to the west. The results of the EIS and the Groundwater Assessment Report¹ are summarized here.

2.0 Site Evaluation Information:

1. Location Standards:

The Site is not located in a floodplain or within 1,000 feet of a lake or 300 feet of a river. The MN River is located over 3,000 feet west of the Site. Gifford Lake is the closest Lake and is located over located over 2,500 feet from the Site. The Site is not located within a Shoreland District.

Karst Features are not present. The site is an active limestone quarry and the floor of the quarry is composed of the basal layer of the Oneota dolostone.

There are no wetlands located on-site. A wetland delineation was performed over the site in conjunction with the MJS EIS by Barr Engineering. There are existing stormwater ponds and process water ponds associated with the mining operation that are located on site but not regulated under the Wetland Conservation Act.

The Site is not located in proximity to a Wild and Scenic River.

¹ Barr Engineering Company. 2014. Groundwater Assessment Report Resource Document for Environmental Impact Statement and Groundwater Appropriation Permit Application. Merriam Junction Sands, Scott Cunty, MN. Merriam Junction Sands, LLC November 14, 2014.

2. Soil Borings:

The investigation included two test pits and 5 soil borings on the Site itself, and over 30 soil borings across the MJS project area which were used to verified the general underlying geology of the area. Copies of the soil borings on the site are included as Attachment 1 which includes a soil boring location map.

3. Soils:

According to the NRCS Web Soil Survey, the original soils in the Project Area were composed predominantly of stony land with shallow depths to limestone bedrock, which is the target resource of the past and current mining activity on the site. The majority of site soils have been or will be removed as part of the mining activity. The exception to this are the soils located in the very southern portion of the Site that were identified as being the only soils remaining on the site that are suitable for the development SSTS sites² (Fesner 2019). The area is not served by municipal utilities and future development is dependent upon suitable SSTS sites. The protection of these soils is a condition of the mine permit and the approved mining and reclamation plans. These soils will not be impacted by the landfill development.

Table 1 includes the soil types of the original site soils. An NRCS Soil Map and Report for the Project Area is included as Attachment 2.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CdB	Copaston silt loam, 2 to 6 percent slopes	4.1	1.7%
CdB2	Copaston silt loam, 2 to 6 percent slopes moderately eroded	s,1.2	0.5%
DbB	Dickman sandy loam, 2 to 6 percent slopes	0.0	0.0%
EaB	Estherville sandy loam, 2 to 6 percent slopes	13.6	5.6%
Gp	Pits, gravel	4.3	1.8%
Sc	Stony land	213.2	88.4%
Та	Terrace escarpments	2.1	0.9%
ТсА	Terril loam, 0 to 2 percent slopes	2.5	1.0%
Totals for Area of Int	erest	241.0	100.0%

TABLE 1 SITE SOILS

² 2019. Fesner Environmental. Site Suitability for Septic Systems. Merriam Junction Sands, LLC on property owned by Bryan Rock Products and MalkerOson Sales, Inc.

4. Geology

The proposed Site is located in the southern region of the Twin City basin, with underlying bedrock units generally dipping to the north. Over most of the Site, a thin layer of unconsolidated material (a mix of sand and gravel and clay) originally covered the underlying bedrock. Bedrock, prior to mining was s near the surface throughout the majority of the Site and has largely been removed or will be removed through the course of mining activity.

The Prairie du Chien Group forms the bedrock subcrop over the Site. The Prairie du Chien Group is composed of two units, the upper Shakopee Formation and the lower Oneota Dolomite. Both units consist largely of carbonate components, characterized by thin to very thick, beds of dolostone, with negligible amounts of sandstone and other silica bearing rocks, except in the lowermost 10 to 20 feet, within the Coon Valley Member, (the lowest member of the Oneota Dolomite), which can contain substantial quantities of sandstone, siltstone, and shale.³ The Oneota Dolomite is being actively mined across the Site. While mining encounters small solution cavities and fracture zones typical of this formation, there is no evidence of sinkholes or other larger karst features within the Site. The Prairie du Chien Group within the Site was originally 40-90 feet thick due to past erosion of the uppermost portion of this bedrock unit. Mining will extend to with a few feet of the base of the dolomite.

Underlying the Prairie du Chien Group is the Jordan Sandstone. The Jordan Sandstone is approximately 80 to 120 feet thick beneath the Site. It contains two facies, a medium-to coarse-grained quartz sandstone and fine-grained feldspathic sandstone with lenses of siltstone and shale. From uppermost to lowermost, the Jordan is underlain by: the St. Lawrence Formation, the Tunnel City Group (formerly known as the Franconia Formation), the Wonewoc Sandstone (formerly known as the Ironton and Galesville Sandstones), and the Eau Claire Formation. The St. Lawrence Formation is predominantly crystalline dolostone, though the uppermost portion contains dolomitic siltstone, and is approximately 50 feet thick at the Site. The Tunnel City Group is composed of friable feldspathic and glauconitic sandstone with a basal layer of glauconitic dolostone approximately 10 to 12 feet thick. The entire Tunnel City Group is believed to be approximately 120 feet thick at the Site. The Nonewoc Sandstone which is believed to be approximately 70 feet thick at the Site. The Eau Claire Formation is the lowermost geologic unit of interest at the Site. It is composed of shale, siltstone, and very fine- grained sandstone.

Figure 1 shows a generalized stratigraphic column for the Site. Figure 2 shows a generalized bedrock map of the Site and surrounding area. West of the Site, the Minnesota River flows through a bedrock valley, which is believed to be downcut into the St. Lawrence Formation and/or Tunnel City Group.

5. Groundwater Flow:

The Site is underlain by bedrock aquifer systems. The water table is generally associated with the upper portion of the Jordan Sandstone. Groundwater flow is controlled by the discharge region of the Minnesota River valley with the general direction of groundwater flow from east to west across the expansion area.

⁴³ Mossler, John. 2008. Paleozoic Stratigraphic Nomenclature for Minnesota. Report of Investigations 65. University of Minnesota St. Paul, MN.

A prominent buried valley connects to the Minnesota River Valley located north of the existing landfill that locally influences groundwater flow directions which have a north westerly flow direction in the very northern portion of the existing landfill. In the expansion area, groundwater elevations vary from 728 msl along the eastern boundary of the Site to 718 msl to the west. Figure 3, Water Table Map, illustrates the elevation of the groundwater table across the Site taken from field measurements during the MJS assessment.

6. Proximity to Water Supply Wells:

Water supply wells are located in the area surrounding the Site. The majority of these wells are located upgradient or side gradient of the landfill and the expansion area. The Renaissance Festival has two noncommunity public water supply wells that are located downgradient of the Project Area. These wells are finished in deeper aquifers. Table 2 includes the names, unique numbers (where available), and locations of wells within 1,000 feet of the Project Area. Figure 4 - Water Supply Wells Near the Project Area, illustrates the locations of these wells. Attachment 3 includes copies of the water supply well logs.

Section 21					
	Bryan Rock Products	13580 Johnson Memorial Dr. Shakopee MN			
540281	(sealed)	55379	115	23	21
	Dem-Con Material	13161 Johnson Memorial Dr. Shakopee MN			
272748	Recovery Facility	55379	115	23	21
	Dem-Con Material	13161 Johnson Memorial Dr. Shakopee MN			
272749	Recovery Facility	55379	115	23	21
	Dem-Con Material				
796915	Recovery Facility	13161 Dem Con Dr. Shakopee MN 55379	115	23	21
684019	Dem-Con Office	13020 Dem-Con Dr. Shakopee MN 55379	115	23	21
809771	Dem-Con Metal Recycling	13142 Dem Con Dr. Shakopee MN 55379	115	23	21
		13122 Johnson Memorial Dr. Shakopee MN			
405973	Halloran	55379	115	23	21
610403	Anchor Block	13450 Johnson Memorial Dr. Shakopee MN	115	23	21
759599	Anchor Block	55379	115	23	21
221364	Johnson & Bigler Co.	13450 Johnson Memorial Dr. Shakopee MN	115	23	21
209939	Lano Implement	3021 133rd St. W. Shakopee MN 55379	115	23	21
551318	C.H. Carpenter Lumber	13731 Johnson Memorial Dr. Shakopee MN	115	23	21
836415	Mumoff	13745 Johnson Memorial Drive	115	23	21
248000	MN Renaissance Festival	3630 145th St. W. Shakopee MN 55379	115	23	21
		Section 28			
211864	Lindstrom	3036 150th St. W. Shakopee MN 55379	115	23	28
244436	Merriam Junc. RR Well	145th St. W. and RR track	115	23	28
709026	Doucette	14331 Johnson Memorial Dr. Shakopee MN	115	23	28
211863	Minn. Valley Nursery	3232 150th St. W. Shakopee MN 55379	115	23	28
211865	Minn. Valley Garden Cent	3232 150th St. W. Shakopee MN 55379	115	23	28
569344	NRG	14800 Johnson Memorial Dr. Shakopee MN	115	23	28
233116	Granzlow (Doucette)	Irrigation Well 14145 Johnson Memorial	115	23	28
513892	Renaissance Festival	3325 145th St. W. Shakopee MN 55379	115	23	28

TABLE 2 NEARBY WATER SUPPLY WELLS

404657	Renaissance Festival	3525 145th St. W. Shakopee MN 55379	115	23	28
		14505 Johnson Memorial Dr. Shakopee MN			
401129	MN Valley Wholesale	55379	115	23	28

7. Groundwater Monitoring:

There are several monitoring wells located adjacent to the expansion area that are associated with three separate monitoring well networks. The Dem-Con Landfill has an existing monitoring well network that consists of eight wells. The closed Louisville Landfill has a monitoring well network that consists of 16 wells, 12 of these are active. The MJS project had a monitoring well network that consisted of 15 wells, two of which are located within the expansion area. Figure 5, Monitoring Well Networks, illustrates the location of the monitoring wells area including the Dem-Con Landfill, the closed Louisville Landfill, and the MJS monitoring well networks. Table 3 lists these wells and Attachment 4 includes copies of well logs for the existing Dem-Con monitoring well network and the MJS monitoring wells that are located within the Site.

The Dem-Con Monitoring Well Network will be expanded to provide coverage of the expansion area. Two additional upgradient wells will be installed along the eastern boundary of the Site and three downgradient wells will be installed along the western boundary of the Site. Proposed well locations are indicated on Figure 5. The wells will be installed, and baseline data will be collected a minimum of one year prior to landfilling within the areas they will be monitoring. Monitoring is conducted for a number of parameters including metals and VOCs in accordance with the solid waste permit.

Dem-Con Mon	ITORING WELL NETWORK		
Name	Unique Number		
W-8	Unknown		
W-10	151599		
W-120	595728		
W-121	595729		
W-122	Unknown		
DC-117	557378		
DC-118	557379		
DC-119	557380		
CLOSED LOUISVI	lle Landfill Monitoring Well		
Network			
Name	Unique Number		
W-3A	Unknown		
W-4	Unknown		
W-5	Unknown		
W-9	Unknown		

TABLE 3 EXISTING MONITORING WELL NETWORKS

W-11	151598			
W-111 W-111	151597			
W-211		d 12-07-20004)		
W-112		433613 (sealed H227037)		
W-113	433616	4112270077		
W-213	433617			
W-114	433619			
W-115	525943			
W-116	Unknown			
DC-117 ⁴	557378			
Dc-118	557379			
DC-119	557380			
	1			
MJS Monitori	NG WELL NET	WORK		
Name	Unique Numb	er		
MW-1-11	700450			
10100-T-TT	783158			
MW-04-11	783158 783164	In Project Area		
		In Project Area		
MW-04-11	783164	In Project Area		
MW-04-11 MW-6-11	783164 783162			
MW-04-11 MW-6-11 MW-7-11	783164 783162 783165			
MW-04-11 MW-6-11 MW-7-11 MW-8-11	783164 783162 783165 783155			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11	783164 783162 783165 783155 783159			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11 MW-11-11	783164 783162 783165 783155 783159 783153			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11 MW-11-11 MW-13-11	783164 783162 783165 783155 783159 783153 783154			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11 MW-11-11 MW-13-11 MW-16-11	783164 783162 783165 783155 783159 783153 783154 783156			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11 MW-11-11 MW-13-11 MW-13-11 MW-16-11 MW-17-11	783164 783162 783165 783155 783159 783153 783154 783156 783160			
MW-04-11 MW-6-11 MW-7-11 MW-8-11 MW-9-11 MW-11-11 MW-13-11 MW-16-11 MW-17-11 MW-19-11	783164 783162 783165 783155 783159 783153 783154 783156 783160 783163			
MW-04-11 MW-6-11 MW-7-11 MW-9-11 MW-11-11 MW-13-11 MW-16-11 MW-17-11 MW-10-11 MW-20-11	783164 783162 783165 783155 783159 783153 783154 783156 783160 783163 783161			

8. Liner

Initial landfill construction included unlined landfill cells. In 2007, Dem-Con began construction of all future cells with a synthetic liner and leachate collection system. The installation of the liner and leachate collection system provided enhanced environmental protection as well as allowed the facility to accept additional types of demolition, construction, and industrial waste. Once portions of the landfill reach final grade, a synthetic cap is constructed over the completed fill areas and a protective rooting layer is placed along with topsoil and vegetation.

⁴ DC-117-DC-118 are part of both Dem-Con Landfill (downgradient of landfill)and Louisville Landfill (upgradient of landfill) Monitoring Networks

As part of the 2005 permit reissuance, a landfill liner and leachate collection system was included in the horizontal expansion area. Since the 2005 permit reissuance, Phases 1-7 of the lined area have been constructed. The 2021 permit reissuance includes a horizontal expansion of the landfill which includes Phases 9-32, all of which will be lined.

The liner system is designed to protect the environment by preventing the release of landfill leachate. The liner system design for each phase of the landfill has varied slightly over time. The liner system for Phase 1 is a composite liner system consisting of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), a 40-mil HDPE liner, and a 12 inch granular drainage system. The liner system for Phase 2 is a composite liner system consisting of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), a 40-mil HDPE liner, and an 18 inch granular drainage system. The liner system for Phase 3 is a composite liner system consisting of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), a 40-mil HDPE liner, and an 18 inch granular drainage system. The liner system for Phase 3 is a composite liner system consisting of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), a 60-mil HDPE liner, and a 24 inch granular drainage system. The GCL in the sump area of Phase 3 was underlain by an extra two feet of compacted clay liner. The liner system over Phases 4-7 is a composite liner system consisting of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), a 60-mil HDPE liner, and a 24 inch granular drainage layer or an approved equivalent (12 drainage geocomposite plus 12 " of granular drainage) system. Future liner construction is designed to consist of a 6 inch soil cushion layer, geosynthetic clay liner (GCL), 60-mil HDPE liner, drainage geocomposite, and 12 inch granular drainage layer.

All phases where the liner system is constructed over bedrock are backfilled with a minimum of one foot of compacted soil. All phases where the liner system is constructed over in place demolition debris are backfilled with a minimum of one foot of compacted soil.

The build out of the collection system includes a series of 6" perforated HDPE collection pipes, and collection sumps and horizontal leachate pumps. Leachate is pumped to an above ground storage tank and load out facility. Leachate is hauled to a wastewater treatment plant or recirculated over lined areas for dust control.

The northern fill area was designed to incorporate the liner and leachate collection system at the base of the landfill as well as liner over in place waste located in the northern portion of the original unlined fill area. All future phases will be lined. Phase development has proceeded over time and the unlined fill areas were completed in 2021. Construction of an enhanced final cover system with a synthetic liner has also been completed over the southern 22 acres of the unlined fill area. The enhanced liner system reduces the amount of precipitation infiltrating into the waste after closure and reduces long term leachate generation. The in place cover over the unlined fill area increases groundwater protection.

Design Criteria:

Design criteria includes the capture of at least 90% of the precipitation falling on the fill area. Efficiency was computed based on the USEPA's Hydraulic Evaluation of Landfill Performance (HELP) model. HELP model results indicated an estimated design efficiency of 99% for the composite barrier liner system. The HELP model was originally run in 2005 for the development of the northern lined fill area. These results

were updated to include the new phase development and lining of the remainder of the fill areas. The liner is designed to maintain a maximum leachate head of 12" or less.

Liner and Leachate Collection System Components:

Future phases of the landfill are located on property that was initially mined for aggregates creating the excavation for future filling. Both sand and gravel, and limestone have been removed in preparation for liner construction. The subgrade is prepared by placing a minimum of one foot of compacted clean fill over the top of the bedrock. The backfill consists of 0.5 feet or greater of general fill and is compacted in lifts no greater than six inches. The backfill is free of organic materials and is placed to within six inches of the bottom of the GCL. In Phase 4 and Phase 5, a one foot layer of soil was placed on top of the refuse to form the liner subgrade. The compacted backfill provides a stable subgrade for placement of the GCL cushion. The GCL cushion is placed on the subgrade backfill and below the GCL liner and consists of at least six inches of granular borrow placed and compacted in a six inch lift. The surface of the granular borrow must be smooth and free of protrusions or ruts. The material for granular borrow is produced from aggregate materials removed during mining of the site itself.

The GCL liner is placed in accordance with manufacture's guidelines. An HPDE liner is placed on top of the GCL (40 mil Phase 1 and 2 60 mil Phase 3+). A granular drainage layer (12 inch Phase 1, 18 inch Phase 2 and 24 inch, or approved equivalent, Phase 3+) completes the cross section of the liner system. An approved equivalent for the 24 inch drainage layer has been a drainage geocomposite and 12 inch granular drainage layer. This approved equivalent is currently planned for all future phases.

HELP Model:

Leachate generation from the northern fill area was determined using the Hydrologic Evaluation of Landfill Performance (HELP) model developed for the USEPA. Modeling results were used to determine the efficiently of the leachate liner and collection system. Because leachate generation is expected to vary throughout the life of the facility, several different periods of operation were modeled to determine the period of greatest leachate generation and confirm that design criteria were met throughout the operating life of the landfill. Sideslopes and base areas were accounted for within each of the time periods included in the modeling. The original 2005 HELP Model included scenarios A-I. Additional scenarios were evaluated in the 2015 update and include scenarios J through N. Results are included in Appendix 6 of the Engineering Report attached to the Permit Application.

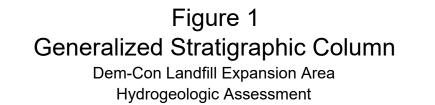
9. Maps

Maps showing the location of site, test pits, boring, and other site features are included as described above.

10. Certification

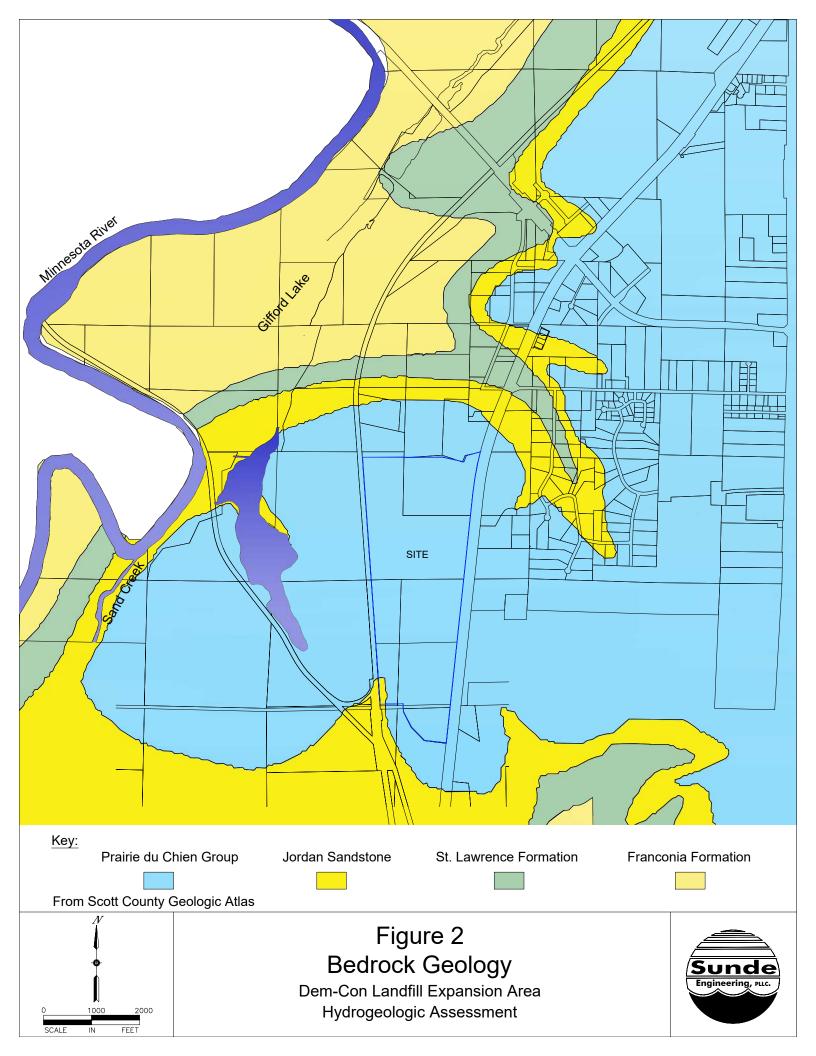
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fines and imprisonment.

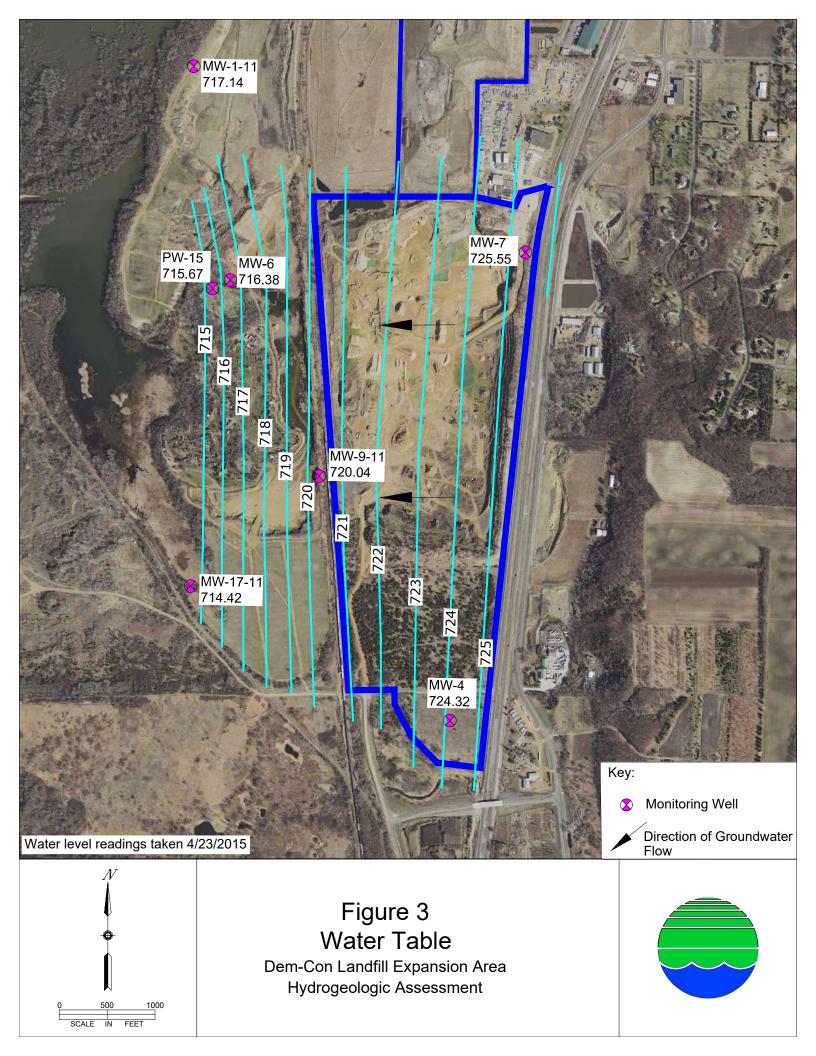
Kirsten Pauly, PE/PG Name

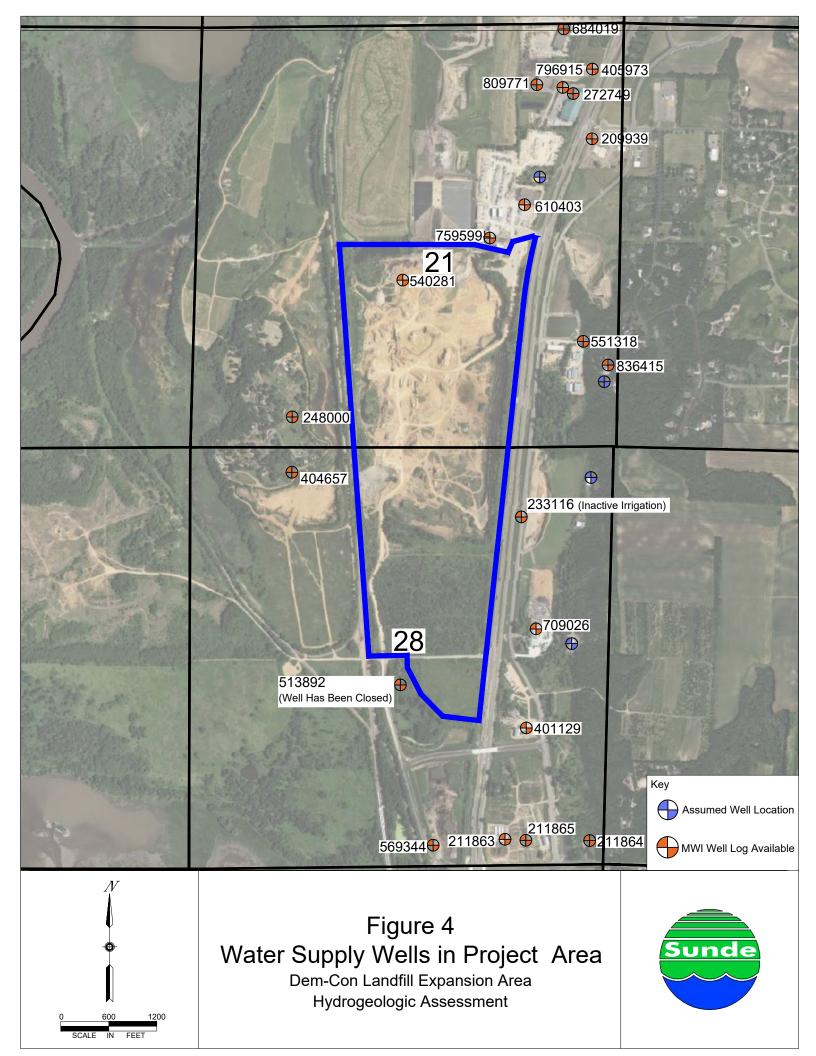

Signature of Engineer/Geologist

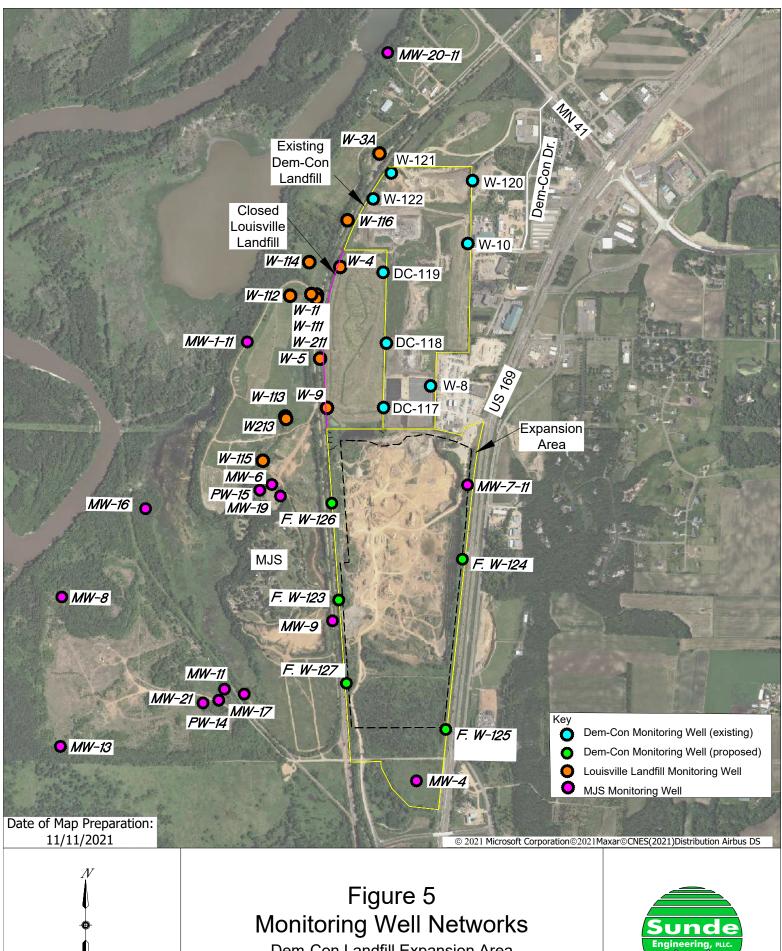
Sunde Engineering, PLLC 10830 Nesbitt Avenue South Bloomington, MN 55437 Address <u>11/29/2021</u> Date

<u>952-881-3344</u> Telephone 21842 Registration Number


FIGURES


Glacial Drift, Sand, Gravel and Clay	Ap Th	proximate ickness (in feet) Varies
Prairie du Chien Group	Ор	100-150
Jordan Sandstone	€j	80-120
St. Lawrence Formation	€sl	55-80
Tunnel City Group (Formerly Franconia Formation)	€f	120-140
Wonewoc Sandstone (Formerly Ironton and Galesville Sandstones)	€ig	50-65
Eau Claire Formation	¢e	75
Mt. Simon Sandstone	€m	200-300

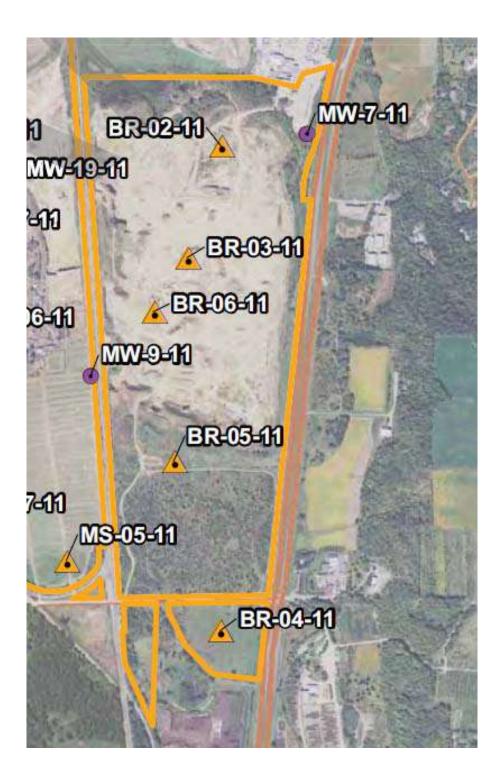


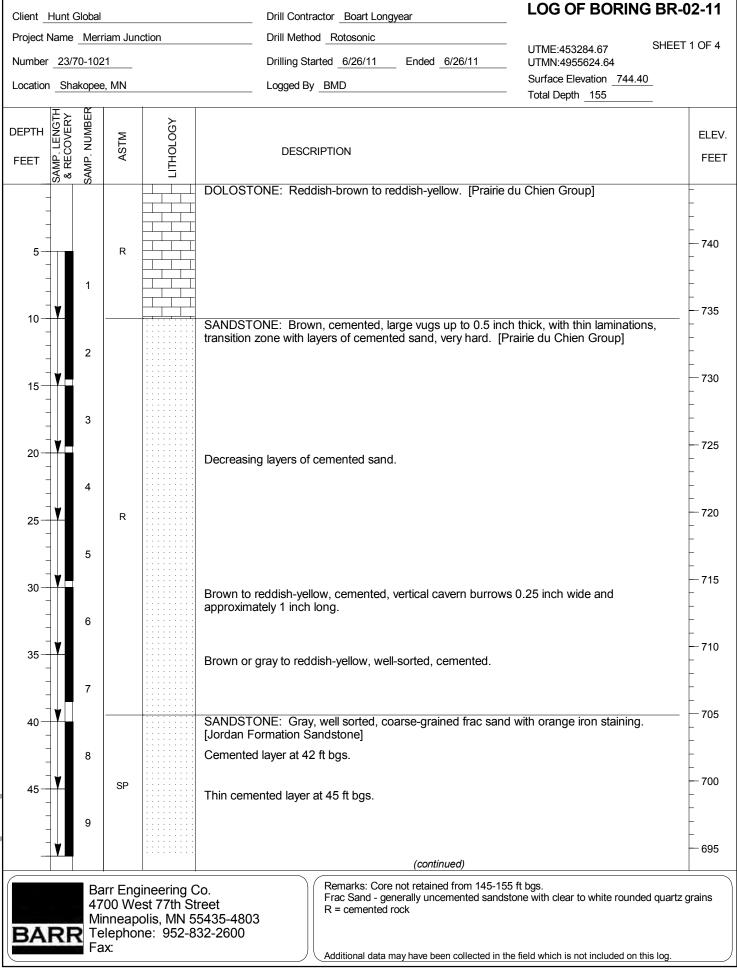


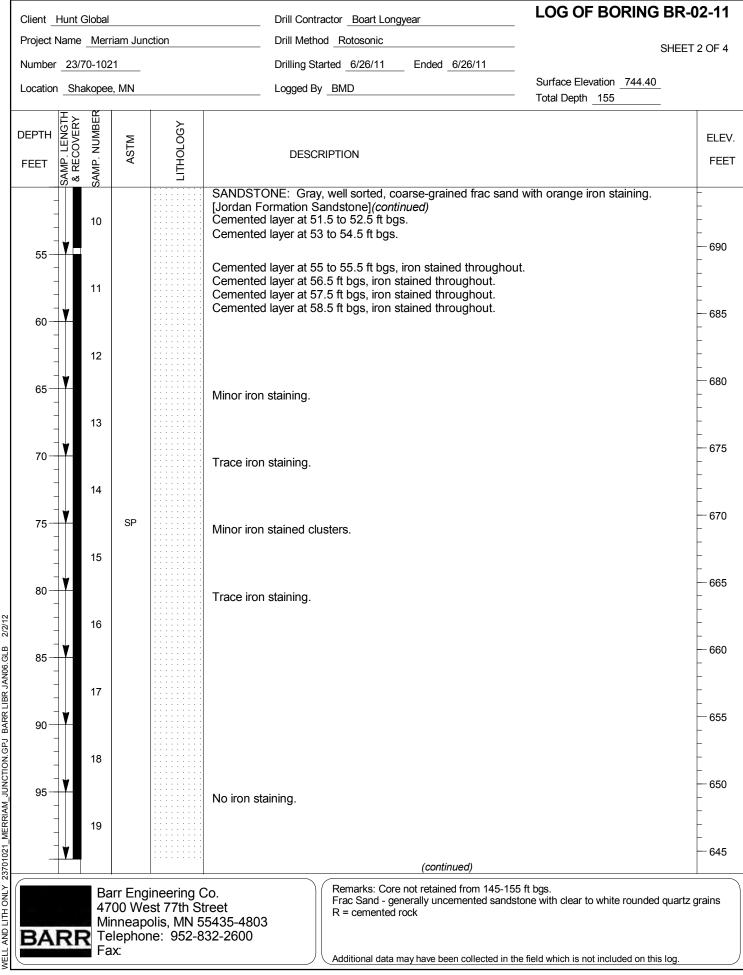
NOT TO SCALE

Dem-Con Landfill Expansion Area Hydrogeologic Assessment

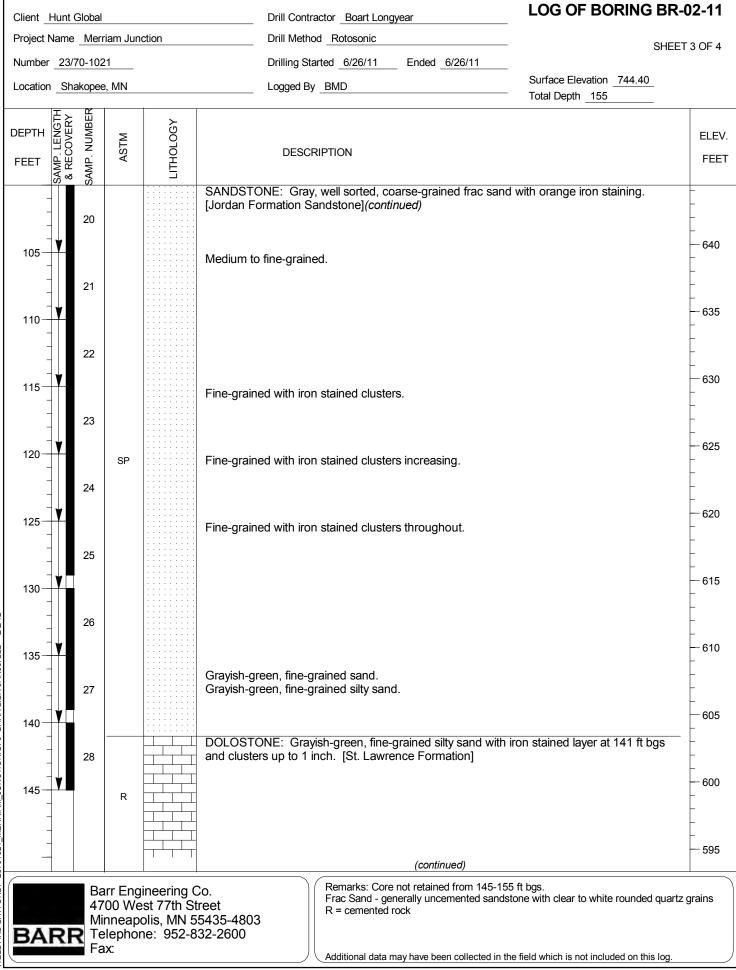
1500

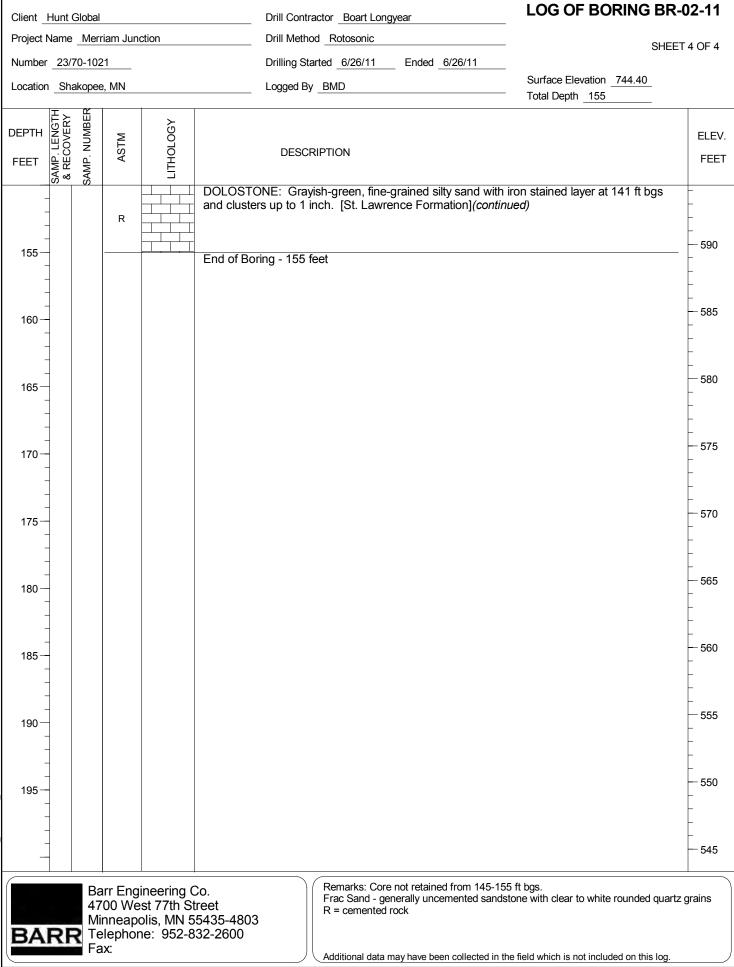

FEET

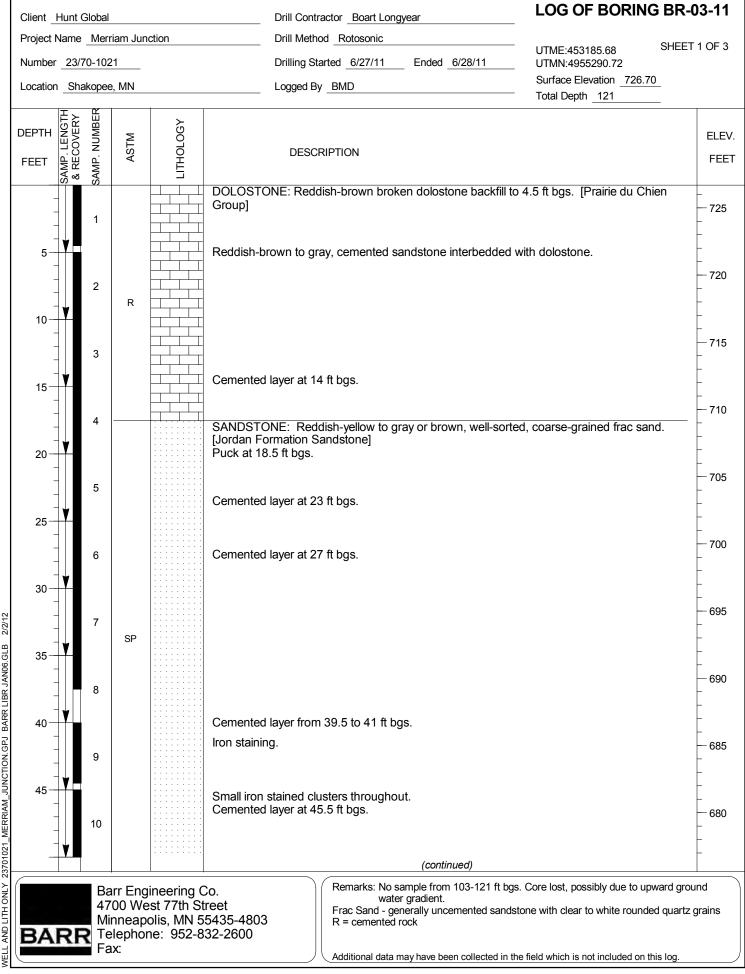

SCALE

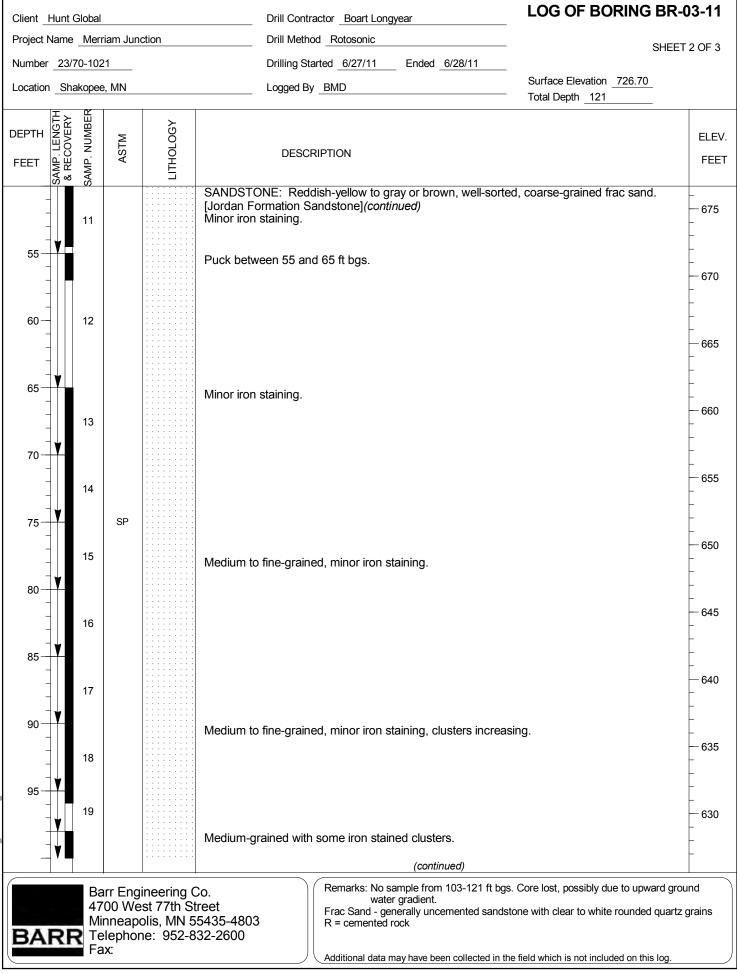

ATTACHMENT 1 Soil Boring Logs

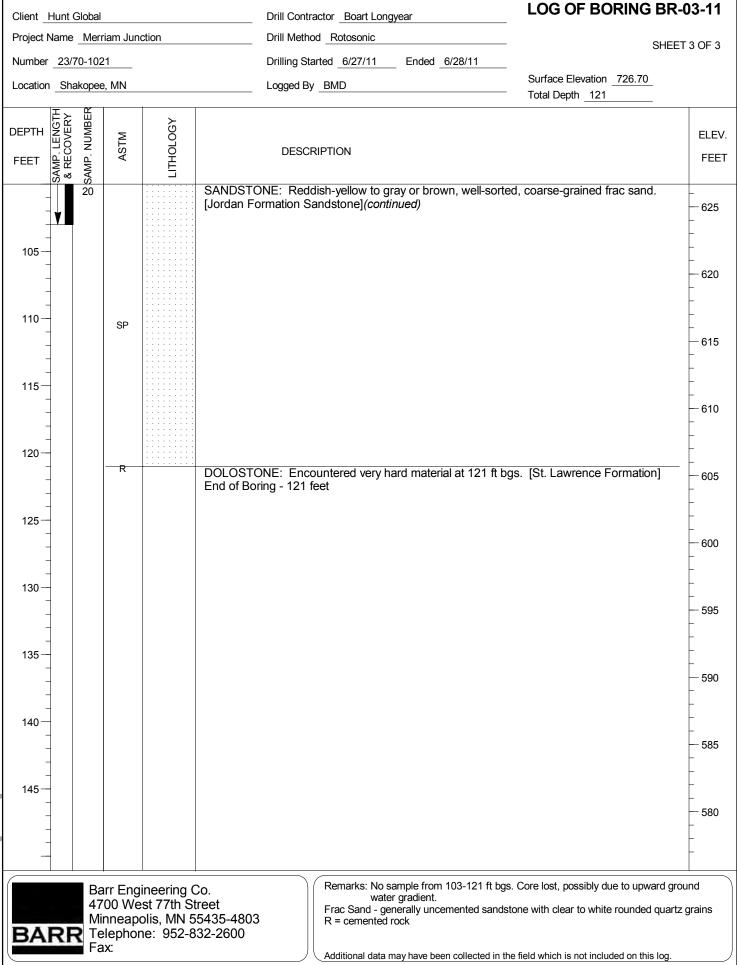
Test pit and soil boring location map

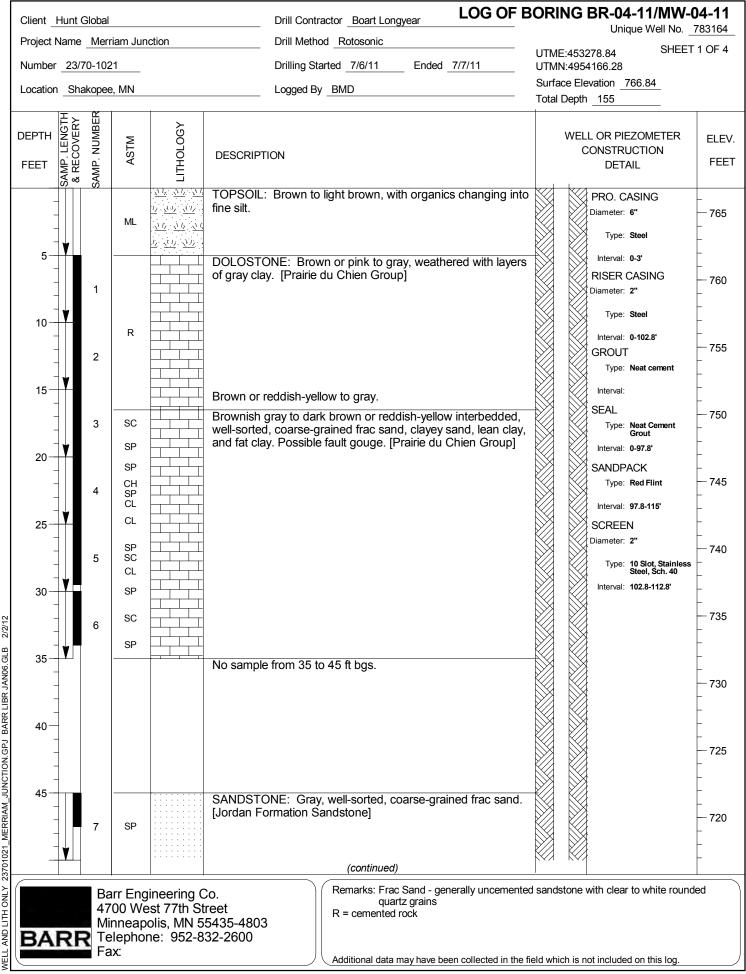


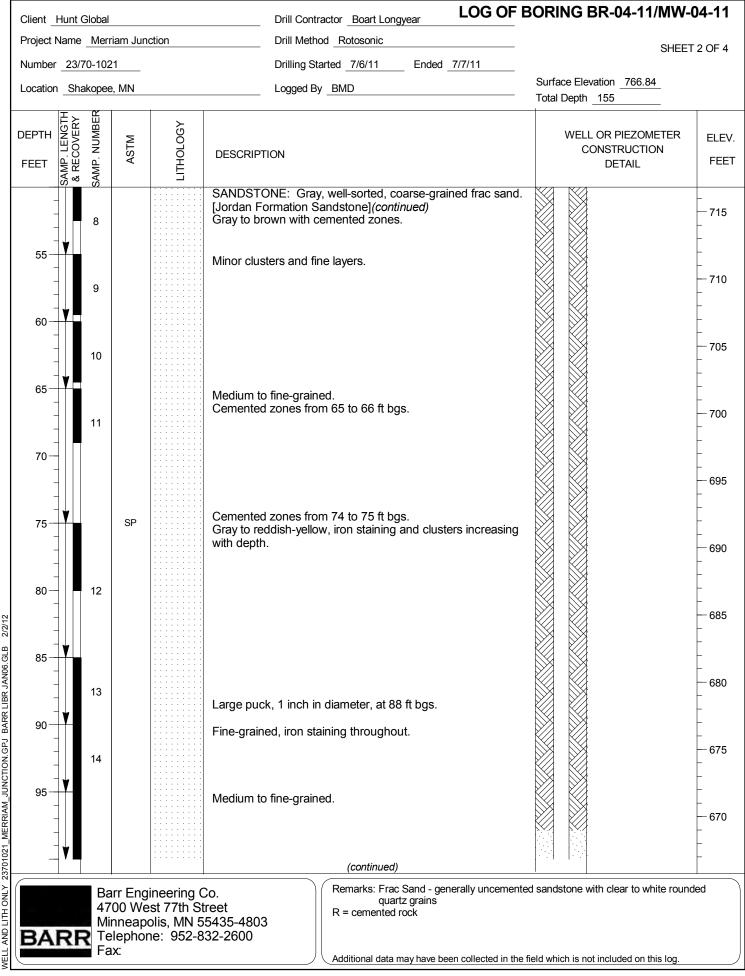

2/2/12

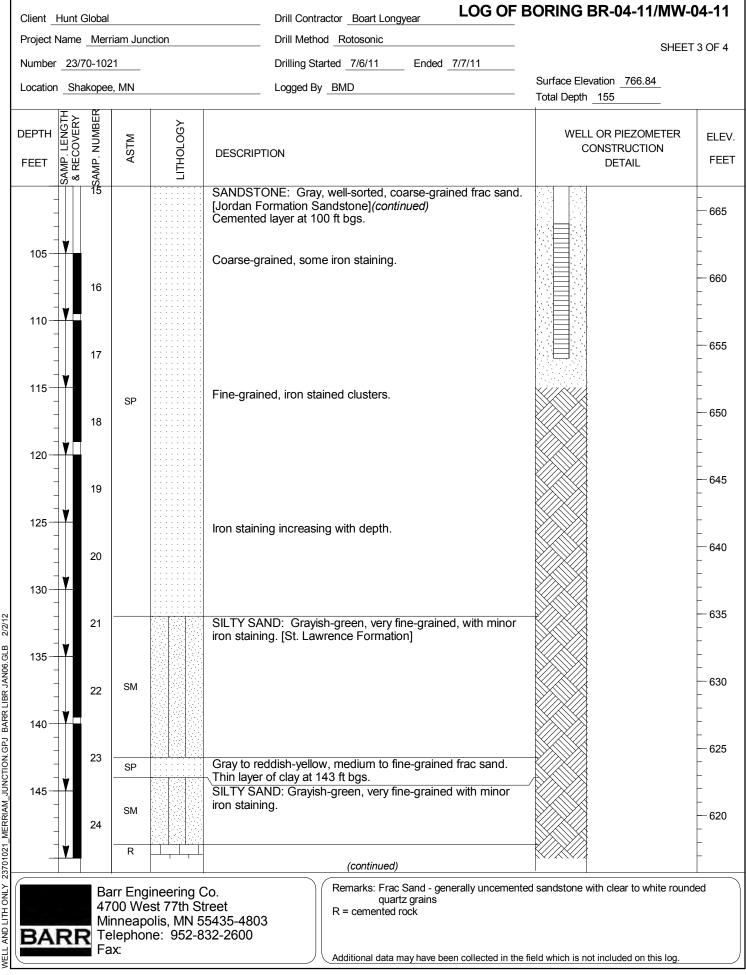



WELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ BARR LIBR JAN06.GLB

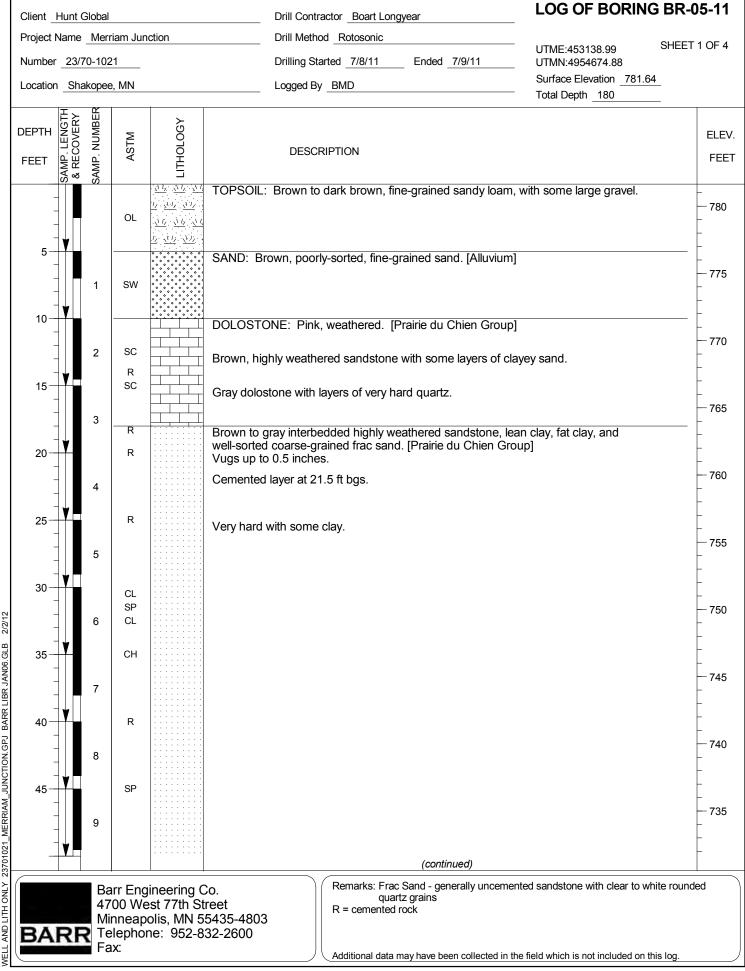

VELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ_BARR LIBR JAN06.GLB 2/2/12

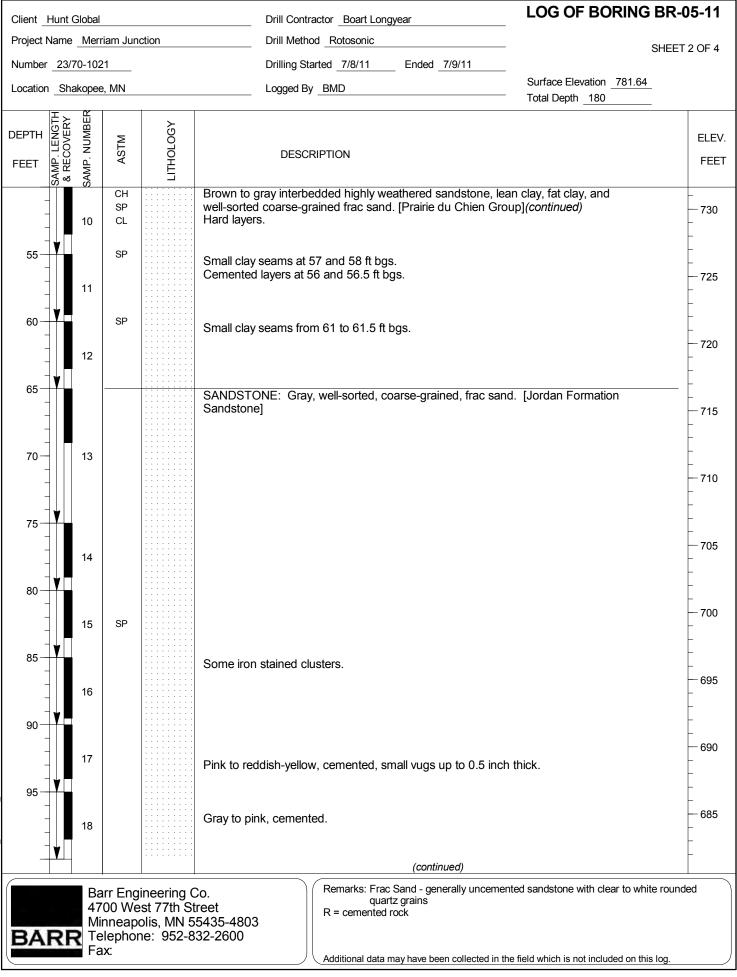


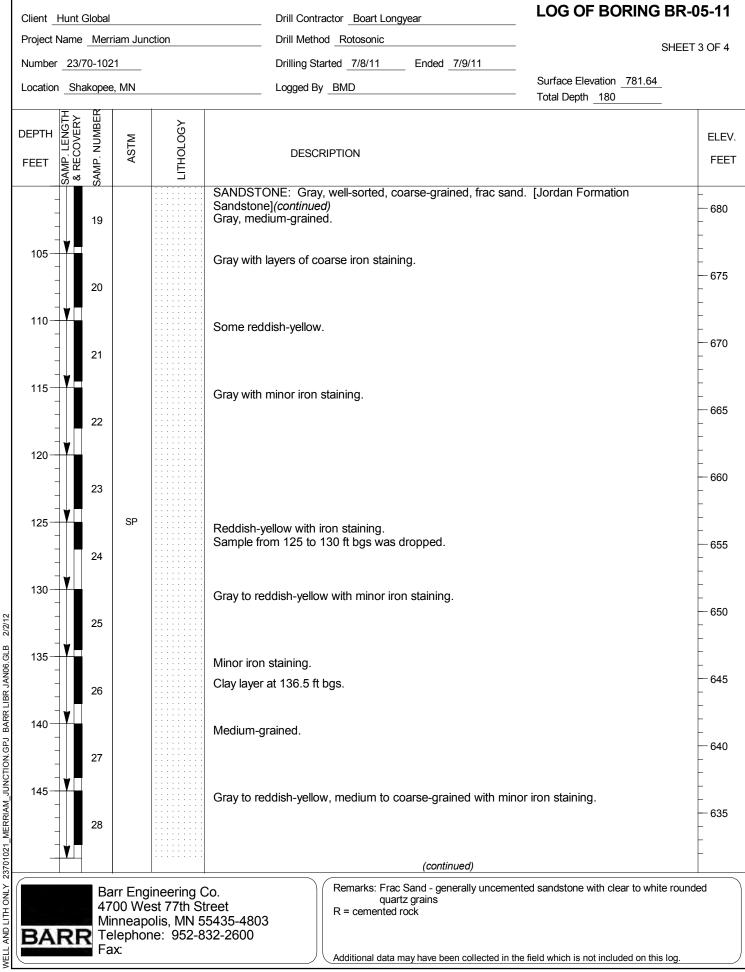




WELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ_BARR LIBR JAN06.GLB 2/2/12

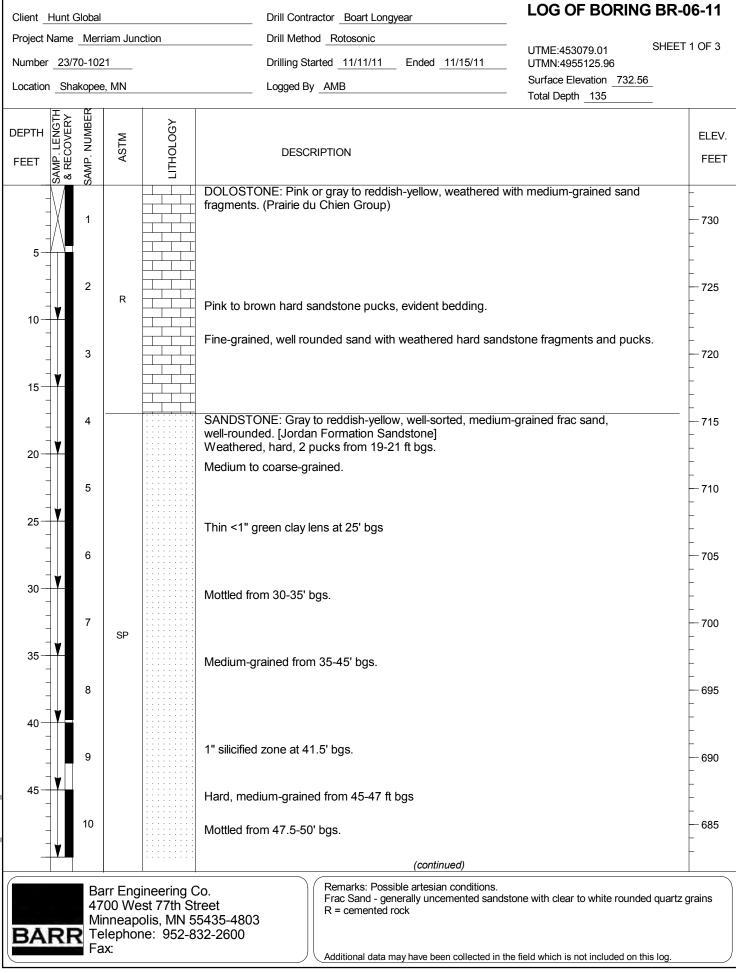


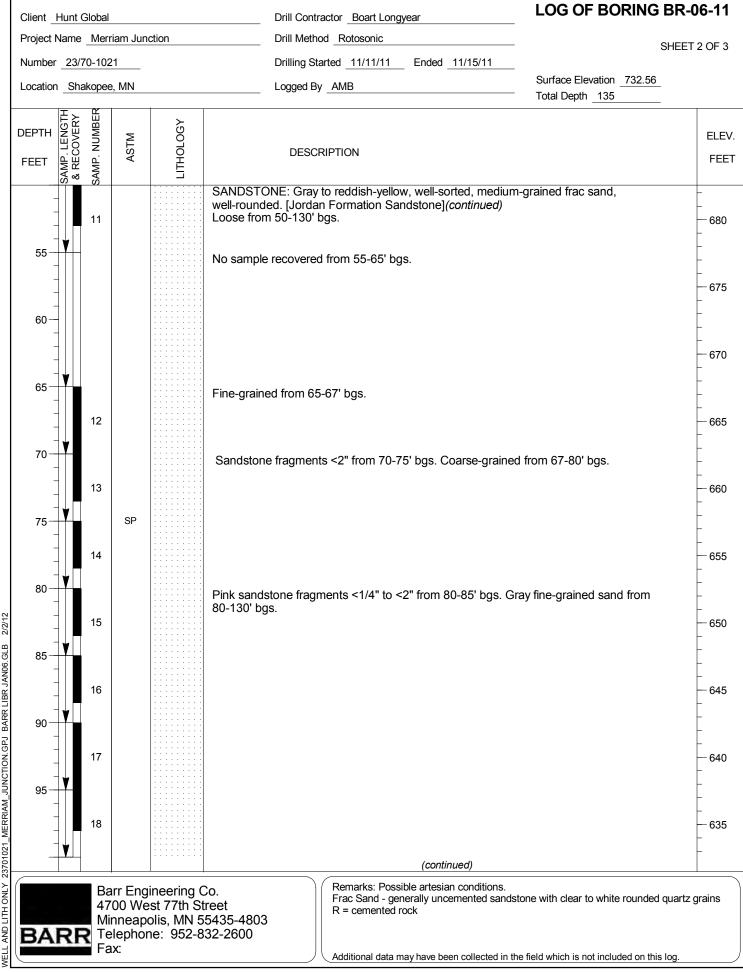




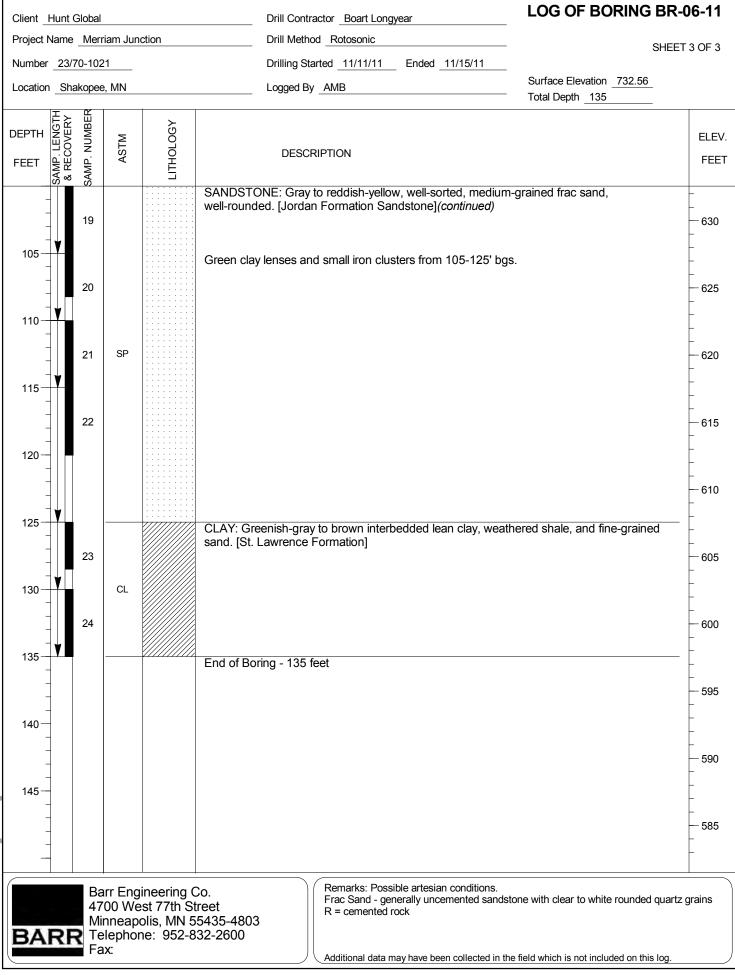
WELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ BARR LIBR JAN06.GLB

Client Hunt Global	Drill Contractor Boart Longyear LOG OF BORING BR-04-11/MW-04-11		
Project Name Merriam Junction	Drill Method Rotosonic	SHEET	4 OF 4
Number _ 23/70-1021	Drilling Started 7/6/11 Ended 7/7/11	UNLET	- 10 -
Location Shakopee, MN	Logged By BMD	Surface Elevation 766.84	
		Total Depth <u>155</u>	
EET ASTMP: LENGTH ASTM ASTM LENGTH ASTM ASTM ASTM ASTM ASTM		WELL OR PIEZOMETER	ELEV.
	CRIPTION	CONSTRUCTION DETAIL	FEET
SAN SAN	OSTONE: Green to reddish-yellow, clayey sand and		
shale	e, fine-grained. [St. Lawrence Formation](continued)		615
25 R			_
155 End	of Boring - 155 feet		
	5		- 610
			-
			-
			- 605 -
165—			_
			600
			_ 000
170-			-
			- 595
			_
175-			
			- 590
			-
			-
			585
			_
			- 580
			- 500
190			_
			-
195-			_
			- 570
			-
Barr Engineering Co.	Remarks: Frac Sand - generally uncement quartz grains	ed sandstone with clear to white round	ed
4700 West 77th Street Minneapolis, MN 55435-	4803		
BARR Telephone: 952-832-26 Fax:			
	Additional data may have been collected in the	e field which is not included on this log.)





WELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ BARR LIBR JAN06.GLB

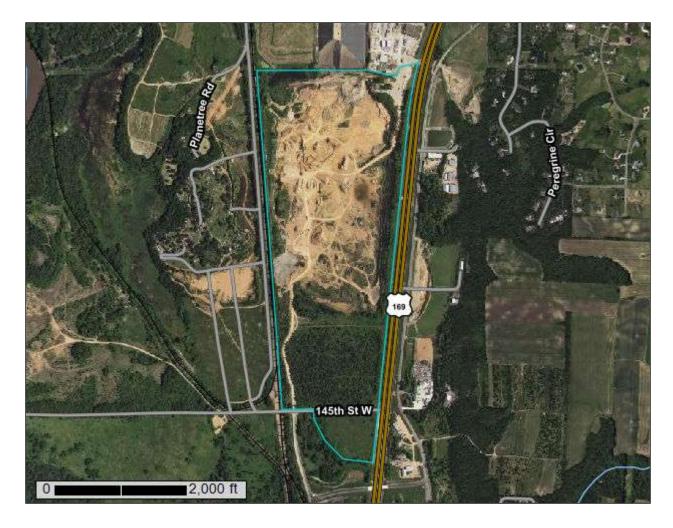


2/2/12

WELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ BARR LIBR JAN06.GLB

VELL AND LITH ONLY 23701021_MERRIAM_JUNCTION.GPJ_BARR LIBR JAN06.GLB 2/2/12

ATTACHMENT 2 Soil Survey



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Scott County, Minnesota

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND			l l	MAP INFORMATION		
Area of Intere	. ,	300	Spoil Area	The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	٥	Stony Spot	1:20,000.		
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Please rely on the bar scale on each map sheet for map measurements.		
📈 s	Soil Map Unit Lines	Ŷ	Wet Spot			
	Soil Map Unit Points	\triangle	Other	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
-	int Features	, * * :	Special Line Features	Coordinate System: Web Mercator (EPSG:3857)		
•	Blowout	Water Fea	itures			
-	Borrow Pit	\sim	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts		
	Clay Spot	Transport	ration Rails	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more		
0 C	Closed Depression	~	Interstate Highways	accurate calculations of distance or area are required.		
X a	Gravel Pit	~	US Routes	This product is generated from the USDA-NRCS certified data as		
	Gravelly Spot	~	Major Roads	of the version date(s) listed below.		
0	andfill	~	Local Roads	Soil Survey Area: Scott County, Minnesota		
A. L	ava Flow	Backgrou	nd	Survey Area Data: Version 16, Jun 5, 2020		
alle N	/larsh or swamp		Aerial Photography	Soil map units are labeled (as space allows) for map scales		
<u>∽</u> N	line or Quarry			1:50,000 or larger.		
0	liscellaneous Water			Date(s) aerial images were photographed: May 30, 2020—Jul 3,		
O F	Perennial Water			2020		
V F	Rock Outcrop			The orthophoto or other base map on which the soil lines were		
∔s	Saline Spot			compiled and digitized probably differs from the background		
	Sandy Spot			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		
🖶 S	Severely Eroded Spot					
o د	Sinkhole					
} s	Slide or Slip					
ത്ട	Sodic Spot					

ATTACHMENT 3 WATER SUPPLY WELLS

ATTACHMENT 3

SECTION 21 WATER SUPPLY WELL NETWORK: WELL LOGS

540281

CountyScottQuadShakopeeQuad ID105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	10/06/1994
Update Date	12/31/2020
Received Date	

Well Name Township	Range Dir Se			Well Depth	Depth Completed Date Well Completed (00.0) 0.4/02/1004			
BRYAN ROCK 115	23 W 21	CAAD topographic map		400 ft. Drill Method	400 ft. 04/22/1994			
Elevation 800 ft. Elev. Met	hod 7.5 minute	topographic map	(+/- 5 leet)	_	Non-specified Rotary Drill Fluid Bentonite			
Address				Use indust				
C/W 13580 JOHNS	ON MEMORIAL I	OR SHAKOPE	E MN	Well Hydrofra				
				Casing Type				
Stratigraphy Information Geological Material	From To (ft.) Color	Hardness	Drive Shoe?				
GRAVEL	0 21	BROWN	HARD	Casing Diamo	eterWeightHole Diameter190ft.lbs./ft.17in. To21ft.			
LIMESTONE	21 65	RED	HARD	12 in. To	21 ft. lbs./ft. 12 in. To 190 ft.			
LIMESTONE	65 90	RED	HARD	12 11. 10	8 in. To 400 ft.			
SANDSTONE	90 180	BROWN	SOFT					
SANDSTONE	180 187	GREEN	MEDIUM	0 11				
SANDSTONE	187 248	GREEN	MEDIUM	Open Hole	From 190 ft. To 400 ft. Type Make			
SANDSTONE	248 362	GREEN	MEDIUM	Screen?	Type Make			
SANDSTONE	362 400	GREEN	MEDIUM					
				Static Water	r Level			
				40 ft.	land surface Measure 04/22/1994			
				Pumping Le 40 ft.	wel (below land surface) hrs. Pumping at 0 g.p.m.			
				Wellhead Co	ompletion r manufacturer WHITEWATER Model			
				· ·	Protection 12 in. above grade			
					le (Environmental Wells and Borings ONLY)			
				Grouting Int	formation Well Grouted? X Yes No Not Specified			
				MaterialAmountFromTo08ft.190ft.				
				Nearest Kno	own Source of Contamination			
					North Direction Landfill Type ected upon completion? Yes No			
				Pump	Not Installed Date Installed 04/08/1994			
				Manufacture	ALKWOTOK			
				Model Numb				
				Abandoned	pp pipe <u>147</u> ft Capacity <u>300</u> g.p. Typ <u>Submersible</u>			
					y have any not in use and not sealed well(s)?			
				Variance Was a varian	ce granted from the MDH for this well? Yes No			
				Miscellaneo				
				First Bedrock	I I I I I I I I I I I I I I I I I I I			
				Last Strat	Wonewoc Sandstone Depth to Bedrock 21 ft			
Remarks				Located by	Minnesota Geological Survey			
GAMMA LOGGED 3-30-1994.				System	Digitized scale 1.24,000 of larger (Digitizing Table)			
SEALED 10-14-2020 BY 1445				-	UTM - NAD83, Zone 15, Meters X 453125 Y 4955704 ber Verification Information from Input Date 03/10/1995			
				Angled Drill				
				Well Contra	actor			
				Bohn Well	· · · · · · · · · · · · · · · · · · ·			
				Licensee E	Business Lic. or Reg. No. Name of Driller			
Minnesota Well Index	Report		540)281	Printed on 09/15/2021 HE-01205-15			

272749

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 05/22/2013

 Update Date
 03/03/2017

 Received Date

Well Name	Towns 115	hip Range	Dir Section W 21	Subsection AADBCB	Well Depth 197 ft.	h Depth Completed Date Well Completed 197 ft.	
Elevation	818 ft. Elev	. Method	7.5 minute topogr	aphic map (+/- 5 feet)	Drill Method	d Drill Fluid	
Address					Use dome	nestic Status Se	ealed
Well	13162 JO	OHNSON MEN	MORIAL HY SH	IAKOPEE MN 55379	Well Hydrofr	fractured? Yes No From To	
					Casing Type		
Stratigraph	y Information	1			Drive Shoe?		
Geological I		From		olor Hardness	Casing Diam	meter Weight	
GLACIAL I		0	166		4.5 in. To	187 ft. lbs./ft.	
PRAIRIE D		166	170 197				
JUKDAN S.	ANDSTONE	170	197				
					Open Hole	107 10 10 10 10	
					Screen?	Type Make	
					Static Water	er Level	
					96 ft.	land surface Measure 05/22/2013	
					Pumping Le	Level (below land surface)	
					Wellhead C	Completion	
						ter manufacturer Model	
						g Protection 12 in. above grade	
						ade (Environmental Wells and Borings ONLY)	a
					Grouting In	Information Well Grouted? Yes No X Not Specif	fied
						nown Source of Contamination feet Direction	Туре
					Well disinfe	ifected upon completion? Yes No	
					Pump Manufacture	Not Installed Date Installed	
					Model Numb		
					Length of dro		
					Abandoned Does propert	d brty have any not in use and not sealed well(s)? Yes	No
					Variance] 110
						ance granted from the MDH for this well? Yes	No
					Miscellaneo	cous	
					First Bedrock		
					Last Strat	Jordan Sandstone Depth to Bedrock 170	ft
Remarks					Located by Locate Metho	Winnesour Georogicul Survey	
	LOGGED 5-22				System	UTM - NAD83, Zone 15, Meters X 453778 Y 495640:	5
	IN A WELL PIT				Unique Num	mber Verification Information from Input Date 05/22/2	2013
	ED BY BOHN 5 31-2013 BY 144).		Angled Dril	ill Hole	
					Well Contra		
					Minnesota Licensee F	ta Geological Survey MGS Business Lic. or Reg. No. Name of Driller	r
					Licensee F	Business Lic. or Reg. No. Name of Driller	1
				27	2749		
Minneso	ota Well In	dex Repor	t		/	Printed on 09	0/15/2021 01205-15
						ne-u	51205-15

796915

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	09/18/2013
Update Date	02/05/2014
Received Date	11/27/2013

Well NameTownshipRangeDir SectionSubsectionDEM CON11523W21AADBBC	250 ft.	250 ft. 09/07/2013				
Elevation 818 ft. Elev. Method 7.5 minute topographic map (+/						
Address	Use con	mercial Status Active				
C/W 13161 DEM CON DR SHAKOPEE MN 55379	Well Hydro					
	Casing Ty					
Stratigraphy Information Geological Material From To (ft.) Color H	ardness Casing Dia					
-	OFT Casing Dia Casing Dia	5				
	IEDIUM	17 in. To 250 ft.				
SANDROCK 172 250 BROWN M	IEDIUM					
	Open Hole	From 183 ft. To 250 ft. Type Make				
	Screen?	Туре маке				
	Static Wat 80 ft.	er Level land surface Measure 09/07/2013				
	1 8	Level (below land surface)				
	160 ft.	12 hrs. Pumping at 1000 g.p.m.				
		Completion ter manufacturer MONITOR Model				
		g Protection I 12 in. above grade				
		ade (Environmental Wells and Borings ONLY)				
	_	Grouting Information Well Grouted? X Yes No Not Specified				
	Material neat ceme	Amount From To nt 9.5 Cubic yards ft. 183 ft.				
	<u>52</u>	Mown Source of Contamination feet West Direction Septic tank/drain field Type fected upon completion? X Yes No				
	Model Nu	Pump Not Installed Date Installed 10/24/2013 Manufacturer's name CENTRIPRO 0 Model Number <u>8M754</u> HP <u>75</u> Volt <u>460</u> Length of drop pipe <u>126</u> ft Capacity <u>750</u> g.p. Typ Submersible				
	Abandone					
	Variance	rty have any not in use and not sealed well(s)? Yes X No				
	Miscellan					
	First Bedro Last Strat Located by	Jordan Sandstone Depth to Bedrock 168 ft				
Remarks	Locate Me	initiation of field				
DRILLING FLUID: BENTONITE AND FOAM. PUMP MANUFACTURER: BERKELY PUMP END.	System Unique Nu	UTM - NAD83, Zone 15, Meters X 453765 Y 4956426 mber Verification Info/GPS from data Input Date 09/18/2013				
	Angled D	ill Hole				
		ractor ell Drilling Co., Inc. 1445 FRITZ, R. Business Lic. or Reg. No. Name of Driller				
Minnesota Well Index Report	796915	Printed on 09/15/2021 HE-01205-15				

809771

County Scott Quad Shakopee Quad ID 105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

 Update Date
 02/25/2020

 Received Date
 07/00/2015

Well Name Township Range Dir Section Subsection		
DEM CON 115 23 W 21 AACABI		219 ft. 06/19/2015
Elevation 815 ft. Elev. Method Calc from NED (Natl.Elev.Data	uset-30m) Drill Mo	thod Non-specified Rotary Drill Fluid Bentonite
Address	Use I	ublic supply/non-commtransient Status Active
Well 13142 DEM CON DR SHAKOPEE MN 55379	Well Hy	lrofractured? Yes No X From To
	Casing	
Stratigraphy Information Geological Material From To (ft.) Color H	ardness Casing	
-	Casing	DiameterWeightHole DiameterTo214ft.lbs./ft.12.in. To143ft.
	IEDIUM 4 in. IEDIUM 8 in.	
	ARD	4 in. To 219 ft.
	ARD	
	IEDIUM	
SANDSTONE 200 219 YEL/GRN M	IEDIUM Open H	
	Screen?	Type Make
	Static V 75	Water Levelft.land surfaceMeasure06/19/2015
	Pumpin	g Level (below land surface)
	1	t. hrs. Pumping at 30 g.p.m.
	Wellhe	ad Completion
		dapter manufacturer MONITOR Model
		sing Protection 12 in. above grade -grade (Environmental Wells and Borings ONLY)
	Grouti	g Information Well Grouted? X Yes No Not Specified
	Materi	l Amount From To
	neat ce	
	benton	
	cutting	
		Known Source of Contamination
	<u>12</u> Well d	feet South Direction Other Type isinfected upon completion? X Yes No
	Pump	Not Installed Date Installed <u>06/19/2015</u>
		cturer's name GOULDS
		Number HP 3 Volt 230 of drop pipe 126 ft Capacity 33 g.p. Typ Submersible
	Abando	
		operty have any not in use and not sealed well(s)? Yes X No
	Varian	
		variance granted from the MDH for this well? Yes X No
	Miscell	aneous
	First Be	drock Aquifer
	Last Str	
Remarks	Located	
WELL USE: DOMESTIC, NONCOMMUNITY PWS.	Locate	GIB BIT OIL (averaged) (15 meters)
NEAREST KNOWN SOURCE OF CONTAMINATION: POWER.	Systen	
DRILLERS: LEE WECKMAN & MARTY RADEMACHER.		Number Verification Info/GPS from data Input Date 09/18/2015 Drill Hole
PREVIOUS USE CODE: DO (DOMESTIC) 2/25/2020.	Aligieu	
	Well C	ontractor
		Well Drilling Co., Inc. 1445 SEE REMARKS
		see Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	809771	Printed on 09/15/2021
		HE-01205-15

405973

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/14/2014

 Received Date

Well NameTownshipRangeDir SectionSubsectionHALLORAN,11523W21AAACDA	Well Deptl 174 ft.	Depth CompletedDate Well Completed174 ft.07/27/1984
Elevation 822 ft. Elev. Method 7.5 minute topographic map (+/- 5		
Address		
	Use dom	
C/W 13122 JOHNSON MEMORIAL DR SHAKOPEE MY	N 55379 Well Hydrol	ractured? Yes No From To
	Casing Ty	
Stratigraphy Information	Drive Shoe	? Yes No Above/Below
	dness Casing Dia	5
SAND & GRAVEL 0 17 BROWN SOL	4 11.10	169 ft. lbs./ft.
ROCKS, GRAVEL & 17 42 BROWN HA		
CLAY & ROCKS 42 87 BROWN SO ROCKS & CLAY 87 139 BROWN HA		
SAND (FINE) 139 155 BROWN SOL		
SAND (FINE) 139 135 BROWN SOI SAND & GRAVEL 155 174 BROWN SOI	Open Hole	From ft. To ft.
	Screen? Diameter	Type stainless Make JOHNSON Slot/Gauze Length Set 12 5 ft. 169 ft. 174 ft.
	2 in.	12 5 ft. 169 ft. 174 ft.
	Static Wat	
	120 ft.	land surface Measure 07/27/1984
	Pumping I	evel (below land surface)
	ft.	hrs. Pumping at 35 g.p.m.
	Wellhead	Completion
		er manufacturer Model
		Protection 12 in. above grade
		de (Environmental Wells and Borings ONLY)
	Grouting I	
	Material	Amount From To
	bentonite	ft. ft.
	Nearest K	own Source of Contamination
		feet Direction Type
	Well disin	Sected upon completion? X Yes No
	Pump	Not Installed Date Installed
	Manufactur	HONLER
	Model Num Length of d	
	Abandone	
		ty have any not in use and not sealed well(s)? Yes No
	Variance	
	Was a varia	nce granted from the MDH for this well? Yes No
	Miscellane	DUS
	First Bedro	Qual Surred
	Last Strat	sand +larger-brown Depth to Bedrock ft
Remarks	Located by	Minnesota Geological Survey
	Locate Met System	od Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters X 453836 Y 4956499
		ber Verification Address verification Input Date 07/26/2005
	Angled Dr	
	Well Cont	actor
	Leuthner	Well Co. 10125 SCHMIEG, K.
	Licensee	Business Lic. or Reg. No. Name of Driller
 	405052	1
Minnesota Well Index Report	405973	Printed on 09/15/2021
		HE-01205-15

610403

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	03/22/1999
Update Date	03/10/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectionANCHOR BLOCK 11523W21ADCBAD	300 ft.	300 ft. 01/06/1998
Elevation 803 ft. Elev. Method 7.5 minute topographic map (+/-		Construction of the second sec
Address	Use pub	ic supply/non-commtransient Status Active
Contact 13450 169 HY SHAKOPEE MN 55379	Well Hydro	ractured? Yes No From To
Well 13450 JOHNSON MEMORIAL DR SHAKOPEE M	8,2	
Stratigraphy InformationGeological MaterialFrom To (ft.)ColorHa	urdness Casing Dia	
		-
	EDIUM 4 in. To	178 ft. 10. in. To 128 ft. 128 ft. 28 lbs./ft. 8 in. To 176 ft.
	ARD	4 in. To 300 ft.
SANDSTONE 166 300 WHITE MI	EDIUM	
	0 U-1-	
	Open Hole Screen?	From 178 ft. To 300 ft. Type Make
	Static Wat	
	78 ft.	land surface Measure 01/06/1998
	Pumping 1	evel (below land surface)
	Wallboad	Completion
		completion er manufacturer MONITOR Model SPK
		g Protection 12 in. above grade
		de (Environmental Wells and Borings ONLY)
	_	nformation Well Grouted? X Yes No Not Specified
	Material neat ceme	Amount From To at 6 Cubic yards 0 ft. 178 ft.
	28 Well disir	Source of Contamination feet South Direction Septic tank/drain field Type fected upon completion? X Yes No
	Pump Manufactu Model Nur Length of	$\frac{1}{1000}$ HP <u>7.5</u> Volt <u>440</u>
	Abandone	
		rty have any not in use and not sealed well(s)? Yes X No
	Variance Was a vari	nce granted from the MDH for this well? Yes X No
	Miscellan	
	First Bedro Last Strat	
	Located by	Jordan Sandstone Depth to Bedrock 128 ft Minnesota Department of Health
Remarks	Locate Me	-
	System	UTM - NAD83, Zone 15, Meters X 453623 Y 4956032
		nber Verification Input Date 03/24/1999
	Angled D	ili Hole
	Well Cont	
	Gary's V	
	Licensee	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	610403	Printed on 09/15/2021 HE-01205-15

759599

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	12/05/2008
Update Date	03/10/2014
Received Date	04/09/2009

Well NameTownshipRangeANCHOR BLOCK 11523	Dir Section Subsecti W 21 DBAAA		Well Depth 210 ft.	Depth Completed 210 ft.	Date Well Comp 11/26/2008	oleted
Elevation 805 ft. Elev. Method 7.	5 minute topographic map (+	+/- 5 feet)	Drill Method	Non-specified Rotary	Drill Fluid Bentonite	
Address			Use public	supply/non-commtransient	Sta	tus Active
Well 13450 169 HY SHAKOP	EE MN 55379		Well Hydrofra	ctured? Yes No	From	То
			Casing Type		Joint Welded	
Stratigraphy Information			Drive Shoe?	Yes X No	Above/Below	
Geological Material From	<pre></pre>	Hardness	Casing Diamo	8		iameter
GRAVEL/ROCKS 0		MEDIUM	6 in. To	120 ft. lbs./ft.	13 in.	
GRAVEL/SAND 30 LIMESTONE 42		SOFT HARD			6 in.	. To 210 ft.
LIMESTONE 42 LIMESTONE 63		HARD				
SANDSTONE 105		SOFT				
			Open Hole Screen?	From 120 ft. Type	To 210 ft. Make	
			Static Water 82 ft.	Level land surface	Measure 11/26/	/2008
			Pumping Le	vel (below land surface)		
			86 ft.	2 hrs. Pumping at	125 g.p.m.	
			Wellhead Co			
				manufacturer BAKER	Model	
				Protection [X] 12 in. e (Environmental Wells and Bor	above grade	
			Grouting Int		-	Not Specified
			Material neat cement	Amo 95	Sacks	To ft. 120 ft.
			50 fe Well disinfe		X Yes No	<u>lrain field</u> Type
			Pump Manufacturer Model Numb Length of dro	's name GRUNDFOS er <u>75S75-12</u> HP <u>7</u>	nte Installed <u>12/18/20</u> 2.5 Volt <u>46</u> 75 g.p. Typ <u>Su</u>	
			Abandoned	<u>100</u> n orpanij	<u>15</u> 6.p. 19p <u>50</u>	iomersiole
			Variance	v have any not in use and not sealed w		Yes X No
				ce granted from the MDH for this wel	II? Yes	X No
Remarks			Miscellaneo First Bedrock Last Strat Located by Locate Metho	Prairie Du Chien Group Jordan Sandstone Minnesota Department o		42 ft
			System Unique Numb	UTM - NAD83, Zone 15, Meters er Verification Info/GPS f	X 453510	Y 4955832 12/05/2008
			Well Contra EH Renner Licensee E	and Sons, Inc.		AUGHT, V e of Driller
Minnesota Well Index Report		759	599		Р	rinted on 09/15/2021 HE-01205-15

209939

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 10/27/2017

 Received Date
 10/27/2017

Well NameTownshipRangeDir SectionSubsectionLANO11523W21ADABAE	3 280 ft.		Depth Completed 280 ft.	Date We 06/13/19	ell Completed	
Elevation 820 ft. Elev. Method 7.5 minute topographic map (+/				Drill Fluid		<u> </u>
Address		mmercial			Status	Sealed
C/W 3021 133RD ST W SHAKOPEE MN 55379		ofractured?	Yes No	Joint	То	
Stratigraphy Information Geological Material From To (ft.) Color H	Casing T Drive Sh lardness Casing D	oe? Yes	Casing No	Joint Above/Below	0 ft.	
SAND & GRAVEL 0 230	4 in. 7		lbs./ft.			
	IEDIUM					
ROCK 240 280 VARIED H	IARD					
	Open Ho Screen?	e From	231 ft. Type	To 280 Make	ft.	
	Static W	a ter Level t. land sur	face	Measure	06/13/1977	
		Level (below l		Weasure	00/15/17/1	
	- · · ·	1 Com 1 4	·			
		d Completion	r	M	odel	
		ing Protection		a. above grade		
		Information	Well Grouted?	rings ONLY)	Not S	pecified
		Known Source feet infected upon co	of Contamination Direction ompletion?	Yes	No	Туре
	Pump Manufac	turer's name	t Installed D	ate Installed		
	Model N Length o	umber f drop pipe	HP <u>f</u> t Capacity	0 Vol g.p.	t Гур	
	Abandor				_	—
	Varianc)	t in use and not sealed		Yes	No
	Was a va Miscella		m the MDH for this we	-11?	Yes	No
	First Bed Last Stra Located	St.Lawr	rence Formation rence-Tunnel City nnesota Geological S	Depth to Bec	St.Lawrence- lrock 230	ft
Remarks 324-B-8 ALLIS-CHALMERS DEALERSHIP	Locate M System	ethod Dig	itized - scale 1:24,00 AD83, Zone 15, Meters	00 or larger (Digiti		6235
SEALED 08-30-2017 BY 1445	Unique N	umber Verificatio	n			/09/1995
	Angled	Drill Hole				
	Well Co			27259		
		ated Well Co. ee Business	Lic.	or Reg. No.	Name of D	riller
Minnesota Well Index Report	209939					on 09/15/2021 HE-01205-15

551318

CountyScottMINQuadShakopeeWELQuad ID105DM

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	04/11/1995
Update Date	08/18/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectionC.H.11523W 21DDABAB	-	h Depth Completed Date Well Completed 220 ft. 10/24/1994
Elevation 830 ft. Elev. Method 7.5 minute topographic map (+/-	- 5 feet) Drill Meth	d Non-specified Rotary Drill Fluid Bentonite
Address	Use do	
C/W 13731 JOHNSON MEMORIAL DR SHAKOPEE N	AN Well Hydr	fractured? Yes No From To
	Casing Ty	
tratigraphy Information	Drive Sho	
· · ·	ardness Casing Dia	
LAY, GRAVEL 0 5 YEL/BRN	4 in. Te	204 ft. 11 lbs./ft. 12. in. To 160 ft.
RAVEL CLAY 5 25 BRN/GRN	8 in. Te	160 ft. lbs./ft. 7.8 in. To 204 ft.
AND GRAVEL 25 105 BROWN		
LAY 105 135 GRAY		
HALE 135 158 GRN/GRY	Open Hol	From 204 ft. To 220 ft.
HALE ROCK 158 160 VARIED	Screen?	From 204 ft. To 220 ft. Type Make
IMESTONE SHALE 160 180 RED/BRN		
ANDSTONE, ROCK 180 220 VARIED SO	OFT	
	Static Wa	er Level
	80 ft	land surface Measure 10/24/1994
	Pumping	Level (below land surface)
	80 ft.	hrs. Pumping at 50 g.p.m.
	Wellhead	Completion
		ter manufacturer WHITEWATER Model S44-5.5
		g Protection 12 in. above grade ade (Environmental Wells and Borings ONLY)
		Information Well Grouted? X Yes No Not Specified
	Material	Amount From To
	neat cem	nt 10 ft. 204 ft.
	10	nown Source of Contamination feet North Direction offected upon completion? Yes No
		Not Installed Date Installed <u>11/00/1994</u> rer's name FLINT & WALLING
	Model Nu Length of	
	Abandon	
		erty have any not in use and not sealed well(s)? Yes X No
	Variance	
	Was a var Miscellar	ance granted from the MDH for this well? Yes No
	First Bedr	
	Last Strat	Depth to Bedrock 135 ft
Domoniza	Located b	Timileson Ceological Sulvey
Remarks	Locate Me	Digitization (Sereen) - Map (1.24,000) (15 meters of
	System	UTM - NAD83, Zone 15, Meters X 453798 Y 4955461 mber Verification Information from Input Date 07/13/2005
	Angled D	III 11010
	Well Con	
	Bohn W	ell Co. 70350 VON BANK, B Business Lic. or Reg. No. Name of Driller
		Dusiness Lic. of Keg. No. IName of Driller
Minnesota Well Index Report	551318	Printed on 09/15/20 HE-01205-

836415

County Scott

Quad ID 90A

Quad

Jordan East

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	08/30/2019
Update Date	06/28/2021
Received Date	06/27/2019

	Township	Range	Dir Secti			Well Depth	Depth Comp		Well Complete	d
MUMOFF,	115	23	W 21	DDAD.	AC	233 ft.	233 ft.		7/2019	
Elevation 869.4	Elev. Me	thod	LiDAR 1m D	EM (MNDNR)		Drill Method	Non-specified Rotary	Drill Fluid A	Additive (+ Bento	nite)
Address						Use dome:	stic		Status	Active
Well 1	3745 JOHNS	SON MEN	IORIAL DR	SHAKOPE	E MN 55379	Well Hydrofra	actured? Yes	No X From	То	
						Casing Type		Joint	Welded	
Stratigraphy Infor Geological Material		From	To (ft.)	Color	Hardness	Drive Shoe?		Above/Belo		
CLAY SAND		0	10 (n.) 27	BROWN	Taruness	Casing Diame	eter Weight 219 ft. lbs./ft.		Hole Diame 8 in. To	ter 219 ft.
SAND GRAVEL/R	OCK	27	173	BROWN		4 111. 10	21) It. 103./It.		3.8 in. To	219 ft. 233 ft.
LIMESTONE		173	195	TAN/RED						
SANDSSTONE		195	233	WHITE						
						Open Hole	From ft.	То	ft.	
						_			e JOHNSON	
						Diameter	Slot/Gauze Length	Set		
						3 in.	16	ft. 217 ft	. ft.	
						Static Water	·Level			
						131 ft.	land surface	Measure	06/17/2019)
						Dumping T	vel (below land surface)			
						ft.	hrs. Pumping at	t 25	g.p.m.	
									g.p.m.	
						Wellhead Control Pitless adapte	•	ITOR	Model	
						Casing	Protection	12 in. above grade	Model	
							e (Environmental Wells an			~
						Grouting In	formation Well Grout			Specified
						Material neat cement		Amount 30 Sacks	From 7 10 ft. 2	Го 219 ft.
						liour comone		20 Suchs	10 10 1	
							own Source of Contamina	tion		
						Well disinfe	eet <u>West</u> Direction ected upon completion?	X Yes		<u>Other</u> Type
						Pump Manufacture	Not Installed	Date Installed	06/17/2019	
						Model Numb	FLINT & WA	-	Volt <u>220</u>	
						Length of dro		acity <u>10</u> g.p.	Typ <u>Subme</u>	<u>rsible</u>
						Abandoned				
							y have any not in use and not s	ealed well(s)?	Yes	s 🗴 No
						Variance Was a varian	ce granted from the MDH for t	his well?	Yes	X No
						Miscellaneo				
						First Bedrock		Aquif	er	
						Last Strat		-	Bedrock	ft
Remarks						Located by Locate Metho	Minnesota Depart			
DRILLERS: WECKM	IAN, L. & RAI	DEMACHE	ER, M.			System	d GPS SA Off (aver- UTM - NAD83, Zone 15, M	•	53882 Y 49	955314
						5		GPS from data		8/30/2019
						Angled Dril	l Hole			
						Well Contra				
						Bohn Well Licensee E	Drilling Co., Inc.	1445 Lic. or Reg. No.	SEE REN Name of 1	
							4511(-55	Lie. of Reg. 100.		Dillici
		.			83	6415			Duinter	l on 00/15/2021
Minnesota W	ell Index	Kepor	t						Printec	l on 09/15/2021 HE-01205-15

Well Log Report - 00248000

Minnesota Unique Well No. County Scott Quad Jordan East Quad ID 90A	MINNESOTA DEPARTMENT OF HEALTH Entry Date 02/23/1989 WELL AND Update Date 02/14/2014 BORING RECORD Received Date
Well Name MN RENAISSANCE FESTIVAL Township Range Dir Section Subsections Elevation 775 ft. 115 23 W 21 CCDADC Elevation Method topographic map (+/- 5 feet)	Minnesota Statutes Chapter 1031 Well Depth Depth Completed 200 ft. 200 ft. Drilling Method
Well Address 3630 145TH ST W SHAKOPEE MN 55379	Drilling Fluid Well Hydrofractured? Yes No From Ft. to Ft. State State State Use Commercial Commercial State State
Geological MaterialColorHardnessFromToDIRT OVERBURDENBLACK02ROCK SHAKOPEEHARD250SANDSTONE & BROKEN ROCK5015:ROCKPNK/GRNHARD155	
	Static Water Level 60 ft. from Land surface Date Measured 06/09/1977 PUMPING LEVEL (below land surface) ft. after hrs. pumping g.p.m. Well Head Completion Pitless adapter manufacturer Model Casing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY)
NO REMARKS	Grouting Information Well Grouted? Yes No Not Specified
Located by: Minnesota Geological SurveyMethod: Digitized - scale 1:24,000 or larger (Digitizing Table)Unique Number Verification:N/AInput Date: 03/25/1996System:UTM - Nad83, Zone15, MetersX: 452689Y: 4955179	Nearest Known Source of Contamination feetdirectiontype Well disinfected upon completion? Yes No Pump Not Installed Date Installed Manufacturer's name Model number HP 0_ Volts Length of drop Pine_ft Canacity, on m Type_ Material
	Length of drop Pipe_ft. Capacity_g.p.m Type Material Abandoned Wells Does property have any not in use and not sealed well(s)? Image: Comparison of the sealed well(s)? Yes No Variance Was a variance granted from the MDH for this well? Yes No
First Bedrock Prairie Du Chien Group Aquifer St.Lawrence Last Strat St.Lawrence Formation Depth to Bedrock 2 ft.	Well Contractor Certification Associated Well Co. 27259 License Business Name Lic. Or Reg. No. Name of Driller
County Well Index Online Report	248000 Printed 3/16/2015 HE-01205-07

115-23-21 codade elev. 775-10 501243 115-23-28 248000 Pormit # 34,2-B-8A new hunde **JOB TICKET** Nº 1043 ASSOCIATED WELL DRILLT'RS 13160 Pioneer Trail Eden Pralitie, Minnesota 5534. Permit No: Phone 941-1530 Tel. N 10, whir 10, 2000 For __ ill Unin LICUL Address _2 O. Job At DATE WORK REQUESTED COSINS DESCRIPTION OF WORK DONE DATE QUUN Soll OPDC DUMT ന JON SNDS QZTE -155' r ጽ CSTL DLAT SHLE $\mathcal{A} \cap \mathcal{O}$ NU Fr CSTL-CSTL . 7 75 155 Customer Acknowledgment DATE EMPLOYES HOURS EMPLOYEE DATE HOURS . . ť

ATTACHMENT 3

SECTION 28 WATER SUPPLY WELL NETWORK: WELL LOGS

211864

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/12/1996

 Received Date

Well NameTownshipRangeDir SectionSubsectionLINDSTROM,11523W28DDDDBC	-	Depth CompletedDate Well Completed127 ft.09/09/1974
Elevation 766 ft. Elev. Method 7.5 minute topographic map (+/-	5 feet) Drill Method	Drill Fluid
Address	Use dome	estic Status Active
C/W 3036 150TH ST W SHAKOPEE MN 55379	Well Hydrofr	ractured? Yes No From To
	Casing Typ	
Stratigraphy Information	Drive Shoe?	? Yes No Above/Below 0 ft.
	ardness Casing Diam	-
CLAY 0 10 SAND 10 20	5 in. To	76 ft. lbs./ft.
SAND 10 20 CLAY 20 58		
	ARD	
SANDROCK 63 127		
	Open Hole Screen?	From 76 ft. To 127 ft. Type Make
	Static Wate	r Level
	Pumping Lo	evel (below land surface)
	Wellhead C Pitless adapte	Completion er manufacturer Model
		Protection 12 in. above grade de (Environmental Wells and Borings ONLY)
	Grouting In	formation Well Grouted? Yes No X Not Specified
	f Well disinf	own Source of Contamination feet Direction Type Sected upon completion? Yes
	Pump Manufacture Model Num	
	Length of dr	rop pipe ft Capacity g.p. Typ
	Abandoned	
	Variance	ty have any not in use and not sealed well(s)?
	Miscellaneo	
	First Bedrock Last Strat Located by	k Jordan Sandstone Aquifer Jordan Jordan Sandstone Depth to Bedrock 58 ft Minnesota Geological Survey
Remarks 237-B-8	Locate Meth System	odDigitized - scale 1:24,000 or larger (Digitizing Table)UTM - NAD83, Zone 15, MetersX453813Y4953563
		ber Verification Input Date 01/01/1990
	Angled Dri	и ноје
	Well Contr Hartmann	Well Co. 40174
	Licensee 1	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	211864	Printed on 09/15/2021 HE-01205-15

709026

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	12/17/2004
Update Date	02/06/2012
Received Date	01/18/2005

Well NameTownshipDOUCETTE,115	RangeDir Se23W			Well Depth 139 ft.	Depth Completed 139 ft.	Date Well Completed 10/22/2004	
		topographic map		Drill Method			
Elevation 790 ft. Elev. Me Address			(+/- 5 icci)			Drill Fluid Water	
				Use dome:		Status Acti	lve
C/W 14331 JOHNS	SON MEMORIAL	DR SHAKOPE	E MN	Well Hydrofra	ctured? Yes No	X From To	
				Casing Type		Joint Threaded	
Stratigraphy Information Geological Material	From To (ft.) Color	Hardness	Drive Shoe?		Above/Below	
DIRT	0 8	BLACK	MEDIUM	Casing Diamo	0	Hole Diameter	£4
CLAY & ROCKS	8 41	BROWN	MEDIUM	4 in. To	134 ft. 11 lbs./ft.	10 in. To 134 4 in. To 139	
CLAY & GRAVEL	41 90	GRAY	MEDIUM			4 11.10 137	11.
CLAY	90 104	GRAY	HARD				
CLAY & GRAVEL	104 115	GRAY	SOFT				
LIMEROCK	115 118	BROWN	HARD	Open Hole		To ft. Make JOHNSON	
SANDROCK	118 139	BROWN	SOFT	Screen?	C Type stainless Slot/Gauze Length	Set	
				3.5 in.	10 5 ft.	134 ft. 139 ft.	
				Static Water	Level		
				60 ft.	land surface	Measure 06/03/2004	
				Pumping Le	vel (below land surface)		
				Wellhead C	ompletion		
				· ·	manufacturer MONITOR	Model	
					Protection 12 in. a e (Environmental Wells and Borir	above grade	
				Grouting In		Yes No Not Specific	ed
				Material	Amou		eu -
				neat cement	2		ft.
				54 fo Well disinfo	wn Source of Contamination bet <u>West</u> Direction cted upon completion?	Sewer T	уре
				Pump Manufacturer Model Numb Length of dro	's name FLINT & WALLING er <u>4F27A15</u> HP <u>1.</u> :	5 Volt <u>230</u>	
				Abandoned Does propert	have any not in use and not sealed we	ell(s)? Yes X	No
				Variance Was a varian	e granted from the MDH for this well?	Yes X	No
				Miscellaneo First Bedrock Last Strat Located by		Aquifer Jordan Depth to Bedrock 115 f	ft
Remarks				Locate Metho System Unique Numb	d GPS SA Off (averaged) (1 UTM - NAD83, Zone 15, Meters er Verification Tag on well	15 meters) X 453616 Y 4954369	
				Angled Dril	Hole		
				Well Contra	ctor		
				Hartmann		40174 HARTMANN, B	3.
				Licensee E	usiness Lic. or	Reg. No. Name of Driller	
Minnesota Well Index	Report		709	0026		Printed on 09/1 HE-01	

Minnesota	Unique	Well	Number

211863

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 06/15/1990

 Update Date
 06/02/2014

 Received Date

Well Name Township MINN. VALLEY 115	Range 23	Dir Secti W 28	on Subsec		Well Depth 147 ft.		Depth Complete 147 ft.	ed Date W 04/10/19	ell Completed	l
Elevation 747 ft. Elev. Method 7.5 minute topographic map (+/- 5 feet)					Drill Method Drill Fluid					
Address					Use comm	ercial			Status	Active
C/W 3232 150TH 3	ST W SHAI	KOPEE M	N 55379		Well Hydrofra		Yes	lo From	T	
5252 150111	51 10 5121	KOI EE M	11 55577		Casing Type			lo 🔄 From Joint	То	
Stratigraphy Information					Drive Shoe?			Above/Below	0 ft.	
Geological Material	From	To (ft.)	Color	Hardness	Casing Diamo	eter W	/eight			
DRIFT-CLAY	0	5			6 in. To	82 ft.	lbs./ft.			
SAND SOME ROCKS	5	9								
SANDROCK	9	123	WHT/YEL							
SANDROCK &	123	127								
SANDROCK &	127	147		HARD	Open Hole Screen?	From	82 ft. Type	To 147 Make	ft.	
					Static Water 27 ft.	Level	face	Measure	04/10/1972	
					Pumping Le	vel (below la	and surface)			
					Wellhead Co Pitless adapter		r	τ.	Iodel	
						Protection		t in. above grade	lodel	
							nental Wells and H			
					Grouting Int	formation	Well Grouted?	Yes N	o X Not S	Specified
						eet ected upon co No s's name	-	n Yes Date Installed	No No	Туре
					Length of dro		ft Capacity		Typ <u>Submer</u>	sible
					Abandoned					
						y have any not	t in use and not seale	ed well(s)?	Yes	No
					Variance Was a varian	as around for-	m the MDU for this	well9	Yes	
					Miscellaneo	-	m the MDH for this	well:	103	No
					First Bedrock Last Strat Located by	Jordan S St.Lawr	Sandstone ence Formation mesota Geologica	Depth to Be	Jordan-St. edrock 9	ft
Remarks					Locate Metho	od Dig	itized - scale 1:24	,000 or larger (Digi		
					System Unique Numb	UTM - NA per Verification	AD83, Zone 15, Mete	155		53568
					Angled Drill				. _P .a. Date []	1/01/1990
					Well Contra	ictor				
					Hartmann		т.	40174	No	<u>) millon</u>
					Licensee E	susiness	Lı	ic. or Reg. No.	Name of I	Juller
Minnesota Well Index	Report	;		21	1863				Printed	on 09/15/2021 HE-01205-15

211865

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/14/2014

 Received Date
 02/14/2014

Well Name Township Range Dir Section Subsection MINN. VALLEY 115 23 W 28 DDCCB/	-	Depth CompletedDate Well Completed132 ft.06/26/1976
Elevation 748 ft. Elev. Method 7.5 minute topographic map (+		
Address		nercial Status Active
C/W 3232 150TH ST W SHAKOPEE MN 55379	Well Hydrof	
C/W 5252 ISOTH ST W SHAROT LE MIX 55579	Casing Typ	
Stratigraphy Information	Drive Shoe	
	Hardness Casing Dian	
CLAY 0 10	8 in. To	76 ft. lbs./ft.
ROCKS 10 12		
SANDROCK 12 110		
LIMESTONE 110 132	V.HARD	
	Open Hole Screen?	From 76 ft. To 132 ft. Type Make
	Static Wate 29 ft.	r Level land surface Measure 06/00/1976
	Pumping L	evel (below land surface)
	39 ft.	hrs. Pumping at 300 g.p.m.
	Wellhead	
		er manufacturer Model
		Protection 12 in. above grade
	Grouting I	de (Environmental Wells and Borings ONLY) formation Well Grouted? Yes No X Not Specified
		own Source of Contamination ieet Direction Type ected upon completion? Yes No
	Pump Manufactur	Not Installed Date Installed
	Model Num	her HP <u>0</u> Volt
	Length of d	op pipe ft Capacity g.p. Typ
	Abandoned	
	Variance	ty have any not in use and not sealed well(s)?
	Was a varia	ace granted from the MDH for this well? Yes No
	Miscellane	
	First Bedroo Last Strat	
	Located by	St.Lawrence Formation Depth to Bedrock 12 ft Minnesota Geological Survey
Remarks	Locate Meth	č ,
	System	UTM - NAD83, Zone 15, Meters X 453574 Y 4953567
		ber Verification Input Date 01/01/1990
	Angled Dr	и ное
	Well Contr Hartman	
	Licensee	
Minnesota Well Index Report	211865	Printed on 09/15/2021 HE-01205-15

569344

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	07/29/1998
Update Date	02/14/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectNRG11523W28DCCDE	BA 162 ft.	162 ft. 05/08/1996
Elevation 738 ft. Elev. Method 7.5 minute topographic map ((+/- 5 feet) Drill Me	ethod Non-specified Rotary Drill Fluid Bentonite
Address	Use d	domestic Status Active
Well 14800 JOHNSON MEMORIAL DR SHAKOPE	E MN Well Hyd	drofractured? Yes No From To Type Single casing Joint
Stratigraphy Information Geological Material From To (ft.) Color	Drive S	
CLAY WITH ROCKS 0 17 GRAY	6 in.	0
SAND ROCK/GRAVEL 17 36		7.5 in. To 99 ft.
SHAKOPEE ROCK 36 45	HARD	4.5 in. To 162 ft.
SAND ROCK/SHALE 45 90 YELLOW	SOFT	
ROCK/SHALE 90 162 GREEN	HARD Open Ho Screen?	
	30	Water Level ft. land surface Measure 04/19/1996
	_	ng Level (below land surface)
	f	ft. hrs. Pumping at 200 g.p.m.
		ad Completion
		adapter manufacturer Model
		asing Protection 12 in. above grade t-grade (Environmental Wells and Borings ONLY)
	Groutin	ng Information Well Grouted? X Yes No Not Specified
	Materia	
	neat cer	ement ft. 99.7 ft.
	<u>60</u>	t Known Source of Contamination feet North Direction Body of water Type lisinfected upon completion? X Yes No
	Model 1	Not Installed Date Installed 05/08/1996 acturer's name FLINT AND WALLING Number HP 5 Volt of drop pipe 63.2 ft Capacity g.p. Typ Submersible
	Abando	
		roperty have any not in use and not sealed well(s)? Yes X No
	Variano Was a v	variance granted from the MDH for this well? Yes X No
	Miscella	
	First Be	
	Last Stra Located	Jordan St. Lawrence
Remarks	Locate N	i initiational Coological Salvey
	System	m UTM - NAD83, Zone 15, Meters X 453221 Y 4953544
		Number Verification Tag on well Input Date 07/13/2005
	Angled	l Drill Hole
	Well Co	ontractor
		erson Well Co. 27056 TORGERSON, R.
	Licen	nsee Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	569344	Printed on 09/15/20 HE-01205-

233116

County Scott

Quad

Jordan East

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 02/11/1988 **Update Date** 08/07/2018 **Received Date**

	Qu	ad ID 90.	A	111	innesota Sta	uutes Chapi	er 1031		Received I	Date	
GRANZOW,	Township 115	Range 23	Dir Section W 28	Subsection AABDBI		Well Depth 150 ft.		Depth Completed 150 ft.		Well Completed	l
	Elev. Me	ethod	LiDAR 1m DEM	I (MNDNR)		Drill Method		becified Rotary	Drill Fluid		
Address						Use irrigati	on			Status	Sealed
C/W N	1N					Well Hydrofra	ctured?	Yes No	From	То	
						Casing Type		le casing	Joint		
Stratigraphy Infor Geological Material		From	To (ft.) C	olor H	Hardness	Drive Shoe?	Yes	No	Above/Belo		
SHAKOPEE ROCK		0	90		Taruness	Casing Diame 8 in. To		Weight lbs./ft.		Hole Diamet 12. in. To	er 116 ft.
ORDAN SANDRO		90	150			8 111. 10	110 II.	108./11.		12. III. 10 8 in. To	116 ft. 150 ft.
						Open Hole	From	116 ft.	To	150 ft.	
						Screen?]	<u>116</u> ft. Type	Make		
			Static Water								
						90 ft.		urface	Measure	05/02/1972	
						Pumping Lev 95 ft.	el (belov hr	v land surface) s. Pumping at	300	g.p.m.	
									500	g.p.m.	
			Wellhead Co Pitless adapter	-			Model				
						Casing I	Protection	n 🗌 12 in	n. above grade		
						Grouting Inf		well Grouted?	rings ONLY)	No 🗙 Not	Specified
			fe	et	ce of Contamination Direction a completion?	Yes	□ No	Туре			
						Pump Manufacturer'	1	_	Date Installed		
						Model Numbe		HP	<u>0</u>	Volt	
						Length of drop	o pipe	ft Capacity	g.p.	Тур	
						Abandoned Does property	have any	not in use and not sealed	well(s)?	Yes	No
						Variance	c any			105	
							e granted f	from the MDH for this w	ell?	Yes	X No
						Miscellaneou First Bedrock Last Strat	Prairi	e Du Chien Group n Sandstone	-	er Jordan Bedrock ()	ft
Damaal						Located by	Ν	/innesota Geological	Survey	-	
Remarks SAME AS UNIQUE N	NO. 207444.					Locate Method		Digitization (Screen) -	· ·		54045
DNR OBWELL 70009						System Unique Numb		NAD83, Zone 15, Meterstion Informati			54945 8/07/2018
SEALED 3-14-2018 B	Y 1622.					Angled Drill		mormau		. 00	
						Well Contrac Associated Licensee B	Well Co.	Lic.	27259 or Reg. No.	SCHUL ⁷ Name of I	
Minnesota W	ell Index	k Repor	t		233	3116				Printed	on 09/15/202
											HE-01205-

513892

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	06/09/1993
Update Date	03/13/2019
Received Date	

Well NameTownshipMID-AMERICA115	RangeDir Sect23W28	ion Subsec CAAA		Well Depth 320 ft.	Depth CompletedDate Well Completed320 ft.11/12/1992
Elevation 755 ft. Elev. Me	thod 7.5 minute to	pographic map	(+/- 5 feet)	Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address				Use public	supply/non-community Status Sealed
C/W 3325 145TH \$	ST W MN			Well Hydrofra	
0, , , , , , , , , , , , , , , , , , ,				Casing Type	
Stratigraphy Information				Drive Shoe?	Yes X No Above/Below 0 ft.
Geological Material	From To (ft.)	Color	Hardness	Casing Diamo	
TOPSOIL	0 1	BLACK	SOFT	4 in. To	201 ft. lbs./ft. 9 in. To 201 ft.
CLAY	1 3	BROWN	MEDIUM		4 in. To 320 ft.
SHAKOPEE ROCK	3 27	ORN/BRN	HARD		
JORDAN ROCK	27 130	WHITE	SOFT		
SHALE	130 140	BLUE	SOFT	Open Hele	E
ST LAWRENCE	140 181	PNK/BLU	HARD	Open Hole Screen?	From 201 ft. To 320 ft. T Type Make
FRANCONIA	181 202	BLU/GRN			Type
FRANCONIA	202 320	BLU/GRN	HARD		
				Static Water	Level
				Pumping Le	vel (below land surface)
				35 ft.	hrs. Pumping at 50 g.p.m.
				Wellhead C	
					r manufacturer Model
					Protection 12 in. above grade (Environmental Wells and Borings ONLY)
				Grouting In	
				Material	Amount From To
				neat cement	64 Sacks 0 ft. 201 ft.
				<u>60</u> fo	North Direction Septic tank/drain field Type ected upon completion? Yes No
				Pump Manufacturer Model Numb Length of dro	er <u>S75M</u> HP <u>0.75</u> Volt <u>230</u>
				Abandoned	<u>11 10 10 10 10 10 5.P. TJP Dubilitistoje</u>
					y have any not in use and not sealed well(s)? Yes No
				Variance Was a varian	ce granted from the MDH for this well? Yes No
				Miscellaneo	us
				First Bedrock	Prairie Du Chien Group Aquifer St.Lawrence-
				Last Strat	St.Lawrence Formation Depth to Bedrock 3 ft
Remarks				Located by	Minnesota Geological Survey
GAMMA LOGGED 11-13-92				Locate Metho	Digitization (bereen) Wap (1.24,000) (15 meters of
SEALED 10-24-2018 BY 1445				System Unique Numb	UTM - NAD83, Zone 15, Meters X 453058 Y 4954225 ber Verification Information from Input Date 06/02/2000
				Angled Dril	
				Well Contra	ictor
				R.E.S. We	
				Licensee E	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index	Report		513	3892	Printed on 09/15/2021 HE-01205-15

404657

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 06/15/1990

00/13/1990

Received Date 04/16/2015

Update Date

Well Name Township	Range	Dir Secti	on Subsection	n	Well Depth		Depth Completed	Date W	Vell Completed	
RENAISSANCE 115	23	W 28	BBAA		455 ft.		455 ft.	10/14/1	.983	
Elevation 777 ft. Elev. Me	thod	Calc from DE	M (USGS 7.5 min	or equiv.)	Drill Method	Non-s	pecified Rotary	Drill Fluid		
Address					Use publi	e supply/n	on-commtransient		Status	Active
C/W 3525 145TH S	ST W SH	AKOPEE MI	N 55379		Well Hydrofi	actured?	Yes No	From	То	
					Casing Typ	e Sing	gle casing	Joint	Welded	
Stratigraphy Information					Drive Shoe	-		Above/Below		
Geological Material	From	To (ft.)	Color Ha	ardness	Casing Diam	eter	Weight		Hole Diamete	r
SHAKOPEE LIMESTONE	0	80		ARD	8 in. To	256 ft	. 28.5 lbs./ft.		14 in. To	256 ft.
JORDAN SANDROCK	80	189		OFT					8 in. To	445 ft.
ST. LAWRENCE SHALE	189	236		ARD						
FRANCONIA SHALE	236	371		ARD						
GALESVILLE	371	450		EDIUM	Open Hole	From	n 256 ft.	То 455	5 ft.	
EAU CLAIRE SHALE	450	455	GREEN HA	ARD	Screen?		Type	Make		
					Static Wate 61 ft.	Land	surface	Measure	11/10/1983	
					Pumping L	evel (belo	w land surface)			
					110 ft.	1 h	rs. Pumping at	100 g	g.p.m.	
					Wellhead C	-				
					Pitless adapte				Aodel	
						Protectio	n [X] 12 in onmental Wells and Bo	n. above grade		
					Grouting In			-	Not S	pecified
					Material			iount	From T	-
					Neat Ceme	nt	6.5		2 ft. 25	
					<u>600</u> 1	eet	rce of Contamination <u>North</u> Direction n completion?	X Yes	No No	Туре
					Pump Manufacture Model Num Length of dr	r's name per <u>P</u>	PIONEER	Date Installed 20 Vo 250 g.p.	05/10/1984 olt <u>220</u> Typ <u>Submers</u>	<u>sible</u>
					Abandoned	v have anv	not in use and not sealed	well(s)?	Yes	No
					Variance	., any	use und not sealed		105	
						ice granted	from the MDH for this we	ell?	Yes	No
-					Miscellaneo First Bedrock Last Strat Located by	Frair Eau	ie Du Chien Group Claire Formation Minnesota Department	Depth to B	Tunnel City-E edrock 0	au ft
Remarks					Locate Meth		GPS SA Off (averaged)			
*1 - BIG WELL. *2 - SMALL WELL.					System		Mad83, Zone 15, Meters		_	
600 WELL BAKERY HILL WELL					Unique Num Angled Dri		ation Info/GPS	from data I	npute Date 06	/06/2005
BIG WELL										
TOTAL PLATE COUNT TNT	C 8-25-77	7								
					Well Contr			101-1		
					Hartmann Licensee			40174 or Reg. No.	JAECKEI Name of D	-
					LICCHSCE	545111035	Lic.	or Reg. 110.	Traille Of D	
Minnesota Well Index	Repor	·t		404	4657					on 04/20/2016 HE-01205-15

401129

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	06/15/1990
Update Date	02/25/2020
Received Date	

Well NameTownshipRangeDir SectionSubsectionMN VALLEY11523W28DCDDADElevation761 ft.Elev. MethodCalc from DEM (USGS 7.5 min		Well Depth 120 ft. Drill Method	Depth Completed 120 ft. Non-specified Rotary	Date W 03/22/19 Drill Fluid	ell Completed 984
Address			supply/non-commtransient		Status Active
C/W 14505 JOHNSON MEMORIAL DR SHAKOPEE M	IN 55379	Well Hydrofra		From	То
		Casing Type	Single casing		Threaded
Stratigraphy Information		Drive Shoe?	Yes X No	Above/Below	1 ft.
	ardness	Casing Diame	0		Hole Diameter
	EDIUM EDIUM	4 in. To	110 ft. 11 lbs./ft.		6 in. To 110 ft.
	EDIUM				4 in. To 120 ft.
		Open Hole Screen?	From 110 ft. Type	To 120 Make	ft.
		Static Water 45 ft.	land surface	Measure	03/22/1984
		Pumping Le	vel (below land surface)		
			manufacturer MONITOR	above grade	odel
		Grouting Inf		X Yes N	o Not Specified
		Material	Amo	unt	From To
		bentonite cuttings			0 ft. 110 ft. ft. ft.
		<u>80</u> fe	wn Source of Contamination et <u>Southeas</u> Direction cted upon completion?	Sep Yes	tic tank/drain field Type No
		Pump Manufacturer Model Numb Length of dro	s name PIONEER er HP <u>(</u>	. <u>75</u> Vo	<u>03/22/1984</u> lt <u>220</u> Typ <u>Submersible</u>
		Abandoned			
		Does property	have any not in use and not sealed w	veil(s)?	Yes No
			e granted from the MDH for this wel	1?	Yes No
		Miscellaneo			
		First Bedrock Last Strat	Jordan Sandstone	Aquifer Depth to Be	
		Located by	Jordan-Wonewoc Minnesota Department of	-	62 It
Remarks PREVIOUS USE CODE: DO (DOMESTIC) 2/25/2020.		Locate Metho	d Digitization (Screen) - M	fap (1:24,000) (1	
1 NE 11005 05E CODE. DO (DOMESTIC) 2/25/2020.		System Unique Numb	UTM - NAD83, Zone 15, Meters er Verification	X 4534 In	71 Y 4953537 put Date 01/20/1999
		Angled Drill			01/20/1999
		Well Contra	ctor		
		Hartmann		40174	JAECKELS, R.
		Licensee B	usiness Lic. o	or Reg. No.	Name of Driller
Minnesota Well Index Report	401	129			Printed on 09/15/202 HE-01205-1

ATTACHMENT 4 Monitoring Well Logs

595728

County Scott Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 08/07/2009

 Update Date
 08/07/2009

 Received Date
 08/07/2009

Well Name	Township	Range	Dir Sect		ction	Well Depth	Depth Completed Date Well Completed
W-120	115	23	W 21	AAD		175 ft.	170 ft. 05/08/1997
Elevation	Elev. Me	thod				Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address						Use remed	lial Status
Well	130TH ST W	SHAKOP	EE MN			Well Hydrofr	actured? Yes No From To
						Casing Type	
Stratigraphy In		-	T (0)	G 1		Drive Shoe?	
Geological Mate GRAVEL	erial	From 0	To (ft.) 5	Color BROWN	Hardness	Casing Diam	
SILTY SAND /	GRAVEI	5	5 69	BROWN		4 in. To	165 ft. lbs./ft. 8 in. To 175 ft.
SILTY SANDS	ORIVEL	69	84	BROWN			
SILTY CLAY		84	104	BROWN			
LIMESTONE /	SHALE /	104	135	TAN			
CLAY		135	148	GRAY		Open Hole	From ft. To ft.
LIMESTONE		148	157	TAN/RED		Screen?	Type stainless Make WIREWOUND Slot/Gauze Length Set
SANDSTONE /	SHALE	157	163	RED		4 in.	10 5 ft. 165 ft. 170 ft.
SANDSTONE (BUFF)	163	175				
						Static Water	r Level
						42 ft.	land surface Measure 05/08/1997
						Pumping Le	evel (below land surface)
						Wellhead C	
						Pitless adapte	r manufacturer Model Protection I2 in. above grade
							le (Environmental Wells and Borings ONLY)
						Grouting In	formation Well Grouted? X Yes No Not Specified
						Material	Amount From To
						neat cement	55 Sacks ft. 161 ft.
						Nearest Kno	own Source of Contamination
							Direction Type ected upon completion? Yes X No
						Pump Manufacture	X Not Installed Date Installed
						Model Numb	
						Length of dro	op pipe ft Capacity g.p. Typ
						Abandoned	
						Does propert	y have any not in use and not sealed well(s)? Yes X No
							ce granted from the MDH for this well? Yes X No
						Miscellaneo	
						First Bedrock	
						Last Strat	Depth to Bedrock ft
Remarks						Located by	
W-120						Locate Metho System	UTM - NAD83, Zone 15, Meters X Y
						-	ber Verification Input Date
						Angled Dril	
						Well Contra	actor
						Bergerson	
						Licensee I	Business Lic. or Reg. No. Name of Driller
Minnesota	Well Index	Report	t		595	5728	Printed on 09/14/2021 HE-01205-15

595729

County Scott
Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

Update Date 08/07/2009 Received Date

Well Name Township	Range	Dir Secti	ion Subse	ction	Well Depth	Depth Completed Date Well Completed
W-121 - PAHL, 115	23	W 21	AAC		78 ft.	78 ft. 05/06/1997
Elevation Elev. M	lethod				Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address					Use remed	lial Status
Well 3331 AKER	S LA SHAI	KOPEE MN	55352		Well Hydrofra	actured? Yes No From To
					Casing Type	
Stratigraphy Information					Drive Shoe?	
Geological Material	From	To (ft.)	Color	Hardness	Casing Diam	eter Weight Hole Diameter
SANDY CLAY / GRAVEL	0	10	BROWN		4 in. To	65 ft. lbs./ft. 8 in. To 78 ft.
GRAVEL / COBBLES	10	30	BROWN			
GRAVEL / CLAY GRAVEL	30 41	41 50	LT. BRN BROWN			
CLAY / SAND	41 50	50 60	GRAY			
GRAVEL / CLAY (BUFF)	60	65	UKAT		Open Hole	From ft. To ft.
GRAVEL W/ SOME	65	72				Type stainless Make WIREWOUND
SANDY CLAY	72	78	GRAY		Diameter 4 in.	Slot/GauzeLengthSet105ft.65ft.70ft.
					Static Water	
					42 ft.	land surface Measure 05/06/1997
					Pumping Le	vel (below land surface)
					Wellhead C	ompletion r manufacturer Model
					X Casing	Protection I 12 in. above grade le (Environmental Wells and Borings ONLY)
					Grouting In	
					Material	Amount From To
					neat cement	
					fe	own Source of Contamination eet Direction cetd upon completion? Yes X No
					Pump	X Not Installed Date Installed
					Manufacturer Model Numb	
					Length of dro	
					Abandoned	
					Does propert	y have any not in use and not sealed well(s)? Yes X No
						ce granted from the MDH for this well? Yes X No
					Miscellaneo	us
					First Bedrock	
					Last Strat Located by	Depth to Bedrock ft
Remarks					Located by	bd
W-121					System	UTM - NAD83, Zone 15, Meters X Y
					Unique Numb	ber Verification Input Date
					Angled Dril	l Hole
					Well Contra	actor
					Bergerson	
					Licensee E	
				59	5729	Dist. J 00/14/0001
Minnesota Well Inde	x Repor	t				Printed on 09/14/2021 HE-01205-15

151599 County Quad

CountyScottQuadShakopeeQuad ID105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/08/1989

 Update Date
 02/14/2014

 Received Date

Well Name	Township	Range	Dir Section	Subsection	Well Depth	Depth Completed Date Well Completed
LOUISVILLE	115	23	W 21	AB	108 ft.	108 ft. 11/05/1986
Elevation	Elev. Me	ethod			Drill Method	Cable Tool Drill Fluid
Address					Use monit	tor well Status Active
C/W	3601 130TH	ST W SHA	KOPEE MN		Well Hydrofr	actured? Yes No From To
Contact	331 AKERS	LA JORDA	AN MN 55352		Casing Type	e Step down Joint Welded
Stratigraphy In					Drive Shoe?	Yes X No Above/Below 2 ft.
Geological Mate		From	To (ft.) Co	olor Hardness	Casing Diam	-
PIPE ABOVE G		0	2	COFT	8 in. To	61 ft. 28.5 lbs./ft. 8 in. To 82 ft.
CLAY,GRAVEI SAND,GRAVEI		2 17	17 25	SOFT SOFT	0 in. To	ft. lbs./ft. 4 in. To 108 ft.
SAND, GRAVEL		25	23 54	SOFT	4 in. To	82 ft. 11 lbs./ft.
LIME ROCK	EL	23 54	55	HARD		
SAND GRAVEI	& CLAV	55	61	SOFT	Open Hole	From 82 ft. To 106 ft.
LIMEROCK		61	108	HARD	Screen?	Type Make
					Static Water 80 ft.	r Level land surface Measure 11/05/1986
					Pumping Le	evel (below land surface)
					92 ft.	2 hrs. Pumping at 3 g.p.m.
					Wellhead C	Completion
						er manufacturer Model
						Protection 12 in. above grade de (Environmental Wells and Borings ONLY)
					Grouting In	formation Well Grouted? X Yes No Not Specified
					Material neat cement	AmountFromTo2Cubic yardsft.82ft.
					<u>50</u> f	Source of Contamination Seet South Direction Landfill Type Sected upon completion? Yes No
					Pump Manufacture Model Numb Length of dro Abandoned	ber <u>SP1-9</u> HP <u>0.5</u> Volt <u>230</u> op pipe <u>103</u> ft Capacity <u>5</u> g.p. Typ <u>Submersible</u>
					Does propert	ty have any not in use and not sealed well(s)? Yes No
					Was a varian	the granted from the MDH for this well? Yes No
					Miscellaneo First Bedrock Last Strat Located by	
Remarks W-110					Locate Metho System	od UTM - NAD83, Zone 15, Meters X Y
					5	ber Verification Input Date
					Angled Dril	ll Hole
					Well Contra	
					Keys Well Licensee F	
Minnesota	Well Index	Repor	t	1	51599	Printed on 09/14/2021 HE-01205-15

County Scott Quad 557378

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 04/20/1995 02/14/2014 **Update Date Received Date**

Well Name	Township	Range	Dir Secti	on Subsec	tion	Well Depth	Ι	Depth Complete	d Date V	Vell Completed	l
LOUISVILLE	115	23	W 21	AAD		160 ft.	1	60 ft.	11/00/	1994	
Elevation	Elev. Me	ethod				Drill Method	Non-specif	ied Rotary	Drill Fluid Be	ntonite	
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE M	N		Well Hydrofra	actured?	Yes N	o From	То	
Contact	3331 AKERS	LA JORD	AN MN 55	352		Casing Type	Step dow		Joint	Welded	
Stratigraphy In				~ .		Drive Shoe?	Yes	No X	Above/Below		
Geological Mater	rial	From	To (ft.)	Color	Hardness	Casing Diam		0		Hole Diamet	
CLAY		0	2	GRAY	SOFT	4 in. To	147 ft. 11			12 in. To	81 ft.
GARBAGE		2	76	VARIED	HARD	8 in. To	81 ft.	lbs./ft.		8 in. To	160 ft.
LIMESTONE SANDSTONE		76 147	147 160	BRN/RED WHT/BRN							
SANDSTONE		147	100	WII/DKN	30F1						
						Open Hole	From	ft.	То	ft.	
							K	Type slotted		JOHNSON	
						Diameter	Slot/Gauze	Length	Set	1.60	
						4 in.	10	10 ft.	150 ft.	160 ft.	
						Static Water					
						116 ft.	land surfa	ce	Measure	11/00/1994	
						Pumping Le	vel (below lar	d surface)			
						160 ft.	4 hrs.	Pumping at	30	g.p.m.	
						Wellhead C	ompletion				
							r manufacturer		1	Model	
						Casing	Protection		in. above grade		
								ntal Wells and B	-		
						Grouting In	formation	Well Grouted?	X Yes	No Not S	Specified
						Material		Aı	mount	From 7	lo lo
						neat cement		8	Cubic yards	2 ft. 1	43 ft.
							own Source of	Contamination	n	Lan	<u>dfill</u> Type
						Well disinfe	ected upon con	npletion?	Yes	X No	
						Pump Manufacturer		Installed	Date Installed		
						Model Numb		HP	V	olt	
						Length of dro		ft Capacity		Тур	
						Abandoned			8·P·	-56	
						Does propert	y have any not in	n use and not seale	d well(s)?	Yes	No
						Variance				□	
							U	the MDH for this	well?	Yes	No
						Miscellaneo					
						First Bedrock Last Strat			Aquifer Depth to E		£4
						Located by			Deput to F	Bedrock 76	ft
Remarks						Locate Metho	od				
DC-119						System	UTM - NAD	83, Zone 15, Mete	ers X	Y	
						Unique Num	per Verification			Input Date	
						Angled Dril	Hole				
						Well Contra				~ ~~~~~	
						Bergerson Licensee E		т:	27058 c. or Reg. No.	SCHUL Name of I	
						Licensee F	u3111035		c. 01 Neg. 190.	Inamle of L	
Minnesota	Well Index	Repor	t		55	7378				Printed	on 09/14/2021 HE-01205-15

Minnesota Unique Well Number

557379 Quad

County Scott

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 04/20/1995 02/14/2014 **Update Date Received Date**

Well Name	Township	Range	Dir Sect		tion	Well Depth		epth Completed		Well Completed	
LOUISVILLE	115	23	W 21	AAD		159 ft.	15	9 ft.	11/00/	1994	
Elevation	Elev. Me	ethod				Drill Method	Non-specifie	ed Rotary	Drill Fluid Be	ntonite	
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE M	N		Well Hydrofr	actured?	Yes No	From	То	
Contact	3331 AKERS	S LA JORD	AN MN 55	352		Casing Type	e Step down		Joint	Welded	
Stratigraphy In	formation					Drive Shoe?	Yes	No X	Above/Below		
Geological Mate	erial	From	To (ft.)	Color	Hardness	Casing Diam	eter Weig	ht		Hole Diamete	er
CLAY		0	2	GRAY	SOFT	4 in. To	149 ft. 11	lbs./ft.		12 in. To	75 ft.
GARBAGE		2	73	VARIED	HARD	8 in. To	75 ft.	lbs./ft.		8 in. To	159 ft.
LIMESTONE		73	146	BRN/RED							
SANDSTONE		146	159	WH1/BRN	MEDIUM						
						Open Hole	From	ft.	То	ft.	
						Screen?		Fype slotted p	-		
						Diameter	Slot/Gauze	Length	Set		
						4 in.	10	10 ft.	149 ft.	159 ft.	
						Static Water					
						117 ft.	land surface	2	Measure	11/00/1994	
						Pumping Le	vel (below land	l surface)			
						159 ft.	4 hrs.	Pumping at	25	g.p.m.	
						Wellhead C	ompletion				
							r manufacturer			Model	
							Protection		. above grade		
								tal Wells and Bor	-		
						Grouting In	formation				pecified
						Material neat cement		Amo 9	Cubic yards	From T 2 ft. 13	
								,	cuore yailes		
						Nearest Kno	own Source of	Contamination			
							eet ected upon com	Direction pletion?	Yes	No Lane	<u>dfill</u> Type
						Pump Manufacture		stalled Da	ate Installed		
						Model Numb		HP	T.	olt	
						Length of dro		ft Capacity	v g.p.	Тур	
						Abandoned		n in j	5·P·	131	
						Does propert	y have any not in	use and not sealed v	well(s)?	Yes	No
						Variance Was a varian	ce granted from th	e MDH for this we	11?	Yes	No
						Miscellaneo					
						First Bedrock			Aquife	•	
						Last Strat			Depth to H		ft
Damard						Located by					
Remarks						Locate Metho					
DC-118						System	UTM - NAD8 per Verification	3, Zone 15, Meters		Y Input Date	
						Angled Dril				mput Date	
						ingleu Dill					
						Well Contra	octor				
						Bergerson			27058	SCHUL	ΓZ,C.
						Licensee F		Lic.	or Reg. No.	Name of D	
					55	7379				Duinte 1	on 09/14/2021
Minnesota	Well Index	k Repor	t								HE-01205-15

Minnesota Unique Well Number

557380

County Scott

Quad Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 04/20/1995

 Update Date
 02/14/2014

 Received Date

Well Name	Township	Range	Dir Section		tion	Well Depth		pth Completed		Vell Completed	1
LOUISVILLE	115	23	W 21	AAD		147 ft.	147		11/00/		
Elevation	Elev. Me	ethod				Drill Method	Non-specifie	d Rotary	Drill Fluid Ber		
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE MN			Well Hydrofra	actured?	Yes No	From	То	
Contact	3331 ALERS	LA JORD	AN MN 5535	52		Casing Type	·		Joint	Welded	
Stratigraphy In Geological Mate		From	To (ft.)	Color	Hardness	Drive Shoe?	Yes	No X	Above/Below		
GARBAGE	1141	2		VARIED	HARD	Casing Diame	eter Weigh 137 ft.	nt lbs./ft.		Hole Diamet	er 27 ft.
LIMESTONE		- 73		BROWN	HARD	4 III. 10 8 in. To	137 ft.	lbs./ft.		12 III. TO 8 in. To	27 ft. 147 ft.
SANDSTONE		136		WHT/BRN	SOFT	0 111.10	// It.	105./11.		0 111 10	11, 10
						Open Hole	From	ft.	То	ft.	
						Screen? Diameter 4 in.	K 1 Slot/Gauze	ype stainless Length 10 ft.	Make Set 137 ft.	JOHNSON 147 ft.	
						Static Water					
						115 ft.	land surface		Measure	11/00/1994	Ļ
						Pumping Le	vel (below land	surface)			
						Wellhead C Pitless adapte	ompletion r manufacturer		1	Model	
						At-grad		al Wells and Bor	-		
						Grouting In	formation				Specified
						Material		Amo			Fo 29 G
						neat cement		4 11	Cubic yards Cubic yards	2 ft. 1 ft. 7	
						fe	own Source of C	Direction			<u>idfill</u> Type
						Well disinfe	ected upon comp	Ŀ	Yes	X No	
						Manufacture	Not Ins	stalled Da	te Installed		
						Model Numb	er	HP	V	olt	
						Length of dro	op pipe	ft Capacity	g.p.	Тур	
						Abandoned Does propert	y have any not in u	use and not sealed w	vell(s)?	Yes	No
						Variance			10		
						Was a varian Miscellaneo		e MDH for this wel	1?	Yes	No
						First Bedrock			Aquifer		
						Last Strat			Depth to B		ft
Domonica						Located by					
Remarks						Locate Metho		Zono 15 Mate	V	17	
DC-117						System Unique Numb	UTM - NAD8: per Verification	3, Zone 15, Meters	X	Y Input Date	
						Angled Dril					
						Well Contra	etor				
						Bergerson			27058	SCHUL	.TZ,C.
						Licensee E		Lic. o	or Reg. No.	Name of I	
Minnesota	Well Index	Report	t		55	7380				Printed	on 09/14/202 HE-01205-15

 $i^{-\infty}$ Wellin tower [formable Toner | Baars' double 1. Prostiti Walley and Forwardly Friddeil iddrein . RR3 Ane he per . yest carrie [completion] 100 may 19, 84 NX pi. 12 Marca E Conte tent · Omne 1 Arland 169 10 C ang 1 tollow rad Q #r h dorra ΠĽ. 1 Anter TOPOFWELL C Attai "Towns Juger Long L(X Manager M 6. 101 798.87 (D) Comester 4 Public Supply يريد تعديد الم PORMATION LOO I Intestie Ale Conditioning 170× T\$ C Comercela Ters Mill ۰. سو Redich much I. CLEIND Ô, 14 STICET: STATE TAT 64 44 🛃 Ï Neldet 🗖 Stefare 14 11 Alaga 27. 16 aur. 🗖 4 9.5 eri depin 11: ^astahit_ Villow nud 21 16 A. depth là. tò. ft. depth Blue Pet 1 4001 300 1 10 *1 .c.Lay 21 d. States 40 m Johnson ALTIC 1000 Brown n. 10 stander mul 40 56 True aliai /G F 1-Ŀ Brown. range graves 56 Haze 100 n me 9.5 R. Lat 100 11. ____ in. TATLE VATER LEVEL SCREEN _72 10. POPPIAS LEVEL (Delaw Land aurrace) ALL HELENS 5-19 1¢ 24 . in. 18-slit -ter_ pasie 20 ministe arter_____hare, gampling 1270 IL. VELL ELAL COPPLETICE Continue adopter Car famit 12" abore To estempt affert <u> 2 X 4</u> te. Vell greated! X ... D to. çu, téa I Hant erangt I tentmite ™™™ 10. _{1. 1. <u>7.5</u>_____ POPULA INCOM 0 'n., free. ft. 10% tt. 13. Bearing goures of paulible contaminuscan Jerne feet direction. Vell diainfested upon completionT toy 💭 No 🗂 11 . 140 Date Intrastor 5-22-Ph lint & Welling Kunsteelwor's tee Th Hodel Europer<u>BA</u> W Yalin 220 lansh of dide plac_ <u>85</u> ______.__ 10 Heserical of the pipe 14 and farmaning a paper 10.85 4 C CAN IN TAKE iÖ_ 16. WATER VILL CONTRACTOR & CONTINUESTON Bute well use detiled using or incidention and tild, report is take to the bast of my begaladge and helief. Hartmann Wall 64 40194 in My new Dreque 305 Reger Hertindan on 5-24-1 Jacobels WORK COPY

MN

i i i i i i i

Minnesota Unique Well Number

783164

County Scott Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 11/22/2011

 Update Date
 11/28/2011

 Received Date
 11/03/2011

Well Name MW-04-11	Township 115	Range 23	Dir Secti W 28	on Subse		Well Depth 155 ft.	Dep 155 1	th Completed	Date V 07/07/	Vell Complete	ed
Elevation	Elev. Me	thod				Drill Method	Vibracore/rota	sonic	Drill Fluid Wa	ater	
Address						Use monit	or well			Status	Active
Well	13580 JOHNS	SON MEM	ORIAL DF	R SHAKOPE	EE MN 55379	Well Hydrofra Casing Type			X From Joint	To)
Stratigraphy Inf	ormation					Drive Shoe?		No	Above/Below		
Geological Mater		From	To (ft.)	Color	Hardness	Casing Diamo	eter Weight			Hole Diam	eter
OVERBURDEN		0	35	BROWN	SOFT	2 in. To	103 ft.	lbs./ft.		6 in. To	155 ft.
SANDSTONE		35	145	WHITE	MED-HRD						
ST LAWRENCE		145	155	WHITE	HARD						
						Open Hole Screen?	From	ft. pe stainless	To Make	ft. JOHNSON	
						Diameter	· · ·	Length	Set	301113011	
						2 in.		10 ft.	103 ft.	113 ft	
						Static Water	Level				
						74 ft.	land surface		Measure	07/07/201	.1
						Pumping Le	vel (below land s	urface)			
						Wellhead Co	ompletion				
							r manufacturer			Model	
							Protection le (Environmental		above grade		
						Grouting Int			-	No No	Specified
						Material		Amo		From	То
						neat cement		14	Sacks	ft.	99 ft.
						fe Well disinfe	own Source of Co eet	Direction	Yes	X No	Туре
						Pump Manufacturer	Not Inst		te Installed		
						Model Numb		HP		olt	
						Length of dro Abandoned	pp pipe	ft Capacity	g.p.	Тур	
							y have any not in us	e and not sealed w	ell(s)?	Ye	es 🗙 No
						Variance					
						Was a varian	ce granted from the	MDH for this well	?	Yes	X No
						Miscellaneo					
						First Bedrock Last Strat			Aquifer Depth to E		ft
						Located by			Depui to I	Jeuroek	п
Remarks						Locate Metho	od				
102150 MW-04-11						System	UTM - NAD83,	Zone 15, Meters	Х	Y	
WIW-04-11							er Verification			Input Date	
						Angled Drill	l Hole				
						Well Contra	ictor				
						Boart Long			2022		IBERGER
						Licensee E	Business	Lic. o	r Reg. No.	Name of	Driller
Minnesota	Well Index	Report	;		78	3164				Printe	ed on 09/14/2021 HE-01205-15

Minnesota Unique Well Number

783165

County Scott

Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date	11/22/2011
Update Date	11/28/2011
Received Date	11/03/2011

Well Name MW-7-11	Township 115	Range 23	Dir Section W 21	n Subsec	tion	Well Depth 151 ft.	Dep	th Completed	Date 08/23/	Well Complete	ed
			W 21	DDDA		Drill Method					
Elevation	Elev. Me	tnoa				_	Non-specified	Kotary	Drill Fluid Be		
Address						Use monito				Status	Active
Well	13580 JOHN	SON MEM	ORIAL DR S	SHAKOPE	E MN 55379	Well Hydrofra	ctured?	Yes No	X From	To)
						Casing Type	·		Joint	Threaded	
Stratigraphy In		F	TT (C) (TT 1	Drive Shoe?		No X	Above/Below		
Geological Mat SAND & GRA		From 0	. ,	Color GRAY	Hardness SOFT	Casing Diame				Hole Diam	
DOLOMITE	VEL	51		TELLOW	MED-HRD	2 in. To	140 ft.	lbs./ft.		6 in. To	151 ft.
Remarks 102150 MW-7-11		88		VHITE	MED-HRD	Wellhead Co Pitless adapter X Casing I At-grad Grouting Inf Material neat cement Nearest Knoo fe Well disinfe Pump Manufacturer Model Numbi Length of dro Abandoned Does property Variance Was a variance Miscellaneou First Bedrock Last Strat Locate Metho System	Slot/Gauze 10 Level land surface vel (below land so ompletion manufacturer Protection e (Environmental formation way Source of Co et and cted upon completion is name er p pipe / have any not in us the granted from the 18 d UTM - NAD83, er Verification	12 in. Wells and Bor Well Grouted? Amo 19 Direction etion? alled HP ft Capacity e and not sealed v	Set 140 ft. Measure . above grade ings ONLY) X Yes ount Sacks Yes Yes ate Installed Yes te Installed Yes Yes yes yes yes yes yes yes yes yes	From ft. Tube T	t Specified To 136 ft. Type
						Well Contra Boart Long Licensee B	gyear	Lic. o	2022 or Reg. No.	DICKIN Name of	NSON, P Driller
Minnesota	Well Index	Report	;		78	3165				Printe	ed on 09/14/2021 HE-01205-15

Attachment 6

February 2022

Dem-Con Landfill SW-290

2021 Groundwater Monitoring Report Louisville Township Scott County, MN

Consulting Civil Engineers

Sunde Engineering, PLLC 10830 Nesbitt Avenue South • Bloomington, Minnesota 55437-3100 Phone: (952) 881-3344 • Fax: (952) 881-1913 • E-Mail: info@sundecivil.com

DEM-CON LANDFILL

2021 ANNUAL WATER MONITORING REPORT

1.0 INTRODUCTION

The Dem-Con Landfill is an existing demolition debris landfill located in Sections 16 and 21, Township 115, Range 23, in Louisville Township of Scott County (Site). The landfill has been in operation since January 1986. Dem-Con Landfill is located in the North ½ of Section 21, and the South ½ of Section 16, Township 115 N, Range 23 W, in Louisville Township, Scout County, Minnesota. Routine groundwater monitoring is a permit requirement.

The landfill is located on a terrace of the Minnesota River. Underlying glacial drift, limestone and dolostone from the Prairie du Chien Group, and the Jordan Sandstone act as the surficial aquifer in the region of the landfill. Groundwater recharge of this aquifer originates from infiltration. The Minnesota River, located just west of the site, is a regional discharge area for the surficial aquifer. Groundwater flows from the landfill to the west and northwest towards the discharge area of the Minnesota River Valley.

Dem-Con Landfill has an unlined demolition fill area in the southern portion of the landfill. Filling in the unlined portion of the landfill was completed and the final cover system, which includes a synthetic cap was constructed in 2021. There is a liner and leachate collection system under the northern phases of the landfill and a liner and leachate collection system constructed over a portion of unlined demolition fill in the central phases of the landfill. The liner and leachate collection system and an enhanced final cover system (which includes a synthetic cap component) have been implemented at the facility to protect groundwater quality.

The Louisville Landfill, a closed unlined municipal solid waste (MSW) landfill, is located immediately west of the southern portion of Dem-Con Landfill and immediately south of the northwestern portion of Dem-Con Landfill.

2.0 MONITORING WELL NETWORK

The current monitoring network consists of eight wells. W-8, W-10, and W-120 are upgradient wells. W-121 and W-122 are downgradient wells that monitor groundwater quality downgradient of the lined portion of the landfill. DC-117, DC-118, and DC-119 are downgradient wells that monitor groundwater quality downgradient of the Dem-Con Landfill and upgradient of the Louisville Landfill. These three wells are located at the interface between an unlined portion of the Dem-Con Landfill and the unlined Louisville Landfill.

W-8 and W-10 have a long history within the network. W-120 and W-121 were installed in 1984 as part of the hydrogeologic investigation associated with the landfill expansion to the north and W-122 was installed in 2005. W-120, W-121, and W-122 have been routinely monitored since 2005. Sampling results from W-120, W-121 and W-122 through the spring 2006 event represent background water quality data. Filling in the lined area did not commence until after this date. DC-117 has been part of the monitoring network since 2000 and DC-118 and DC-119 have been part of the monitoring network since 2010.

W-8 and W-10 are monitored one time per year for VOCs and metals. W-120, W-121, W-122, DC-117, DC-118, and DC-119 are monitored three times per year for VOC's and one time per year for metals.

Monitoring results for well DC-117 indicate the presence of a number of VOCs in the groundwater at the interface between MSW and demolition fill materials. It has been concluded that water quality in this well is influenced by the unlined Louisville Landfill. Monitoring wells DC-118 and DC-119 typically show an occasional detection of a VOC. Groundwater quality at these locations may also be influenced to some degree by the close proximity of the Louisville Landfill. In 2003, the Louisville Landfill was covered with a low density polyethylene (LDPE) cap and a gas extraction system was installed. Since the installation of the LDPE cap and gas extraction system, concentrations of most VOC contaminants included in the Louisville Landfill's sampling program have declined. This is also the case for most of the VOCs contaminants in DC 117. Construction of the final cover was installed over the southern portion of the Dem-Con Landfill adjacent to DC-117 in 2019.

It is apparent that in the past sampling labs have misidentified DC-117 and DC-119. This issue was addressed in the fall of 2005 and the wells were more clearly labeled in the field in the spring of 2006. The problem seemed to have been resolved but review of the 2016 data indicated that the monitoring results of DC-117 and DC-119 were also likely mislabeled in the spring 2016 sampling event. This is evident by tracking several of the water quality parameters. Monitoring results are reported in the attached spreadsheets correcting the assumed reporting error and reported on a footnote to the tables for DC-117 and DC-119.

3.0 GROUNDWATER MONITORING RESULTS

In general, monitoring results for 2021 were similar to past years. Groundwater samples were analyzed for the parameters indicated in the current Dem-Con Permit.

3.1 Summary of Analytes Detected in 2021:

A summary of all analytes detected in 2021 in each of the monitoring wells is provided in Table 3.1 below. Parameters which exceeded Permit Limits are indicated in bold.

Well	Analyte	Unit	Permit Limit	HRL	MCL	5/10/21	7/29/21	11/02/21
	Manganese	ug/L	25	100	-		15.1	
	Barium	ug/L	500	2000	2000		70.8	
	Methyl tertiary butyl ether	ug/L	15	60			0.62	
	Boron	ug/L	250	500	-		31.7	
W-8	Chloride	mg/L	-	-	-		84.3	
	Nitrate & Nitrite	mg/L	-	-	-		2.2	
	Solids, Total Dissolved	mg/L	-	-	-		441	
	Sulfate	mg/L	-	-	-		15.4	
	Iron	ug/L	-				336	
W-10	Manganese	ug/L	25	100	-		10.8	
	Barium	ug/L	500	2000	2000		34.5	
	Lead	ug/L	7.5	0	15		0.40	
	Boron	ug/L	250		500		23.4	
	Chloride	mg/L					72.9	
	Nitrate & Nitrite	mg/L					0.97	
	Solids, Total Dissolved	mg/L					606	
	Sulfate	mg/L					121	
	Manganese	ug/L	25	100	-	21.4	32.7	14.7
	Boron	ug/L	250	500	-	34.6	41.8	<150
	Barium	ug/L	500	2000	2000		16.4	
W-120	Chloride	mg/L	-	-	-		18.1	
VV-120	Iron	ug/L	-	-	-		1200	
	Solids, Total Dissolved	mg/L	-	-	-	470	478	480
	Sulfate	mg/L	-	-	-		46.6	
	Toluene	ug/L	50	200	1000	1.62	0.88	0.81
	Styrene	ug/L			100	0.62	<0.40	<0.40
	Manganese	ug/L	25	100	-	39.7	161	137
	Boron	ug/L	250			17.6	19.5	<150
W-121	Barium	ug/L	500	2000	2000		34.8	
	Chloride	mg/L	-	-	-		10.8	
	Iron	ug/L					329	
	Solids, Total Dissolved	mg/L	-	-	-	171	193	168
	Sulfate	mg/L	-	-	-		28.3	
W-122	Manganese	ug/L	25	100		15.2	16.0	17.6

Table 3.1 Summary of Analytes Detected in 2021

Dem-Con Landfill SW-290 2021 Annual Groundwater Monitoring Report

	Boron	ug/L	250			55.6	63.4	<150
	Barium	ug/L	500	2000	2000		236	
	Iron	ug/L	-	-	-		59.3	
	Chloride	mg/L	-	-	-		21.4	
	Nitrate & Nitrite	mg/L	-	-	-		2.1	
	Solids, Total Dissolved	mg/L	-	-	-	459	622	548
	Sulfate	mg/L	-	-	-		176	
	1,1-Dichloroethane	ug/L	25	80	-	0.82	0.64	0.62
	1,2 Dichloroethylene, cis	ug/L	1.5	6	70	1.09	1.2	1.2
	1,4-Dichlorobenzene	ug/L	-	10	75	1.06	0.71	<0.40
	Ethyl ether	ug/L	50	200	-	5.37	4.90	4.7
	Tetrahydrofuran	ug/L	-	600	-	9.67	<10.0	<10.0
	Trichloroethylene	ug/L	0.1	0.4	5	0.1	<0.05	<0.05
DC 447	Vinyl chloride	ug/L	0.05	0.2	2	0.23	0.17	<0.05
DC-117	Manganese	ug/L	25	100	-	1660	1820	1720
	Boron	ug/L	250	500	-	1320	1110	1300
	Barium	ug/L	500	2000	2000		209	
	Chloride	mg/L	-	-	-		143	
	Solids, Total Dissolved	mg/L	-	-	-	905	1160	894
	Iron	ug/L	-				1190	
	Sulfate	mg/L	-	-	-		79.6	
	Manganese	ug/L	25	100	-	19.6	22.2	48
	Boron	ug/L	250	500	-	119	154	370
	Barium	ug/L	500	2000	2000		59.2	
DC 110	Chloride	mg/L	-	-	-		60.8	
DC-118	Iron	ug/L	-	-	-		117	
	Nitrate & Nitrite	mg/L	-	-	-		1.5	
	Solids, Total Dissolved	mg/L	-	-	-	528	531	563
	Sulfate	mg/L	-	-	-		47.1	
	Dichlorofluoromethane	ug/L	-	30	-	0.69	1.7	1.9
	Manganese	ug/L	25	100	-	<0.5	<0.5	5.8
	Boron	ug/L	250	500	-	249	292	449
	Barium	ug/L	500	2000	2000		101	
DC-119	Chloride	mg/L	-	-	-		227	
	Iron	ug/L	-	-	-		61.8	
	Nitrate & Nitrite	mg/L	-	-	-		1.2	
	Solids, Total Dissolved	mg/L	-	-	-	815	920	806
	Sulfate	mg/L	-	-	-		46.2	

Bold indicates result at or above Permit Limit

In evaluating the monitoring results, it is noted that the reporting limit of two analytes were higher than the Permit Limit for all samples collected and analyzed during 2021. These two analytes, the Permit Limit, and the Reporting Limits are listed in Table 3.2. Because the reporting limit is higher than the Permit Limit, it is not possible to demonstrate compliance with the permit for these parameters.

Tuble 5.2 / marytes with hepo	Thing Linnes above the re	
ANALYTE	PERMIT LIMIT	REPORTING LIMIT
1,2,3-Trichloropropane	0.00075 ug/L	<0.01 ug/L
1,2-Dibromomethane	0.001 ug/L	<0.05 ug/L

Table 3.2 Analytes with Reporting Limits above the Permit Limit

3.2 Tabulated Data:

Appendix 1-*Previous Five Years of Analytical Results,* provides the analytical results from the previous five years monitoring activity at the facility for each of the monitoring wells in the groundwater monitoring network.

3.3 Contaminant Trend Evaluations:

Monitoring results for the year 2021 are typical of past years. Monitoring results are discussed for each well. Graphs illustrating pertinent historical groundwater monitoring data including a linear trend line are included at the end of this discussion.

Upgradient Wells:

MW-8: MW-8 is an upgradient monitoring well sampled once per year in the summer quarter in accordance with permit conditions. The parameter list includes VOCs and metals. One VOC was detected above the Reporting Limit in MW-8 in 2021. Methyl tertiary butyl ether was detected at a value of 0.62 ug/L, under the Permit Limit of 15 ug/L. Methyl tertiary butyl ether has not been detected previously in this upgradient well. Manganese, Barium, Boron, Chloride, Sulfate, Iron, Nitrite & Nitrate, and Total Dissolved Solids all had reportable levels. Manganese did not exceed the Permit Limit of 25 μ g/l with reported concentration of 15.1 μ g/l. Historically the Manganese concentration in this background well has frequently exceeded the 25 ug/L Permit Limit. The Health Risk Limit (HRL) established by the Minnesota Department of Health (MDH) for groundwater used as a drinking water supply for manganese is 100 μ g/l. The HRL has been exceeded two times (2011 and 2016 monitoring events) in the last ten years.

Barium was below the Permit Limit of 500 ug/L. Chloride, Iron, Sulfate, Nitrite Plus Nitrate, and Total Dissolved Solids do not have Permit Limits or HRLs and are not demonstrating noticeable water quality trends.

MW-10: MW-10 is an upgradient monitoring well sampled once per year in the summer quarter in accordance with permit conditions. The parameter list includes VOCs and metals. No VOCs were detected during the 2021 monitoring event. Historically there have been isolated incidents of VOCs in MW-10. Trichlorofluoromethane has been detected periodically since 1999 at concentrations ranging from 0.11 to 2.0 ug/L and Dichlorofluoromethane was detected at 5.4 ug/L in 2018, with no prior history. Neither of these VOCs were detected in 2021.

Lead was detected in MW-10 in 2021 at a concentration of 0.40 ug/L, below the Permit Limit of 7.5 ug/L. Lead has periodically been detected in this upgradient well at concentrations between .6 and 7.4 ug/l. Manganese, Barium, Chloride, Nitrite & Nitrate, Total Dissolved Solids, and Sulfate all had reportable levels. Reported levels were below Permit Limits for Manganese and Barium. Chloride, Nitrate & Nitrite, Sulfate and Total Dissolved Solids do not have Permit Limits or HRLs and are not demonstrating any noticeable water quality trends.

W-120: W-120 is an upgradient monitoring well sampled three times per year in the spring, summer and fall quarter in accordance with permit conditions. This well is sampled three times per year for VOCs and one time per year in the summer for metals. No VOCs were detected above the reporting limit in 2021. Historically, Toluene has been detected at this well at concentrations that are typically below the Permit Level. Toluene has not been detected since 2018. Chloromethane was detected one time since monitoring began at this well in 2005. The detection occurred in the summer 2019 sampling event at concentrations below the permit limit.

Manganese, Boron, Chloride, Iron, Total Dissolved Solids, and Sulfate all had reportable concentrations in 2021. Manganese was above the Permit Limit of 25 ug/l during the summer sampling event with a value of 32.7 ug/L. Monitoring results from W-120 since 2005 indicate that Manganese has ranged from 15 to 920 ug/l. 2021 results ranged from 14.7 to 32.7 ug/l. The Manganese concentrations in this background monitoring well often exceed the Permit Limit.

Downgradient Wells:

W-121: W-121 is a downgradient monitoring well sampled three times per year in the spring, summer, and fall quarter in accordance with permit conditions. This well is sampled three times per year for VOCs and one time per year for metals. Styrene was detected in the spring sampling event and Toluene was detected in all three of the sampling events of 2021. There is not a permit limit for Styrene, and it was below the MCL in the sample. Toluene was detected in the spring, summer, and fall sampling events at levels below the permit limit. These two VOCs have both been periodically detected in W-121 since 2005. The well is located some distance from any active filling and is downgradient of lined portions of the landfill. The well is more immediately downgradient of future phases of the landfill where mining was recently completed in advance of future landfill phase development of the liner and leachate collection system.

Manganese, Barium, Boron, Iron, Chloride, Sulfate, and Total Dissolved Solids all had reportable levels. Manganese was reported above the Permit Limit in all three sampling events in 2021, with the summer and fall sampling at 161 ug/L and 137 ug/L respectively, exceeding the HRL of 100 ug/L. Graphs indicate a trend of increasing concentrations of Manganese in W-121.

Monitoring for Boron began in 2015 with reporting limits varying from 10 to 150 ug/L. All previous reports have been detections have been with reporting limits at 10 ug/L. Concentrations above the reporting limit have ranged from 17.5 to 19.5 ug/L since 2015.

W-122: W-122 is a downgradient monitoring well sampled three times per year in the spring, summer and fall quarter in accordance with permit conditions. This well is sampled three times per year for VOCs and one time per year for metals. No VOCs were detected during any of the three sampling events in 2021 and there have been no VOC detections in the past five years.

Manganese, Boron, Barium, Chloride, Nitrate & Nitrite, Dissolved Solids, and Sulfate were above reporting limits, but below Permit Limits in 2021.

DC-117: DC-117 is a downgradient monitoring well sampled three times per year in the spring, summer and fall quarter in accordance with permit conditions. This well is sampled three times per year for VOCs and one time per year for metals. A number of VOCs have historically been detected in this well which is located at the interface of the unlined Louisville Landfill and the unlined demolition landfill. The unlined Louisville Landfill is believed to be the predominant source of the VOCs in DC-117, based upon the results of downgradient Louisville Landfill wells which demonstrate a similar degree of impact and the results of DC-118 and DC-119 which are also located immediately downgradient of the unlined Dem-Con Landfill and do not demonstrate a similar degree of impact. In general, VOCs in DC-117 have trended downward since the Louisville Landfill was capped and a landfill gas extraction system was installed in 2003. In addition, final cover construction including a synthetic cap was completed in the southern fill area adjacent to and upgradient of DC-117 in 2020-2021.

Seven VOCs were detected in DC-117 in 2021. 2021 results are consistent with historical results. All of the VOCs have been detected in this well previously. Data for the VOCs are graphed in the following section of this report and each VOC is discussed below.

1,1 Dichloroethane: 1,1 Dichloroethane was detected during all three 2021 sampling events at concentrations below the Permit Limit of 25 ug/L. Historically, 1,1 Dichloroethane has been routinely detected in DC-117. Concentrations have been trending down since 2003. Concentrations have ranged from 16 ug/L in 2003 to 0.62 ug/L in 2021.

1,2 Dichloroethylene (cis): 1,2 Dichloroethylene (cis) was detected in all three 2021 sampling events at concentrations below the Permit Limit of 1.5 ug/l. Historically, 1,2 Dichloroethylene (cis) has been routinely detected in DC-117. Prior to 2015, the concentrations of this VOC have typically been above the current Permit Limit of 1.5 ug/L and the current HRL of 6 ug/L. Since 2015 results have typically been above the Permit limit but below the HRL. However, in 2021 and all three sampling values were under the Permit Limit. 2021 is the first year that concentrations have been reported below the Permit Limit in the past 5 years. Concentrations have been trending down since 2003 and have ranged from 41 ug/L in 2003 to 1.09 ug/L.

1,4 Dichlorobenzene: 1,4 Dichlorobenzene was detected in the spring and summer 2021 sampling events. There is no Permit Limit for this VOC. Historically, including 2021, all results have been below the current HRL of 50 ug/L. Concentrations above the reporting limit have ranged from 4.3 ug/L to 0.71 ug/L. There is a slight downward trend in concentrations since 2003.

Ethyl ether: Ethyl ether was detected above the reporting limits in all three 2021 sampling events at concentrations below the current Permit Limit of 50 ug/L. Ethyl ether has routinely been detected in DC-117 below the current Permit Limit. Concentrations of Ethyl ether have been trending lower since 2003 and have ranged from 44 ug/L in 2004 to 4.7 ug/L in 2021.

Tetrahydrofuran: Tetrahydrofuran was detected in the spring 2021 sampling event at a concentration of 9.67 ug/L. There is no Permit Limit for this VOC. Tetrahydrofuran has been

routinely detected in DC -117 and concentrations have historically been below the Health Based Value of 600 ug/L. Concentrations of Tetrahydrofuran are trending down since 2003.

Trichloroethylene: Trichloroethylene was detected at 0.1 ug/L in the spring 2021 sampling event, a concentration that is equal to the Permit Limit. Trichloroethylene has periodically been detected above reporting limits in this well. In the past, levels of Trichloroethylene have exceeded permit limits. Concentrations of Trichloroethylene have ranged from 6.0 ug/L in 2003 to less than 0.05 in 2021. While concentrations over the entire monitoring period are trending down and the results have been at or below the Permit Limit since 2018, over the past five years, concentrations have been trending up.

Vinyl chloride: Vinyl chloride was detected above the reporting limit in the spring and summer 2021 sampling events at 0.23 and 0.17 ug/l respectively, above the current Permit Limit of 0.05 ug/L. The concentration in the spring sampling event was above the HRL of 0.2 ug/L. Vinyl chloride has routinely been detected in DC-117 above the current Permit Limit and above the HRL. Concentrations have been trending down since 2003 and have ranged from 14 ug/L in 2003 to less than 1.0 ug/L since 2015. Concentrations ranged from <0.050 ug/L to 0.23 ug/L during the three 2021 sampling events.

Benzene: Benzene was not detected in DC-117 in 2021 but has been routinely detected in the past. Also in the past, detection limits have fluctuated and for those sampling events where Benzene was not detected above the reporting limit, the reporting limit was higher than typical reported concentrations and above the Permit Limit. 2021 reporting limits were at or below the Permit Limit of 0.5 ug/l in 2021. Because of the variation in reporting limits, the trend line is inconclusive.

Chlorobenzene: Chlorobenzene was not detected in DC-117 in 2021 for all three sampling events in 2021 but has been routinely detected in the past. As with Benzene, detection limits have fluctuated and for those sampling events where Benzene was not detected above the reporting limit, the reporting limit was higher than typical reported concentrations. With Chlorobenzene however, the detection limits have always been lower than the current Permit Limit of 25 ug/L.

Dichlorofluoromethane: Dichlorofluoromethane was not detected in DC-117 in 2021 but has routinely been detected at low levels in the past. Historically, this VOC has been detected below the HRL of 30 ug/L. This is the second time in nine years that dichlorofluoromethane has not been detected in DC-117. There is no trend towards increasing concentrations.

Methyl-tert-butyl ether: Methyl-tert-butyl ether was not detected in 2021. Historically, there have been three isolated detections in 2011, 2016, and 2019. There is no Permit Limit for Methyl-tert-butyl ether.

Manganese: Manganese was detected above the Permit Limit of 25 ug/L and the HRL of 100 ug/L in all three 2021 sampling events. Concentrations of Manganese have trended upward since 1999, but slightly downward in the past 5 years. Concentrations have ranged from a 2400 ug/l in 2002 to 10ug/l in 2005. Concentrations ranged from 1660-1820 ug/l in 2021.

Boron: Boron was detected above the Permit Limit of 250 ug/L. Historically Boron has been present in concentrations above the Permit Limit since monitoring for this parameter began in 2011. There is a decreasing trend in Boron concentrations in DC-117 over the past five years.

Barium was detected below the Permit Limit of 500 ug/L in 2021.

Chloride, Iron, Total Dissolved Solid and Sulfate were all detected in 2021 in DC-117. There are no Permit Limits established for these parameters.

Trichloroethylene, Vinyl chloride, Manganese, and Boron were all detected at or above the permit Limits in 2021. These parameters have historically shown concentrations above the Permit Limit. Action taken to reduce these contaminants over time includes construction of final cover and landfill gas collection system over the closed Louisville Landfill in 2003, the design and construction of a liner and leachate collection system over unlined portions of the Dem-Con Landfill in 2016 and 2017, the construction of lined landfill cells in new phases of landfill development, and the capping of completed portions of the unlined landfill with a synthetic cap in 2020-2021. The groundwater monitoring program has illustrated a general decrease in VOCs in downgradient Louisville Landfill wells since the final cover and landfill gas collection system was installed in the Louisville Landfill in 2003. Continued monitoring of DC-117 will help to evaluate the effectiveness of the recent liner and leachate collection system and final cover construction in further reducing contaminant levels over time.

DC-118: DC-118 was sampled three times in 2021 for VOCs and one time for metals. No VOCs were detected during the three sampling events.

Manganese was detected during all three 2021 sampling events and was above the Permit Limit of 25 ug/L during the 2021 fall sampling event at concentration of 48 ug/L. There has been an overall increasing trend in Manganese since 2003, but a decreasing trend over the last five years in DC-118.

Boron was detected during all three 2021 sampling events and was above the Permit Limit of 250 ug/L during the fall sampling event at a concentration of 370 ug/L. There has been a very slight increasing trend in Boron since 2003, but a decreasing trend over the last five years in DC-118.

2019. Barium was detected below the Permit Limit of 500 ug/L. Chloride, Iron, Nitrate+Nitrite, Total Dissolved Solids, and Sulfate were all detected in 2021 in DC-118. There are no Permit Limits established for these parameters.

DC-119: DC-119 was sampled three times in 2021 for VOCs and one time for metals.

Dichlorofluoromethane: Dichlorofluoromethane was detected during all three 2021 sampling events of 2021 consistent with past monitoring. There is no Permit Limit for this VOC and the results have been below the HRL of 30 ug/L ranging from 0.69 ug/L to 1.9 ug/L in 2021. The historical concentrations of Dichlorofluoromethane have been variable and often above reporting limits for the last five years, with a general decreasing trend over the last five years.

Manganese was detected in the fall sampling event of 2021 but was below the Permit Limit of 25 ug/L. Boron was detected during all three sampling events and exceeded the Permit Limits in the summer and fall sampling events.

Boron was detected in all three 2021 sampling events and was above the current Permit Limit of 250 ug/L during the summer and fall events with concentrations of 292 and 449 ug.L respectively. Boron concentrations have been trending up since 2011 and within the last five years.

Barium was detected below the Permit Limit of 500 ug/L in 2021. Concentrations of Chloride, Iron, Nitrate+ Nitrite, Total Dissolved Solids and Sulfate were above reporting limits in DC-119 in 2021. There are no Permit Limits established for these parameters.

3.4 Graphs of VOCs detected during the 2021 monitoring period

Graphs are provided depicting concentrations over time for VOCs detected during the 2021 sampling period. These include the seven VOCs detected in DC-117 and one VOC in DC-119. The VOC in W-8 was not graphed since this is the first time this contaminant has been identified. The graphs which generally include available sampling results since 2003, include a trendline spanning the entire monitoring timeframe. Results that are below the reporting limit are graphed as zero. The graphs are included as Appendix 2 – *Graphs and Trendlines Selected Parameters*.

3.5 Graphs of Manganese and Boron

Both Manganese and Boron have had detections above reporting limits and exceedances of Permit Limits. Manganese and Boron are graphed with a linear trendline for each well for the entire data set and for the past five years to illustrate more recent trends in water quality. Manganese has historically been detected in all of the wells. Concentrations are trending higher in some wells and lower in others as illustrated on the following graphs. Concentrations of Manganese and Boron have been graphed for all of the wells in the monitoring network.

4.0 GROUNDWATER FLOW MAPS

Figures 1-3: illustrate the elevation of the water table based on water level information obtained during each sampling event.

5.0 LEACHATE MONITORING SUMMARY

The annual leachate monitoring summary is included as Appendix 3.

6.0 CONCLUSIONS AND RECOMMENDATIONS

2021 sampling results were similar to past years with several VOCs detected in DC-117, which is influenced by the unlined Louisville Landfill. Concentrations of the VOCs are generally trending downward since the placement of an enhanced cover and landfill gas collection system was installed on the Louisville Landfill in 2003. There has been a continued downward trend over the

last five years in all of the VOCs except trichloroethylene in DC 117 which shows a trend toward increasing concentrations over the last five years. Trichloroethylene was at or below Permit Limits in 2021. The construction of a liner and leachate collection system over the northern portion of the unlined Dem-Con Landfill in 2016 and 2017, and the completion of final capping of the southern unlined portion of the landfill in 2020 and 2021 are expected to further reduce the concentrations of VOCs in this well over time.

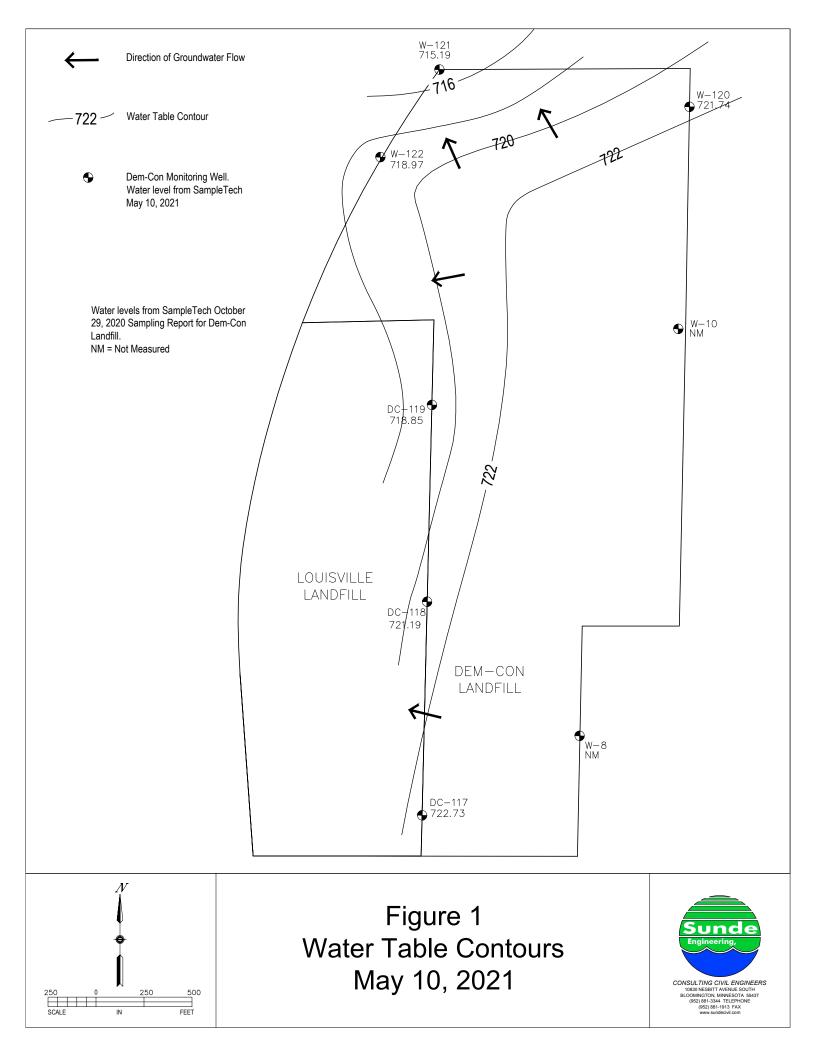
Boron has been detected in all of the monitoring wells with a trend of increasing concentrations in both upgradient and downgradient wells. Only DC-117. DC-118 and DC-119 have had concentrations above the Permit Limits. Both DC-117 and DC-118 have shown a trend towards decreasing concentrations over the past five years.

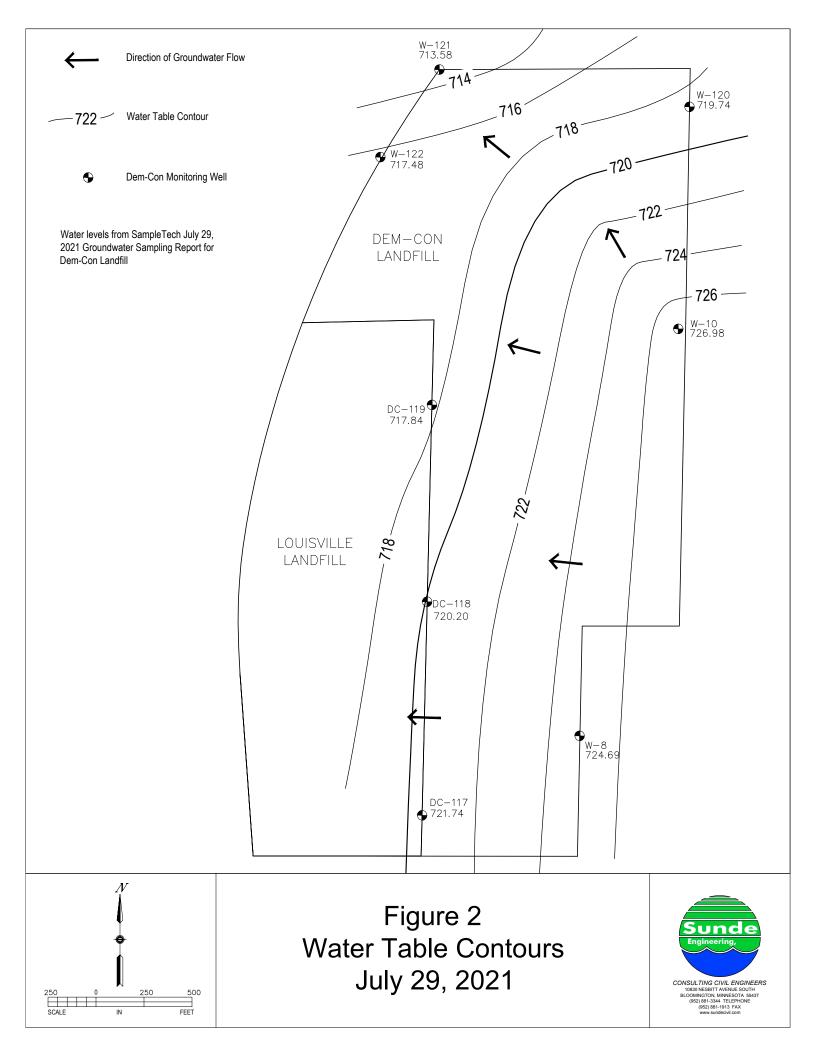
Manganese is a parameter that appears to be increasing in concentrations and exceeds Permit Limits in several of the wells, including upgradient wells. About half of the wells are showing a decrease trend in concentrations in the last five years and half an increase. Permit Limits are exceeded in many of the wells, including the background wells which have recorded some of the highest levels of Manganese in the network although DC -117 has recorded the highest concentration. While there are potentially other sources of Manganese in the groundwater, the Louisville Landfill and/or the Dem-Con Landfill is an additional potential source. The liner and leachate collection system installed over unlined portions of the landfill may help reduce Manganese levels in DC-118 which have exceeded Permit Limits. Completion of the unlined Phase 1A in the southern portion of the Dem-Con landfill and constructing the final cover over this phase in 2020-2021 should reduce the concentration of Manganese in DC-117 in the future if the landfill is a source.

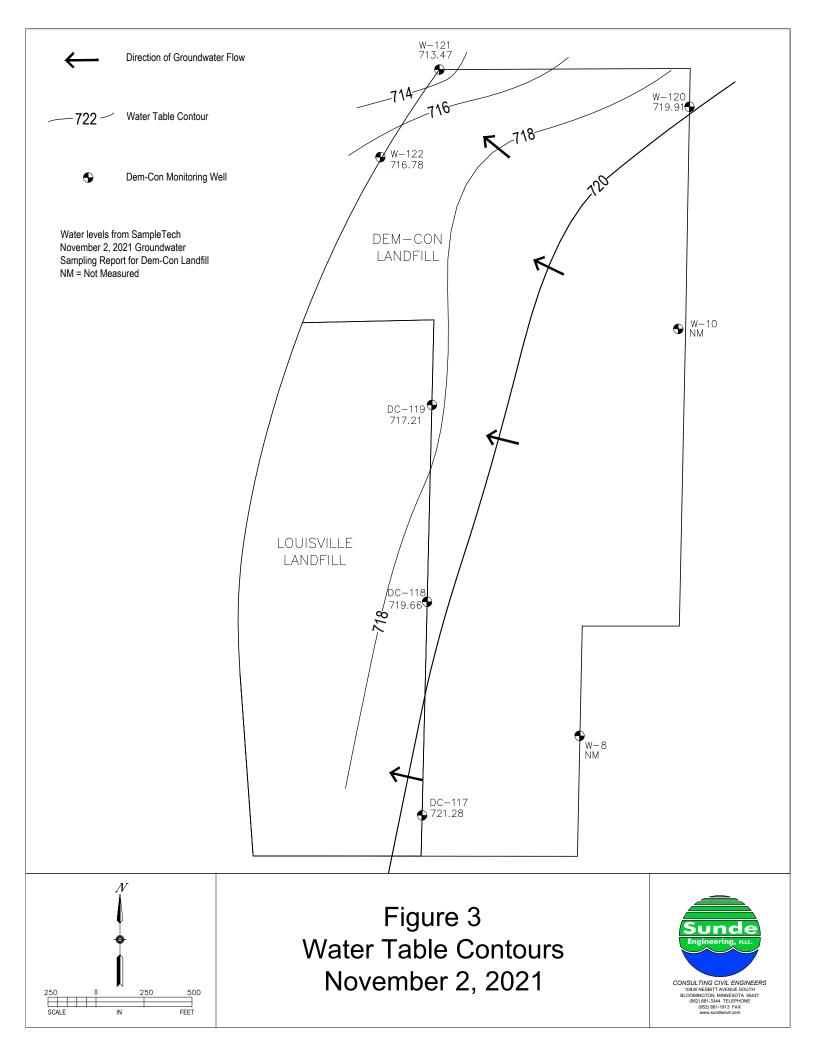
Recommendations include maintaining final cover system, continue to monitor groundwater in accordance with Permit.

6.0 CERTIFICATION

Hydrogeologic Certification. I certify under penalty of law that the hydrogeologic portions of this document and all attachments were prepared under my direction or supervision under a system designed to assure that qualified personnel gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Furthermore, I certify that I am knowledgeable in field of hydrogeology.


riste Pauly


Name: Kirsten Pauly PE/PG Reg. No 21842


Mailing address: Sunde Engineering, PLLC 10830 Nesbitt Ave. S. Bloomington, MN 55437 Phone number: <u>952 881-3344</u> <u>February 28, 2022</u> Date

Dem-Con Landfill SW-290 2021 Annual Groundwater Monitoring Report

Figures 1-3 Groundwater Flow Maps

Appendix 1 - Previous Five Years of Analytical Results

2021 ANNUAL REPORT W-8		W-8	Analytical Result	Analytical Result	Analytical Result	Analytical Result	Analytical Result	
Parameter		Permit Limit	8/9/17	7/31/18	7/24/19	8/5/20	7/29/21	
I,1,2-Tetrachloroethane	ug/L	17.5	<1.0	ND	ND	<0.40	<0.40	
I,1,1-Trichloroethane	ug/L	2250	<1.0	ND	ND	<0.40	<0.40	
1,1,2,2-Tetrachloroethane	ug/L		<1.0	ND	ND	< 0.40	<0.40	
I,1,2-Trichloroethane	ug/L	0.75	<1.0 <1.0	ND ND	ND	<0.40 <1.0	< 0.40	
I,1,2-Trichlorotrifluoroethane	ug/L ug/L	5000 25	<1.0	ND	ND ND	<0.40	<1.0 <0.40	
1.1-Dichloroethene	ug/l	50	<1.0	ND	ND	<0.40	<0.40	
1,1-Dichloropropene	ug/L		<1.0	ND	ND	<0.40	<0.40	
1,2,3-Trichlorobenzene	ug/L		<1.0	ND	ND	<0.40	<0.40	
1,2,3-Trichloropropane	ug/L	0.00075	<1.0	ND	ND	<0.010	<0.010	
1,2,4-Trichlorobenzene	ug/L	1	<1.0	ND	ND	< 0.40	<0.40	
1,2,4-Trimethylbenzene 1,2 Dibromo 3 chloropropane (DBCP)	ug/L	25	<1.0 <4.0	ND ND	ND ND	<1.0 <0.12	<1.0 <0.12	
1.2-Dibromoethane	ug/L ug/L	0.001	<4.0 <1.0	ND	ND	<0.12	< 0.12	
1.2-Dichlorobenzene	ug/L	150	<1.0	ND	ND	< 0.40	< 0.40	
1,2-Dichloroethane	ug/L	25	<1.0	ND	ND	<0.20	<0.20	
1,2 Dichloroethylene, cis	ug/L	1.5	<1.0	ND	ND	<0.40	<0.40	
1,2 Dichloroethylene, trans	ug/L	10	<1.0	ND	ND	<0.40	<0.40	
1,2-Dichloropropane	ug/L	1.25	<4.0	ND	ND	<0.40	<0.40	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/L	25 150	<1.0 <1.0	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	
1,3-Dichloropropane	ug/L ug/L	150	<4.0	ND	ND	<0.40	<0.40	
1,3-Dichloropropene, cis	ug/L	0.5	<4.0	ND	ND	<0.40	<0.40	
1,3-Dichloropropene, trans	ug/L	0.5	<4.0	ND	ND	<0.40	<0.40	
1,4-Dichlorobenzene	ug/L		<1.0	ND	ND	<0.40	<0.40	
2,2-Dichloropropane	ug/L		<4.0	ND	ND	<1.0	<1.0	
2-Chlorotoluene	ug/L		<1.0	ND	ND	<0.40	< 0.40	
4-Chlorotoluene Acetone	ug/L	1000	<1.0 <20.0	ND ND	ND ND	<0.40 <20.0	<0.40 <20.0	
Acetone Allyl chloride	ug/L ug/L	1000 7.5	<20.0 <4.0	ND ND	ND ND	<20.0 <4.0	<20.0 <4.0	
Benzene	ug/L ug/L	0.5	<1.0	ND	ND	<0.20	<0.20	
Bromobenzene	ug/L		<1.0	ND	ND	<0.40	<0.40	
Bromochloromethane	ug/L		<1.0	ND	ND	<1.0	<1.0	
Bromodichloromethane	ug/L	1.5	<1.0	ND	ND	<0.40	<0.40	
Bromoform	ug/L	10	<4.0	ND	ND	<1.0	<1.0	
Bromomethane	ug/L	2.5	<4.0 <5.0	ND ND	ND ND	<1.0 <0.40	<1.0 <0.40	
Butylbenzene, n Butylbenzene, sec	ug/L ug/L		< <u>5.0</u> <1.0	ND	ND	<0.40	<0.40	
Butylbenzene, tert	ug/L		<1.0	ND	ND	<0.40	<0.40	
Carbon tetrachloride	ug/L		<1.0	ND	ND	<0.050	<0.050	
Chlorobenzene	ug/L	25	<1.0	ND	ND	<0.40	<0.40	
Chlorodibromomethane	ug/L	2.5	<1.0	ND	ND	<0.40	<0.40	
Chloroethane	ug/L	7.5	<1.0	ND	ND	<1.0	<1.0	
Chloroform Chloromethane	ug/L ug/L	7.5	<1.0 <4.0	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	
Dibromomethane	ug/L ug/L		<4.0	ND	ND	<1.0	<1.0	
Dichlorodifluoromethane	ug/L	175	<1.0	ND	ND	<1.0	<1.0	
Dichlorofluoromethane	ug/L		<1.0	ND	ND	<1.0	<1.0	
Ethyl ether	ug/L	50	<4.0	ND	ND	<4.0	<4.0	
Ethylbenzene	ug/L	12.5	<1.0	ND	ND	<0.40	<0.40	
Hexachlorobutadiene	ug/L	0.25	<1.0	ND	ND	<0.10	< 0.10	
lsopropylbenzene lsopropyltoluene, p	ug/L ug/L	75	<1.0 <4.0	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	
Methyl ethyl ketone (MEK)	ug/L	1000	<5.0	ND	ND	<5.0	<5.0	
Methyl isobutyl ketone (4-Methyl-2-pentanone)	ug/L	75	<5.0	ND	ND	<5.0	<5.0	
Methyl tertiary butyl ether	ug/L	15	<1.0	ND	ND	<0.40	0.62	
Methylene chloride	ug/L	1.25	<4.0	ND	ND	<1.0	<1.0	
Naphthalene	ug/L	17.5	<4.0	ND	ND	<1.0	<1.0	
Propylbenzene, n Styrene	ug/L		<1.0 <1.0	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	
Styrene Tetrachloroethylene	ug/L ug/L	1	<1.0 <1.0	ND ND	ND ND	<0.40	<0.40	
Tetrahydrofuran	ug/L ug/L		<10.0	ND	ND	<10.40	<0.40	
Foluene	ug/L	50	<1.0	ND	ND	<0.40	<0.40	
Trichloroethylene	ug/L	0.1	<0.40	ND	ND	<0.050	<0.050	
Trichlorofluoromethane	ug/L	500	<1.0	ND	ND	<0.40	<0.40	
Vinyl chloride	ug/L	0.05	<0.20	ND	ND	< 0.050	< 0.050	
Kylene, m & p	ug/L	2500		ND	ND ND	<0.80	<0.80	
Xylene, o Xylene, o, m & p	ug/L ug/L		<3.0	ND ND	ND ND	<0.40 <1.2	<0.40 <1.2	
Arsenic	ug/L ug/L	2.5	<20.0	ND	ND	<20.0	<0.50	
Cadmium	ug/L	0.125	<3.0	ND		<3.0	<0.08	
Chromium	ug/L	25			ND	<10.0	<10.0	
Copper	ug/L	250	<10.0	ND	ND	<10.0	<10.0	
Lead	ug/L	7.5	<10.0	ND	ND	<10.0	<0.10	
Manganese	ug/L	25	69.9	45.3	8.7	12.6	15.1	
Mercury Boron	ug/L	0.5	<0.20	ND	20 C	<0.20	<0.20	
Boron Barium	ug/L ug/L	250 500	<150 78	ND 78.9	32.6 66.7	<150 60.5	31.7 70.8	
Chloride	ug/L mg/L	500	78 107	78.9 119	82.3	37.5	70.8 84.3	
ron	ug/L		1410	1480	227	475	336	
Nitrate & Nitrite	mg/L		2.6	2	2.4	1.7	2.2	
Soilds, Total Dissolved	mg/L		522	483	453	353	441	
Sulfate Depth to Water	mg/L		23.7	18	12	9.7	15.4	
	ft		74.13	72.1	70.38	71.7	74.18	

Green Shading represents reporting limits that are above the permit limit.

Yellow Shading represents sampling events that exceed the permit limit.

2021 ANNUAL REPORT		W-10	Analytical Result	Analytical Result	Analytical Result	Analytical Result	Analytical Result	
Parameter		Permit Limit	8/9/17	7/31/18	7/24/19	8/5/20	7/29/21	
,1,1,2-Tetrachloroethane	ug/L	17.5	<1.0	ND	ND	<0.40	<0.40	
,1,1-Trichloroethane	ug/L	2250	<1.0	ND	ND	<0.40	<0.40	
,1,2,2-Tetrachloroethane	ug/L		<1.0	ND	ND	<0.40	<0.40	
,1,2-Trichloroethane	ug/L	0.75	<1.0	ND	ND	<0.40	<0.40	
1,2-Trichlorotrifluoroethane	ug/L	5000	<1.0	ND	ND	<1.0	<1.0	
1-Dichloroethane	ug/L	25	<1.0	ND	ND	< 0.40	< 0.40	
,1-Dichloroethene	ug/l	50	<1.0	ND	ND	< 0.40	<0.40	
,1-Dichloropropene	ug/L		<1.0	ND	ND	<0.40	<0.40	
,2,3-Trichlorobenzene	ug/L	0.00075	<1.0	ND	ND	< 0.40	< 0.40	
,2,3-Trichloropropane	ug/L	0.00075	<4.0 <1.0	ND ND	ND ND	<0.010	< 0.010	
,2,4-Trichlorobenzene ,2,4-Trimethylbenzene	ug/L ug/L	25	<1.0	ND	ND	<0.40 <1.0	<0.40 <1.0	
,2,4- minemybenzene ,2 Dibromo 3 chloropropane (DBCP)	ug/L ug/L	20	<1.0	ND	ND	<0.12	< 1.0	
.2-Dibromoethane	ug/L ug/L	0.001	<1.0	ND	ND	<0.12	< 0.12	
.2-Dichlorobenzene	ug/L ug/L	150	<1.0	ND	ND	<0.050	< 0.40	
.2-Dichloroethane	ug/L	25	<1.0	ND	ND	<0.40	<0.40	
,2 Dichloroethylene, cis	ug/L	1.5	<1.0	ND	ND	<0.20	<0.20	
,2 Dichloroethylene, trans	ug/L	10	<1.0	ND	ND	<0.40	< 0.40	
,2-Dichloropropane	ug/L	1.25	<1.0	ND	ND	<0.40	< 0.40	
,3,5-Trimethylbenzene	ug/L	25	<1.0	ND	ND	<0.40	< 0.40	
,3-Dichlorobenzene	ug/L	150	<1.0	ND	ND	<0.40	<0.40	
,3-Dichloropropane	ug/L ug/L	100	<1.0	ND	ND	<0.40	<0.40	
,3-Dichloropropane ,3-Dichloropropene, cis	ug/L ug/L	0.5	<4.0	ND	ND	<0.40	<0.40	
,3-Dichloropropene, trans	ug/L ug/L	0.5	<4.0	ND	ND	<0.40	<0.40	
,4-Dichlorobenzene	ug/L ug/L	0.0	<4.0	ND	ND	<0.40	<0.40	
,2-Dichloropropane	ug/L		<4.0	ND	ND	<0.40	<0.40	
-Chlorotoluene	ug/L ug/L		<1.0	ND	ND	<0.40	<0.40	
-Chlorotoluene	ug/L		<4.0	ND	ND	<0.40	<0.40	
cetone	ug/L	1000	<20.0	ND	ND	<0.40	<0.40	
Ilyl chloride	ug/L ug/L	7.5	<4.0	ND	ND	<20.0	<20.0	
enzene	ug/L ug/L	0.5	<4.0	ND	ND	<4.0	<4.0	
romobenzene	ug/L ug/L	0.0	<1.0	ND	ND	<0.20	<0.20	
romochloromethane	ug/L ug/L		<1.0	ND	ND	<0.40	<0.40	
romocniorometnane	ug/L ug/L	1.5	<1.0 <1.0	ND ND	ND ND	<0.40	<0.40	
Bromodicritoromethane	ug/L ug/L	1.5	<4.0	ND	ND	<0.40	<0.40	
Bromomethane	ug/L	2.5	<4.0	ND	ND	<1.0	<1.0	
utylbenzene, n	ug/L	2.5	<5.0	ND	ND	<0.40	<0.40	
utylbenzene, sec	ug/L		<1.0	ND	ND	<0.40	<0.40	
Butylbenzene, tert	ug/L ug/L		<1.0	ND	ND	<0.40	<0.40	
Carbon tetrachloride	ug/L ug/L		<1.0	ND	ND	<0.40	< 0.40	
Chlorobenzene	ug/L	25	<1.0	ND	ND	<0.000	<0.40	
Chlorodibromomethane	ug/L	2.5	<1.0	ND	ND	<0.40	<0.40	
Chloroethane	ug/L	2.5	<1.0	ND	ND	<0.40	<0.40	
Chloroform	ug/L	7.5	<1.0	ND	ND	<1.0	<1.0	
Chloromethane	ug/L	1.0	<4.0	ND	ND	<1.0	<1.0	
Dibromomethane	ug/L		<4.0	ND	ND	<1.0	<1.0	
Dichlorodifluoromethane	ug/L	175	<1.0	ND	ND	<1.0	<1.0	
Dichlorofluoromethane	ug/L		<1.0	5.4	ND	<1.0	<1.0	
Ethyl ether	ug/L	50	<4.0	ND	ND	<4.0	<4.0	
Ethylbenzene	ug/L	12.5	<1.0	ND	ND	<0.40	< 0.40	
lexachlorobutadiene	ug/L	0.25	<1.0	ND	ND	<0.10	<0.10	
sopropylbenzene	ug/L	75	<1.0	ND	ND	<0.40	< 0.40	
sopropyltoluene, p	ug/L		<1.0	ND	ND	<0.40	< 0.40	
Aethyl ethyl ketone (MEK)	ug/L	1000	<5.0	ND	ND	<5.0	<5.0	
Aethyl isobutyl ketone (4-Methyl-2-pentar	ug/L	75	<5.0	ND	ND	<5.0	<5.0	
Aethyl tertiary butyl ether	ug/L	15	<1.0	ND	ND	<0.40	0.62	
Aethylene chloride	ug/L	1.25	<4.0	ND	ND	<1.0	<1.0	
laphthalene	ug/L ug/L	1.25	<4.0	ND	ND	<1.0	<1.0	
Propylbenzene, n	ug/L ug/L	11.5	<4.0	ND	ND	<0.40	<0.40	
tyrene	ug/L ug/L		<1.0	ND	ND	<0.40	<0.40	
etrachloroethylene	ug/L ug/L	1	<1.0	ND	ND	<0.40	<0.40	
etrahydrofuran	ug/L ug/L		<10.0	ND	ND	<0.40	<0.40	
oluene	ug/L ug/L	50	<1.0	ND	ND	<0.40	<0.40	
richloroethylene	ug/L	0.1	<0.40	ND	ND	<0.40	<0.40	
richlorofluoromethane	ug/L	500	<1.0	0.49	ND	<0.40	<0.40	
/inyl chloride	ug/L	0.05	<0.20	ND	ND	<0.40	<0.40	
ylene, m & p	ug/L	2500	0.20	ND	ND	<0.80	<0.80	
ylene, o	ug/L			ND	ND	<0.00	<0.00	
ylene, o, m & p	ug/L		<3.0	ND	ND	<1.2	<1.2	
vrsenic	ug/L	2.5	<20.0	ND	ND	<20.0	< 0.50	
Cadmium	ug/L	0.125	<3.0	ND		<3.0	<0.08	
Chromium	ug/L	25		_	ND	<10.0	<10.0	
Copper	ug/L	250	<10.0	ND	ND	<10.0	<10.0	
ead	ug/L	7.5	<10.0	ND	0.4	<10.0	0.4	
langanese	ug/L	25	13.5	10.8	7	13.4	10.8	
lercury	ug/L	0.5	<0.20	ND	ND	<0.20	< 0.20	
oron	ug/L	250	<150	ND	18.1	<150	23.4	
arium	ug/L	500	32.9	29.9	27.8	33	34.5	
hloride	mg/L		69	67.3	62.5	58.4	72.9	
on	ug/L		<50	ND	51.3	<50.0	<50.0	
litrate & Nitrite	mg/L		2.8	4.7	2.6	1.9	0.97	
luoride	mg/L		<0.10	0.1			3.57	
oilds, Total Dissolved	mg/L		520	478	498	596	606	
ulfate	mg/L		98.6	91.1	92.5	96.9	121	
lepth to Water	ft		91.68	87.93	92.5 86.47	86.58	89.77	
Vater Table Elevation	MSL		725.07	728.82	730.28	730.17	726.98	
ID = None Detected	WIGE		120.01	1 20.02	100.20	100.17	120.90	
breen Shading represents reporting limits	that are							
		1	1			I	L	
bove the permit limit.	liaturo							

		W-120	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical
2021 Annual Report		VV-120 Permit Limit	Result 5/10/17	Result 8/9/17	Result 11/16/17	Result 5/10/18	Result 7/31/18	Result 11/14/18	Result 5/6/19	Result 7/24/19	Result 11/14/19	Result 5/7/20	Result 8/5/20	Result 10/29/20	Result 5/10/21	Result 7/29/21	Result 11/2/21
1,1,1,2-Tetrachloroethane	ug/L	17.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	2250	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.40	<0.40 <0.40	<0.40 <0.40
1,1,2,2-Trichloroethane	ug/L ug/L	0.75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
1,1,2-Trichlorotrifluoroethane	ug/L	5000	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
1,1-Dichloroethane 1,1-Dichloroethene	ug/L ug/l	25 50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,1-Dichloropropene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ug/L	0.00075	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.010	<0.40	<0.40 <0.010	<0.50 <0.10	<0.40 <0.010	<0.40
1,2,3-Trichlorobenzene	ug/L ug/L	0.00075	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.010	<0.010 <0.40	<0.010	<0.10	<0.010	<0.010 <0.40
1,2,4-Trimethylbenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
1,2 Dibromo 3 chloropropane (DBCP) 1,2-Dibromoethane	ug/L ug/L	0.001	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.12 <0.050	<0.12 <0.050	<0.12	<0.05 <0.050	<0.12	<0.12 <0.050
1,2-Dichlorobenzene	ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,2-Dichloroethane	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20
1,2 Dichloroethylene, cis 1,2 Dichloroethylene, trans	ug/L ug/L	1.5 10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,2-Dichloropropane	ug/L	1.3	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/L ug/L	25 150	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,3-Dichloropropane	ug/L ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichloropropene, cis	ug/L	0.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichloropropene, trans 1,4-Dichlorobenzene	ug/L ug/L	0.5	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
2,2-Dichloropropane	ug/L ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40 <1.0	<1.0	<1.0	<0.5	<1.0	<1.0
2-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
4-Chlorotoluene Acetone	ug/L ug/L	1000	<1.0 <20.0	<1.0 <20.0	<1.0 <20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <20.0	<0.40 <20.0	<0.40 <20.0	<0.50 <10.0	<0.40 <20.0	<0.40 <20.0
Allyl chloride	ug/L	7.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<4.0	<4.0	<4.0	<0.5	<4.0	<4.0
Benzene Bromobenzene	ug/L	0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.5 <0.5	<0.20 <0.40	<0.20 <0.40
Bromochloromethane	ug/L ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Bromodichloromethane	ug/L	1.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Bromoform Bromomethane	ug/L ug/L	10 2.5	<4.0 <4.0	<4.0 <4.0	<4.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.5 <1.0	<1.0 <1.0	<1.0 <1.0
Butylbenzene, n	ug/L ug/L	2.3	<4.0	<4.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Butylbenzene, sec	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Butylbenzene, tert Carbon tetrachloride	ug/L ug/L		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.050	<0.40 <0.050	<0.40 <0.050	<0.5 <0.2	<0.40 <0.050	<0.40 <0.050
Chlorobenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Chlorodibromomethane	ug/L	2.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Chloroethane Chloroform	ug/L ug/L	7.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.5 <1.0	<1.0 <1.0	<1.0 <1.0
Chloromethane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	1.5	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane Dichlorodifluoromethane	ug/L ug/L	175	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0
Dichlorofluoromethane	ug/L ug/L	1/5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Ethyl ether	ug/L	50	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<4.0	<4.0	<4.0	<0.5	<4.0	<4.0
Ethylbenzene Hexachlorobutadiene	ug/L ug/L	12.5 0.25	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.10	<0.40 <0.10	<0.40 <0.10	<0.50 <0.20	<0.40 <0.10	<0.40 <0.10
Isopropylbenzene	ug/L	75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Isopropyltoluene, p	ug/L	4000	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Methyl ethyl ketone (MEK) Methyl isobutyl ketone (4-Methyl-2-penta	ug/L ug/L	1000 75	<5 <5.0	<5 <5.0	<5 <5.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <2.0	<5.0 <5.0	<5.0 <5.0
Methyl tertiary butyl ether	ug/L	15	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Methylene chloride Naphthalene	ug/L ug/L	1.25 0.25	<4.0 <4.0	<4.0 <4.0	<4.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
Propylbenzene, n	ug/L ug/L	0.23	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Styrene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Tetrachloroethylene Tetrahydrofuran	ug/L ug/L	1	<1.0 <10	<1.0 <10	<1.0 <10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <10.0	<0.40 <10.0	<0.40 <10.0	<0.50 <5.0	<0.40 <10.0	<0.40 <10.0
Toluene	ug/L	50	3.5	1.5	29.4	ND	ND	0.74	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Trichloroethylene	ug/L	0.1 500	<0.40 <1.0	<0.40 <1.0	<0.50 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.050 <0.40	<0.050 <0.40	<0.050 <0.40	<0.1 <0.50	<0.050 <0.40	<0.050 <0.40
Trichlorofluoromethane Vinyl chloride	ug/L ug/L	0.05	<1.0 <0.40	<1.0 <0.40	<1.0 <0.40	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.050	<0.40	<0.40	<0.50	<0.40	<0.40
Xylene, m & p	ug/L		<3.0	<3.0	<3.0	ND	ND	ND	ND	ND	ND	<1.2	<1.2	<1.2	<1.0	<1.2	<1.2
Arsenic Cadmium	ug/L ug/L	2.5 0.125		<20.0 <3.0			ND ND			ND			<20.0 <3.0			<0.50 <0.08	┝───┤
Chromium	ug/L ug/L	25		~3.0			שא		L	ND			<10.0			<0.08	├
Copper	ug/L	250		<10.0		-	ND			ND	-	-	<10.0			<10.0	F
Lead Manganese	ug/L ug/L	7.5 25	242	<10.0 277	190	41.30	ND 277	296	280	ND 280	304	19.7	<10.0 318	72.3	21.4	<0.10 32.7	14.7
Mercury	ug/L	0.5		<0.20			ND			ND			<0.20			<0.20	
Boron	ug/L	250 500	<150	<150 <10.0	<150	ND	ND ND	ND	ND	50.2 ND	36.3	33.4	<150	<150	34.6	41.8	<150
Barium Chloride	ug/L mg/L	000		<10.0 25.9			ND 25.7			ND 25			<10.0 22.8			16.4 18.1	┝───┤
Iron	ug/L			9570			8610			9290			8860			1200	
Nitrate & Nitrite Fluoride	mg/L mg/L			<0.020 0.12			ND 0.2			ND			<0.20			1.8	┟────┤
Soilds, Total Dissolved	mg/L mg/L		286	366	333	437	336	328	385	374	352	446	383		470	478	480
Sulfate	mg/L			18.3			22			65.8			16.1			46.6	
Depth to Water Water Table Elevation	ft MSL		90.86 719.94	90.89 719.91	90.04 720.76	90.13 720.67	88.89 721.91	89.06 721.74	87.03 723.77	87.84 722.96	87.82 722.98	88.72 722.08	88.17 722.63	88.52 722.28	89.06 721.74	91.06 719.74	90.89 719.91
* Toluene was detected for the first time :			, 10.04	, 10.01	.20.70	120.01	121.31	121.14	123.11	122.90	122.90	122.00	122.03	122.20	121.14	115.74	1 13.31
^a Sample was diluted by a factor of 10 to a	accommoda	ate the analyte cond			6 4-:	una ktob – 2		haarii 2	Ala	6	anda ma 1991 - 1915	n el ve'					
^b The RL was based on a one liter volume ^c The matrix spike recoveries for this sam		-	-			-	-			•		maiySIS.					
ND = None Detected			,	. ,.													
Green Shading represents reporting limit	s that are a	bove the permit															
limit. Yellow Shading represents sampling eve	ents that exe	ceed the permit															
limit.																	

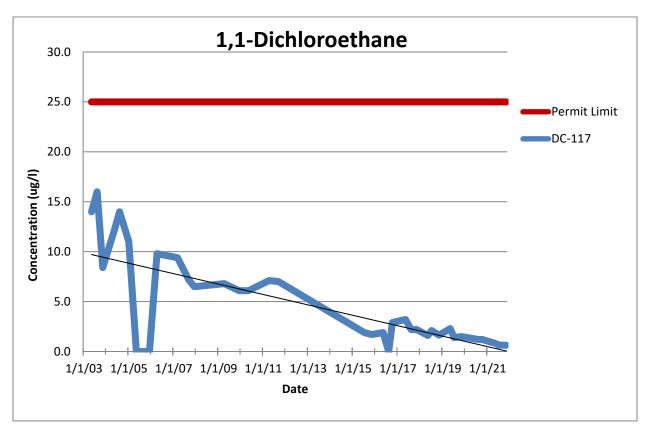
	· .		Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical
2021 Annual Report		W-121 Permit Limit	Result 5/10/17	Result 8/9/17	Result	Result 5/10/18	Result 7/31/18	Result 11/14/18	Result 5/6/19	Result 7/24/19	Result 11/14/19	Result 5/7/20	Result 8/5/20	Result 10/29/20	Result 5/10/21	Result 7/29/21	Result 11/2/21
1,1,1,2-Tetrachloroethane	ug/L	17.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,1-Trichloroethane	ug/L	2250	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,2,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,2-Trichloroethane	ug/L	0.75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,2-Trichlorotrifluoroethane	ug/L	5000	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
1,1-Dichloroethane 1,1-Dichloroethene	ug/L ug/l	25 50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,1-Dichloropropene	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichloropropane	ug/L	0.00075	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
1,2,4-Trichlorobenzene	ug/L	1	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,4-Trimethylbenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
1,2 Dibromo 3 chloropropane (DBCP) 1,2-Dibromoethane	ug/L	0.001	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.12 <0.050	<0.12 <0.050	<0.12 <0.050	<0.05 <0.050	<0.12 <0.050	<0.12 <0.050
1,2-Dichlorobenzene	ug/L ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	< 0.40	<0.050	<0.050	< 0.050	<0.050	<0.050
1.2-Dichloroethane	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20
1,2 Dichloroethylene, cis	ug/L	1.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2 Dichloroethylene, trans	ug/L	10	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2-Dichloropropane	ug/L	1.25	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3,5-Trimethylbenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichlorobenzene	ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,3-Dichloropropane 1,3-Dichloropropene, cis	ug/L ug/L	0.5	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,3-Dichloropropene, cis	ug/L ug/L	0.5	<4.0 <4.0	<4.0 <4.0	<4.0 <4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,4-Dichlorobenzene	ug/L ug/L	0.0	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
2,2-Dichloropropane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
2-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
4-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	ug/L	1000	<20.0	<20.0	<20.0	ND	ND	ND	ND	ND	ND	<20.0	<20.0	<20.0	<10.0	<20.0	<20.0
Allyl chloride Benzene	ug/L ug/L	7.5 0.5	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<4.0 <0.20	<4.0 <0.20	<4.0 <0.20	<0.5 <0.50	<4.0 <0.20	<4.0 <0.20
Benzene Bromobenzene	ug/L ug/L	0.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.20	<0.20	<0.20	<0.50	<0.20	<0.20 <0.40
Bromochloromethane	ug/L ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Bromodichloromethane	ug/L	1.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Bromoform	ug/L	10	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Bromomethane	ug/L	2.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Butylbenzene, n	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Butylbenzene, sec Butylbenzene, tert	ug/L		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
Carbon tetrachloride	ug/L ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.30	<0.40	<0.40
Chlorobenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Chlorodibromomethane	ug/L	2.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Chloroethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Chloroform	ug/L	7.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane Dichlorodifluoromethane	ug/L ug/L	175	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0
Dichlorofluoromethane	ug/L ug/L	175	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Ethyl ether	ug/L	50	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<4.0	<4.0	<4.0	<0.5	<4.0	<4.0
Ethylbenzene	ug/L	12.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Hexachlorobutadiene	ug/L	0.25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10
Isopropylbenzene	ug/L	75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Isopropyltoluene, p	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Methyl ethyl ketone (MEK) Methyl isobutyl ketone (4-Methyl-2-pe	ug/L	1000 75	<5 <5.0	<5 <5.0	<5 <5.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <2.0	<5.0 <5.0	<5.0 <5.0
Methyl tertiary butyl ether	ug/L ug/L	15	<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<0.40	< 0.40	<0.40	<2.0	<0.40	< 0.40
Methylene chloride	ug/L	1.25	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	ug/L	17.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Propylbenzene, n	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Styrene	ug/L		<1.0	<1.0	<1.0	0.40	0.65	ND	ND	ND	0.60	0.41	<0.40	0.4	0.62	<0.40	<0.40
Tetrachloroethylene	ug/L	1	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Tetrahydrofuran Toluene	ug/L ug/L	50	<10 <1.0	<10 <1.0	<10 <1.0	ND 1.2	ND 1.2	ND ND	ND ND	ND ND	ND 1.2	<10.0 0.58	<10.0 <0.40	<10.0 0.47	<5.0 1.62	<10.0 0.88	<10.0 0.81
Trichloroethylene	ug/L ug/L	0.1	<0.40	<0.40	<0.40	ND	ND	ND	ND	ND	ND	< 0.050	<0.40	<0.050	<0.10	<0.050	< 0.050
Trichlorofluoromethane	ug/L	500	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Vinyl chloride	ug/L	0.05	<0.20	<0.20	<0.50	ND	ND	ND	ND	ND	ND	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050
Xylene, o, m & p	ug/L		<3.0	<3.0	<3.0	ND	ND	ND	ND	ND	ND	<1.2	<1.2	<1.2	<1.0	<1.2	<1.2
Arsenic	ug/L	2.5		<20.0			ND			ND			<20.0			<0.50	
Cadmium	ug/L	0.125		<3.0			ND						<3.0			< 0.08	
Chromium	ug/L ug/L	25 250		<10.0			ND			ND ND			<10.0 <10.0			<10.0 <10.0	┝───┤
Copper Lead	ug/L ug/L	7.5		<10.0			ND ND			ND ND			<10.0			<10.0	┢────┤
Manganese	ug/L	25	<5.0	<10.0 146	7.4	11.7	96.9	103	19.9	61	53.3	60.3	205	99.7	39.7	<0.10 161	137
Mercury	ug/L	0.5		<0.20			ND			ND			<0.20			<0.20	
Boron	ug/L	250	<150	<150	<150	ND	ND	ND	ND	17.5	17.7	18.3	<150	<150	17.6	19.5	<150
Barium	ug/L	500		112			74.4			28.4			87.1			34.8	
Chloride	mg/L			10.7			10.3			10.7			8.2			10.8	
Iron	ug/L			<50.0			80.3 ND			ND			598			329	
Nitrate & Nitrite Fluoride	mg/L mg/l			<0.020 <0.10			ND 0.14			ND			<0.20			<0.20	┝───┤
Fluoride Soilds, Total Dissolved	mg/L mg/L		66	<0.10 213	87	86	0.14 234	125	182	118	120	114	169	154	171	193	168
Sulfate	mg/L		00	213 29.4	57	00	32.5			50.9			23			28.3	
Depth to Water	ft	1	50.96	41.13	49.87	48.16	45.14	47.41	45.38	44.07	44.1	45.02	44.89	45.24	46.11	47.72	47.83
Water Table Elevation	MSL		710.34	720.17	711.43	713.14	716.16	713.89	715.92	717.23	717.2	716.28	716.41	716.06	715.19	713.58	713.47
^a Sample was diluted by a factor of 10 t			,														
^D The RL was based on a one liter volu							-						r analysis.				<u> </u>
The matrix spike recoveries for this sa	ample we	re less than the	minimum red	covery limits	specified by	ine method. A	As a result, the	value reported	for the sample	snould be cor	nsidred a minim	ium value.					
ND = None Detected Green Shading represents reporting lir	mite that	are above the m	4														
Green Shading represents reporting in Yellow Shading represents sampling e							+				+		+			+	+
ondonny ropresents sampling e	u là	onocou ule pe	1				1				1	I	1	I	1	1	1

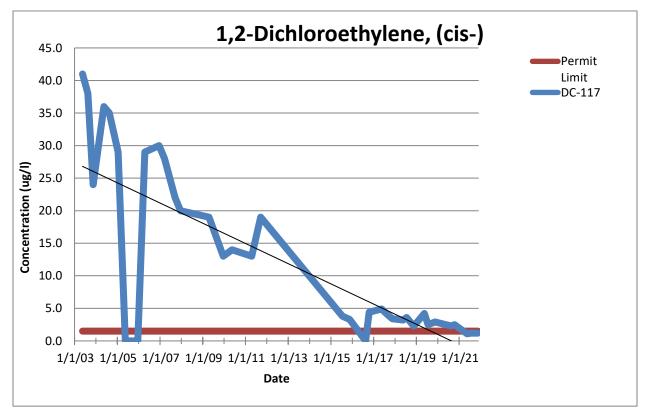
Data matrix No No No No <t< th=""><th></th><th>w</th><th>-122</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th><th>Analytical</th></t<>		w	-122	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical
11. Decomponent 01 <th>2021 ANNUAL REPORT</th> <th></th> <th>Permit Limit</th> <th>Result 5/10/17</th> <th>Result 8/9/17</th> <th>Result 11/16/17</th> <th>Result 5/10/18</th> <th>Result 7/31/18</th> <th>Result 11/14/18</th> <th>Result 5/6/19</th> <th>Result 7/24/19</th> <th>Result 11/14/19</th> <th>Result 5/7/20</th> <th>Result 8/5/20</th> <th>Result 10/29/20</th> <th>Result 5/10/21</th> <th>Result 7/29/21</th> <th>Result 11/2/21</th>	2021 ANNUAL REPORT		Permit Limit	Result 5/10/17	Result 8/9/17	Result 11/16/17	Result 5/10/18	Result 7/31/18	Result 11/14/18	Result 5/6/19	Result 7/24/19	Result 11/14/19	Result 5/7/20	Result 8/5/20	Result 10/29/20	Result 5/10/21	Result 7/29/21	Result 11/2/21
C) Decomponent Q) <td>1,1,1,2-Tetrachloroethane</td> <td>ug/L</td> <td></td> <td><0.40</td>	1,1,1,2-Tetrachloroethane	ug/L																<0.40
111 Matcher 11 <			2250															<0.40
10) 10) 10) 10) 100 <td></td> <td>÷</td> <td>0.75</td> <td>-</td> <td></td> <td><0.40</td>		÷	0.75	-														<0.40
110 110 0.0 <td></td> <td>÷</td> <td></td> <td>-</td> <td>-</td> <td></td> <td><0.40 <1.0</td>		÷		-	-													<0.40 <1.0
Control O D D D D </td <td></td> <td>÷</td> <td></td> <td><0.40</td>		÷																<0.40
Display <	-	÷															-	<0.40
Classingenge Classingengenge Classingenge Classingeng	1,1-Dichloropropene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Cal Discontant vs L <thl< th=""> L L</thl<>	1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Distand <		÷																<0.010
Distance interpaneDistance interpaneDist		÷	•													-	-	<0.40
Schemann Sch Bot Sch S		Ų	25	-	-								-	-	-	-		<1.0 <0.12
Called contentConten		9	0.001															< 0.12
Control Contro Contro Contro Contro Contro Contro Contro Contro Contro <thcontro< th=""> <thcontro< th=""> <thcon< td=""><td>-</td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.40</td></thcon<></thcontro<></thcontro<>	-	÷																<0.40
Spanningener int 10	1,2-Dichloroethane	÷		<1.0	<1.0	<1.0	ND		ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20
Decision of the set																		<0.40
Distantingener imp Pin Pin Pin Pin <		÷		-													-	<0.40
Shalescore Mo No No No No <		÷		-	-	-											-	<0.40
Schempare np np< n		÷															-	<0.40 <0.40
Displacement Opt Part Part Part Part <		÷	150															<0.40
Circle Signed Signed<		÷	0.5														-	<0.40
1110000000000000000000000000000000000		-		-	-	-												<0.40
Sepond opt l d		Ų							ND	ND	ND							<0.40
Add by a proper sector	2,2-Dichloropropane	÷															-	<1.0
ActionOptionOptionOptionOptionNo		÷		-	-	-												<0.40
Alpha constraint open open No No No <td>-</td> <td>9</td> <td></td> <td><0.40</td>	-	9																<0.40
mbox opt opt opt opt opt ND ND ND ND <t< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td><20.0</td></t<>		÷															-	<20.0
Sector	,	÷			-	-								-			-	<4.0 <0.20
biole ind ind ind </td <td></td> <td>Ų</td> <td>0.5</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td><0.20</td>		Ų	0.5	-	-	-												<0.20
Brancharswahee upb 1		9		-												-		<1.0
Synower yay by description yay		÷	1.5															<0.40
Shaphener, m up l <	Bromoform	ug/L	10	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Substrame Out Interpretation Out Interpretation Out Interpretation Out Interpretation	Bromomethane	ug/L	2.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Datherway opt No NoN	Butylbenzene, n	ug/L		<1.0	<1.0					ND				<0.40				<0.40
Calonization Opin Property	,	÷																<0.40
Chandbaroni Open Pail No No No		÷		-	-	-												<0.40
CharacterizationindSigndiffdiffNin<		9	25															<0.050 <0.40
Characterization indication indica		Ų															-	<0.40
Denomentarian: Open open and integers Ope		-	2.0															<1.0
Dispondinging Dispondinging Dispondinging Dispondinging Dispondinging Dispondinging Dispondinging Dispondinging Disponding 	Chloroform	ug/L	7.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dehondex or marked and analysis of a set of a s	Chloromethane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dishlordinomentameup1Up1P10P10P10N0N0N0N0N0N0P10<		ug/L		-	-	-							-	-	-		-	<1.0
End up 1 0 0 N <td></td> <td>Ũ</td> <td>175</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td><1.0</td>		Ũ	175	-		-							-					<1.0
Englemene ug1 12.6 41.0 41.0 ND			50															<1.0 <4.0
Headenboundamenuple0.25vf.0vf.0vf.0vf.0vf.0NDNDNDNDND0.00		-												-				<0.40
issergrightangen ugl 175 170		÷														-	1	<0.40
Memly elembre (MEM)up0170150170<		÷																<0.40
Medny faxiony letter (4-MeV) spaceMeVMeVNO </td <td>Isopropyltoluene, p</td> <td>ug/L</td> <td></td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td><0.40</td> <td><0.40</td> <td><0.40</td> <td><0.50</td> <td><0.40</td> <td><0.40</td>	Isopropyltoluene, p	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Merry lend up1 15 <10 <10 ND ND ND ND ND	Methyl ethyl ketone (MEK)	ug/L													<5.0			<5.0
Methydenedenedenedeneupple12644.044.044.0NDNDNDNDNDNDND41.041.041.041.041.041.041.041.041.041.041.041.041.041.041.011.011.011.0NDNDNDNDNDNDNDND11.011.011.011.011.011.0NDNDNDNDNDNDNDND11.011.011.011.011.011.0NDNDNDNDNDNDND11.011.011.011.011.011.011.0NDNDNDNDNDND11.0		÷																<5.0
Naphalamen upd, 17.5 4.40 4.40 4.00 ND ND ND ND ND ND 4.00 4.10 4.10 4.10 4.10 4.10 ND ND ND ND ND 5.00 5.00 5.00		9																<0.40
ProgNetmenen ugll ifted		-																<1.0 <1.0
Symple up1. 110	· ·	÷	17.5															<0.40
Tatical functional plane ugh i </td <td></td> <td>-</td> <td></td> <td>-</td> <td><0.40</td>		-															-	<0.40
Tolumen ugL 50 <1.0 <1.0 <1.0 ND		÷	1															<0.40
Tichloroditylene ug/L 0.1 <0.40 <0.40 <0.40 ND		÷																<10.0
Tichlorofiloromethane ugl 500 <1.0 <1.0 <1.0 ND		-																<0.40
vingle ugle 0.05 <0.20 <0.20 <0.20 ND		÷																<0.050
xylene, o, m & p ug/L vic. vic		÷																<0.40 <0.050
Arsanic ugL 2.5 image i		÷	0.00														1	<0.050
Cadmium ug/L 0.125 1 <3.0 1 ND ND I ND I		÷	2.5	5.0		-5.0							1.6		- 1.6	1.0		
Chromium ugl 25 Image		÷														L		
Lead ug/L 7.5 <10.0 ND ND ND ND <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.		÷									ND						<10.0	
Manganese ug/L 25 14.2 5.9 6.4 11.9 5.9 29.7 8.8 5.9 5.3 10.6 9.5 <5.0 15.2 16 Mercury ug/L 0.5 <0.20		-																
Mercury ug/L 0.5 ND ND ND < < < < < < < < <		-																
Born ug/L 250 <150.0 <150.0 <150.0 ND ND ND ND 47.4 40.3 47 <150 <150.0 <156.0 63.4 Barium ug/L 500 110 10 120 120 116 116 156 156 63.4 236 Chloride mg/L 0 3.8 7.4 0 5.9 11.6 16 21.4 21.4 Iron ug/L 0 66.8 0 85 0 103 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 5.9 0 0 0 2.0 0 <td>-</td> <td></td> <td></td> <td>14.2</td> <td></td> <td>6.4</td> <td>11.9</td> <td></td> <td>29.7</td> <td>8.8</td> <td></td> <td>5.3</td> <td>10.6</td> <td></td> <td><5.0</td> <td>15.2</td> <td></td> <td>17.6</td>	-			14.2		6.4	11.9		29.7	8.8		5.3	10.6		<5.0	15.2		17.6
Barium ug/L 500 110 100 120 100 116 156 100 236 Chloride mg/L 1 1 3.8 1 7.4 1 5.9 1 116 1 236 21.4 Iron ug/L 0 66.8 0 85 0 103 0 5.9 0 11.6 0 59.3 1 Nitrate & Nitrite mg/L 0 1.6 0.2 4.4 0.26 1.6 0.2 0.26				<150.0		<150.0	ND		ND	ND		10.2	47		~150	EE 6		<150
Choirde mg/L		-		~ 130.0		~130.0	UN		ND			40.3	41		~100	55.0		~100
Inn ug/L Image Im		-	500															
Nitrate & Nitritemg/Lmg/L1.61.64.41.61.62.51.62.1Fluoridemg/L0.20.20.260.260.261.6		÷								1					1	1		
Fluoridemg/Lo.2 <td></td> <td>÷</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		÷													1			
Sulfate mg/L 30.8 72.3 55.6 92.9 176 Depth to Water ft 28.94 12.79 43.88 43.12 41.08 42.91 39.03 39.58 41.13 41.68 42.92 44.16 44.53 46.02 Water Table Elevation MSL 734.56 750.71 719.62 720.38 722.42 720.59 724.47 723.92 722.37 721.82 719.34 718.97 717.48 "Sample was diluted by a factor of 10 to accommodate the analyte concentration. image: the matrix spike recoveries for this sample was higher than the target RL because less than one liter of sample was submitted for analysis. image: the matrix spike recoveries for this sample were less than the minimum recovery limits specified by the method. As a result, the value reported for the sample should be considred a minimum value. image: the minimum value	Fluoride	-			0.2													
Depth to Water ft 28.94 12.79 43.88 43.12 41.08 42.91 39.03 39.58 41.13 41.68 42.92 44.16 44.53 46.02 Water Table Elevation MSL 734.56 750.71 719.62 720.38 722.42 720.59 724.47 723.92 722.37 721.82 720.58 719.34 718.97 717.48 *Sample was diluted by a factor of 10 to accommodate the analyte concentration. Image: Concentration of the analyte concentration of the analyte concentration of the analyte concentration. Image: Concentration of the analyte		-		327		315	316		287	443		292	313		443	459		548
Water Table Elevation MSL 734.56 750.71 719.62 720.38 722.42 720.59 724.47 723.92 722.37 721.82 720.58 719.34 718.97 717.48 "Sample was diluted by a factor of 10 to accommodate the analyte concentration. Image: Concentration analyzed in the analyte concentration. Image: Concentration analyzed in the analyte concentration analyzed. Image: Concentration analyzed in the analyte concentration analyzed. Image: Concentration analyzed in the analyte concentration analyzed in the analyte concentration analyzed. Image: Concentration analyzed in the analyte concentration analyzed in the analyte concentration analyzed. Image: Concentration analyzed in the analyte concentration analyzed in the analyte concentration analyzed in the analyte analyte in the		-		00.01		40.05				00.00		4	41.00		,	··		10 - 50
^a Sample was diluted by a factor of 10 to accommodate the analyte concentration. ^b The RL was based on a one liter volume of sample being extracted and analyzed. The achieved RL for this sample was higher than the target RL because less than one liter of sample was submitted for analysis. ^c The matrix spike recoveries for this sample were less than the minimum recovery limits specified by the method. As a result, the value reported for the sample should be considred a minimum value. ^c The matrix spike recoveries for this sample were less than the minimum recovery limits specified by the method. As a result, the value reported for the sample should be considred a minimum value.																		46.72
^b The RL was based on a one liter volume of sample being extracted and analyzed. The achieved RL for this sample was higher than the target RL because less than one liter of sample was submitted for analysis. ^c The matrix spike recoveries for this sample were less than the minimum recovery limits specified by the method. As a result, the value reported for the sample should be considred a minimum value.			analyte concor		/50./1	/19.62	/20.38	/22.42	/20.59	/24.47	/23.92	/22.37	721.82	720.58	/ 19.34	/ 18.97	/1/.48	716.78
The matrix spike recoveries for this sample were less than the minimum recovery limits specified by the method. As a result, the value reported for the sample should be considered a minimum value.					chieved RL for	this sample was	s higher than th	ie target RL be	cause less tha	n one liter of s	ample was sub	mitted for ana	ysis.					
				-			-	-					-		1	-	1	
				-	-										1	1	1	
Green Shading represents reporting limits																		
that are above the permit limit.																		
Yellow Shading represents sampling events															-			
that exceed the permit limit.	that exceed the permit limit.														l	1	L	

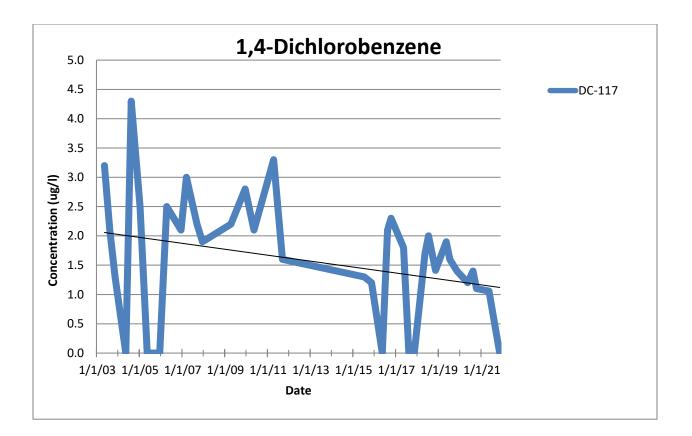
Number Number Number <th>2021 ANNUAL REPORT</th> <th> </th> <th>DC-117</th> <th>Analytical</th>	2021 ANNUAL REPORT		DC-117	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical
	Parameter		Pormit Limit	Result	Result 8/9/17	Result	Result	Result 7/31/18	Result									
Charton C C C C <td>1,1,1,2-Tetrachloroethane</td> <td>ug/L</td> <td></td>	1,1,1,2-Tetrachloroethane	ug/L																
Del solution Del Del <thdel< th=""> <thdel< th=""> <thd< td=""><td>1,1,1-Trichloroethane</td><td>-</td><td>2250</td><td><1.0</td><td><1.0</td><td><1.0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><0.40</td><td><0.40</td><td><0.40</td><td><0.50</td><td><0.40</td><td><0.40</td></thd<></thdel<></thdel<>	1,1,1-Trichloroethane	-	2250	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Chi-Control Control Contro Control <thcontrol< th=""></thcontrol<>	1,1,2,2-Tetrachloroethane	-																
Here Here Here La La <thla< th=""> La La <thl< td=""><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thla<>		-		-	-	-												
Image Image <t< td=""><td>1,1-Dichloroethane</td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,1-Dichloroethane	÷																
Shoreway	1,1-Dichloroethene	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1,1-Dichloropropene	-		_	-	-												
Schedure		÷	0.00075															
Additional problem Second Second Second Second <		-	1															
Second Secon	1,2,4-Trimethylbenzene	-	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Schwarz Sch		-		-														
Shorework Shorework <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-																
Character Control Contro Contro <thcontro< th=""> <thco< td=""><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thco<></thcontro<>		-		-	-													
Chair and the constraint of the constraint	1,2 Dichloroethylene, cis	-		_	-													
bit matrix bit ma	1,2 Dichloroethylene, trans	ug/L	10	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Shappony Shap Shap Shap Shap <	1,2-Dichloropropane	ug/L		-		-												
Schemanne Sche	1,3,5-Trimethylbenzene	-																
Sheepengsy No No No No No No <t< td=""><td></td><td>-</td><td>150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-	150															
Decomponent N N N <th< td=""><td></td><td>-</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></th<>		-	0.5												-			
Display <		-																
Source Source Source Source </td <td>1,4-Dichlorobenzene</td> <td>-</td> <td></td>	1,4-Dichlorobenzene	-																
bbsh bbsh <t< td=""><td>2,2-Dichloropropane</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>	2,2-Dichloropropane	-		-		-									-			
body body <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>		-													-			
with the second se	Acetone	-	1000												-			
importandget	Allyl chloride	-																
important <	Benzene	ug/L	0.5	-		-						-	-					
pmpsmpmsmpmsmpmsmpmsmpmsmpmsmpmsmpmsmpm	Bromobenzene	÷	ļ															
improvem		-	1.5												-			
improvemberimprovembe	Bromodicniorometnane	÷													-			
mark mark <t< td=""><td>Bromomethane</td><td>-</td><td></td><td><4.0</td><td><4.0</td><td><4.0</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td><1.0</td><td><1.0</td><td></td><td><1.0</td><td><1.0</td></t<>	Bromomethane	-		<4.0	<4.0	<4.0						ND		<1.0	<1.0		<1.0	<1.0
magnation out out out out non- non- non- non- <t< td=""><td>Butylbenzene, n</td><td>ug/L</td><td></td><td><1.0</td><td><1.0</td><td><1.0</td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td><0.40</td><td><0.40</td><td></td><td></td><td><0.40</td></t<>	Butylbenzene, n	ug/L		<1.0	<1.0	<1.0			ND	ND	ND			<0.40	<0.40			<0.40
spin-spin-spin-spin-spin-spin-spin-spin-	Butylbenzene, sec	-																
bick-spacevipi <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		-		-	-										-			
biol biol <t< td=""><td>Chlorobenzene</td><td>÷</td><td>25</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Chlorobenzene	÷	25	-														
Induceoptoptoptoptoptno	Chlorodibromomethane	÷																
Intervention aff V V V V N	Chloroethane	ug/L		<1.0					ND	ND			<1.0	<1.0				
Decomparison length of the second of	Chloroform	-	7.5												-			
Decompany of the second		-		-	-	-												
Dotationinitial	Dichlorodifluoromethane	-	175	-	-	-							-	-	-			-
implement implement implement implement implement implement implement 	Dichlorofluoromethane																	
baselingyateyatyateyateyateyateyateyateyateyateyateyateyateyateyateyateyateyateyatyateyateyateyateyate <th< td=""><td>Ethyl ether</td><td>ug/L</td><td></td><td></td><td>13.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ethyl ether	ug/L			13.6													
seronysheme in in the serie is a seri	Ethylbenzene	-																
space-philome-pupUpVHHHHHNNN </td <td></td> <td>÷</td> <td></td>		÷																
where <th< td=""><td></td><td>-</td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-	15															
derigimplement <th< td=""><td>Methyl ethyl ketone (MEK)</td><td>-</td><td>1000</td><td></td><td><5.0</td><td><5.0</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td></th<>	Methyl ethyl ketone (MEK)	-	1000		<5.0	<5.0	ND	ND	ND	ND	ND	ND	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
dehyden ingl 125 440 440 440 ND N	Methyl isobutyl ketone (4-Methyl-2-pentanc	÷													-			
significationopl17.044.044.044.0N0		-																
morplemenn n topplemenn n topplemenn n topplemenn n 		÷																
symemondondondNDNDNDNDND<	•	÷	11.5															
igentup1022.514.614.614.614.114.214.214.214.214.29.4714.014.0014.	Styrene	÷																
Diama gapl 50 <1.0 <1.0 <1.0 ND	Tetrachloroethylene	÷	1															
indicidendiament indicidendiam	Tetrahydrofuran	÷	F.0															
individualization individualization <		÷		-	-													
Impriorupprior<	Trichlorofluoromethane	-																
vpmen uppl vpme vpme <t< td=""><td>Vinyl chloride</td><td>ug/L</td><td>0.05</td><td>0.69</td><td>0.63</td><td>0.55</td><td></td><td></td><td></td><td></td><td>0.51</td><td></td><td></td><td></td><td></td><td>0.23</td><td></td><td><0.050</td></t<>	Vinyl chloride	ug/L	0.05	0.69	0.63	0.55					0.51					0.23		<0.050
vpm vpm <td>Xylene, m & p</td> <td>-</td> <td>2500</td> <td></td>	Xylene, m & p	-	2500															
varianci ug/L 2.5 (-2.0) (-2.0) (-1.0) <td>Xylene, o Xylene, o m & n</td> <td>-</td> <td></td> <td>~2 0</td> <td>-20</td> <td>-20</td> <td></td>	Xylene, o Xylene, o m & n	-		~2 0	-20	-20												
carmium ugil 0.126 viol		-	2.5	<3.U		<3.U	ND		UNI	טא		UNU	S1.2		\$1.2	\$1.Z		\$1.Z
Important upl 25 import	Cadmium	÷									- 17							
eadugl7,5im<10.0imimNDimNDimND <th< td=""><td>Chromium</td><td>÷</td><td>25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><10.0</td><td></td><td></td><td></td><td></td></th<>	Chromium	÷	25											<10.0				
danganese ugL 25 2170 2280 2110 2040 1880 1920 2100 2100 2000 2170 1660 1820 1720 udcl ugL <td>Copper</td> <td>÷</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ]</td>	Copper	÷								<u> </u>								ļ]
Nicked ug/L U I	Lead Manganese	÷		2470		2440	2040		1020	4000		2400	2400		2470	4660		1720
defcury ug/L 0.5 m $c_0.20$ m m <td>Manganese Nickel</td> <td>÷</td> <td>20</td> <td>21/0</td> <td>2250</td> <td>2110</td> <td>2040</td> <td>1080</td> <td>1920</td> <td>1880</td> <td>1920</td> <td>2100</td> <td>2100</td> <td>2090</td> <td>21/0</td> <td>1000</td> <td>1020</td> <td>1720</td>	Manganese Nickel	÷	20	21/0	2250	2110	2040	1080	1920	1880	1920	2100	2100	2090	21/0	1000	1020	1720
born ug/L 250 1980 1990 1820 1760 1760 1950 1890 2020 1620 1840 1800 1320 1110 1300 Jarium ug/L 500 151 140 140 172 172 174 209 209 Chinde mg/L 185 185 183 1840 172 174 200 209 Chinde mg/L 2150 2200 2200 2250 1980 1190 1190 Vitrate & Nitrite mg/L 0.047 ND ND ND <0.20	Mercury	-	0.5		<0.20			ND			ND			<0.20			<0.20	
Chloride mg/L mg/L 185 163 184 184 132 143 143 ron ug/L 2150 2150 2200 2250 1980 132 1143 1190 wirate & Nitrite mg/L 0.047 ND ND ND	Boron	÷	250	1980	1990	1820	1800	1760	1760	1950	1890	2020	1620	1840	1800	1320	1110	1300
ug/L ug/L <th< td=""><td>Barium</td><td>-</td><td>500</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Barium	-	500		-			-										
within the shifting mg/L mg/L 0.047 m ND ND ND	Chloride	÷																
Fluoride mg/L mg/L mg/L 1080 1140 1130 900 925 980 1130 1220 1060 1010 1000 1040 905 1160 894 Solids, Total Dissolved mg/L 1080 1140 1130 900 925 980 1130 1220 1060 1010 1000 1040 905 1160 894 Sulfate mg/L 1 1148 121 12 168 103 72.45 72.61 72.61 72.95 722.45 72.18 111.82 111.82 111.71 111.72 112.84 113.18 113.88 116.55 116.55 116.55 722.48 722.93 723.22 724.18 726.11 726.12 726.15 722.45 722.47 721.28 721.28 721.28 721.28 721.28 721.28 721.28 721.28 721.28 721.28 721.48 721.28 721.49 721.45 721.45 721.48 721.28 721.48		÷																
Solids, Total Dissolved mg/L 1080 1140 1130 900 925 980 1130 1220 1060 1010 1040 905 1160 894 Sulfate mg/L 148 115.35 114.9 114.5 113.38 113.65 111.71 111.72 112.84 113.18 113.88 115.15 116.09 116.09 116.09 116.09 116.09 116.55 Vater Table Elevation MSL 722.25 722.48 722.93 723.32 724.45 726.10 726.12 726.11 724.99 724.65 723.95 722.73 721.74 721.28 Analytical resuts in the column dated 5/24/16 are from DC-119 data it vas most likely the results were mislabeled for DC-117 and DC-119 and were reported under the wrong well. - <td>Fluoride</td> <td>÷</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>IND.</td> <td></td> <td></td> <td>0.20</td> <td>1</td> <td></td> <td>U.LU</td> <td></td>	Fluoride	÷	1								IND.			0.20	1		U.LU	
betwidter ft 115.58 115.35 114.9 114.51 113.38 113.65 111.21 111.71 112.84 113.18 113.88 115.15 116.09 116.55 Nater Table Elevation MSL 722.25 722.48 722.93 723.32 724.45 726.01 726.12 726.11 724.99 724.65 723.95 722.73 721.74 721.28 Analytical results in the column dated 5/24/16 are from DC-119 data it was determined that it was most likely the results were mislabeled for DC-117 and DC-119 and were mislabeled for DC-119 and the data it was determined that it was determined that it was most likely the results were mislabeled for DC-119 and the data it was determined that it was determined that it was most likely the results were mislabeled for DC-119 and the data it was determined that it was determined th	Soilds, Total Dissolved	mg/L		1080		1130	900		980	1130		1060	1010		1040	905		894
Matrix MSL 722.25 722.48 722.93 723.32 724.45 726.10 726.11 724.99 724.65 723.95 722.73 721.74 721.28 Analytical results in the column dated 5/24/16 are from DC-119 data solected on 5/24/16. Upon review of the data it was determined that it was most likely the results were mislabeled for DC-117 and DC-119 and were reported under the wrong well. Image: Column date display in the column	Sulfate	-																
Analytical results in the column dated 5/24/16 are from DC-119 data solected on 5/24/16. Upon review of the data it was determined that it was most likely the results were mislabeled for DC-117 and DC-119 and were reported under the wrong well. Image: Column dated 5/24/16 are from DC-119 data it was determined that it was determine	Depth to Water																	
sollected on 5/24/16. Upon review of the data it was determined that it image: constraint of the data it was determined that it vas most likely the results were mislabeled for DC-117 and DC-119 and image: constraint of the data it was determined that it vere reported under the wrong well. image: constraint of the data it was determined that it Green Shading represents reporting limits image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it inter a above the permit limit. image: constraint of the data it was determined that it was determined that it was determined t			n DC-119 data	122.25	122.48	122.93	123.32	124.45	124.18	726.01	726.12	/20.11	124.99	124.05	123.95	122.13	121.14	121.28
ver er oported under the wrong well. m	collected on 5/24/16. Upon review of the da	ata it was de	etermined that it															
And are above the permit limits Image: Second s		for DC-117	and DC-119 and															
hat are above the permit limit. Image: Constraint of the permit limit. Image: Constend of the permit limit. Image: Constraint of the p	were reported under the wrong well.		I								-							
/ellow Shading represents sampling	Green Shading represents reporting limits																	<u> </u>
																		⊢]
	Yellow Shading represents sampling events that exceed the permit limit.																	

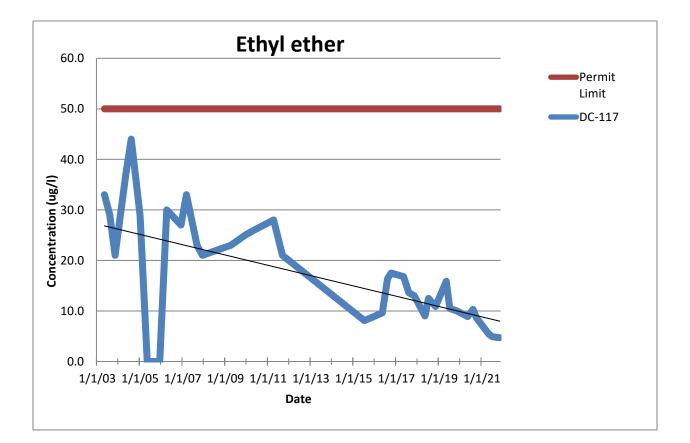
2021 Annual Report	D	C-119	Analytical Result														
		Permit Limit	5/10/17	8/9/17	11/16/17	5/10/18	7/31/18	11/14/18	5/6/19	7/24/19	11/14/19	5/7/20	8/5/20	10/29/20	5/10/21	7/29/21	11/2/21
1,1,1,2-Tetrachloroethane	ug/L	17.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/L	2250	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,1,2-Trichloroethane	ug/L ug/L	0.75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,1,2-Trichlorotrifluoroethane	ug/L ug/L	5000	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.50	<1.0	<0.40
1,1-Dichloroethane	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1-Dichloroethene	ug/L ug/l	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1-Dichloropropene	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichloropropane	ug/L	0.00075	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
1,2,4-Trichlorobenzene	ug/L	1	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	< 0.40
1,2,4-Trimethylbenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	< 0.5	<1.0	<1.0
1,2 Dibromo 3 chloropropane (DBCP)	ug/L	20	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.12	<0.12	<0.12	<0.05	<0.12	<0.12
1,2-Dibromoethane	ug/L	0.001	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,2-Dichlorobenzene	ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,2-Dichloroethane	ug/L ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.30	<0.40	<0.40
1,2 Dichloroethylene, cis	ug/L	1.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20
1,2 Dichloroethylene, trans	ug/L	10	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2-Dichloropropane	ug/L ug/L	1.25	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3,5-Trimethylbenzene	ug/L ug/L	25.00	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3,5-1 imethyldenzene 1.3-Dichlorobenzene	ug/L ug/L	25.00	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,3-Dichloropenzene	ug/L ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,3-Dichloropropane 1,3-Dichloropropene, cis	ug/L ug/L	0.5	<1.0	<1.0	<1.0	ND	ND ND	ND	ND ND	ND ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,3-Dichloropropene, trans	ug/L ug/L	0.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
1,3-Dichloropropene, trans	ug/L ug/L	0.0	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
2,2-Dichloropropane	ug/L ug/L	<u> </u>	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
2,2-Dichloropropane 2-Chlorotoluene	ug/L ug/L	<u> </u>	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND	ND ND	ND ND	ND ND	<0.40	<0.40	<0.40	<0.5	<1.0	<0.40
2-Chlorotoluene 4-Chlorotoluene	-		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
	ug/L	1000	<1.0 <20.0	<1.0 <20.0	<1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <20.0	<0.40	<0.40	<0.50	<0.40	<0.40
Acetone	ug/L	7.5	<20.0	<20.0 <4.0	<20.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<20.0 <4.0	<20.0 <4.0	<20.0 <4.0	<10.0	<20.0 <4.0	<20.0
Allyl chloride	ug/L	7.5 0.5			-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<4.0 <0.20	<4.0 <0.20	<4.0 <0.20	<0.5 <0.5	<4.0 <0.20	<4.0 <0.20
Benzene	ug/L	0.5	<1.0	<1.0	<1.0		ND ND		ND ND						<0.5		
Bromobenzene	ug/L	1.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <1.0	<0.40 <1.0	<0.40 <1.0	<0.5	<0.40 <1.0	<0.40 <1.0
Bromochloromethane	ug/L																
Bromodichloromethane	ug/L	10	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Bromoform	ug/L	2.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Bromomethane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Butylbenzene, n	ug/L		<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.5	<0.40	<0.40
Butylbenzene, sec	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Butylbenzene, tert	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	< 0.40	< 0.40	<0.40	< 0.50	<0.40	<0.40
Carbon tetrachloride	ug/L	05	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	< 0.050	<0.050	< 0.050	<0.20	< 0.050	< 0.050
Chlorobenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Chlorodibromomethane Chloroethane	ug/L	2.5	<1.0 <1.0	<1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND	<0.40 <1.0	<0.40	<0.40	<0.50 <0.5	<0.40 <1.0	<0.40
Chloroform	ug/L	7.5	<1.0	<1.0 <1.0	<1.0	ND	ND	ND	ND ND	ND	ND ND	<1.0	<1.0 <1.0	<1.0 <1.0	<0.5	<1.0	<1.0 <1.0
Chloromethane	ug/L	7.5	<1.0	<1.0	<1.0	ND	ND	ND	ND ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	ug/L				-							-			-		
Dibromomethane	ug/L	175	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0
Dichlorodifluoromethane Dichlorofluoromethane	ug/L	175	3.7	<1.0 3.6	<1.0 2.2	5.2	4.9	3.07	ND 2.5	ND 2.4	1.5	5.9	1.2	<1.0	<0.5 0.69	<1.0 1.7	1.9
	ug/L	50							2.5 ND								
Ethyl ether	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND		ND	ND	<4.0	<4.0	<4.0 <0.40	< 0.5	<4.0	<4.0
Ethylbenzene	ug/L	12.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40		< 0.50	<0.40	<0.40
Hexachlorobutadiene	ug/L	0.25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10
Isopropylbenzene	ug/L	75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Isopropyltoluene, p	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Methyl ethyl ketone (MEK)	ug/L	1000	<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl isobutyl ketone (4-Methyl-2-pen	ug/L	75	<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
Methyl tertiary butyl ether	ug/L	15	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Methylene chloride	ug/L	1.25	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	ug/L	17.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Propylbenzene, n	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Styrene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Tetrachloroethylene	ug/L	1	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	< 0.50	<0.40	<0.40
Tetrahydrofuran	ug/L		<10.0	<10.0	<10.0	ND	ND	ND	ND	ND	ND	<10.0	<10.0	<10.0	<5.0	<10.0	<10.0
Toluene	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	< 0.40	<0.40	< 0.40	< 0.50	<0.40	<0.40
Trichloroethylene	ug/L	0.1	<0.40	<0.40	<0.40	ND	ND	ND	ND	ND	ND	< 0.050	<0.050	< 0.050	<0.10	< 0.050	< 0.050
Trichlorofluoromethane	ug/L	500	<1.0	<1.0	<1.0	0.48	0.43	ND	ND	ND	ND	< 0.40	< 0.40	< 0.40	< 0.50	< 0.40	<0.40
Vinyl chloride	ug/L	0.05	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050
Xylene, m & p	ug/L	2500				ND	ND	ND	ND	ND	ND	<0.80	<0.80	<0.80	<1.0	<0.80	<0.80
Xylene, o	ug/L					ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Xylene, o, m & p	ug/L		<3.0	<3.0	<3.0	ND	ND	ND	ND	ND	ND	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
Arsenic	ug/L	2.5		<20.0			ND			ND			<20.0			<0.50	
Cadmium	ug/L	0.125		<3.0			ND						<3.0			<0.08	
Chromium	ug/L	25								ND			<10.0			<10.0	
Copper	ug/L	250		<10.0			ND			ND			<10.0			<10.0	
Lead	ug/L	7.5		<10.0			ND			ND			<10.0			<0.10	
Manganese	ug/L	25	<5.0	<5.0	<5.0	ND	6.3	ND		ND		7.5	5.9	6.6	<5.0	<5.0	5.8
Mercury	ug/L	0.5		<0.20			ND			ND			<0.20			<0.20	
Boron	ug/L	250	163	177	207	306	283	203	263	248	238	311	453	568	249	292	449
Barium	ug/L	500		88.5			94.6			95.6			95.2			101	
Chloride	mg/L			112			127			151			112			227	
Iron	ug/L			53.8			234			ND			59.4			61.8	İ
Nitrate& Nitrite	mg/L			5.3			7.4			4.8			4		1	1.2	t
Fluoride	mg/L	ł					0.11										
Soilds. Total Dissolved	mg/L	1	577	636	633	648	588	557	706	700	677	742	758	655	815	920	806
Sulfate	mg/L	1		43.9			48.7			46.1	-		41.3			46.2	
Depth to Water	ft		120.70	120.39	119.85	119.67	118.39	118.67	117.08	116.77	116.69	117.77	118.04	118.82	120.22	121.23	121.86
	MSL	t	718.37	718.68	719.22	719.4	720.68	720.4	721.99	722.3	722.38	721.3	721.03	720.25	718.85	717.84	717.21
Water Table Elevation																	

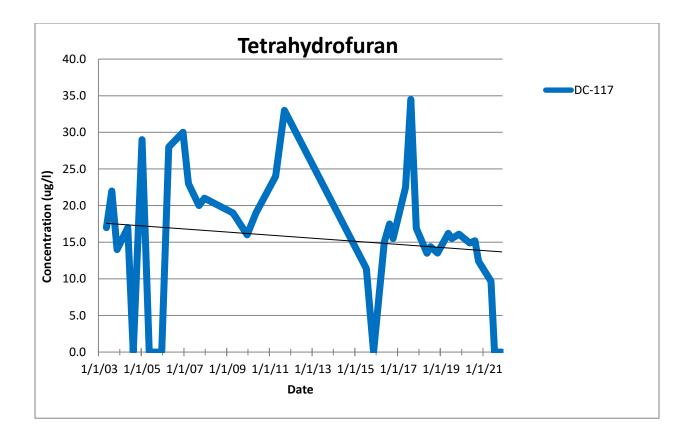
data collected on 5/24/16. Upon review of the data it was determined that it was most likely the results were mislabeled for DC-117 and DC-119 and were reported under the wrong well.

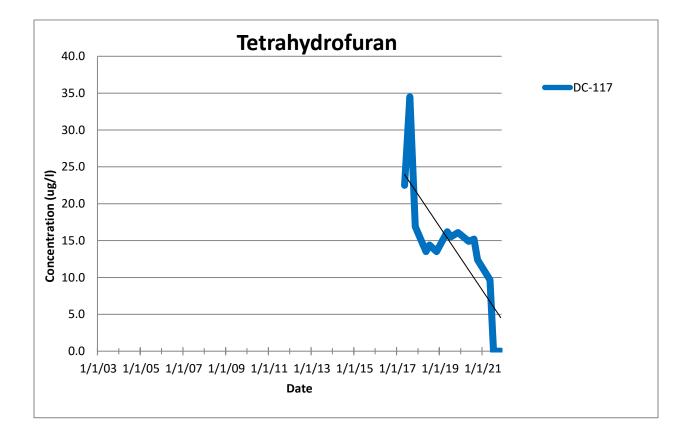

Green Shading represents reporting limits that are above the permit limit.

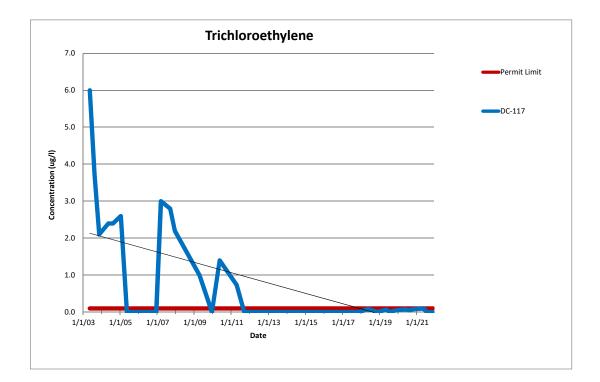

Yellow Shading represents sampling events that exceed the permit limit.

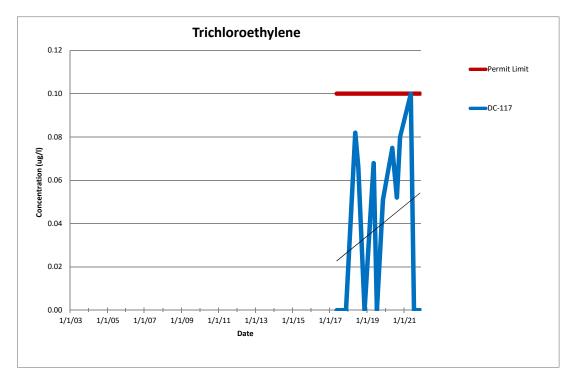

		DC-118	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical	Analytical
2021 ANNUAL REPORT		Permit Limit	Result 5/10/17	Result 8/9/17	Result 11/16/17	Result 5/10/18	Result 7/31/18	Result 11/14/18	Result 5/6/19	Result 7/24/19	Result 11/14/19	Result 5/7/20	Result 10/22/20	Result 10/29/20	Result 5/10/21	Result 7/29/21	Result 11/2/21
1,1,1,2-Tetrachloroethane	ug/L	17.5	<1.0	<1.0	<1.0	5/10/18 ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	< 0.40	<0.40
1,1,1-Trichloroethane	ug/L	2250	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,2,2-Tetrachloroethane	ug/L	0.75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	ug/L ug/L	0.75 5000	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <1.0	<0.40 <1.0	<0.40 <1.0	<0.50 <1.0	<0.40 <1.0	<0.40 <1.0
1.1-Dichloroethane	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1-Dichloroethene	ug/l	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,1-Dichloropropene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2,3-Trichloropropane	ug/L	0.00075	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.010	<0.010	<0.010	<0.1	<0.010	<0.010
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ug/L	1 25	<1.0	<1.0	<1.0	ND	ND ND	ND ND	ND	ND ND	ND ND	<0.40	<0.40	<0.40	<0.50 <0.5	<0.40	<0.40
1,2,4-1 Inmethylbenzene 1,2 Dibromo 3 chloropropane (DBCP)	ug/L ug/L	25	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0	ND ND	ND	ND	ND ND	ND	ND	<1.0 <0.12	<1.0 <0.12	<1.0 <0.12	<0.05	<1.0 <0.12	<1.0 <0.12
1,2-Dibromoethane	ug/L	0.001	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1,2-Dichlorobenzene	ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2-Dichloroethane	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.10	<0.20	<0.20
1,2 Dichloroethylene, cis	ug/L	1.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2 Dichloroethylene, trans	ug/L	10	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,2-Dichloropropane 1,3,5-Trimethylbenzene	ug/L ug/L	1.25 25	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
1,3-Dichlorobenzene	ug/L	150	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichloropropane	ug/L	100	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichloropropene, cis	ug/L	0.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,3-Dichloropropene, trans	ug/L	0.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
1,4-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
2,2-Dichloropropane	ug/L	<u> </u>	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
2-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	ND	ND ND	ND ND	ND	ND	ND	< 0.40	<0.40	<0.40	<0.50	<0.40	<0.40
4-Chlorotoluene Acetone	ug/L ug/L	1000	<1.0 <20.0	<1.0 <20.0	<1.0 <20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <20.0	<0.40 <20.0	<0.40 <20.0	<0.50 <10.0	<0.40 <20.0	<0.40 <20.0
Acetone Allyl chloride	ug/L ug/L	7.5	<20.0	<20.0	<20.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<20.0	<20.0	<20.0	<10.0	<20.0	<20.0
Benzene	ug/L	0.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.20	<0.20	<0.20	<0.5	<0.20	<0.20
Bromobenzene	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.5	<0.40	<0.40
Bromochloromethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Bromodichloromethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Bromoform	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Bromomethane	ug/L		<4.0 <5.0	<4.0 <5.0	<4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <0.40	<1.0 <0.40	<1.0	<1.0 <0.50	<1.0	<1.0 <0.40
Butylbenzene, n Butylbenzene, sec	ug/L ug/L	-	<5.0	<5.0	<5.0 <1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40 <0.40	< 0.50	<0.40 <0.40	<0.40
Butylbenzene, tert	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Carbon tetrachloride	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.050	< 0.050	< 0.050	<0.20	< 0.050	<0.050
Chlorobenzene	ug/L	25	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Chlorodibromomethane	ug/L	2.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Chloroethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Chloroform Chloromethane	ug/L ug/L	7.5	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
Dibromomethane	ug/L		<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Dichlorodifluoromethane	ug/L	175	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Dichlorofluoromethane	ug/L		<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0
Ethyl ether	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<4.0	<4.0	<4.0	<0.5	<4.0	<4.0
Ethylbenzene	ug/L	12.5	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Hexachlorobutadiene	ug/L ug/L	0.25	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.10 <0.40	<0.10 <0.40	<0.10 <0.40	<0.20 <0.50	<0.10 <0.40	<0.10 <0.40
Isopropylbenzene Isopropyltoluene, p	ug/L ug/L	75	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Methyl ethyl ketone (MEK)	ug/L	1000	<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl isobutyl ketone (4-Methyl-2-pentar	n ug/L	75	<5.0	<5.0	<5.0	ND	ND	ND	ND	ND	ND	<5.0	<5.0	<5.0	<2.0	<5.0	<5.0
Methyl tertiary butyl ether	ug/L	15	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Methylene chloride	ug/L	1.25	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	ug/L	17.5	<4.0	<4.0	<4.0	ND	ND	ND	ND	ND	ND	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Propylbenzene, n Styrene	ug/L ug/L		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.50 <0.50	<0.40 <0.40	<0.40 <0.40
Styrene Tetrachloroethylene	ug/L ug/L	1	<1.0	<1.0	<1.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Tetrahydrofuran	ug/L ug/L		<10.0	<10.0	<10.0	ND	ND	ND	ND	ND	ND	<10.40	<10.0	<10.0	<5.0	<10.0	<10.40
Toluene	ug/L	50	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Trichloroethylene	ug/L	0.1	<0.40	<0.40	<0.40	ND	ND	ND	ND	ND	ND	<0.050	<0.050	<0.050	<0.1	<0.050	<0.050
Trichlorofluoromethane	ug/L	500	<1.0	<1.0	<1.0	ND	ND	ND	ND	ND	ND	<0.40	<0.40	<0.40	<0.50	<0.40	<0.40
Vinyl chloride	ug/L	0.05	<0.2	<0.2	<0.5	ND	ND	ND	ND	ND	ND	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xylene, m & p	ug/L	2500				ND ND	ND	ND ND	ND ND	ND ND	ND ND	< 0.80	<0.80	<0.80	<1.0 <0.50	<0.08	<0.08
Xylene, o Xylene, o, m & p	ug/L ug/L	1	<3.0	<3.0	<3.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.40 <1.2	<0.40 <1.2	<0.40 <1.2	<0.50	<0.40 <1.2	<0.40 <1.2
Arsenic	ug/L ug/L	2.5	-0.0	<20.0	-0.0		ND			ND		21.2	<20.0	51.2	>1.2	<0.50	51.2
Cadmium	ug/L	0.125	1	<3.0			ND						<3.0			<0.08	
Chromium	ug/L	25								ND			<10.0			<10.0	
Copper	ug/L	250		<10.0			ND			ND			<10.0			<10.0	
Lead	ug/L	7.5		<10.0			ND			ND			<0.10		L	0.1	
Manganese	ug/L	25	49.3	65.9	91	38.3	58	28.6	55.2	62.2	38.5	27.7	21.7	23.1	19.6	22.2	48
Mercury Boron	ug/L ug/L	0.5	302	333	359	256	ND 380	245	374	ND 345	230	252	<0.20 197	168	119	<0.20 154	370
Barium	ug/L ug/L	250 500	302	333 59.1		200	63.9	240	514	345 58.8	230	202	197 71	100	119	154 59.2	310
Chloride	mg/L		1	32.2			32.8			36.3			53.1			60.8	
Iron	ug/L		1	140			251			236			65			117	
Nitrate & Nitrite	mg/L			2.7			4.7			2.6			4.1			1.5	
Fluoride	mg/L			0.12			0.11										
Soilds, Total Dissolved	mg/L		539	596	560	470	483	477	563	562	520	578	558	558	528	531	563
Sulfate	mg/L		440.47	74.7	447.07	4 4 7 00	75.1	440.40		73		445.0	57.5	440.01	447.01	47.1	440.44
Depth to Water Water Table Elevation	ft MSL	+	118.14 720.66	117.85 720.95	117.37 721.43	117.02 721.78	115.92 722.88	116.18 722.62	114.46 724.34	114.28 724.52	114.27 724.53	115.3 723.5	116.24 723.16	116.31 722.49	117.61 721.19	118.6 720.2	119.14 719.66
	WOL	L	120.00	120.33	121.43	121.10	, 22.00	122.02	124.04	124.32	124.00	120.0	120.10	122.43	121.13	120.2	113.00
ND = None Detected Green Shading represents reporting limits	6																
ND = None Detected	5						<u> </u>										
ND = None Detected Green Shading represents reporting limits	\$ 																

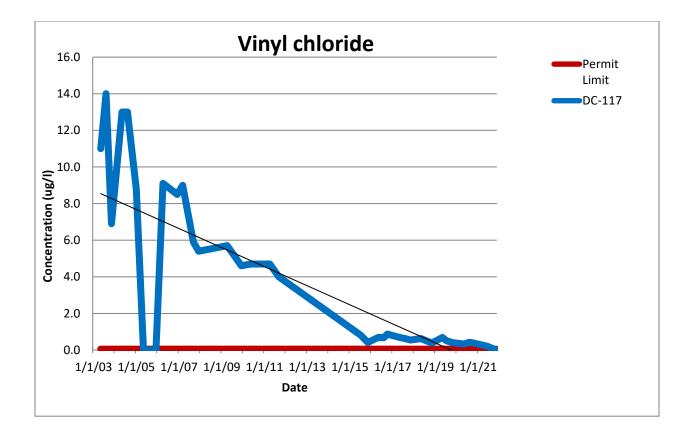

Appendix 2 – Graphs and Trendlines Selected Parameters

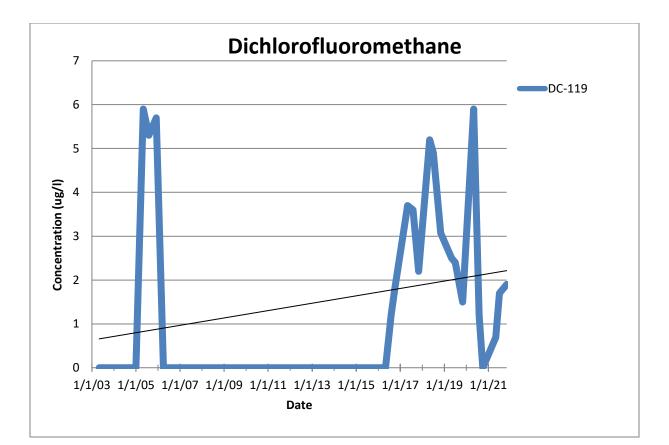

VOC Graphs

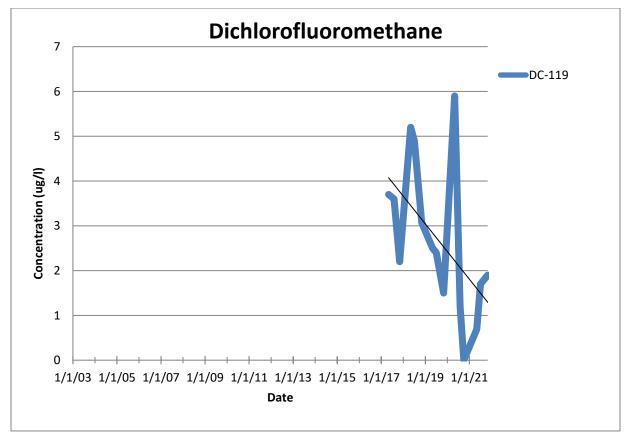


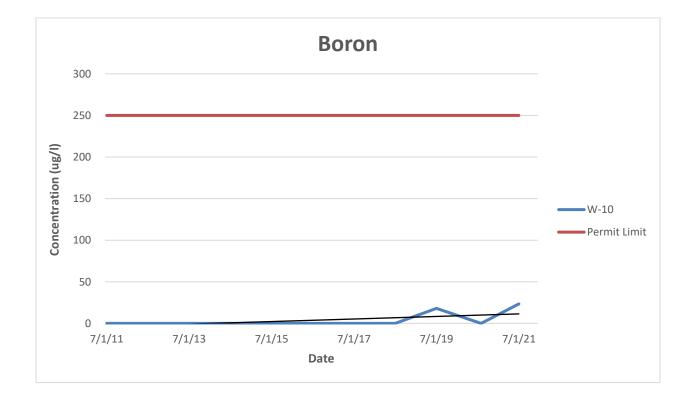


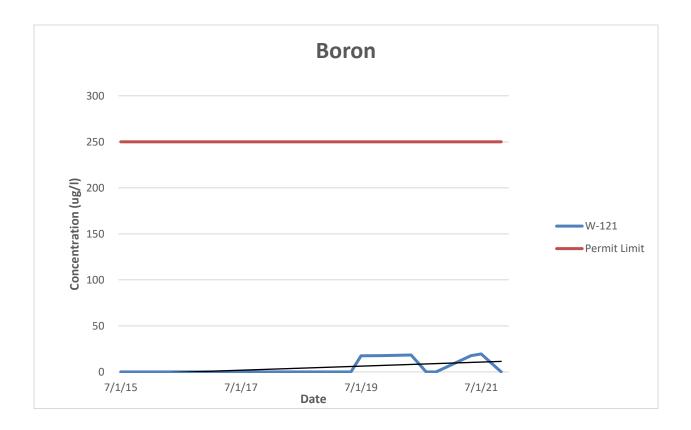


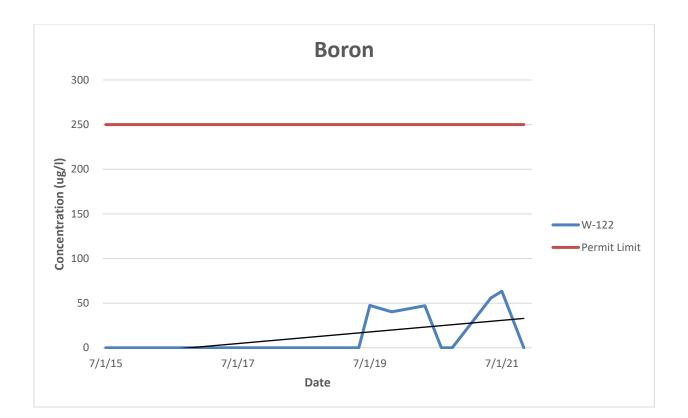


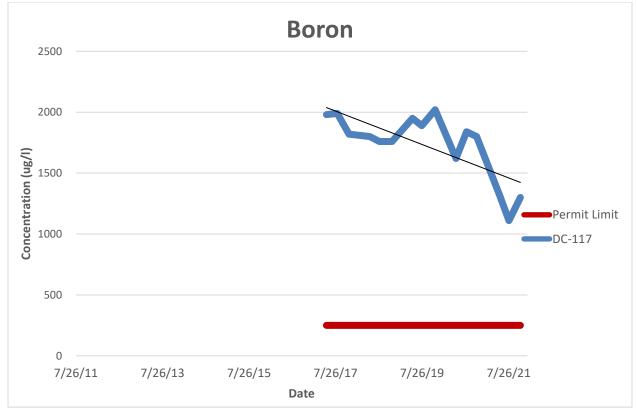


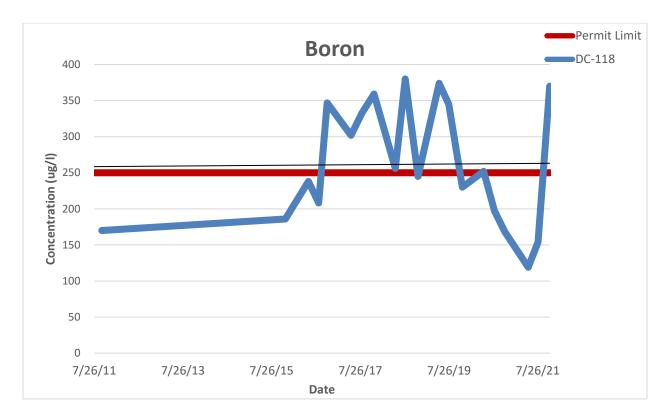


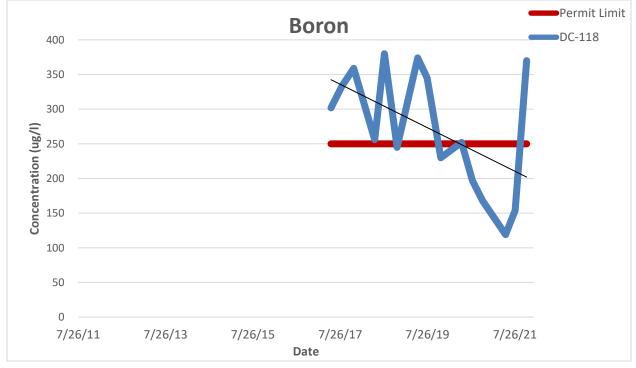


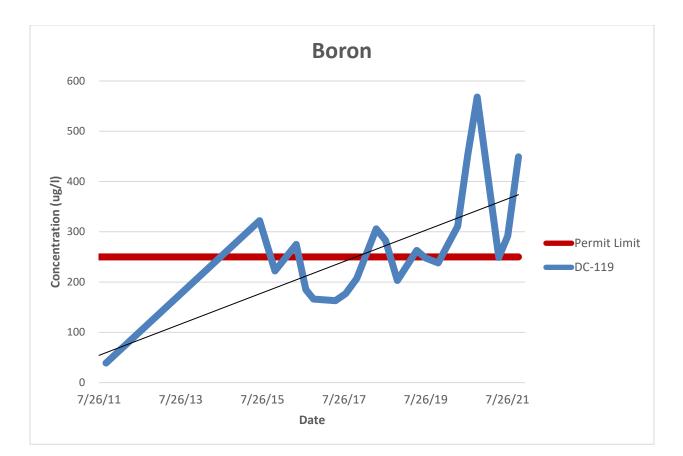


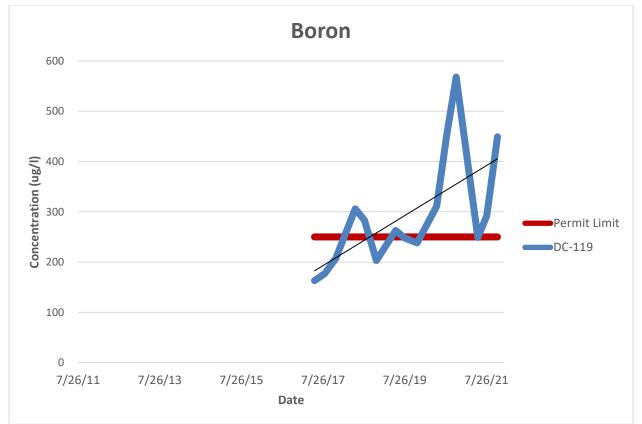

Boron Graphs



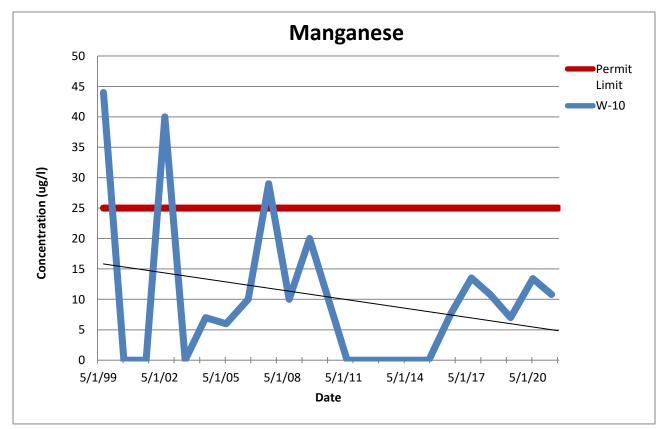


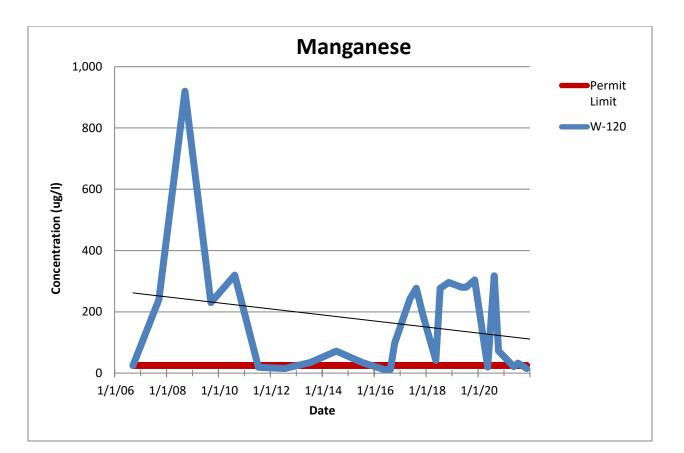






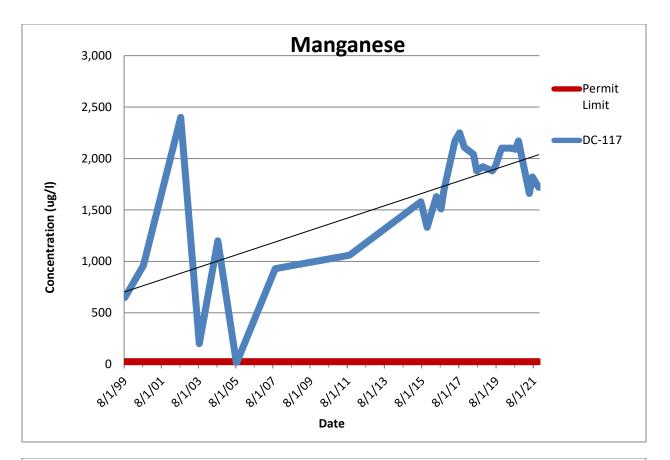


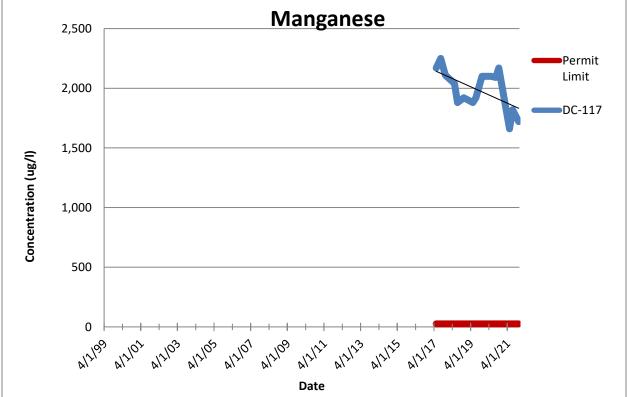


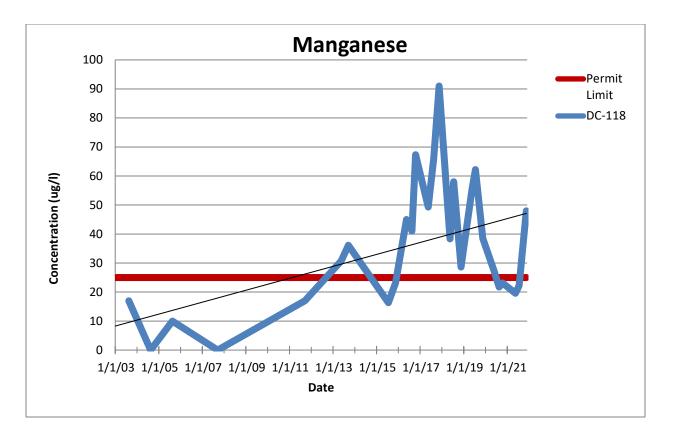


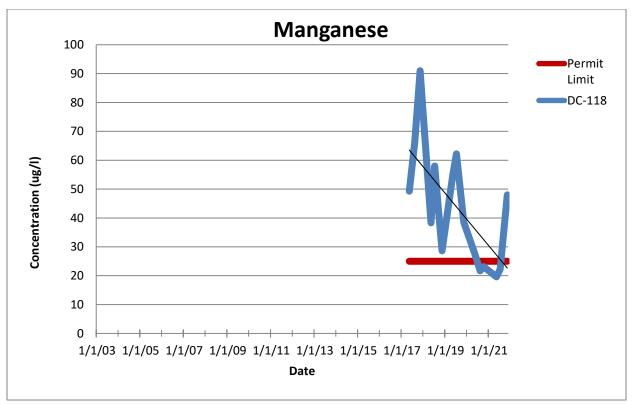


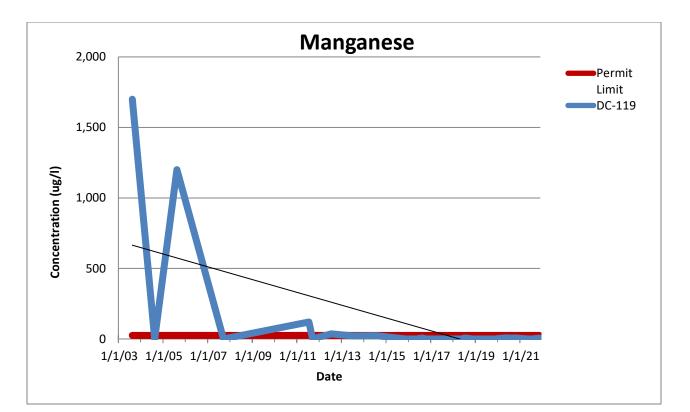
Manganese Graphs

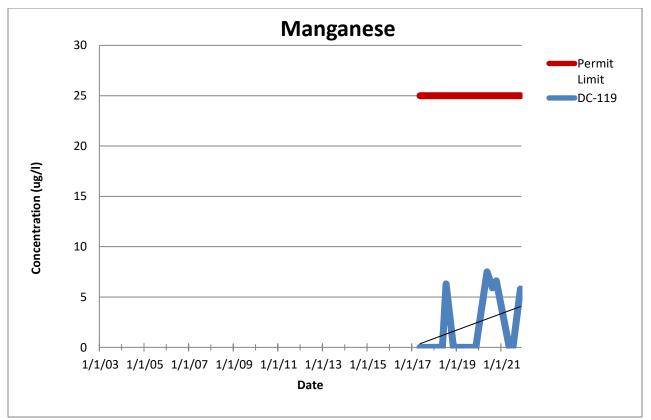












Appendix 3 – Leachate Monitoring Report

February 28, 2022

DEM-CON LANDFILL LLC (SW-290) 2021 ANNUAL LEACHATE SAMPLING SUMMARY REPORT

Prepared by Dem-Con Landfill, LLC

Leachate at Dem-Con Landfill flows to three sumps located in landfill Phases 1, 3, and 4, and pumped to a 300,000-gallon aboveground storage tank. Throughout 2021, collected leachate was hauled and disposed of at the Metropolitan Council Environmental Services (MCES) Blue Lake Wastewater Treatment Plant in Shakopee, MN. Dem-Con maintains both hauling, and discharge permits with the MCES. Dem-Con personnel collected leachate samples on January 28, April 5, July 26, and October 25 in 2021 by sampling directly from the haul truck tank used to transport leachate to the wastewater treatment plant. Additional samples were collected on a monthly basis and analyzed for pH, COD, and TSS in order to demonstrate compliance with Dem-Con's Industrial Discharge Permit and for determining MCES load charges. Only the quarterly samples as required by MPCA Permit SW-290-005 are included in the attached table. Permit SW-290-005 does not establish ILs for leachate. All water quality parameters were within the MCES treatment facility acceptance limits.

The following table summarizes leachate sampling results from 2017 through 2021.

Parameter	Unit	1/26/17	4/26/17	7/20/17	10/24/17	1/10/18	4/26/18	7/31/18	10/30/18	1/15/19	4/17/19	7/24/19	10/29/19	1/28/20	4/23/20	7/10/20	10/21/20	1/28/21	4/5/21	7/26/21	10/25/21
1,1,1,2-Tetrachloroethane	µg/L	ND	ND		10/2 1/ 11		ND	ND	10/00/10	1,10,10			10/20/10	1/20/20	1/20/20		<0.147	1120/21	<0.147	<0.735	10/20/21
1,1,1-Trichloroethane	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.149	< 0.34	<0.149	<0.745	< 0.37
1,1,2,2-Tetrachloroethane	µg/L	ND	ND				ND	ND									<0.133	0.01	<0.133	<0.665	0.01
1,1,2-Trichloroethane	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.158	<0.38	<0.158	<0.790	< 0.30
1,1,2-Trichlorotrifluoroethane	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.180	< 0.61	<0.180	< 0.900	<0.62
1,1-Dichloroethane	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.100	< 0.33	<0.100	< 0.500	< 0.51
1,1-Dichloroethene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.188	<0.25	<0.188	< 0.940	< 0.49
1,1-Dichloropropene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.142	<0.44	<0.142	<0.710	<0.53
1,2,3-Trichlorobenzene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.230	<0.34	<0.230	<1.15	< 0.32
1,2,3-Trichloropropane	μg/L	ND	ND				0.012	ND		ND	ND	ND	ND	ND	ND	ND	<0.230	<1.2	<0.230	<1.19	<0.32
1,2,4,5-Tetrachlorobenzene	µg/L	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	<50.5	<10	<99.9	<97.3	-0.20
1,2,4-Trichlorobenzene	µg/L			ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	<0.481	<0.38	<0.481	<2.41	<0.28
1,2,4-Trimethylbenzene	µg/L	ND	ND		ne.		ND	ND		1.5	1.2	2.4	2.3	1.5	1.6	0.98	0.558	0.59	1.39	<1.61	1.5
1,2-Dibromo-3-chloropropane	μg/L	ND	ND				ND	ND		ND	ND	ND 2.4	ND	ND	ND	ND	<0.276	<2.5	<0.276	<1.38	<0.61
1,2-Dibromoethane (EDB)	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.126	<0.36	<0.126	<0.630	< 0.34
1,2-Dichlorobenzene	µg/L	ND	ND		ND		ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.120	<0.27	<0.120	<141	<0.34
1,2-Dichloroethane	μg/L	2.4	0.5		ND		1.4	ND		1.5	0.69	2.1	2.9	2.7	2.3	3.4	1.33	1.2	<0.0819	<0.409	1.3
1,2-Dichloropropane	μg/L μg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.149	<0.28	<0.0819	<0.409	<0.36
1,2-Diphenylhydrazine	μg/L μg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	NU. 149	~0.20	~0.149	~0.745	<1.7
1.3.5-Trimethylbenzene	μg/L μg/L	ND	ND				ND	ND		0.28	0.36	0.74	0.66	1	0.41	0.27	0.119	<0.25	0.33	<0.520	0.37
1,3,5-Trimenyibenzene	μg/L μg/L	ND	ND		ND		ND	ND		0.26 ND	0.30 ND	0.74 ND	0.66 ND	ND	0.41 ND	0.27 ND	<0.119	<0.23	<0.110	<0.520	<0.22
1,3-Dichlorobenzene	μg/L μg/L									ND	ND	ND	ND	ND	ND	ND	<0.110	<0.23	<0.110	<0.550	<0.22
1,3-Dichloropropane	µg/L µg/L	ND	ND		1		ND			ND	ND	ND	ND	ND	ND	ND	<0.110	<0.23	<0.110	<0.550	<0.22
1,4-Dichlorobenzene	μg/L μg/L									ND	ND	ND	ND	ND	ND	ND	<0.110	<14.4	<0.110	<140	<1.7
1-Methylnaphthalene	µg/L µg/L	ND			1										עוו		NU. 120	×14.4	<u>∼0.120</u>	×140	<1.7
2,2-Dichloropropane	µg/L	ND	ND				ND	ND									<0.161		<0.161	<0.805	\$1.7
2,2'-Oxybis(1-chloropropane)	μg/L μg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<62.3	<12.3	<123	<120	<1.8
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/L	ND						ND	ND	ND	ND	ND	ND	ND	ND	ND	NZ.0	512.0	-125	<120	\$1.0
2,4,5-Trichlorophenol	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<32.6	<6.4	<64.4	<62.8	<1.7
2,4,6-Trichlorophenol	μg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<40.3	<8.0	<79.7	<77.6	<1.7
2,4-Dichlorophenol	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<45.3	<9.0	<89.6	<87.3	<1.6
2,4-Dimethylphenol	μg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	2.93	<58.5	<11.6	<116	<113	3.3
2,4-Dinitrophenol	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<124	<24.5	<245	<239	<2.3
2.4-Dinitrotoluene	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<53.5	<10.6	<106	<103	<1.5
2.6-Dinitrotoluene	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<39.0	<7.7	<77.3	<75.2	<1.5
2-Butanone (MEK)	µg/L	40.2	13.4				22.1	ND		101	106	534	507	252	90	210	<1.19	3.7	<1.19	<5.95	2.3
2-Chloroethylvinyl ether	µg/L	10.2	10.1							ND	ND	ND	ND	ND	ND	ND	<0.575	<1.2	<0.575	<2.88	<4.5
2-Chloronaphthalene	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<41.9	<8.3	<82.9	<80.7	<1.8
2-Chlorophenol	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	<41.8	<8.3	<82.8	<80.7	<1.2
2-Chlorotoluene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.106	< 0.33	<0.106	<0.530	<0.25
2-Hexanone	µg/L									1.6	3.7	2.6	3.4	ND	ND	2.6	<0.787	<1.5	<0.787	<3.94	<1.9
2-Methylnaphthalene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<58.8	<11.6	<116	<113	<1.7
2-Methylphenol(o-Cresol)	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	9	ND	ND	ND	ND	14.4	<47.0	<9.3	<93.1	<90.6	< 0.93
2-Nitroaniline	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<47.9	<9.5	<94.8	<92.3	<1.5
2-Nitrophenol	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<41.7	<8.3	<82.6	<80.4	<1.5
3&4-Methylphenol(m&p Cresol)	µg/L	64.4	ND	ND	120	ND	ND	505	161	230	130	191	953	1390	637	469	<30.9	<6.1	<61.3	<59.7	1.2
3,3'-Dichlorobenzidine	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<67.9	<13.4	<134	<131	<2.8
3-Nitroaniline	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<68.9	<13.6	<136	<133	<1.7
4.4-DDD	µg/L	ND	ND	ND	ND	ND	ND	ND													
4,4-DDE	µg/L	ND	ND	ND	ND	ND	ND	ND													
4.4-DDT	µg/L	ND	ND	ND	ND	ND	ND	ND													
4,6-Dinitro-2-methylphenol	µg/L	ND	ND	ND	ND	ND	ND	238	ND	ND	ND	ND	ND	ND	ND	ND	<157	<31.1	<311	<303	<4.3
4-Bromophenylphenyl ether	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<48.3	<9.6	<95.6	<93.1	<2.0
4-Chloro-3-methylphenol	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<34.5	<6.8	<68.3	<66.5	<1.3
4-Chloroaniline	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<90.2	<17.9	<179	<174	<2.0
4-Chlorophenylphenyl ether	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<41.8	<8.3	<82.8	<80.7	<2.0
4-Chlorotoluene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.114	<0.10	<0.114	<0.570	<0.22
-	µg/L	1.1	1.2				ND	ND													
4-isopropyitoluene (aka b-isopropyitolue	µg/L	7.6	ND	1	1	1	11.9	ND		47.6	60	207	210	150	48.4	97.4	3.26	<1.1	6.62	<2.39	1.7
4-Isopropyltoluene (aka p-Isopropyltolue 4-Methyl-2-pentanone (MIBK)	uu/L			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<151	<30.0	<300	<292	<1.6
4-Methyl-2-pentanone (MIBK)		ND	ND						ND	ND	ND	ND	ND	ND	ND	ND	<154				
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline	µg/L	ND ND	ND ND		ND	ND	ND	NΠ										<30 h	<306	<298	<38
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline 4-Nitrophenol	μg/L μg/L	ND ND 0.12	ND ND 0.19	ND ND	ND 1.1	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	<154	<30.6	<306	<298	<3.8
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline 4-Nitrophenol a-BHC (aka Lindane - insecticide)	μg/L μg/L μg/L	ND	ND 0.19	ND					ND	ND	ND		ND	ND	ND	ND				<298	<3.8
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline 4-Nitrophenol a-BHC (aka Lindane - insecticide) Acenaphthene	μg/L μg/L μg/L μg/L	ND 0.12 ND	ND 0.19 ND	ND ND ND	1.1 ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	<38.5	<7.6	<76.3	<74.3	<1.8
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline 4-Nitrophenol a-BHC (aka Lindane - insecticide)	μg/L μg/L μg/L μg/L μg/L	ND 0.12 ND ND	ND 0.19	ND ND	1.1	ND	ND	ND													
4-Methyl-2-pentanone (MIBK) 4-Nitrophenol a-BHC (aka Lindane - insecticide) Acenaphthene Acenaphthylene Acetone	μg/L μg/L μg/L μg/L μg/L μg/L	ND 0.12 ND	ND 0.19 ND ND	ND ND ND	1.1 ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND 2240	ND ND 1350	ND ND	ND ND	<38.5 <36.9 53.3	<7.6 <7.3 15.9	<76.3 <73.0 18.5	<74.3 <71.1	<1.8 <1.9
4-Methyl-2-pentanone (MIBK) 4-Nitroaniline 4-Nitrophenol a-BHC (aka Lindane - insecticide) Acenaphthene Acenaphthylene	μg/L μg/L μg/L μg/L μg/L	ND 0.12 ND ND	ND 0.19 ND ND	ND ND ND	1.1 ND	ND ND	ND ND ND	ND ND ND	ND ND	ND ND 246	ND ND 750	ND ND 1770	ND ND	ND ND	ND ND 250	ND ND 438	<38.5 <36.9	<7.6 <7.3	<76.3 <73.0	<74.3 <71.1 <56.5	<1.8 <1.9

Parameter	Unit	1/26/17	4/26/17	7/20/17	10/24/17	1/10/18	4/26/18	7/31/18	10/30/18	1/15/19	4/17/19	7/24/19	10/29/19	1/28/20	4/23/20	7/10/20	10/21/20	1/28/21	4/5/21	7/26/21	10/25/21
Acrylonitrile	µg/L		1/20/11		10/2 1/ 11	1,10,10	1/20/10	1101110	10/00/10	ND	ND	ND	ND	ND	ND	ND	<0.671	<2.4	<0.671	<3.36	<4.1
Aldrin (insecticide)	µg/L	ND	ND	ND	ND	ND	ND	ND		ND	ne -	ND	ND	ND	ne.	110	-0.071	-2.4	-0.071	-0.00	
Alkalinity	mg/L	1610	3190	2500	1530	3950	3550	4170											1520		
Allyl chloride	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.500	<0.54	< 0.500	<2.50	< 0.31
alpha-Chlordane	µg/L	ND	ND	ND	ND	ND	ND	ND													
Aluminum	µg/L									36.5	ND	ND	61	73.1	34.1	ND	152	<26.2	37.8	36.8	16.6
Aniline	µg/L	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<156	<31.0	<310	<302	
Anthracene	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<40.9	<8.1	<81.0	<78.8	<1.8
Antimony	ug/L	ND	ND	ND	ND	34.9	ND	ND	ND	ND	ND	8.6	22	19.5	16	9.4	<7.0	<7.0	9	<7.0	<7.0
Arsenic	µg/L	56.3	125	91.5	95.9	222	181	109	64.3	106	74.6	66.4	259	291	299	180	83.3	107	170	98.6	108
Barium	µg/L	553	835	653	503	865	694	855	705	868	431	749	1170	1140	1010	1190	1000	1090	1040	1060	1430
b-BHC (aka Lindane - insecticide)	µg/L	0.051	ND	0.068	13.2	ND	0.056	ND													
Benzene	µg/L	1.6	1.7				2.6	ND	2	3.2	1.8	3.1	3.7	3.7	3.3	3.3	1.84	2.5	2.75	2	2.7
Benzidine	µg/L	ND							ND								10.0				
Benzo(a)anthracene	µg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<42.8 <64.3	<8.5 <12.7	<84.7 <127	<82.5 <124	<1.6 <1.6
Benzo(a)pyrene	µg/L	ND ND	ND	ND	ND	ND	ND	ND	ND	19.3	ND	ND	ND	ND	ND	ND	<52.3	<12.7	<127	<124	<1.6
Benzo(b)fluoranthene Benzo(g,h,i)perylene	μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	19.3 ND	ND	ND	ND	ND	ND ND	ND	<52.3	<10.4	<104	<101	<1.6
Benzo(k)fluoranthene	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<56.8	<13.8	<130	<109	<1.6
Benzoic Acid	μg/L μg/L	145							ND		UND				שאו		-00.0	211.4	5112	-108	-1.0
Benzyl Alcohol	µg/L	ND					<u> </u>		ND												
Beryllium	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.22	ND	ND	<0.28	<0.28	<0.28	<0.067	<0.067
Bicarbonate alkalinity	mg/L	1970	3190	3050	1870	4820	4330	5090									0.20	5	1850		
Biphenyl (Diphenyl)	µg/L									ND	ND	ND	ND		ND	ND	<73.4	<14.5	<145		1
bis(2-Chloroethoxy)methane	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<66.0	<13.1	<131	<127	5.3
bis(2-Chloroethyl) ether	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<59.0	<11.7	<117	<114	<1.4
bis(2-Ethylhexyl)phthalate	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<145	<28.8	<288	<280	<2.4
BOD, 5 day	mg/L	ND	87.9	ND	60.4	246	158	843											117		
Boron	µg/L	12100	25600	18300	5260	23300	24600	16600	14100	20300	10200	12700	21500	23600	24500	19700	19200	23700	30700	21900	23100
Bromide	mg/L	3	7.9	5.8	2.1	7	8	7.2													
Bromobenzene	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.118	<0.27	<0.118	<0.590	<0.26
Bromochloromethane	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.128	<0.72	<0.128	<0.640	<0.61
Bromodichloromethane	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.136	< 0.23	< 0.136	<0.680	<0.19
Bromoform	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.129	<0.54	< 0.129	< 0.645	< 0.42
Bromomethane BTEX (Total)	µg/L	ND	ND				ND	ND	ND	ND 24.1	ND 36.2	ND 78	ND 80.1	ND 87.9	ND 47.6	ND 67.9	<0.605 7.81	<1.3 8.4	<0.605 23	<3.03 8.3	< 0.63
Butylbenzylphthalate	μg/L μg/L	ND	ND	ND	ND	ND	ND	ND	ND	24.1 ND	30.2 ND	ND ND	ND	87.9 ND	47.6 ND	07.9 ND	<65.5	<13.0	<130	<126	16.8 <2.1
Cadmium	µg/L	ND	ND	ND	ND	ND	ND	ND	0.73	0.43	0.36	0.62	0.47	0.42	ND	ND	0.66	<0.31	0.56	<0.28	<0.28
Calcium	µg/L	230000	214000	231000	288000	296000	276000	337000	208000	212000	331000	373000	480000	411000	339000	347000	227000	170000	178000	190000	223000
Carbazole	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.602	<46.1	<9.1	<91.3	<88.9	<1.6
Carbon disulfide	µg/L															0.002	0.773	0.1	3.62	00.0	1.0
Carbon tetrachloride	µg/L	ND	ND				ND	ND									<0.128		<0.128	< 0.640	
Carbonate alkalinity (CO3)	mg/L	ND	ND	ND	ND	ND	ND	ND													
Chemical Oxygen Demand	mg/L	544	1050	810	285	1290	1130	2060	745	985	798	1270	1600	1620	975	1080	622	867	1290	977	937
Chloride	mg/L	450	1160	861	327	1090	1250	1470											1420		
Chlorobenzene	µg/L	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.116	<0.15	<0.116	<0.580	<0.22
Chloroethane	µg/L	ND	1.2				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.192	<0.85	<0.192	<0.960	<0.45
Chloroform							ND	ND			ND	ND	ND	ND	ND	ND	<0.111	<0.97	<0.111	<0.555	< 0.33
Chloromethane	µg/L	ND	ND							ND											
	µg/L	ND	ND			_	ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.960	<0.29	< 0.960	<4.80	<0.37
Chromium	μg/L μg/L			68	19.2	80.2			54.6	ND 78.4	ND 39.6	ND 37.2	ND 85	112	105	76.9	33.8	41.5	93.9	70.7	86.8
Chromium Chromium, Hexavalent	μg/L μg/L mg/L	ND	ND	68	19.2	80.2	ND	ND	54.6	ND 78.4 0.008	ND 39.6 ND	ND 37.2 0.47	ND 85 0.15	112 0.23	105 0.17	76.9 0.033	33.8 0.058	41.5 0.083	93.9 0.52	70.7 0.33	86.8 0.41
Chromium Chromium, Hexavalent Chromium, Trivalent	μg/L μg/L mg/L mg/L	ND 53.8	ND 96.7				ND 84.4	ND 66.2		ND 78.4 0.008 0.07	ND 39.6 ND 0.04	ND 37.2 0.47 ND	ND 85 0.15 ND	112 0.23 ND	105 0.17 ND	76.9 0.033 0.044	33.8 0.058 <0.0050	41.5 0.083 <0.0050	93.9 0.52 <0.0050	70.7 0.33 <0.0050	86.8 0.41 <0.0050
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene	μg/L μg/L mg/L mg/L μg/L	ND 53.8 ND	ND 96.7 ND	68 ND	19.2 ND	80.2	ND 84.4 ND	ND 66.2 ND	54.6 ND	ND 78.4 0.008 0.07 ND	ND 39.6 ND 0.04 ND	ND 37.2 0.47 ND ND	ND 85 0.15 ND ND	112 0.23 ND ND	105 0.17 ND ND	76.9 0.033 0.044 ND	33.8 0.058 <0.0050 <64.1	41.5 0.083 <0.0050 <12.7	93.9 0.52 <0.0050 <127	70.7 0.33 <0.0050 <124	86.8 0.41 <0.0050 <1.8
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene	μg/L μg/L mg/L mg/L μg/L μg/L	ND 53.8 ND ND	ND 96.7 ND ND				ND 84.4 ND 0.86	ND 66.2 ND ND		ND 78.4 0.008 0.07 ND 0.97	ND 39.6 ND 0.04 ND 0.51	ND 37.2 0.47 ND ND 0.84	ND 85 0.15 ND ND 2.4	112 0.23 ND ND 2.5	105 0.17 ND ND 1.4	76.9 0.033 0.044 ND 2.2	33.8 0.058 <0.0050 <64.1 <0.126	41.5 0.083 <0.0050 <12.7 <0.39	93.9 0.52 <0.0050 <127 <0.126	70.7 0.33 <0.0050 <124 <0.630	86.8 0.41 <0.0050 <1.8 <0.44
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene	μg/L μg/L mg/L mg/L μg/L μg/L μg/L	ND 53.8 ND ND ND	ND 96.7 ND ND ND	ND	ND	ND	ND 84.4 ND 0.86 ND	ND 66.2 ND ND ND	ND	ND 78.4 0.008 0.07 ND 0.97 ND	ND 39.6 ND 0.04 ND 0.51 ND	ND 37.2 0.47 ND ND 0.84 ND	ND 85 0.15 ND 2.4 ND	112 0.23 ND ND 2.5 ND	105 0.17 ND ND 1.4 ND	76.9 0.033 0.044 ND 2.2 ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111	41.5 0.083 <0.0050 <12.7 <0.39 <0.15	93.9 0.52 <0.0050 <127 <0.126 <0.111	70.7 0.33 <0.0050 <124 <0.630 <0.555	86.8 0.41 <0.0050 <1.8 <0.44 <0.25
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt	μg/L μg/L mg/L mg/L μg/L μg/L μg/L μg/L	ND 53.8 ND ND ND ND	ND 96.7 ND ND ND ND	ND ND	ND ND	ND ND	ND 84.4 ND 0.86 ND ND	ND 66.2 ND ND ND 11.2	ND 3.2	ND 78.4 0.008 0.07 ND 0.97 ND 4.2	ND 39.6 ND 0.04 ND 0.51 ND 20.2	ND 37.2 0.47 ND 0.84 ND 18.8	ND 85 0.15 ND 2.4 ND 14.2	112 0.23 ND ND 2.5 ND 9.8	105 0.17 ND 1.4 ND 10	76.9 0.033 0.044 ND 2.2 ND 9.4	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L	ND 53.8 ND ND ND ND ND ND	ND 96.7 ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND 84.4 ND 0.86 ND ND ND ND	ND 66.2 ND ND 11.2 25.6	ND	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8	ND 37.2 0.47 ND 0.84 ND 18.8 19.1	ND 85 0.15 ND 2.4 ND 14.2 7.2	112 0.23 ND ND 2.5 ND	105 0.17 ND ND 1.4 ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper Cyanide	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L	ND 53.8 ND ND ND ND	ND 96.7 ND ND ND ND	ND ND	ND ND	ND ND	ND 84.4 ND 0.86 ND ND	ND 66.2 ND ND ND 11.2	ND 3.2	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8 9.5	ND 37.2 0.47 ND 0.84 ND 18.8 19.1 387	ND 85 0.15 ND 2.4 ND 14.2 7.2 ND	112 0.23 ND 2.5 ND 9.8 10.8	105 0.17 ND 1.4 ND 10 17.6	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper Cyanide Cyclohexane	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	ND 53.8 ND ND ND ND ND 15.8	ND 96.7 ND ND ND ND ND 22.4	ND ND ND 44.5	ND ND ND ND	ND ND ND 196	ND 84.4 0.86 ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND	ND 3.2	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8	ND 37.2 0.47 ND 0.84 ND 18.8 19.1	ND 85 0.15 ND 2.4 ND 14.2 7.2	112 0.23 ND ND 2.5 ND 9.8	105 0.17 ND 1.4 ND 10	76.9 0.033 0.044 ND 2.2 ND 9.4 9	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,3-Dichloropthene cis-1,3-Dichloropropene Cobalt Copper Cyanide Cyclohexane d-BHC (aka Lindane - insecticide)	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	ND 53.8 ND ND ND ND 15.8 0.12	ND 96.7 ND ND ND ND 22.4 ND	ND ND ND 44.5 ND	ND ND ND ND ND ND	ND ND ND 196 ND	ND 84.4 0.86 ND ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND ND	ND 3.2 5.2	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136 ND	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8 9.5 3.1	ND 37.2 0.47 ND 0.84 ND 18.8 19.1 387 ND	ND 85 0.15 ND 2.4 ND 14.2 7.2 ND 1.4	112 0.23 ND 2.5 ND 9.8 10.8 ND	105 0.17 ND 1.4 ND 10 17.6 ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND ND	33.8 0.058 <0.0050	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4 <1.4	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2 <0.188	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7 <0.940	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8 <2.7
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper Cyanide Cyclohexane	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	ND 53.8 ND ND ND ND ND 15.8	ND 96.7 ND ND ND ND ND 22.4	ND ND ND 44.5	ND ND ND ND	ND ND ND 196	ND 84.4 0.86 ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND	ND 3.2	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8 9.5	ND 37.2 0.47 ND 0.84 ND 18.8 19.1 387	ND 85 0.15 ND 2.4 ND 14.2 7.2 ND	112 0.23 ND 2.5 ND 9.8 10.8	105 0.17 ND 1.4 ND 10 17.6	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper Cyanide Cyclohexane d-BHC (aka Lindane - insecticide) Dibenz(a,h)anthracene	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	ND 53.8 ND ND ND ND 15.8 0.12 ND	ND 96.7 ND	ND ND ND 44.5 ND ND	ND ND ND ND ND ND ND	ND ND ND 196 ND ND	ND 84.4 0.86 ND ND ND ND ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND ND ND	ND 3.2 5.2 ND	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136 ND ND	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8 9.5 3.1 ND	ND 37.2 0.47 ND 0.84 ND 18.8 19.1 387 ND ND	ND 85 0.15 ND 2.4 ND 14.2 7.2 ND 1.4 ND	112 0.23 ND 2.5 ND 9.8 10.8 ND ND	105 0.17 ND 1.4 ND 17.6 ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND ND ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0 <0.188 <55.8	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4 <1.4 <11.0	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2 <0.188 <110	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7 <0.940 <108	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8 <2.7 <1.6
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cobalt Copper Cyanide Cyclohexane d-BHC (aka Lindane - insecticide) Dibenz(a,h)anthracene Dibenzofuran	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	ND 53.8 ND ND ND 15.8 0.12 ND ND	ND 96.7 ND	ND ND ND 44.5 ND ND	ND ND ND ND ND ND ND	ND ND ND 196 ND ND	ND 84.4 ND 0.86 ND ND ND ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND ND ND ND	ND 3.2 5.2 ND	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136 136 ND ND ND	ND 39.6 ND 0.04 ND 20.2 8.8 9.5 3.1 ND ND	ND 37.2 0.47 ND ND 0.84 ND 18.8 19.1 387 ND ND ND	ND 85 0.15 ND ND 2.4 ND 14.2 7.2 ND 14.2 7.2 ND 1.4 ND ND	112 0.23 ND 2.5 ND 9.8 10.8 ND ND ND	105 0.17 ND 1.4 ND 17.6 ND ND ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND ND ND ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0 <0.188 <55.8 <42.8	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4 <1.4 <11.0 <8.5	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2 <0.188 <110 <84.8	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7 <0.940 <108 <82.5	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8 <2.7 <1.6 <1.8
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloropthene cis-1,3-Dichloropthene Cobalt Copper Cyanide Cyclohexane d-BHC (aka Lindane - insecticide) Dibenzofuran Dibenzofuran Dibromochloromethane Dibromomethane	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	ND 53.8 ND ND ND ND 15.8 0.12 ND ND ND	ND 96.7 ND ND ND ND 22.4 ND ND ND ND ND	ND ND ND 44.5 ND ND	ND ND ND ND ND ND ND	ND ND ND 196 ND ND	ND 84.4 0.86 ND ND ND ND ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND ND ND ND ND	ND 3.2 5.2 ND	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136 136 ND ND ND	ND 39.6 ND 0.04 ND 20.2 8.8 9.5 3.1 ND ND	ND 37.2 0.47 ND ND 0.84 ND 18.8 19.1 387 ND ND ND	ND 85 0.15 ND ND 2.4 ND 14.2 7.2 ND 14.2 7.2 ND 1.4 ND ND	112 0.23 ND 2.5 ND 9.8 10.8 ND ND ND	105 0.17 ND 1.4 ND 17.6 ND ND ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND ND ND ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0 <0.188 <55.8 <42.8 <0.140	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4 <1.4 <11.0 <8.5	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2 <0.188 <110 <84.8 <0.140	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7 <0.940 <108 <82.5	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8 <2.7 <1.6 <1.8
Chromium Chromium, Hexavalent Chromium, Trivalent Chrysene cis-1,2-Dichloropthene cis-1,3-Dichloropropene Cobalt Copper Cyclohexane d-BHC (aka Lindane - insecticide) Dibenz(a,h)anthracene Dibenzofuran Dibromochloromethane	μg/L μg/L mg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μ	ND 53.8 ND ND ND ND 15.8 0.12 ND ND ND ND	ND 96.7 ND ND	ND ND ND 44.5 ND ND	ND ND ND ND ND ND ND	ND ND ND 196 ND ND	ND 84.4 ND 0.86 ND ND ND ND ND ND ND ND ND	ND 66.2 ND ND 11.2 25.6 ND ND ND ND ND ND	ND 3.2 5.2 ND	ND 78.4 0.008 0.07 ND 0.97 ND 4.2 136 136 ND ND ND ND ND	ND 39.6 ND 0.04 ND 0.51 ND 20.2 8.8 9.5 3.1 ND ND ND	ND 37.2 0.47 ND 0.84 ND 18.8 19.1 18.8 19.1 18.7 ND ND ND ND	ND 85 0.15 ND 2.4 ND 14.2 7.2 ND 1.4 ND 1.4 ND ND	112 0.23 ND 2.5 ND 9.8 10.8 ND ND ND ND ND	105 0.17 ND 1.4 ND 17.6 ND ND ND ND ND	76.9 0.033 0.044 ND 2.2 ND 9.4 9 ND ND ND ND ND ND	33.8 0.058 <0.0050 <64.1 <0.126 <0.111 3.4 161 <6.0 <0.188 <55.8 <42.8 <0.140 <0.122	41.5 0.083 <0.0050 <12.7 <0.39 <0.15 3.3 1.7 14.4 <1.4 <11.0 <8.5 <0.39	93.9 0.52 <0.0050 <127 <0.126 <0.111 5.3 1.8 44.2 <0.188 <110 <84.8 <0.140 <0.122	70.7 0.33 <0.0050 <124 <0.630 <0.555 4.1 8.8 7.7 <0.940 <108 <82.5 <0.700	86.8 0.41 <0.0050 <1.8 <0.44 <0.25 3.2 2.6 17.8 <2.7 <1.6 <1.8 <0.25

Opering and participant part of the set of	Parameter	Unit	1/26/17	4/26/17	7/20/17	10/24/17	1/10/18	4/26/18	7/31/18	10/30/18	1/15/19	4/17/19	7/24/19	10/29/19	1/28/20	4/23/20	7/10/20	10/21/20	1/28/21	4/5/21	7/26/21	10/25/21
Deriv Deriv No o No		-																				
Inside primeopic <td></td> <td></td> <td></td> <td>-</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><1.4</td>				-	ND	ND	ND			ND						-						<1.4
increduplinable (scaling)vpiNo <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.20</td><td>00.2</td><td>1.0</td><td></td><td>10.0</td><td></td></th<>																	2.20	00.2	1.0		10.0	
<tt>backsystemaniejpicNotN</tt>			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<36.4	<7.2		<70.1	<1.5
Branchingebox Bob No o No No																				-	-	<1.9
Encoder job No.			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<241	<47.7	<477	<464	<2.6
Introduction termsup1 termsN0	Endosulfan I	µg/L	0.14	ND	0.36	ND	ND	0.41	ND													
Calm Ope NO O NO NO	Endosulfan II	µg/L	ND	ND	ND	ND	ND	ND	ND													
India wate juli NO O NO NO	Endosulfan sulfate	µg/L	ND	ND	ND	ND	ND	ND	ND													
information jpd ND D	Endrin	µg/L	ND	ND	ND	ND	ND	ND	ND													(
Ensme pp/s I I I I </td <td>Endrin aldehyde</td> <td>µg/L</td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td></td> <td>í</td>	Endrin aldehyde	µg/L			ND	ND	ND	ND	ND													í
Element jpl V V V V V ND		µg/L	ND	ND	ND	ND	ND	ND	ND													1
End search ppl I <t< td=""><td>Ethane</td><td>µg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><3.0</td><td><3.0</td><td><1.3</td><td><1.3</td><td><1.3</td></t<>	Ethane	µg/L											ND	ND	ND	ND	ND	<3.0	<3.0	<1.3	<1.3	<1.3
Englemme ppl 17 28 v <t< td=""><td></td><td>µg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.1</td></t<>		µg/L																				<1.1
Priod Tegnoritano upic ND D																						
Increase pip ND D ND <t< td=""><td></td><td></td><td>1.7</td><td>2.2</td><td></td><td></td><td></td><td>2.3</td><td>ND</td><td></td><td></td><td>-</td><td>-</td><td>8.7</td><td>8.2</td><td>5.4</td><td>4.3</td><td>1.4</td><td>1.4</td><td>2.66</td><td>0.981</td><td>2.6</td></t<>			1.7	2.2				2.3	ND			-	-	8.7	8.2	5.4	4.3	1.4	1.4	2.66	0.981	2.6
Flavene juit ND D <																						L
Floride mpL I																						
germe-Brief (als Linding - Insection) ingl 0.13 0.17 NO O NO NO<			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<45.7	<9.1		<88.2	<1.8
general-scalar jupl No o			0.40	0.47				ND	ND						<u> </u>					U.16		⊢
Implementant Inplementant Inplementant<																						<u> </u>
Inspace pgL ND D ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td><u> </u></td></th<>																						<u> </u>
Inscalestor jpL ND																						┝───┤
Hexashboox/space µgL N							שא				ND	ND	ND	ND	ND	ND	ND	<0 227	<0.90	<0.337	<1.60	<0.69
Hease-Introductory objectatione jugl. ND			ND	ND				ND	ND													
Hease.Incombine jpL ND e12.			ND	ND	ND		ND	ND	ND	ND											-	<1. 9
Internet[22-col]grame jupl. ND D																						<24
Iodomeshame µgL 2 Io																						
Inn ygL 2300 632 2300 8400 940 ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND		512.2		\$110	\$1.0
isophoren jujt ND			2360	2050	632	2530	1860	3220	2350	4590	958	3010	5460	9110	4530	3070	2030		4530		832	945
Isopergoname (Currene) jugl 2.1 ND																						<1.6
Lead µg1 ND																					-	-
Linhum µg0, ND 3.7 Image View 162 90.6 119 161 219 190 128 67.9 118 3.17 169 151 Magnese µg0, 1700 19000 270000 180000 220000 160000 271000 278000 278000 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 24200 243 240 2420 242 242 242 242 242 242 242 242 242 242 242 242 242 <					ND	ND	ND			ND				5.4	2.8		ND		2		<2.6	<2.6
mbp-Systeme µgL ND 3.7 Image stam µgL 15600 23:00 16000 12:000 28:000 28:000 28:000	Lithium										162	99.6	119	161	219	190	128	67.9	118		169	151
Marganese jupl 1710 1100 700 1760 1660 6590 1100 3740 2100 1920 2630 1340 1040 802 1140 156 40.0 Metroxy jupl ND <			ND	3.7				4.5			5.6	5.8	8.7	9.3	7.7	6.8	4.8	1.09	1.9	5.16	<2.15	3.9
Mercury µgl. ND	Magnesium		156000	237000	190000	118000	268000	252000	302000	165000	251000	148000	210000	272000	278000	268000	278000	242000	244000	284000	249000	263000
Interingencyclior jugl ND ND <td>Manganese</td> <td>µg/L</td> <td>1710</td> <td>1100</td> <td>1900</td> <td>3700</td> <td>1780</td> <td>1660</td> <td>3990</td> <td>1760</td> <td>1660</td> <td>6590</td> <td>11000</td> <td>3740</td> <td>2100</td> <td>1920</td> <td>2630</td> <td>1340</td> <td>1040</td> <td>802</td> <td>1140</td> <td>1650</td>	Manganese	µg/L	1710	1100	1900	3700	1780	1660	3990	1760	1660	6590	11000	3740	2100	1920	2630	1340	1040	802	1140	1650
Methy declate yg/L Image	Mercury	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.066	<0.066	< 0.066	<0.045	<0.045
Methy declate yg/L Image	Methoxychlor	µg/L	ND	ND	ND	ND	ND	ND	ND													
Methylene Choride yg/L ND ND 1.3 12.2 13.8 5 ND ND 6.6 0.943 6.2 0.479 6.215 0.08 Methyl-ent-burylether yg/L ND		µg/L									ND	2.5	ND	ND	ND	ND	ND	<1.29	<3.8	<1.29	<6.45	1
Interfly-lerb-buylether upgL ND 1 Participant Partici																						
Indejdenum jugit ND		µg/L																			-	
Naphthalene µg/L ND		µg/L																				
h-Butylbenzene µg/L ND				ND	ND		ND	ND	ND	ND												
In-Hexane µg/L N <t< td=""><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td>1.0</td><td></td><td></td><td></td></t<>						ND						•			0.0				1.0			
Nickel µg/L ND 28.6 32.2 81.3 44.6 39.8 107 24.2 39.5 55.9 86 80.5 74.8 82.5 124 63.7 95.7 41.1 50.7 56.4 Nitroberzene µg/L ND			ND	ND	<u> </u>	<u> </u>	<u> </u>	ND	ND		ND	ND	ND	ND	ND	ND	ND		<0.31	<0.157	<0.785	<0.32
Nitrate as N mg/L ND			ND	20.0	20.0	04.0	44.0	20.0	407	04.0	20.5	55.0	00	00.5	74.0	00.5	404		05.7	44.4	50.7	50.4
Nitrobenzene µg/L ND			ND	28.6	32.2	81.3	44.6	39.8	107	24.2	39.5	55.9	86	80.5	/4.8		124	63.7	95.7	41.1	50.7	56.4
Nitrogen, Ammonia mg/L 230 119 92.4 4.6 116 128 73.6 Image Image 194 Image Nitrogen, Kjeldahl, Total mg/L 63.3 64.8 97.3 11 134 125 83.1 Image Image 194 Image 206 206 <			ND	ND		NID	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	<54.2	<10.7	<107	<105	<17
Nitrogen, Kjeldahl, Total mg/L 63.3 64.8 97.3 11 134 125 83.1 v </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>UND</td> <td>UND</td> <td>UND</td> <td>UNI</td> <td>UN</td> <td>UN</td> <td>UND</td> <td>ND</td> <td>N04.3</td> <td>×10.7</td> <td></td> <td><100</td> <td>\$1.7</td>										UND	UND	UND	UNI	UN	UN	UND	ND	N04.3	×10.7		<100	\$1.7
Nitrogen, NO2 plus NO3 mg/L ND N																						\vdash
N-Nitrosodimethylamine µg/L ND N		0								0.069	ND	ND	ND	0.25	0.12		ND	<0.005	<0.079		<0.079	0.000
N-Nitroso-di-n-propylamine µg/L ND <									0.22		UNI	שאו		0.55	0.12			~0.090	~v.076	V.1Z		
N-Nitrosodiphenylamine µg/L ND N				ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		<57.2	<11.2	<112	1 1.0	
n-Propylbenzene μg/L ND ND ND ND ND ND 0.27 0.18 0.36 0.3 ND ND 0.117 <0.36 0.19 <0.497 <0.38 o-Xylene μg/L 1.5 1.9 3.4 3.6 3.1 4.6 5.2 4.2 3.4 2.6 1.12 1.4 3.21 1.18 2.37 PCB-1016 (Aroclor 1021) μg/L ND ND ND ND																				-	-	
o-Xylene µg/L 1.5 1.9 3.4 3.6 3.1 4.6 5.2 4.2 3.4 2.6 1.12 1.4 3.21 1.18 2.5 PCB-1016 (Aroclor 1016) µg/L ND 0.038 <0.038						140																
PCB-1016 (Aroclor 1016) µg/L ND																						
PCB-1221 (Aroclor 1221) µg/L ND					ND	ND	ND		ND	ND												< 0.038
PCB-1232 (Aroclor 1232) μg/L ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.030</td></th<>																						<0.030
PCB-1242 (Aroclor 1242) µg/L ND																						< 0.041
PCB-1248 (Aroclor 1248) μg/L ND ND <td></td> <td><0.041</td>																						<0.041
PCB-1254 (Aroclor 1254) μg/L ND																						<0.047
PCB-1260 (Aroclor 1260) µg/L ND																						< 0.039
																						<0.033
1PCB-1262 (Arocior 1262) I Ua/L ND ND ND ND ND ND ND N	PCB-1262 (Aroclor 1262)	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.035	<0.035	< 0.035	<0.046	<0.046

Parameter	Unit	1/26/17	4/26/17	7/20/17	10/24/17	1/10/18	4/26/18	7/31/18	10/30/18	1/15/19	4/17/19	7/24/19	10/29/19	1/28/20	4/23/20	7/10/20	10/21/20	1/28/21	4/5/21	7/26/21	10/25/21
PCB-1268 (Aroclor 1268)	ua/L	ND	-4,20,11 ND	ND	ND	ND	4/20/10	ND	10/00/10	1/10/10	4/11/10	1/24/10	10/20/10	1720/20	4/20/20	1110/20	10/21/20	1/20/21	4/0/21	1120121	10/20/21
Pentachlorophenol	µg/L µa/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	31.2	ND	ND	ND	ND	ND	<230	<45.5	<455	<443	<4.3
pH at 25 Degrees C	pg/∟ pH units	7.2	7.3	7.3	7.4	7.6	7.4	7.2	7.2	7.5	7.1	7.6	7.3	7.3	7.4	7.3	7.5	7.5	7.6	7.9	7.5
Phenanthrene	ua/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<48.1	<9.5	<95.3	<92.8	<1.7
Phenol	µg/L µa/L	ND	ND	ND	ND	ND	ND	170	23.5	19.7	86.1	114	303	345	219	64	<16.2	<3.2	<32.1	<31.2	<0.56
Phosphorus as PO4	mg/L	ND	ND	I I D	ND	ND	nib.	110	20.0	10.1	00.1	114	000	040	210	04	-10.2	-0.2	27.1	-01.2	-0.00
p-Isopropyltoluene	µg/L																0.707		<0.120	<0.600	┼───┦
Potassium	µg/L µa/L	445000	1300000	989000	160000	1390000	1380000	1170000	603000	1230000	866000	760000	895000	947000	889000	777000	581000	944000	1650000	904000	719000
Pyrene	ua/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<60.6	<12.0	<120	<117	<1.8
Pyridine	µg/L	ND	ND	I I D	ND	ND	nib.	ND	ND	THE	ND	ND	ND	IND.	I I D	ND	-00.0	-12.0	120	5117	
sec-Butvlbenzene	µg/L	ND	ND				ND	ND									<0.125		<0.125	<0.625	╂────┦
Selenium	µg/L µa/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<5.8	7.2	<5.8	<5.9	<5.9
Silica	µg/L µa/L	48200	51300	46000	56700	54300	49000	60200	ND	ND	ND	ND	ND	ND	ND	ND	~ 0.0	1.2	63300	73900	77800
Silver	µg/L µa/L	40200 ND	ND	40000 ND	ND	ND	+3000 ND	ND											<0.38	<8.2	<3.3
Sodium	µg/L µa/L	345000	776000	565000	588000	774000	825000	1130000	429000	814000	495000	635000	652000	670000	689000	750000	745000	967000	940000	755000	769000
Strontium	µg/L µa/L	343000	110000	303000	300000	114000	020000	1130000	423000	014000	433000	000000	002000	070000	003000	730000	743000	307000	2200	1480	2080
Styrene	µg/L µa/L	ND	ND				ND	ND									<0.118		<0.118	1400	2000
Sulfate	ma/L	209	201	251	520	555	632	50.7									-0.110		182		├ ───┦
tert-Butvlbenzene	ua/L	ND	ND	201	020	000	ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.127	<0.26	0.199	<0.635	<0.34
Tetrachloroethene	µg/L	ND	ND				ND	ND		ND	ND	0.35	ND	ND	ND	ND	<0.300	0.53	< 0.300	<1.50	<0.50
Tetrahvdrofuran	ua/L	190	160				309	ND		426	265	829	1150	809	1030	919	132	99	322	471	732
Thallium	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	6	ND	5.7	6.9	ND	ND	ND	<5.5	<5.5	<5.5	4.6	<4.3
Tin	µg/L									4.2	ND	5.5	ND	3.6	5.8	4.8	<3.2	3.6	<3.2	<2.3	5.1
Titanium	µg/L									160	58.9	57.3	137	152	141	77.9	42	74.6	178	114	94.9
Toluene	µg/L	5	5.3				7.9	ND		9	22.5	57.3	53.2	64.1	28.7	52.9	2.36	1.2	9.24	4.14	5.1
Total dissolved solids	mg/L	3070	4900	4460	2940	6670	4400	3400		Ű	22.0	01.0	00.2	01.1	20.1	02.0	2.00		0.21		
Total phosphorus	mg/L	1.9	5.8	4.4	14.1	4.5	16.1	4.2											8.9		<u>├</u> ───┦
Total Suspended Solids	mg/L	19	12	14	10	ND	ND	18	13	ND	11	26	29	19	8	19	12	<5.0	18	7.1	<5.0
Toxaphene	µg/L	ND	ND	ND	ND	ND	ND	ND							-						
trans-1,2-Dichloroethene	µg/L	ND	ND				ND	ND		0.34	0.32	0.95	0.96	ND	ND	0.48	<0.149	< 0.38	<0.149	<0.745	< 0.37
trans-1,3-Dichloropropene	µg/L	ND	ND				ND	ND		ND	ND	ND	ND	ND	ND	ND	<0.118	< 0.63	<0.118	< 0.590	<0.26
trans-1.4-Dichloro-2-butene	ua/L									ND	ND	ND	ND	ND	ND	ND	<0.467	<3.3	<0.467	<2.34	<1.6
Trichloroethene	µg/L	ND	0.29				0.3	ND		0.15	0.4	0.66	1.1	ND	ND	ND	<0.190	< 0.30	0.202	< 0.950	<0.17
Trichlorofluoromethane	µg/L	1	ND				ND	ND		ND	0.74	ND	1.1	0.63	ND	ND	<0.160	< 0.25	< 0.160	<0.800	<0.60
Uranium	µg/L									ND	0.73	0.68	0.62	0.22	0.74	0.22	0.48	0.23	< 0.14	<1.1	<0.44
Vinyl acetate	µg/L													=			<0.692				<u> </u>
Vinyl chloride	µg/L	0.28	0.25				0.28	ND		ND	0.38	ND	ND	ND	ND	0.87	< 0.234	0.75	< 0.234	<1.17	0.68
Xylene (Total)	µg/L	ND	5.7				7.9	ND		9.3	8.9	13.3	14.5	11.9	10.2	7.4	2.21	3.3	8.37	1.18	6.4
Zinc	ua/L	41.7	ND	ND	ND	ND	ND	39.6	8.6	38.9	41.2	95.8	87	28.8	20.5	13.4	119	<6.8	<6.8	4.9	<3.1

Attachment 7

SECTION 21 WATER SUPPLY WELL NETWORK: WELL LOGS

540281

CountyScottQuadShakopeeQuad ID105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	10/06/1994
Update Date	12/31/2020
Received Date	

Well Name Township	Range Dir Se			Well Depth	Depth Completed Date Well Completed (00.0) 0.4/02/1004
BRYAN ROCK 115	23 W 21	CAAD topographic map		400 ft. Drill Method	400 ft. 04/22/1994
Elevation 800 ft. Elev. Met	hod 7.5 minute	topographic map	(+/- 5 leet)	_	Non-specified Rotary Drill Fluid Bentonite
Address				Use indust	
C/W 13580 JOHNS	ON MEMORIAL I	OR SHAKOPE	E MN	Well Hydrofra	
				Casing Type	
Stratigraphy Information Geological Material	From To (ft.) Color	Hardness	Drive Shoe?	
GRAVEL	0 21	BROWN	HARD	Casing Diamo	eterWeightHole Diameter190ft.lbs./ft.17in. To21ft.
LIMESTONE	21 65	RED	HARD	12 in. To	21 ft. lbs./ft. 12 in. To 190 ft.
LIMESTONE	65 90	RED	HARD	12 11.10	8 in. To 400 ft.
SANDSTONE	90 180	BROWN	SOFT		
SANDSTONE	180 187	GREEN	MEDIUM	0 11	
SANDSTONE	187 248	GREEN	MEDIUM	Open Hole	From 190 ft. To 400 ft. Type Make
SANDSTONE	248 362	GREEN	MEDIUM	Screen?	Type Make
SANDSTONE	362 400	GREEN	MEDIUM		
				Static Water	r Level
				40 ft.	land surface Measure 04/22/1994
				Pumping Le 40 ft.	wel (below land surface) hrs. Pumping at 0 g.p.m.
				Wellhead Co	ompletion r manufacturer WHITEWATER Model
				· ·	Protection 12 in. above grade
					le (Environmental Wells and Borings ONLY)
				Grouting Int	formation Well Grouted? X Yes No Not Specified
				Material	Amount From To
					0 8 ft. 190 ft.
				Nearest Kno	own Source of Contamination
					North Direction Landfill Type ected upon completion? Yes No
				Pump	Not Installed Date Installed 04/08/1994
				Manufacture	ALKWOTOK
				Model Numb	
				Abandoned	pp pipe <u>147</u> ft Capacity <u>300</u> g.p. Typ <u>Submersible</u>
					y have any not in use and not sealed well(s)?
				Variance Was a varian	ce granted from the MDH for this well? Yes No
				Miscellaneo	
				First Bedrock	I I I I I I I I I I I I I I I I I I I
				Last Strat	Wonewoc Sandstone Depth to Bedrock 21 ft
Remarks				Located by	Minnesota Geological Survey
GAMMA LOGGED 3-30-1994.				System	Digitized scale 1.24,000 of larger (Digitizing Table)
SEALED 10-14-2020 BY 1445				-	UTM - NAD83, Zone 15, Meters X 453125 Y 4955704 ber Verification Information from Input Date 03/10/1995
				Angled Drill	
				Well Contra	actor
				Bohn Well	· · · · · · · · · · · · · · · · · · ·
				Licensee E	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index	Report		540)281	Printed on 09/15/2021 HE-01205-15

272749

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 05/22/2013

 Update Date
 03/03/2017

 Received Date

Well Name	Towns 115	hip Range	Dir Section W 21	Subsection AADBCB	Well Depth 197 ft.	h Depth Completed Date Well Completed 197 ft.	
Elevation	818 ft. Elev	. Method	7.5 minute topogr	aphic map (+/- 5 feet)	Drill Method	d Drill Fluid	
Address					Use dome	nestic Status Se	ealed
Well	13162 JO	OHNSON MEN	MORIAL HY SH	IAKOPEE MN 55379	Well Hydrofr	fractured? Yes No From To	
					Casing Type		
Stratigraph	y Information	1			Drive Shoe?		
Geological I		From		olor Hardness	Casing Diam	meter Weight	
GLACIAL I		0	166		4.5 in. To	187 ft. lbs./ft.	
PRAIRIE D		166	170 197				
JUKDAN S.	ANDSTONE	170	197				
					Open Hole	107 10 10 10 10	
					Screen?	Type Make	
					Static Water	er Level	
					96 ft.	land surface Measure 05/22/2013	
					Pumping Le	Level (below land surface)	
					Wellhead C	Completion	
						ter manufacturer Model	
						g Protection 12 in. above grade	
						ade (Environmental Wells and Borings ONLY)	a
					Grouting In	Information Well Grouted? Yes No X Not Specif	fied
						nown Source of Contamination feet Direction	Туре
					Well disinfe	ifected upon completion? Yes No	
					Pump Manufacture	Not Installed Date Installed	
					Model Numb		
					Length of dro		
					Abandoned Does propert	d brty have any not in use and not sealed well(s)? Yes	No
					Variance] 110
						ance granted from the MDH for this well? Yes	No
					Miscellaneo	cous	
					First Bedrock		
					Last Strat	Jordan Sandstone Depth to Bedrock 170	ft
Remarks					Located by Locate Metho	Winnesour Georogicul Survey	
	LOGGED 5-22				System	UTM - NAD83, Zone 15, Meters X 453778 Y 495640:	5
	IN A WELL PIT				Unique Num	mber Verification Information from Input Date 05/22/2	2013
	ED BY BOHN 5 31-2013 BY 144).		Angled Dril	ill Hole	
					Well Contra		
					Minnesota Licensee F	ta Geological Survey MGS Business Lic. or Reg. No. Name of Driller	r
					Licensee F	Business Lic. or Reg. No. Name of Driller	1
				27	2749		
Minneso	ota Well In	dex Repor	t		/	Printed on 09	0/15/2021 01205-15
						ne-u	51205-15

796915

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	09/18/2013
Update Date	02/05/2014
Received Date	11/27/2013

Well NameTownshipRangeDir SectionSubsectionDEM CON11523W21AADBBC	250 ft.	250 ft. 09/07/2013
Elevation 818 ft. Elev. Method 7.5 minute topographic map (+/		
Address	Use con	mercial Status Active
C/W 13161 DEM CON DR SHAKOPEE MN 55379	Well Hydro	
	Casing Ty	
Stratigraphy Information Geological Material From To (ft.) Color H	ardness Casing Dia	
-	OFT Casing Dia Casing Dia	5
	IEDIUM	17 in. To 250 ft.
SANDROCK 172 250 BROWN M	IEDIUM	
	Open Hole	From 183 ft. To 250 ft. Type Make
	Screen?	Туре маке
	Static Wat 80 ft.	er Level land surface Measure 09/07/2013
	1 8	Level (below land surface)
	160 ft.	12 hrs. Pumping at 1000 g.p.m.
		Completion ter manufacturer MONITOR Model
		g Protection I 12 in. above grade
		ade (Environmental Wells and Borings ONLY)
	_	information Well Grouted? X Yes No Not Specified
	Material neat ceme	Amount From To nt 9.5 Cubic yards ft. 183 ft.
	<u>52</u>	Mown Source of Contamination feet West Direction Septic tank/drain field Type fected upon completion? X Yes No
	Pump Manufactu Model Nur Length of	nber <u>8M754</u> HP <u>75</u> Volt <u>460</u>
	Abandone	
	Variance	rty have any not in use and not sealed well(s)? Yes X No
	Miscellan	
	First Bedro Last Strat Located by	Jordan Sandstone Depth to Bedrock 168 ft
Remarks	Locate Me	initiation of field
DRILLING FLUID: BENTONITE AND FOAM. PUMP MANUFACTURER: BERKELY PUMP END.	System Unique Nu	UTM - NAD83, Zone 15, Meters X 453765 Y 4956426 mber Verification Info/GPS from data Input Date 09/18/2013
	Angled D	ill Hole
		ractor ell Drilling Co., Inc. 1445 FRITZ, R. Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	796915	Printed on 09/15/2021 HE-01205-15

809771

County Scott Quad Shakopee Quad ID 105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

 Update Date
 02/25/2020

 Received Date
 07/00/2015

Well Name Township Range Dir Section Subsection		
DEM CON 115 23 W 21 AACABI		219 ft. 06/19/2015
Elevation 815 ft. Elev. Method Calc from NED (Natl.Elev.Data	uset-30m) Drill Mo	thod Non-specified Rotary Drill Fluid Bentonite
Address	Use I	ublic supply/non-commtransient Status Active
Well 13142 DEM CON DR SHAKOPEE MN 55379	Well Hy	lrofractured? Yes No X From To
	Casing	
Stratigraphy Information Geological Material From To (ft.) Color H	ardness Casing	
-	Casing	DiameterWeightHole DiameterTo214ft.lbs./ft.12.in. To143ft.
	IEDIUM 4 in. IEDIUM 8 in.	
	ARD	4 in. To 219 ft.
	ARD	
	IEDIUM	
SANDSTONE 200 219 YEL/GRN M	IEDIUM Open H	
	Screen?	Type Make
	Static V 75	Water Levelft.land surfaceMeasure06/19/2015
	Pumpin	g Level (below land surface)
	1	t. hrs. Pumping at 30 g.p.m.
	Wellhe	ad Completion
		dapter manufacturer MONITOR Model
		sing Protection 12 in. above grade -grade (Environmental Wells and Borings ONLY)
	Groutin	g Information Well Grouted? X Yes No Not Specified
	Materi	l Amount From To
	neat ce	
	benton	
	cutting	
		Known Source of Contamination
	<u>12</u> Well d	feet South Direction Other Type isinfected upon completion? X Yes No
	Pump	Not Installed Date Installed <u>06/19/2015</u>
		cturer's name GOULDS
		Number HP 3 Volt 230 of drop pipe 126 ft Capacity 33 g.p. Typ Submersible
	Abando	
		operty have any not in use and not sealed well(s)? Yes X No
	Varian	
		variance granted from the MDH for this well? Yes X No
	Miscell	aneous
	First Be	drock Aquifer
	Last Str	
Remarks	Located	
WELL USE: DOMESTIC, NONCOMMUNITY PWS.	Locate	GIB BIT OIL (averaged) (15 meters)
NEAREST KNOWN SOURCE OF CONTAMINATION: POWER.	Systen	
DRILLERS: LEE WECKMAN & MARTY RADEMACHER.		Number Verification Info/GPS from data Input Date 09/18/2015 Drill Hole
PREVIOUS USE CODE: DO (DOMESTIC) 2/25/2020.	Aligieu	
	Well C	ontractor
		Well Drilling Co., Inc. 1445 SEE REMARKS
		see Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	809771	Printed on 09/15/2021
		HE-01205-15

405973

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/14/2014

 Received Date

Well NameTownshipRangeDir SectionSubsectionHALLORAN,11523W21AAACDA	Well Deptl 174 ft.	Depth CompletedDate Well Completed174 ft.07/27/1984
Elevation 822 ft. Elev. Method 7.5 minute topographic map (+/- 5		
Address		
	Use dom	
C/W 13122 JOHNSON MEMORIAL DR SHAKOPEE MY	N 55379 Well Hydrol	ractured? Yes No From To
	Casing Ty	
Stratigraphy Information	Drive Shoe	? Yes No Above/Below
	dness Casing Dia	5
SAND & GRAVEL 0 17 BROWN SOL	4 11.10	169 ft. lbs./ft.
ROCKS, GRAVEL & 17 42 BROWN HA		
CLAY & ROCKS 42 87 BROWN SO ROCKS & CLAY 87 139 BROWN HA		
SAND (FINE) 139 155 BROWN SOL		
SAND (FINE) 139 135 BROWN SOI SAND & GRAVEL 155 174 BROWN SOI	Open Hole	From ft. To ft.
	Screen? Diameter	Type stainless Make JOHNSON Slot/Gauze Length Set 12 5 ft. 169 ft. 174 ft.
	2 in.	12 5 ft. 169 ft. 174 ft.
	Static Wat	
	120 ft.	land surface Measure 07/27/1984
	Pumping I	evel (below land surface)
	ft.	hrs. Pumping at 35 g.p.m.
	Wellhead	Completion
		er manufacturer Model
		Protection 12 in. above grade
		de (Environmental Wells and Borings ONLY)
	Grouting I	
	Material	Amount From To
	bentonite	ft. ft.
	Nearest K	own Source of Contamination
		feet Direction Type
	Well disin	Sected upon completion? X Yes No
	Pump	Not Installed Date Installed
	Manufactur	HONLER
	Model Num Length of d	
	Abandone	
		ty have any not in use and not sealed well(s)? Yes No
	Variance	
	Was a varia	nce granted from the MDH for this well? Yes No
	Miscellane	DUS
	First Bedro	Qual Surred
	Last Strat	sand +larger-brown Depth to Bedrock ft
Remarks	Located by	Minnesota Geological Survey
	Locate Met System	od Digitization (Screen) - Map (1:24,000) (15 meters or UTM - NAD83, Zone 15, Meters X 453836 Y 4956499
		ber Verification Address verification Input Date 07/26/2005
	Angled Dr	
	Well Cont	actor
	Leuthner	Well Co. 10125 SCHMIEG, K.
	Licensee	Business Lic. or Reg. No. Name of Driller
1	405052	1
Minnesota Well Index Report	405973	Printed on 09/15/2021
		HE-01205-15

610403

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	03/22/1999
Update Date	03/10/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectionANCHOR BLOCK 11523W21ADCBAD	300 ft.	300 ft. 01/06/1998
Elevation 803 ft. Elev. Method 7.5 minute topographic map (+/-		Construction of the second sec
Address	Use pub	ic supply/non-commtransient Status Active
Contact 13450 169 HY SHAKOPEE MN 55379	Well Hydro	ractured? Yes No From To
Well 13450 JOHNSON MEMORIAL DR SHAKOPEE M	8,2	
Stratigraphy Information Geological Material From To (ft.) Color Ho	Drive Sho	
	Cashig Dia	
Geological Material From To (ft.) Color Hardness Casing Diameter Weight Hole Diameter GRA VEL BOULDERS 0 40 BROWN HARD 4 in. To 175 ft. 11 lbs./ft. 10. in. To 128 GRA VEL 40 128 BROWN MEDIUM 8 in. To 128 lbs./ft. 10. in. To 100. in. To 128 SANDSTONE 166 300 WHITE MEDIUM 8 in. To 128 ft. To 300 ft. 300 ft. 5 5 5 7 300 ft. 5 5 5 7 300 ft. 5 5 6 10.06/1998 9 9 9 9 9 6 10.06/1998 9 10.06/1998 9 10.06/1998 9 10.06/1998 9 10.06/1998 10.06/1998 9 10.06/1998 <td< td=""></td<>		
	0	
SANDSTONE 166 300 WHITE MI	EDIUM	
	0 U-1-	
	78 ft.	land surface Measure 01/06/1998
	Pumping 1	evel (below land surface)
	Wallboad	Completion
		•
		g Protection 12 in. above grade
	_	
	28 Well disir	feet South Direction Septic tank/drain field Type fected upon completion? X Yes No
	Manufactu Model Nur	er's name GRUNDFOS Iber <u>75S - 75 -</u> HP <u>7.5</u> Volt <u>440</u>
	Abandone	
		rty have any not in use and not sealed well(s)? Yes X No
	Variance Was a vari	nce granted from the MDH for this well? Yes X No
	Miscellan	
	First Bedro Last Strat	
	Located by	Jordan Sandstone Depth to Bedrock 128 ft Minnesota Department of Health
Remarks	Locate Me	-
	System	UTM - NAD83, Zone 15, Meters X 453623 Y 4956032
		nber Verification Input Date 03/24/1999
	Angled D	ili Hole
	Well Cont	
	Gary's V	
	Licensee	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	610403	Printed on 09/15/2021 HE-01205-15

759599

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	12/05/2008
Update Date	03/10/2014
Received Date	04/09/2009

Well NameTownshipRangeANCHOR BLOCK 11523	Dir Section Subsecti W 21 DBAAA		Well Depth 210 ft.	Depth Completed 210 ft.	Date Well Comp 11/26/2008	oleted
Elevation 805 ft. Elev. Method 7.	5 minute topographic map (+	+/- 5 feet)	Drill Method	Non-specified Rotary	Drill Fluid Bentonite	
Address			Use public	supply/non-commtransient	Sta	tus Active
Well 13450 169 HY SHAKOP	EE MN 55379		Well Hydrofra	ctured? Yes No	From	То
			Casing Type		Joint Welded	
Stratigraphy Information			Drive Shoe?	Yes X No	Above/Below	
Geological Material From	<pre></pre>	Hardness	Casing Diamo	8		iameter
GRAVEL/ROCKS 0		MEDIUM	6 in. To	120 ft. lbs./ft.	13 in.	
GRAVEL/SAND 30 LIMESTONE 42		SOFT HARD			6 in.	. To 210 ft.
LIMESTONE 42 LIMESTONE 63		HARD				
SANDSTONE 105		SOFT				
			Open Hole Screen?	From 120 ft. Type	To 210 ft. Make	
			Static Water 82 ft.	Level land surface	Measure 11/26/	/2008
			Pumping Le	vel (below land surface)		
			86 ft.	2 hrs. Pumping at	125 g.p.m.	
			Wellhead Co			
				manufacturer BAKER	Model	
				Protection [X] 12 in. e (Environmental Wells and Bor	above grade	
			Grouting Int		-	Not Specified
			Material neat cement	Amo 95	Sacks	To ft. 120 ft.
			50 fe Well disinfe		X Yes No	<u>lrain field</u> Type
			Pump Manufacturer Model Numb Length of dro	's name GRUNDFOS er <u>75S75-12</u> HP <u>7</u>	nte Installed <u>12/18/20</u> 2.5 Volt <u>46</u> 75 g.p. Typ <u>Su</u>	
			Abandoned	<u>100</u> n orpanij	<u>15</u> 6.p. 19p <u>50</u>	iomersiole
			Variance	v have any not in use and not sealed w		Yes X No
				ce granted from the MDH for this wel	II? Yes	X No
Remarks			Miscellaneo First Bedrock Last Strat Located by Locate Metho	Prairie Du Chien Group Jordan Sandstone Minnesota Department o		42 ft
			System Unique Numb	UTM - NAD83, Zone 15, Meters er Verification Info/GPS f	X 453510	Y 4955832 12/05/2008
			Well Contra EH Renner Licensee E	and Sons, Inc.		AUGHT, V e of Driller
Minnesota Well Index Report		759	599		Р	rinted on 09/15/2021 HE-01205-15

209939

County Scott

Quad ID 105D

Shakopee

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 10/27/2017

 Received Date

Well NameTownshipRangeDir SectionSubsectionLANO11523W21ADABAE	3 280 ft.		Depth Completed 280 ft.	Date We 06/13/19	ell Completed	
Elevation 820 ft. Elev. Method 7.5 minute topographic map (+/				Drill Fluid		<u> </u>
Address		mmercial			Status	Sealed
C/W 3021 133RD ST W SHAKOPEE MN 55379		ofractured?	Yes No	Joint	То	
Stratigraphy Information Geological Material From To (ft.) Color H	Casing T Drive Sh lardness Casing D	oe? Yes	Casing No	Joint Above/Below	0 ft.	
SAND & GRAVEL 0 230	4 in. 7		lbs./ft.			
	IEDIUM					
ROCK 240 280 VARIED H	IARD					
	Open Ho Screen?	e From	231 ft. Type	To 280 Make	ft.	
	Static W	a ter Level t. land sur	face	Measure	06/13/1977	
		Level (below l		Weasure	00/15/17/1	
	- · · ·	1 Com 1 4	·			
		d Completion	r	M	odel	
		ing Protection		a. above grade		
		Information	Well Grouted?	rings ONLY)	Not S	pecified
		Known Source feet infected upon co	of Contamination Direction ompletion?	Yes	No	Туре
	Pump Manufac	turer's name	t Installed D	ate Installed		
	Model N Length o	umber f drop pipe	HP <u>f</u> t Capacity	0 Vol g.p.	t Гур	
	Abandor				_	—
	Varianc)	t in use and not sealed		Yes	No
	Was a va Miscella		m the MDH for this we	-11?	Yes	No
	First Bed Last Stra Located	St.Lawr	rence Formation rence-Tunnel City nnesota Geological S	Depth to Bec	St.Lawrence- lrock 230	ft
Remarks 324-B-8 ALLIS-CHALMERS DEALERSHIP	Locate M System	ethod Dig	itized - scale 1:24,00 AD83, Zone 15, Meters	00 or larger (Digiti		6235
SEALED 08-30-2017 BY 1445	Unique N	umber Verificatio	n			/09/1995
	Angled	Drill Hole				
	Well Co			27259		
		ated Well Co. ee Business	Lic.	or Reg. No.	Name of D	riller
Minnesota Well Index Report	209939					on 09/15/2021 HE-01205-15

551318

CountyScottMINQuadShakopeeWELQuad ID105DM

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	04/11/1995
Update Date	08/18/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectionC.H.11523W 21DDABAB	-	h Depth Completed Date Well Completed 220 ft. 10/24/1994
Elevation 830 ft. Elev. Method 7.5 minute topographic map (+/-	- 5 feet) Drill Meth	d Non-specified Rotary Drill Fluid Bentonite
Address	Use do	
C/W 13731 JOHNSON MEMORIAL DR SHAKOPEE N	AN Well Hydr	fractured? Yes No From To
	Casing Ty	
tratigraphy Information	Drive Sho	
· · ·	ardness Casing Dia	
LAY, GRAVEL 0 5 YEL/BRN	4 in. Te	204 ft. 11 lbs./ft. 12. in. To 160 ft.
RAVEL CLAY 5 25 BRN/GRN	8 in. Te	160 ft. lbs./ft. 7.8 in. To 204 ft.
AND GRAVEL 25 105 BROWN		
LAY 105 135 GRAY		
HALE 135 158 GRN/GRY	Open Hol	From 204 ft. To 220 ft.
HALE ROCK 158 160 VARIED	Screen?	From 204 ft. To 220 ft. Type Make
IMESTONE SHALE 160 180 RED/BRN		
ANDSTONE, ROCK 180 220 VARIED SO	OFT	
	Static Wa	er Level
	80 ft	land surface Measure 10/24/1994
	Pumping	Level (below land surface)
	80 ft.	hrs. Pumping at 50 g.p.m.
	Wellhead	Completion
		ter manufacturer WHITEWATER Model S44-5.5
		g Protection 12 in. above grade ade (Environmental Wells and Borings ONLY)
		Information Well Grouted? X Yes No Not Specified
	Material	Amount From To
	neat cem	nt 10 ft. 204 ft.
	10	nown Source of Contamination feet North Direction offected upon completion? Yes No
		Not Installed Date Installed <u>11/00/1994</u> rer's name FLINT & WALLING
	Model Nu Length of	
	Abandon	
		erty have any not in use and not sealed well(s)? Yes X No
	Variance	
	Was a var Miscellar	ance granted from the MDH for this well? Yes No
	First Bedr	
	Last Strat	Depth to Bedrock 135 ft
Domoniza	Located b	Timileson Ceological Sulvey
Remarks	Locate Me	Digitization (Sereen) - Map (1.24,000) (15 meters of
	System	UTM - NAD83, Zone 15, Meters X 453798 Y 4955461 mber Verification Information from Input Date 07/13/2005
	Angled D	III 11010
	Well Con	
	Bohn W	ell Co. 70350 VON BANK, B Business Lic. or Reg. No. Name of Driller
		Dusiness Lic. of Keg. No. IName of Driller
Minnesota Well Index Report	551318	Printed on 09/15/20 HE-01205-

836415

County Scott

Quad ID 90A

Quad

Jordan East

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	08/30/2019
Update Date	06/28/2021
Received Date	06/27/2019

	Township	Range	Dir Secti			Well Depth	Depth Comp		Well Complete	d
MUMOFF,	115	23	W 21	DDAD.	AC	233 ft.	233 ft.		7/2019	
Elevation 869.4	Elev. Me	thod	LiDAR 1m D	EM (MNDNR)		Drill Method	Non-specified Rotary	Drill Fluid A	Additive (+ Bento	nite)
Address						Use dome:	stic		Status	Active
Well 1	3745 JOHNS	SON MEN	IORIAL DR	SHAKOPE	E MN 55379	Well Hydrofra	actured? Yes	No X From	То	
						Casing Type		Joint	Welded	
Stratigraphy Infor Geological Material		From	To (ft.)	Color	Hardness	Drive Shoe?		Above/Belo		
CLAY SAND		0	10 (n.) 27	BROWN	Taruness	Casing Diame	eter Weight 219 ft. lbs./ft.		Hole Diame 8 in. To	ter 219 ft.
SAND GRAVEL/R	OCK	27	173	BROWN		4 111. 10	21) It. 103./It.		3.8 in. To	219 ft. 233 ft.
LIMESTONE		173	195	TAN/RED						
SANDSSTONE		195	233	WHITE						
						Open Hole	From ft.	То	ft.	
						_			e JOHNSON	
						Diameter	Slot/Gauze Length	Set		
						3 in.	16	ft. 217 ft	. ft.	
						Static Water	·Level			
						131 ft.	land surface	Measure	06/17/2019)
						Dumping T	val (halam landfram)			
						ft.	vel (below land surface) hrs. Pumping at	t 25	g.p.m.	
						g.p.m.				
						Wellhead Control Pitless adapte	•	ITOR	Model	
						Casing	Protection	12 in. above grade	Model	
							e (Environmental Wells an			~
		Grouting In	formation Well Grout			Specified				
						Material neat cement		Amount 30 Sacks	From 7 10 ft. 2	Го 219 ft.
						liour comone		Di Duciis	10 10 1	
							own Source of Contamina	ition		
						Well disinfe	West Direction ected upon completion? Image: Completion	X Yes		<u>Other</u> Type
						Pump Manufacture	Not Installed	Date Installed	06/17/2019	
						Model Numb	FLINT & WI	-	Volt <u>220</u>	
						Length of dro		acity <u>10</u> g.p.	Typ <u>Subme</u>	<u>rsible</u>
						Abandoned				
							y have any not in use and not s	ealed well(s)?	Yes	s 🗴 No
						Variance Was a varian	ce granted from the MDH for t	his well?	Yes	X No
						Miscellaneo				
						First Bedrock		Aquif	er	
						Last Strat		-	Bedrock	ft
Remarks						Located by Locate Metho	Minnesota Depart			
DRILLERS: WECKM	IAN, L. & RAI	DEMACHE	ER, M.			System	d GPS SA Off (aver- UTM - NAD83, Zone 15, M	•	53882 Y 49	955314
						5		GPS from data		8/30/2019
						Angled Dril	l Hole			
						Well Contra				
						Bohn Well Licensee E	Drilling Co., Inc.	1445 Lic. or Reg. No.	SEE REN Name of 1	
							4511(-55	Lie. of Reg. 100.		Dillici
		.			83	6415			Duinter	l on 00/15/2021
Minnesota W	ell Index	Kepor	t						Printec	l on 09/15/2021 HE-01205-15

Well Log Report - 00248000

Minnesota Unique Well No. 248000	Quad J Quad ID 9	cott ordan East 0A			MINNESOTA DEPARTM HEALTH WELL AN BORING REC Minnesota Statutes Cha	D CORD	Entry Date Update Date Received Date	02/23/1989 02/14/2014
Well Name MN RENAISSANCE FES Township Range Dir Section Subse 115 23 W 21 CCDA	ctions Elevation	Method	775 ft. 7.5 minute topographic map (+/- 5 fee	et)	Well Depth 200 ft. Drilling Method	Depth Compl 200 ft.	leted Da	te Well Completed 06/09/1977
Well Address 3630 145TH ST W SHAKOPEE MN 55379					Drilling Fluid Use Commercial	Well Hydrofra From Ft. to Ft.		s No
Geological Material DIRT OVERBURDEN ROCK SHAKOPEE SANDSTONE & BROKEN RO ROCK			50 1		Casing Type Joint No No Above/Below 0 ft. Casing Diameter	Information Dri Weight	Hole Di	es ameter 20 160 ft.
	11100							Get Between
					Static Water Level			
					60 ft. from Land surface PUMPING LEVEL (below la ft. after hrs. pumping	and surface)	06/09/1977	
					Well Head Completion Pitless adapter manufacture Casing Protection At-grade (Environmer	12 in. abov	•	
NO) REMARKS				Grouting Information W	ell Grouted?	Yes No	Not Specified
Geological Šurvey (Unique Number Verification: N/A I		/1996)0 or larger		Nearest Known Source o		1	
Meters	(: 452689 Y : 4	355179			Well disinfected upon co	ompletion? ed Date Installe Model number	HP 0 Volts	No
				ļ	Abandoned Wells Does			ot sealed well(s)?
First Bedrock Prairie Du Chien Gr Last Strat St.Lawrence Formation	oup	Aquifer St.La Depth to Bedr			Variance Was a variance Well Contractor Certifica <u>Associated Well Co</u> License Business Nar	ition	e MDH for this well' <u>27259</u> Lic. Or Reg. No.	Yes No
County Well Index	Online F	Report			248000			Printed 3/16/2015 HE-01205-07

115-23-21 codade elev. 775-10 501243 115-23-28 248000 Pormit # 34,2-B-8A new hunde **JOB TICKET** Nº 1043 ASSOCIATED WELL DRILLT'RS 13160 Pioneer Trail Eden Pralitie, Minnesota 5534. Permit No: Phone 941-1530 Tel. N 10, whir 10, 2000 For __ ill Unin LICUR! Address _2 O. Job At DATE WORK REQUESTED COSINS DESCRIPTION OF WORK DONE DATE QUUN Soll OPDC DUMT ന JON SNDS QZTE -155' r ጽ CSTL DLAT SHLE $\mathcal{A} \cap \mathcal{O}$ NU Fr CSTL-CSTL . 7 75 155 Customer Acknowledgment DATE EMPLOYES HOURS EMPLOYEE DATE HOURS . . ť

SECTION 28 WATER SUPPLY WELL NETWORK: WELL LOGS

211864

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/12/1996

 Received Date

Well NameTownshipRangeDir SectionSubsectionLINDSTROM,11523W28DDDDBC	-	Depth CompletedDate Well Completed127 ft.09/09/1974
Elevation 766 ft. Elev. Method 7.5 minute topographic map (+/-	5 feet) Drill Method	Drill Fluid
Address	Use dome	estic Status Active
C/W 3036 150TH ST W SHAKOPEE MN 55379	Well Hydrofr	ractured? Yes No From To
	Casing Typ	
Stratigraphy Information	Drive Shoe?	? Yes No Above/Below 0 ft.
	ardness Casing Diam	-
CLAY 0 10 SAND 10 20	5 in. To	76 ft. lbs./ft.
SAND 10 20 CLAY 20 58		
	ARD	
SANDROCK 63 127		
	Open Hole Screen?	From 76 ft. To 127 ft. Type Make
	Static Wate	r Level
	Pumping Lo	evel (below land surface)
	Wellhead C Pitless adapte	Completion er manufacturer Model
		Protection 12 in. above grade de (Environmental Wells and Borings ONLY)
	Grouting In	formation Well Grouted? Yes No X Not Specified
	f Well disinf	own Source of Contamination feet Direction Type Sected upon completion? Yes
	Pump Manufacture Model Num	
	Length of dr	rop pipe ft Capacity g.p. Typ
	Abandoned	
	Variance	ty have any not in use and not sealed well(s)?
	Miscellaneo	
	First Bedrock Last Strat Located by	k Jordan Sandstone Aquifer Jordan Jordan Sandstone Depth to Bedrock 58 ft Minnesota Geological Survey
Remarks 237-B-8	Locate Meth System	odDigitized - scale 1:24,000 or larger (Digitizing Table)UTM - NAD83, Zone 15, MetersX453813Y4953563
		ber Verification Input Date 01/01/1990
	Angled Dri	и ноје
	Well Contr Hartmann	Well Co. 40174
	Licensee 1	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	211864	Printed on 09/15/2021 HE-01205-15

709026

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Entry Date	12/17/2004
Update Date	02/06/2012
Received Date	01/18/2005

Well NameTownshipDOUCETTE,115	RangeDir Se23W28			Well Depth 139 ft.	Depth Completed 139 ft.	Date Well Completed 10/22/2004	
		topographic map		Drill Method			
Elevation 790 ft. Elev. Me Address			(+/- 5 icci)			Drill Fluid Water	
				Use dome:		Status Acti	lve
C/W 14331 JOHNS	SON MEMORIAL	DR SHAKOPE	E MN	Well Hydrofra	ctured? Yes No	X From To	
				Casing Type		Joint Threaded	
Stratigraphy Information Geological Material	From To (ft.) Color	Hardness	Drive Shoe?		Above/Below	
DIRT	0 8	BLACK	MEDIUM	Casing Diamo	0	Hole Diameter	£4
CLAY & ROCKS	8 41	BROWN	MEDIUM	4 in. To	134 ft. 11 lbs./ft.	10 in. To 134 4 in. To 139	
CLAY & GRAVEL	41 90	GRAY	MEDIUM			4 11.10 137	11.
CLAY	90 104	GRAY	HARD				
CLAY & GRAVEL	104 115	GRAY	SOFT				
LIMEROCK	115 118	BROWN	HARD	Open Hole		To ft. Make JOHNSON	
SANDROCK	118 139	BROWN	SOFT	Screen?	C Type stainless Slot/Gauze Length	Set	
				3.5 in.	10 5 ft.	134 ft. 139 ft.	
				Static Water	Level		
				60 ft.	land surface	Measure 06/03/2004	
				Pumping Le	vel (below land surface)		
				Wellhead C	ompletion		
				· ·	manufacturer MONITOR	Model	
					Protection 12 in. a e (Environmental Wells and Borir	above grade	
			Grouting In		Yes No Not Specific	ed	
				Material	Amou		eu -
				neat cement	2		ft.
				54 fo Well disinfo	wn Source of Contamination bet <u>West</u> Direction cted upon completion?	Sewer T	уре
				Pump Manufacturer Model Numb Length of dro	's name FLINT & WALLING er <u>4F27A15</u> HP <u>1.</u> :	5 Volt <u>230</u>	
				Abandoned Does propert	have any not in use and not sealed we	ell(s)? Yes X	No
				Variance Was a varian	e granted from the MDH for this well?	Yes X	No
				Miscellaneo First Bedrock Last Strat Located by		Aquifer Jordan Depth to Bedrock 115 f	ft
Remarks				Locate Metho System Unique Numb	d GPS SA Off (averaged) (1 UTM - NAD83, Zone 15, Meters er Verification Tag on well	15 meters) X 453616 Y 4954369	
				Angled Dril	Hole		
				Well Contra	ctor		
				Hartmann		40174 HARTMANN, B	3.
				Licensee E	usiness Lic. or	Reg. No. Name of Driller	
Minnesota Well Index	Report		709	0026		Printed on 09/1 HE-01	

Minnesota	Unique	Well	Number

211863

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 06/15/1990

 Update Date
 06/02/2014

 Received Date

Well Name Township MINN. VALLEY 115	0		ubsection CDDAB	Well Depth 147 ft.	Dep 147	th Completed	Date We 04/10/19'	Il Completed	
Elevation 747 ft. Elev. Method 7.5 minute topographic map (+/- 5 feet)				Drill Method Drill Fluid					
Address				Use comm	ercial			Status	Active
C/W 3232 150TH ST W SHAKOPEE MN 55379			0	Well Hydrofra		Yes No	From	T	
5252 150111			,	Casing Type		=¢	Joint	То	
Stratigraphy Information				Drive Shoe?			Above/Below	0 ft.	
Geological Material	From 7	To (ft.) Color	Hardness	Casing Diamo	eter Weight				
DRIFT-CLAY	0 5	i		6 in. To	82 ft.	lbs./ft.			
SAND SOME ROCKS	5 9								
SANDROCK		23 WHT/	YEL						
SANDROCK &		27							
SANDROCK &	127 1	47	HARD	Open Hole Screen?	From 82	ft. y pe	To 147 Make	ft.	
				Static Water 27 ft.	• Level land surface		Measure	04/10/1972	
				Pumping Le	vel (below land s	surface)			
				Wellhead Co	ompletion r manufacturer		M	odel	
					Protection	12 in.	above grade	Juei	
					le (Environmenta				
				Grouting Int	formation	Well Grouted?	Yes No	Not S	pecified
				fe	ected upon compl	Direction etion?	Yes e Installed Volt	No	Туре
				Length of dro		ft Capacity		Гур <u>Submers</u>	sible
				Abandoned			- 1		
					y have any not in us	e and not sealed w	ell(s)?	Yes	No
				Variance Was a varian	ce granted from the	MDH for this well	₂	Yes	No
				Miscellaneo	-	within the units well		_ 100	
				First Bedrock Last Strat Located by	Jordan Sands St.Lawrence		Aquifer Depth to Bed		ft
Remarks				Locate Metho	od Digitized	l - scale 1:24,000) or larger (Digiti		
				System Unique Numb	UTM - NAD83, per Verification	Zone 15, Meters	X 45349		
				Angled Drill			mp	Jui Duie 01.	/01/1990
				Well Contra	ictor				
				Hartmann			40174		
				Licensee E	Business	Lic. o	r Reg. No.	Name of D	riller
Minnesota Well Index	Report		21	1863					on 09/15/2021 HE-01205-15

211865

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/23/1989

 Update Date
 02/14/2014

 Received Date
 02/14/2014

Well NameTownshipRangeDir SectionSubsectMINN. VALLEY11523W28DDCCH	-	Depth CompletedDate Well Completed132 ft.06/26/1976
Elevation 748 ft. Elev. Method 7.5 minute topographic map		
Address		mercial Status Active
C/W 3232 150TH ST W SHAKOPEE MN 55379	Well Hydro	
C/W 5252 15011151 W SHAKOLLE WIX 55575	Casing Ty	
Stratigraphy Information	Drive Sho	
Geological Material From To (ft.) Color	Hardness Casing Dia	
CLAY 0 10	8 in. To	76 ft. lbs./ft.
ROCKS 10 12		
SANDROCK 12 110		
LIMESTONE 110 132	V.HARD	
	Open Hole Screen?	From 76 ft. To 132 ft. Type Make
	Static Wa 29 ft.	er Level land surface Measure 06/00/1976
	Pumning	evel (below land surface)
	39 ft.	hrs. Pumping at 300 g.p.m.
		Completion ter manufacturer Model
		g Protection 12 in. above grade
		ade (Environmental Wells and Borings ONLY) nformation Well Grouted? Yes No X Not Specified
		nown Source of Contamination feet Direction Type fected upon completion? Yes No
	Pump Manufactu	Not Installed Date Installed
	Model Nu	aber HP <u>0</u> Volt
	Length of	rop pipe ft Capacity g.p. Typ
	Abandone	
		rty have any not in use and not sealed well(s)?
	Variance Was a vari	unce granted from the MDH for this well? Yes No
	Miscellan	
	First Bedro	
	Last Strat	St.Lawrence Formation Depth to Bedrock 12 ft
Remarks	Located by	Minnesota Geological Survey
	Locate Me System	hod Digitized - scale 1:24,000 or larger (Digitizing Table) UTM - NAD83, Zone 15, Meters X 453574 Y 4953567
	-	Image: Note of the second se
	Angled D	
	Well Cont	
		n Well Co. 40174 Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	211865	Printed on 09/15/2021
		HE-01205-15

569344

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date	07/29/1998
Update Date	02/14/2014
Received Date	

Well NameTownshipRangeDir SectionSubsectNRG11523W28DCCDE	BA 162 ft.	162 ft. 05/08/1996
Elevation 738 ft. Elev. Method 7.5 minute topographic map ((+/- 5 feet) Drill Me	ethod Non-specified Rotary Drill Fluid Bentonite
Address	Use d	domestic Status Active
Well 14800 JOHNSON MEMORIAL DR SHAKOPE	E MN Well Hyd	drofractured? Yes No From To Type Single casing Joint
Stratigraphy Information Geological Material From To (ft.) Color	Drive S	
CLAY WITH ROCKS 0 17 GRAY	6 in.	0
SAND ROCK/GRAVEL 17 36		7.5 in. To 99 ft.
SHAKOPEE ROCK 36 45	HARD	4.5 in. To 162 ft.
SAND ROCK/SHALE 45 90 YELLOW	SOFT	
ROCK/SHALE 90 162 GREEN	HARD Open Ho Screen?	
	30	Water Level ft. land surface Measure 04/19/1996
	_	ng Level (below land surface)
	f	ft. hrs. Pumping at 200 g.p.m.
		ad Completion
		adapter manufacturer Model
		asing Protection 12 in. above grade t-grade (Environmental Wells and Borings ONLY)
	Groutin	ng Information Well Grouted? X Yes No Not Specified
	Materia	
	neat cer	ement ft. 99.7 ft.
	<u>60</u>	t Known Source of Contamination feet North Direction Body of water Type lisinfected upon completion? X Yes No
	Model 1	Not Installed Date Installed 05/08/1996 acturer's name FLINT AND WALLING Number HP 5 Volt of drop pipe 63.2 ft Capacity g.p. Typ Submersible
	Abando	
		roperty have any not in use and not sealed well(s)? Yes X No
	Variano Was a v	variance granted from the MDH for this well? Yes X No
	Miscella	
	First Be	
	Last Stra Located	Jordan St. Lawrence
Remarks	Locate N	i initiational Coological Salvey
	System	m UTM - NAD83, Zone 15, Meters X 453221 Y 4953544
		Number Verification Tag on well Input Date 07/13/2005
	Angled	l Drill Hole
	Well Co	ontractor
		erson Well Co. 27056 TORGERSON, R.
	Licen	nsee Business Lic. or Reg. No. Name of Driller
Minnesota Well Index Report	569344	Printed on 09/15/20 HE-01205-

233116

County Scott

Quad

Jordan East

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 02/11/1988 **Update Date** 08/07/2018 **Received Date**

	Qu	ad ID 90.	A	111	innesota Sta	uutes Chapi	er 1031		Received I	Date	
GRANZOW,	Township 115	Range 23	Dir Section W 28	Subsection AABDBI		Well Depth 150 ft.		Depth Completed 150 ft.		Well Completed	l
	Elev. Me	ethod	LiDAR 1m DEM	I (MNDNR)		Drill Method		becified Rotary	Drill Fluid		
Address						Use irrigati	on			Status	Sealed
C/W N	1N					Well Hydrofra	ctured?	Yes No	From	То	
						Casing Type		le casing	Joint		
Stratigraphy Infor Geological Material		From	To (ft.) C	olor H	Hardness	Drive Shoe?	Yes	No	Above/Belo		
SHAKOPEE ROCK		0	90		Taruness	Casing Diame 8 in. To		Weight lbs./ft.		Hole Diamet 12. in. To	er 116 ft.
ORDAN SANDRO		90	150			8 111. 10	110 II.	108./11.		12. III. 10 8 in. To	116 ft.
						Open Hole	From	116 ft.	To	150 ft.	
						Screen?]	<u>116</u> ft. Type	Make		
						Static Water					
						90 ft.		urface	Measure	05/02/1972	
						Pumping Lev 95 ft.	el (belov hr	v land surface) s. Pumping at	300	g.p.m.	
									500	g.p.m.	
						Wellhead Co Pitless adapter	-			Model	
						Casing I	Protection	n 🗌 12 in	n. above grade		
						Grouting Inf		well Grouted?	rings ONLY)	No 🗙 Not	Specified
			fe	et	ce of Contamination Direction a completion?	Yes	□ No	Туре			
						Pump Manufacturer'	1	_	Date Installed		
						Model Numbe		HP	<u>0</u>	Volt	
						Length of drop	o pipe	ft Capacity	g.p.	Тур	
						Abandoned Does property	have any	not in use and not sealed	well(s)?	Yes	No
						Variance	c any			105	
							e granted f	from the MDH for this w	ell?	Yes	X No
						Miscellaneou First Bedrock Last Strat	Prairi	e Du Chien Group n Sandstone	-	er Jordan Bedrock ()	ft
Damaal						Located by	Ν	/innesota Geological	Survey	-	
Remarks SAME AS UNIQUE N	NO. 207444.					Locate Method		Digitization (Screen) -	· ·		54045
DNR OBWELL 70009						System Unique Numb		NAD83, Zone 15, Meterstion Informati			54945 8/07/2018
SEALED 3-14-2018 B	Y 1622.					Angled Drill		mormau		. 00	
						Well Contrac Associated Licensee B	Well Co.	Lic.	27259 or Reg. No.	SCHUL ⁷ Name of I	
Minnesota W	ell Index	k Repor	t		233	3116				Printed	on 09/15/202
											HE-01205-

513892

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date	06/09/1993
Update Date	03/13/2019
Received Date	

Well NameTownshipMID-AMERICA115	RangeDir Sect23W28	ion Subsec CAAA		Well Depth 320 ft.	Depth CompletedDate Well Completed320 ft.11/12/1992
Elevation 755 ft. Elev. Me	thod 7.5 minute to	pographic map	(+/- 5 feet)	Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address				Use public	supply/non-community Status Sealed
C/W 3325 145TH \$	ST W MN			Well Hydrofra	
0, , , , , , , , , , , , , , , , , , ,				Casing Type	
Stratigraphy Information				Drive Shoe?	Yes X No Above/Below 0 ft.
Geological Material	From To (ft.)	Color	Hardness	Casing Diamo	
TOPSOIL	0 1	BLACK	SOFT	4 in. To	201 ft. lbs./ft. 9 in. To 201 ft.
CLAY	1 3	BROWN	MEDIUM		4 in. To 320 ft.
SHAKOPEE ROCK	3 27	ORN/BRN	HARD		
JORDAN ROCK	27 130	WHITE	SOFT		
SHALE	130 140	BLUE	SOFT	Open Hele	E
ST LAWRENCE	140 181	PNK/BLU	HARD	Open Hole Screen?	From 201 ft. To 320 ft. T Type Make
FRANCONIA	181 202	BLU/GRN			Type
FRANCONIA	202 320	BLU/GRN	HARD		
				Static Water	Level
				Pumping Le	vel (below land surface)
				35 ft.	hrs. Pumping at 50 g.p.m.
				Wellhead C	
					r manufacturer Model
					Protection 12 in. above grade (Environmental Wells and Borings ONLY)
				Grouting In	
				Material	Amount From To
				neat cement	64 Sacks 0 ft. 201 ft.
				<u>60</u> fo	North Direction Septic tank/drain field Type ected upon completion? Yes No
				Pump Manufacturer Model Numb Length of dro	er <u>S75M</u> HP <u>0.75</u> Volt <u>230</u>
				Abandoned	<u>11 10 10 10 10 10 5.P. TJP Dubilitistoje</u>
					y have any not in use and not sealed well(s)? Yes No
				Variance Was a varian	ce granted from the MDH for this well? Yes No
				Miscellaneo	us
				First Bedrock	Prairie Du Chien Group Aquifer St.Lawrence-
				Last Strat	St.Lawrence Formation Depth to Bedrock 3 ft
Remarks				Located by	Minnesota Geological Survey
GAMMA LOGGED 11-13-92				Locate Metho	Digitization (bereen) Wap (1.24,000) (15 meters of
SEALED 10-24-2018 BY 1445				System Unique Numb	UTM - NAD83, Zone 15, Meters X 453058 Y 4954225 ber Verification Information from Input Date 06/02/2000
				Angled Dril	
				Well Contra	ictor
				R.E.S. We	
				Licensee E	Business Lic. or Reg. No. Name of Driller
Minnesota Well Index	Report		513	3892	Printed on 09/15/2021 HE-01205-15

404657

CountyScottQuadJordan EastQuad ID90A

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 06/15/1990

00/13/1990

Received Date 04/16/2015

Update Date

Well Name Township	Range	Dir Secti	on Subsection	n	Well Depth		Depth Completed	Date W	Vell Completed	
RENAISSANCE 115	23	W 28	BBAA		455 ft.		455 ft.	10/14/1	.983	
Elevation 777 ft. Elev. Me	thod	Calc from DE	M (USGS 7.5 min	or equiv.)	Drill Method	Non-s	pecified Rotary	Drill Fluid		
Address					Use publi	e supply/n	on-commtransient		Status	Active
C/W 3525 145TH S	ST W SH	AKOPEE MI	N 55379		Well Hydrofi	actured?	Yes No	From	То	
					Casing Typ	e Sing	gle casing	Joint	Welded	
Stratigraphy Information					Drive Shoe	-		Above/Below		
Geological Material	From	To (ft.)	Color Ha	ardness	Casing Diam	eter	Weight		Hole Diamete	r
SHAKOPEE LIMESTONE	0	80		ARD	8 in. To	256 ft	. 28.5 lbs./ft.		14 in. To	256 ft.
JORDAN SANDROCK	80	189		OFT					8 in. To	445 ft.
ST. LAWRENCE SHALE	189	236		ARD						
FRANCONIA SHALE	236	371		ARD						
GALESVILLE	371	450		EDIUM	Open Hole	From	n 256 ft.	То 455	5 ft.	
EAU CLAIRE SHALE	450	455	GREEN HA	ARD	Screen?		Type	Make		
					Static Wate 61 ft.	Land	surface	Measure	11/10/1983	
					Pumping L	evel (belo	w land surface)			
					110 ft.	1 h	rs. Pumping at	100 g	g.p.m.	
					Wellhead C	-				
					Pitless adapte				Aodel	
						Protectio	n [X] 12 in onmental Wells and Bo	n. above grade		
					Grouting In			-	Not S	pecified
					Material			iount	From T	-
					Neat Ceme	nt	6.5		2 ft. 25	
					<u>600</u> 1	eet	rce of Contamination <u>North</u> Direction n completion?	X Yes	No No	Туре
					Pump Manufacture Model Num Length of dr	r's name per <u>P</u>	PIONEER	Date Installed 20 Vo 250 g.p.	05/10/1984 olt <u>220</u> Typ <u>Submers</u>	<u>sible</u>
					Abandoned	v have anv	not in use and not sealed	well(s)?	Yes	No
					Variance	., any	use und not sealed		105	
						ce granted	from the MDH for this we	ell?	Yes	No
-					Miscellaneo First Bedrock Last Strat Located by	Frair Eau	ie Du Chien Group Claire Formation Minnesota Department	Depth to B	Tunnel City-E edrock 0	au ft
Remarks					Locate Meth		GPS SA Off (averaged)			
*1 - BIG WELL. *2 - SMALL WELL.					System		Mad83, Zone 15, Meters		_	
600 WELL BAKERY HILL WELL					Unique Num Angled Dri		ation Info/GPS	from data I	npute Date 06.	/06/2005
BIG WELL										
TOTAL PLATE COUNT TNT	C 8-25-77	7								
					Well Contr			101-1		
					Hartmann Licensee			40174 or Reg. No.	JAECKEI Name of D	-
					LICCHSCE	203111033	Lic.	or Reg. 110.	Traille Of D	
Minnesota Well Index	Repor	·t		404	4657					on 04/20/2016 HE-01205-15

401129

County Scott

Quad ID 90A

Jordan East

Quad

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date	06/15/1990
Update Date	02/25/2020
Received Date	

Well NameTownshipRangeDir SectionSubsectionMN VALLEY11523W28DCDDADElevation761 ft.Elev. MethodCalc from DEM (USGS 7.5 min		Well Depth 120 ft. Drill Method	Depth Completed 120 ft. Non-specified Rotary	Date W 03/22/19 Drill Fluid	ell Completed 984
Address			supply/non-commtransient		Status Active
C/W 14505 JOHNSON MEMORIAL DR SHAKOPEE M	IN 55379	Well Hydrofra		From	То
		Casing Type	Single casing		Threaded
Stratigraphy Information		Drive Shoe?	Yes X No	Above/Below	1 ft.
	ardness	Casing Diame	0		Hole Diameter
	EDIUM EDIUM	4 in. To	110 ft. 11 lbs./ft.		6 in. To 110 ft.
	EDIUM				4 in. To 120 ft.
		Open Hole Screen?	From 110 ft. Type	To 120 Make	ft.
		Static Water 45 ft.	land surface	Measure	03/22/1984
		Pumping Le	vel (below land surface)		
			manufacturer MONITOR	above grade	odel
		Grouting Inf		X Yes N	o Not Specified
		Material	Amo	unt	From To
		bentonite cuttings			0 ft. 110 ft. ft. ft.
		<u>80</u> fe	wn Source of Contamination et <u>Southeas</u> Direction cted upon completion?	Sep Yes	tic tank/drain field Type
		Pump Manufacturer Model Numb Length of dro	s name PIONEER er HP <u>(</u>	. <u>75</u> Vo	<u>03/22/1984</u> lt <u>220</u> Typ <u>Submersible</u>
		Abandoned			
		Does property	have any not in use and not sealed w	veil(s)?	Yes No
			e granted from the MDH for this wel	1?	Yes No
		Miscellaneo			
		First Bedrock Last Strat	Jordan Sandstone	Aquifer Depth to Be	
		Located by	Jordan-Wonewoc Minnesota Department of	-	62 It
Remarks PREVIOUS USE CODE: DO (DOMESTIC) 2/25/2020.		Locate Metho	d Digitization (Screen) - M	fap (1:24,000) (1	
1 NE 11005 05E CODE. DO (DOMESTIC) 2/25/2020.		System Unique Numb	UTM - NAD83, Zone 15, Meters er Verification	X 4534 In	71 Y 4953537 put Date 01/20/1999
		Angled Drill			01/20/1999
		Well Contra	ctor		
		Hartmann		40174	JAECKELS, R.
		Licensee B	usiness Lic. o	or Reg. No.	Name of Driller
Minnesota Well Index Report	401	129			Printed on 09/15/202 HE-01205-1

Attachment 8

whethin these I township state (Board towhit 11. The Att Walk 1 Back man Fores willie Frindfliet State and to and the second and a second and a second and a second and a second a se RR3 5. yest corps (constitut) 100 may 19, 84 8 HX Į1. 12 fle [] Cable 1443 يريدة 🖸 ١٠ 1 Arl 146 169 1 Kaller 1-1 1457 h dorra 11C1_ A Astar C Atta Towns Auger TOPOFWell 6. LD.C ingle (D) comester · Fulkte Supple 📇 lasuiruy KINSOSIA OF MANUTSOS 799.87 (Centre in I Intiention Chilf Conditioning: REPARTON LOG 17034 TÞ Tees Vell · (1) 1. CAS(20 Clay RECENTS AVOTA/ON mul 0 14 TAT 14 de 4 🛃 Neldet 🔲 <u>Súrfar</u> then 127. aur. 🖸 11 14 16 The Lo the depin a tabili Hellow et, depta mud. 21 10 ft. depit Print Short 340 14 14 là. to Blue Broppe bole ALCINE *1 SCREEN 21 40 1 Auson Mail # fege. 14 10 Brown standers 40 56 mul 13 6 FY-Sin /G trant i., Hard 56 _ ft_ and ____ 100 9.5 1. in 1000 11. TA STATLE VATES LAVEL ALL HUNGE 5-19 22_____ Boblav D wete SCREEN 1. init_ 24 # 18 slit ZD A. Bar han kumpling IL. VELL BEAR COPPLETICS 1201 Wet front 12 man . etting adapter I +4+mint attest 12. Vell greated 2<u>X4</u> X ... 0 ... Çu, 144. I test cront 1 tentenite Ο. Pepthi Inan_ <u>o</u> а. free. 1). Bearing source of passible regularingstan Jick. fut direction Vell diainfestes upon completions toy 🎗 Ho 🗂 11. 140 Date Intradies 5-21-P4 Diet taaballus Willing Kapfeetworte tim Hodel Russer BA Value 220 10 length of 470p plat_ Herertal at the pipe 14 as farman land pripes 10.44 4⊡¢entri rajal *ن*۵_ 16, WATER VILL CONTRACTOR S CENTITICATION This well was delified using or inclediction and this report is take to the beat of an beatladge and helief. Hartmann Wall 64 40194 main . R. new- Dreque 305 atindan on 5-24-1 Ray Jaucheles WORK COPY

ΜŅ

151599 County Quad

CountyScottQuadShakopeeQuad ID105D

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 02/08/1989

 Update Date
 02/14/2014

 Received Date

Well Name	Township	Range	Dir Section	Subsection	Well Depth	Depth Completed	Date Well Completed	
LOUISVILLE	115	23	W 21	AB	108 ft.	108 ft.	11/05/1986	
Elevation	Elev. Me	thod			Drill Method	Cable Tool D	rill Fluid	
Address					Use monit	or well	Status Activ	ve
C/W	3601 130TH S	ST W SHA	KOPEE MN		Well Hydrofr	actured? Yes No	From To	
Contact	331 AKERS I	LA JORDA	AN MN 55352		Casing Type	e Step down	Joint Welded	
Stratigraphy Int		г	T (6) O	1 11 1	Drive Shoe?		bove/Below 2 ft.	
Geological Mater PIPE ABOVE G		From 0	To (ft.) Co	olor Hardne	Casing Diam	-	Hole Diameter	
CLAY,GRAVEL		2	2 17	SOFT	8 in. To	61 ft. 28.5 lbs./ft.		ft.
SAND,GRAVEL		2 17	25	SOFT	0 in. To	ft. lbs./ft.	4 in. To 108	ft.
SAND & GRAV		25	23 54	SOFT	4 in. To	82 ft. 11 lbs./ft.		
LIME ROCK	EL	23 54	55	HARD				
SAND GRAVEL	& CLAV	54 55	55 61	SOFT	Open Hole	From 82 ft. T	o 106 ft.	
LIMEROCK	a CLAI	55 61	108	HARD	Screen?	Туре	Make	
		01	100		Static Water 80 ft.	• Level land surface	Measure 11/05/1986	
					00 H.		Weasure 11/05/1900	
						vel (below land surface)		
					92 ft.	2 hrs. Pumping at	3 g.p.m.	
					Wellhead C	ompletion		
					· · ·	r manufacturer	Model	
						Protection X 12 in. al		
						le (Environmental Wells and Boring	-	1
					Grouting In		Yes No Not Specified	a
					Material	Amour		
					neat cement	2	Cubic yards ft. 82 f	ft.
					50 fe Well disinfe	Source of Contamination eet South Direction ected upon completion? X	Landfill Ty Yes 🗌 No	уре
					Pump Manufacture Model Numb	s's name GRUNDFUS	Installed Volt <u>230</u>	
					Length of dro		g.p. Typ <u>Submersible</u>	
					Abandoned			
						y have any not in use and not sealed wel	I(s)? Yes I	No
					Variance Was a varian	ce granted from the MDH for this well?	Yes 1	No
					Miscellaneo	us		
					First Bedrock	:	Aquifer	
					Last Strat		Depth to Bedrock ft	t
Remarks					Located by			
Kemarks					Locate Metho			
Dem-C	on				System	UTM - NAD83, Zone 15, Meters per Verification	X Y	
W-10							Input Date	
					Angled Dril	l Hole		
					Well Contra	nctor		
					Keys Well		52012 KEYS,M.	
					Licensee E		Reg. No. Name of Driller	
Minnesota	Well Index	Repor	t		151599		Printed on 02/10 HE-012	

595728

County Scott Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 08/07/2009

 Update Date
 08/07/2009

 Received Date
 08/07/2009

Well Name	Township	Range	Dir Sect		ction	Well Depth	Depth Completed Date Well Completed
W-120	115	23	W 21	AAD		175 ft.	170 ft. 05/08/1997
Elevation	Elev. Me	thod				Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address						Use remed	lial Status
Well	130TH ST W	SHAKOP	EE MN			Well Hydrofr	actured? Yes No From To
						Casing Type	
Stratigraphy In		-	T (0)	G 1		Drive Shoe?	
Geological Mate GRAVEL	erial	From 0	To (ft.) 5	Color BROWN	Hardness	Casing Diam	
SILTY SAND /	GRAVEI	5	5 69	BROWN		4 in. To	165 ft. lbs./ft. 8 in. To 175 ft.
SILTY SANDS	ORIVEL	69	84	BROWN			
SILTY CLAY		84	104	BROWN			
LIMESTONE /	SHALE /	104	135	TAN			
CLAY		135	148	GRAY		Open Hole	From ft. To ft.
LIMESTONE		148	157	TAN/RED		Screen?	Type stainless Make WIREWOUND Slot/Gauze Length Set
SANDSTONE /	SHALE	157	163	RED		4 in.	10 5 ft. 165 ft. 170 ft.
SANDSTONE (BUFF)	163	175				
						Static Water	r Level
						42 ft.	land surface Measure 05/08/1997
						Pumping Le	evel (below land surface)
						Wellhead C	
						Pitless adapte	r manufacturer Model Protection I2 in. above grade
							le (Environmental Wells and Borings ONLY)
						Grouting In	formation Well Grouted? X Yes No Not Specified
						Material	Amount From To
						neat cement	55 Sacks ft. 161 ft.
						Nearest Kno	own Source of Contamination
							Direction Type ected upon completion? Yes X No
						Pump Manufacture	X Not Installed Date Installed
						Model Numb	
						Length of dro	op pipe ft Capacity g.p. Typ
						Abandoned	
						Does propert	y have any not in use and not sealed well(s)? Yes X No
							ce granted from the MDH for this well? Yes X No
						Miscellaneo	
						First Bedrock	
						Last Strat	Depth to Bedrock ft
Remarks						Located by	
W-120						Locate Metho System	UTM - NAD83, Zone 15, Meters X Y
						-	ber Verification Input Date
						Angled Dril	
						Well Contra	actor
						Bergerson	
						Licensee I	Business Lic. or Reg. No. Name of Driller
Minnesota	Well Index	Report	t		595	5728	Printed on 09/14/2021 HE-01205-15

595729

County Scott
Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date

Update Date 08/07/2009 Received Date

Well Name Township	Range	Dir Secti	ion Subse	ction	Well Depth	Depth Completed Date Well Completed
W-121 - PAHL, 115	23	W 21	AAC		78 ft.	78 ft. 05/06/1997
Elevation Elev. M	lethod				Drill Method	Non-specified Rotary Drill Fluid Bentonite
Address					Use remed	lial Status
Well 3331 AKER	S LA SHAI	KOPEE MN	55352		Well Hydrofra	actured? Yes No From To
					Casing Type	
Stratigraphy Information					Drive Shoe?	
Geological Material	From	To (ft.)	Color	Hardness	Casing Diam	eter Weight Hole Diameter
SANDY CLAY / GRAVEL	0	10	BROWN		4 in. To	65 ft. lbs./ft. 8 in. To 78 ft.
GRAVEL / COBBLES	10	30	BROWN			
GRAVEL / CLAY GRAVEL	30 41	41 50	LT. BRN BROWN			
CLAY / SAND	41 50	50 60	GRAY			
GRAVEL / CLAY (BUFF)	60	65	UKAT		Open Hole	From ft. To ft.
GRAVEL W/ SOME	65	72				Type stainless Make WIREWOUND
SANDY CLAY	72	78	GRAY		Diameter 4 in.	Slot/GauzeLengthSet105ft.65ft.70ft.
					Static Water	
					42 ft.	land surface Measure 05/06/1997
					Pumping Le	vel (below land surface)
					Wellhead C	ompletion r manufacturer Model
					X Casing	Protection I 12 in. above grade le (Environmental Wells and Borings ONLY)
					Grouting In	
					Material	Amount From To
					neat cement	
					fe	own Source of Contamination eet Direction cetd upon completion? Yes X No
					Pump	X Not Installed Date Installed
					Manufacturer Model Numb	
					Length of dro	
					Abandoned	
					Does propert	y have any not in use and not sealed well(s)? Yes X No
						ce granted from the MDH for this well? Yes X No
					Miscellaneo	us
					First Bedrock	
					Last Strat Located by	Depth to Bedrock ft
Remarks					Located by	bd
W-121					System	UTM - NAD83, Zone 15, Meters X Y
					Unique Numb	ber Verification Input Date
					Angled Dril	l Hole
					Well Contra	actor
					Bergerson	
					Licensee E	
				59	5729	Dist. J 00/14/0001
Minnesota Well Inde	x Repor	t				Printed on 09/14/2021 HE-01205-15

557380

County Scott

Quad Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 04/20/1995

 Update Date
 02/14/2014

 Received Date

Well Name	Township	Range	Dir Sectio		tion	Well Depth	_	h Completed		Vell Completed	
LOUISVILLE	115	23	W 21	AAD		147 ft.	147 f		11/00/1		
Elevation	Elev. Me	ethod				Drill Method	Non-specified	Rotary	Drill Fluid Ber	ntonite	
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE MN			Well Hydrofra	actured? Y	les 🗌 No	From	То	
Contact	3331 ALERS	LA JORD	AN MN 553:	52		Casing Type	Step down		Joint	Welded	
Stratigraphy In Geological Mate		From	To (ft.)	Color	Hardness	Drive Shoe?		No X	Above/Below		
GARBAGE	IIai	2	. ,	VARIED	HARD	Casing Diamo		11 /64		Hole Diameter	27 6
LIMESTONE		2 73		BROWN	HARD	4 in. To 8 in. To	137 ft. 77 ft.	lbs./ft. lbs./ft.			27 ft. 147 ft.
SANDSTONE		136		WHT/BRN		8 III. 10	// II.	108./11.		8 III. 10	147 It.
						Open Hole Screen?	Slot/Gauze I	ft. pe stainless Length 0 ft.	To Make Set 137 ft.	ft. JOHNSON 147 ft.	
						Static Water 115 ft.	Level land surface		Measure	11/00/1994	
						115 11.	land surface		Wiedsure	11/00/1774	
						Pumping Le	vel (below land s	urface)			
							ompletion r manufacturer Protection	12 in	A above grade	Model	
							e (Environmental				
						Grouting In	formation V	Vell Grouted?	X Yes	No Not Sp	ecified
						Material		Amo		From To	
						neat cement		4 11	Cubic yards Cubic yards	2 ft. 128 ft. 77	ft. ft.
						fe	own Source of Co eet I ected upon comple	Direction	Yes	Landf X No	<u>ïll</u> Type
						Pump Manufacture	Not Insta		te Installed		
						Model Numb		HP		olt	
						Length of dro Abandoned	pp pipe	ft Capacity	g.p.	Тур	
							y have any not in use	and not sealed v	vell(s)?	Yes	No
						Variance					
							ce granted from the N	MDH for this wel	1?	Yes	No
						Miscellaneo First Bedrock Last Strat Located by			Aquifer Depth to B		ft
Remarks						Locate Metho	od				
DC-117						System Unique Numb	UTM - NAD83, 2 per Verification	Zone 15, Meters	X	Y Input Date	
						Angled Dril	l Hole				
						Well Contra	ictor				
						Bergerson		.	27058	SCHULTZ	
						Licensee E	susiness	Lic. o	or Reg. No.	Name of Dri	ner
Minnesota	Well Index	Report	t		55	7380					n 09/14/2021 IE-01205-15

557379

County Scott Quad

Quad Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 04/20/1995

 Update Date
 02/14/2014

 Received Date

Well Name	Township	Range	Dir Section	Subsectio	n	Well Depth	De	pth Completed	Date	Well Completed	
LOUISVILLE	115	23	W 21	AAD		159 ft.	159	9 ft.	11/00/	1994	
Elevation	Elev. Me	ethod				Drill Method	Non-specifie	ed Rotary	Drill Fluid Be	ntonite	
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE MN			Well Hydrofra	actured?	Yes No	From	То	
Contact	3331 AKERS	LA JORD	OAN MN 5535	2		Casing Type	step down		Joint	Welded	
Stratigraphy In	formation					Drive Shoe?		No	Above/Below		
Geological Mate		From	To (ft.) C	olor H	lardness	Casing Diamo	eter Weigl	ht		Hole Diameter	
CLAY		0			OFT	4 in. To	149 ft. 11	lbs./ft.		12 in. To	75 ft.
GARBAGE		2			IARD	8 in. To	75 ft.	lbs./ft.		8 in. To	159 ft.
LIMESTONE		73		RN/RED H							
SANDSTONE		146	159 W	/HT/BRN M	IEDIUM						
						Open Hole	From	ft.	То	ft.	
						-		Fype slotted		JOHNSON	
						Diameter	Slot/Gauze	Length	Set		
						4 in.	10	10 ft.	149 ft.	159 ft.	
						Static Water				11/00/1004	
						117 ft.	land surface		Measure	11/00/1994	
							vel (below land				
						159 ft.	4 hrs.	Pumping at	25	g.p.m.	
						Wellhead C					
							r manufacturer			Model	
							Protection le (Environment	al Wells and Bo	n. above grade rings ONLY)		
						Grouting Int		Well Grouted?		No Not Sp	ecified
						Material		Am	ount	From To	
						neat cement		9	Cubic yards	2 ft. 138	3 ft.
						Nearest Kno	own Source of (Contamination			
							eet ected upon comp	Direction pletion?	Yes	Landí X No	<u>fill</u> Type
						Pump		stalled D	ate Installed		
						Manufacturer Model Numb		HP	T.	olt	
						Length of dro		ft Capacity	g.p.	Тур	
						Abandoned		n i i	5·P·	131	
						Does property	y have any not in u	use and not sealed	well(s)?	Yes	No
						Variance Was a varian	ce granted from th	e MDH for this we	ell?	Yes	No
						Miscellaneo				L	
						First Bedrock			Aquife	:	
						Last Strat			Depth to I		ft
Remarks						Located by					
ACHIAI KS						Locate Metho		2 Zono 15 Mater	v	V	
DC-118						System Unique Numb	oer Verification	3, Zone 15, Meters		Y Input Date	
						Angled Dril					
						Well Contra	octor				
						Bergerson			27058	SCHULT	
						Licensee E	Business	Lic.	or Reg. No.	Name of Dr	iller
Minnesota	Well Index	Repor	t		557	379					n 09/14/2021 HE-01205-15

County Scott Quad 557378

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date 04/20/1995 02/14/2014 **Update Date Received Date**

Well Name	Township	Range	Dir Secti	ion Subsec	tion	Well Depth	Ι	Depth Complete	d Date V	Vell Completed	
LOUISVILLE	115	23	W 21	AAD		160 ft.	1	60 ft.	11/00/	1994	
Elevation	Elev. Me	ethod				Drill Method	Non-specif	ied Rotary	Drill Fluid Be	ntonite	
Address						Use monit	or well			Status	Active
C/W	3601 130TH	ST W SHA	KOPEE M	N		Well Hydrofra	actured?	Yes No	From	То	
Contact	3331 AKERS	LA JORD	AN MN 55	352		Casing Type	e Step dow		Joint	Welded	
Stratigraphy In						Drive Shoe?		No	Above/Below		
Geological Mate	rial	From	To (ft.)	Color	Hardness	Casing Diam		0		Hole Diamet	er
CLAY		0	2	GRAY	SOFT	4 in. To	147 ft. 11			12 in. To	81 ft.
GARBAGE		2	76	VARIED	HARD	8 in. To	81 ft.	lbs./ft.		8 in. To	160 ft.
LIMESTONE		76	147	BRN/RED							
SANDSTONE		147	160	WHT/BRN	SOFT						
						Open Hole	From	ft.	То	ft.	
							X	Type slotted		JOHNSON	
						Diameter	Slot/Gauze	Length	Set		
						4 in.	10	10 ft.	150 ft.	160 ft.	
						Static Water	Level				
						116 ft.	land surfa	ce	Measure	11/00/1994	
						Pumping Le	vel (below lar	d surface)			
						160 ft.	4 hrs.	Pumping at	30	g.p.m.	
						Wellhead C	ompletion				
							r manufacturer		1	Model	
							Protection		in. above grade		
								ntal Wells and B	-		
						Grouting In	formation	Well Grouted?	X Yes	No 🗌 Not S	Specified
						Material			nount		ò
						neat cement		8	Cubic yards	2 ft. 1	43 ft.
						Nearest Kno	wn Source of	Contamination	1		
							eet	Direction	•	Lan	<u>dfill</u> Type
							ected upon con	npletion?	Yes	X No	
						Pump		Installed I	Date Installed		
						Manufacture	r's name				
						Model Numb		HP		olt	
						Length of dro	op pipe	ft Capacity	g.p.	Тур	
						Abandoned Does propert	v have anv not i	n use and not sealed	1 well(s)?	Yes	No
						Variance	,,		× / ·		
							ce granted from	the MDH for this v	vell?	Yes	No
						Miscellaneo	us				
						First Bedrock			Aquifer	•	
						Last Strat			Depth to E	Bedrock 76	ft
Remarks						Located by					
						Locate Metho		92 70m 15 Mar	* 0 1 7	3.7	
DC-119						System	UTM - NAD per Verification	983, Zone 15, Meter		Y Input Date	
						Angled Dril				put Date	
						Angieu Di'll	11010				
						Well Contra					
						Bergerson Licensee E		T in	27058 2. or Reg. No.	SCHUL Name of I	
						Licensee E	ousiness	Lic	. of Keg. 100.	manne of L	niner
					55	7378				D 1 4 1	on 00/14/2023
Minnesota	Well Index	Repor	t			-				Printed	on 09/14/2021 HE-01205-15

783164

County Scott Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

 Entry Date
 11/22/2011

 Update Date
 11/28/2011

 Received Date
 11/03/2011

Well Name MW-04-11	Township 115	Range 23	Dir Secti W 28	on Subse		Well Depth 155 ft.	Dep 155 1	th Completed	Date V 07/07/	Vell Complete	ed
Elevation	Elev. Me	thod				Drill Method	Vibracore/rota	sonic	Drill Fluid Wa	ater	
Address						Use monit	or well			Status	Active
Well	13580 JOHNS	SON MEM	ORIAL DF	R SHAKOPE	EE MN 55379	Well Hydrofra Casing Type			X From Joint	To)
Stratigraphy Inf	ormation					Drive Shoe?		No	Above/Below		
Geological Mater		From	To (ft.)	Color	Hardness	Casing Diamo	eter Weight			Hole Diam	eter
OVERBURDEN		0	35	BROWN	SOFT	2 in. To	103 ft.	lbs./ft.		6 in. To	155 ft.
SANDSTONE		35	145	WHITE	MED-HRD						
ST LAWRENCE		145	155	WHITE	HARD						
						Open Hole Screen?	From	ft. pe stainless	To Make	ft. JOHNSON	
						Diameter	· · ·	Length	Set	301113011	
						2 in.		10 ft.	103 ft.	113 ft	
						Static Water	Level				
						74 ft.	land surface		Measure	07/07/201	.1
						Pumping Le	vel (below land s	urface)			
						Wellhead Co	ompletion				
							r manufacturer			Model	
							Protection le (Environmental		above grade		
						Grouting Int			-	No No	Specified
						Material		Amo		From	То
						neat cement		14	Sacks	ft.	99 ft.
						fe Well disinfe	own Source of Co eet	Direction	Yes	X No	Туре
						Pump Manufacturer	Not Inst		te Installed		
						Model Numb		HP		olt	
						Length of dro Abandoned	pp pipe	ft Capacity	g.p.	Тур	
							y have any not in us	e and not sealed w	ell(s)?	Ye	es 🗙 No
						Variance					
						Was a varian	ce granted from the	MDH for this well	?	Yes	X No
						Miscellaneo					
						First Bedrock Last Strat			Aquifer Depth to E		ft
						Located by			Depui to I	Jeuroek	п
Remarks						Locate Metho	od				
102150 MW-04-11						System	UTM - NAD83,	Zone 15, Meters	Х	Y	
WIW-04-11							er Verification			Input Date	
						Angled Drill	l Hole				
						Well Contra	ictor				
						Boart Long			2022		IBERGER
						Licensee E	Business	Lic. o	r Reg. No.	Name of	Driller
Minnesota	Well Index	Report	;		78	3164				Printe	ed on 09/14/2021 HE-01205-15

783165

County Scott

Quad

Quad ID

MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT

Minnesota Statutes Chapter 1031

Entry Date	11/22/2011
Update Date	11/28/2011
Received Date	11/03/2011

Well Name MW-7-11	Township 115	Range 23	Dir Section W 21	n Subsec	tion	Well Depth 151 ft.	Dep	th Completed	Date 08/23/	Well Complete	ed
			W 21	DDDA		Drill Method					
Elevation	Elev. Me	tnoa				_	Non-specified	Kotary	Drill Fluid Be		
Address						Use monito				Status	Active
Well	13580 JOHN	SON MEM	ORIAL DR S	SHAKOPE	E MN 55379	Well Hydrofra	ctured?	Yes No	X From	To)
						Casing Type	·		Joint	Threaded	
Stratigraphy In		F	TT (C) (TT 1	Drive Shoe?		No X	Above/Below		
Geological Mat SAND & GRA		From 0	. ,	Color GRAY	Hardness SOFT	Casing Diame				Hole Diam	
DOLOMITE	VEL	51		TELLOW	MED-HRD	2 in. To	140 ft.	lbs./ft.		6 in. To	151 ft.
Remarks 102150 MW-7-11		88		VHITE	MED-HRD	Wellhead Co Pitless adapter X Casing I At-grad Grouting Inf Material neat cement Nearest Knoo fe Well disinfe Pump Manufacturer Model Numbi Length of dro Abandoned Does property Variance Was a variance Miscellaneou First Bedrock Last Strat Locate Metho System	Slot/Gauze 10 Level land surface vel (below land so ompletion manufacturer Protection e (Environmental formation way Source of Co et and cted upon completion source of Co et and base of the source of the source of the source of the source ted upon completion way not in us the granted from the source of the source of the source of the source of the source of the source of the source ted upon completion te granted from the source of the source of the source of the source of the source te source of the source of the source of the source te source of the source of the source of the source te source of the sourc	12 in. Wells and Bor Well Grouted? Amo 19 Direction etion? alled HP ft Capacity e and not sealed v	Set 140 ft. Measure . above grade ings ONLY) X Yes Dunt Sacks Yes ate Installed yell(s)? II? Aquife Depth to I	From ft.	t Specified To 136 ft. Type
						Well Contra Boart Long Licensee B	gyear	Lic. o	2022 or Reg. No.	DICKIN Name of	NSON, P Driller
Minnesota	Well Index	Report	;		78	3165				Printe	ed on 09/14/2021 HE-01205-15

5. Submittal/Action requirements

TF 001	Total Facility
5.1.1	The Permittee shall submit an annual facility report: Due annually, by the 1st of February. [Minn. R. 7035.2585]
5.1.2	The Permittee shall submit a Spring water monitoring report due annually by June 30th (Minn R. 7035.2815, Subp 14 (P). The content of the report shall include but not be limited to: a summary table of all analytes detected during the sampling event highlighting parameters which exceeded Intervention Limits, Health Risk Limits, and/or surface water standards as they apply to the permit, a groundwater flow map based on groundwater elevations

	measured during sampling activities, a discussion of the analytical results, as well as conclusion and
	recommendations for future monitoring activities for the site. Submit a spring water monitoring report: Due
	annually, by the 30th of June. [Minn. R. 7035.2815, subp. 14(P)]
5.1.3	The Permittee shall submit a summer water monitoring report due annually by September 30th (Minn R.
	7035.2815, Subp 14 (P). The content of the report shall include but not be limited to: a summary table of all
	analytes detected during the sampling event highlighting parameters which exceeded Intervention Limits, Health
	Risk Limits, and/or surface water standards as they apply to the permit, a groundwater flow map based on
	groundwater elevations measured during sampling activities, a discussion of the analytical results, as well as
	conclusion and recommendations for future monitoring activities for the site. Submit a summer water monitoring
	report: Due annually, by the 30th of September. [Minn. R. 7035.2815, subp. 14(P)]
5.1.4	The Permittee shall submit an autumn water monitoring report: Due annually, by the 1st of February. [Minn. R.
	7035.2815, subp. 14(P)] within the context of the annual water monitoring report. Submit an autumn water
	monitoring report: due annually, by the 1st of February. [Minn. R. 7035.2815, subp. 14(P)]
5.1.5	The Permittee shall submit an annual monitoring evaluation report due annually by the 1st of February. (Minn R.
	7035.2815, subp 14(Q). The content of the report shall include but not be limited to: a summary table of all
	analytes detected during the sampling year highlighting parameters which exceeded Intervention Limits, Health
	Risk Limits (HRL) and/or surface water standards (Standards) as they apply to the permit, an appendix of all
	analytical results generated for the previous 5 years at the facility, contaminant trend evaluations for
	contaminants that are exceeding ILs or that appear to be consistently increasing over time, groundwater flow
	maps based on groundwater elevations measured during all sampling activities conducted during the sampling
	year of the report, a discussion of the analytical results detected during the year. Discussions should focus on
	where Intervention Limit/HRL or any other pertinent Standards are being exceeded with explanations for the
	source of the exceedances. Conclusion and recommendations for future monitoring activities for the site shall
	also be included based on the findings presented in this report. Submit annual water monitoring evaluation
	report: Due annually, by the 1st of February. [Minn. R. 7035.2815, subp. 14(Q)]
5.1.6	At a minimum of 180 days before the expiration date of this Permit, the Permittee shall submit an application for
	permit reissuance: Due 3472 calendar days after Permit Issuance Date. [Minn. R. 7001.0040, subp. 3]

6. Monitoring stations

Monitoring type	Station name	Status
Groundwater	DC-117	
Groundwater	DC-118	
Groundwater	DC-119	
Groundwater	MW-10	
Groundwater	MW-120	
Groundwater	MW-121	
Groundwater	MW-122	
Groundwater	MW-8	
Leachate Sampling Point	Leachate Storage Tank	

7. Monitoring groups

Туре	Name	Group description	Assigned stations
	Groundwater Sampling Group		
Ground Water Monitoring Group	1	Up-gradient sampling	MW-10, MW-8
			DC-117, DC-118, DC-119,
	Groundwater Sampling Group		MW-120, MW-121, MW-
Ground Water Monitoring Group	2	Quarterly sampling	122
Leachate Monitoring Group	Leachate Sampling Group	Leachate Tank	Leachate Storage Tank

8. Sampling and monitoring requirements

Type	Group code	Parameter	CAS	Limit	Unit	Sampling freq.
Type Groundwater	Loue	Falameter	CAS	LIIIIL	Onic	Samping neq.
Sampling						
Group 1						
8.1.1	DEMO	Alkalinity, Total as CaCO3	T-005		ug/L	Jul
0.1.1	DEMO	Nitrite Plus Nitrate, Total (as	1 000		~ <u>6</u> / -	301
8.1.2	DEMO	N)	C005		ug/L	Jul
8.1.3	DEMO	Solids, Total Dissolved (TDS)	C010		ug/L	Jul
8.1.4	DEMO	Chloride	16887-00-6		ug/L	Jul
8.1.5	DEMO	Sulfate	14808-79-8		ug/L	Jul
8.1.6	DEMO	Arsenic	7440-38-2	2.5	ug/L	Jul
8.1.7	DEMO	Barium	7440-39-3	500	ug/L	Jul
8.1.8	DEMO	Boron	7440-42-8	250	ug/L	Jul
8.1.9	DEMO	Cadmium	7440-43-9	0.125	ug/L	Jul
8.1.10	DEMO	Chromium	7440-47-3	25	ug/L	Jul
8.1.11	DEMO	Copper	7440-50-8	250	ug/L	Jul
8.1.12	DEMO	Iron	7439-89-6		ug/L	Jul
8.1.13	DEMO	Lead	7439-92-1	7.5	ug/L	Jul
8.1.14	DEMO	Manganese	7439-96-5	25	ug/L	Jul
8.1.15	DEMO	Mercury	7439-97-6	0.5	ug/L	Jul
8.1.16	DEMO	Dissolved Oxygen, Field	T-105		ug/L	Jul
8.1.17	DEMO	Oxygen, Dissolved	7782-44-7		ug/L	Jul
8.1.18	DEMO	рН	C006		SU	Jul
8.1.19	DEMO	Specific Conductance	C-011		umhos/cm	Jul
		Static Water Level (Elevation,				
8.1.20	DEMO	MSL)	PCA-001		ft msl	Jul
8.1.21	DEMO	Temperature	T-121		degrees C	Jul
8.1.22	DEMO	Turbidity	G-019		NTU	Jul
8.1.23	DEMO	Color	M002			Jul
8.1.24	DEMO	pH, Field	C006		SU	Jul
8.1.25	DEMO	Acetone	67-64-1	1000	ug/L	Jul
		Allyl chloride (3				
8.1.26	DEMO	chloropropene)	107-05-1	7.5	ug/L	Jul
8.1.27	DEMO	Benzene	71-43-2	0.5	ug/L	Jul
		Dichloromethane (Methylene				
8.1.28	DEMO	chloride)	75-09-2	1.25	ug/L	Jul
		Tetrachloroethylene				
8.1.29	DEMO	(Perchloroethylene)	127-18-4	1	ug/L	Jul
8.1.30	DEMO	Trichloroethylene (TCE)	79-01-6	0.1	ug/L	Jul
8.1.31	DEMO	1,1,1,2-Tetrachloroethane	630-20-6	17.5	ug/L	Jul
8.1.32	DEMO	1,1,1-Trichloroethane	71-55-6	2250	ug/L	Jul
8.1.33	DEMO	1,1,2-Trichloroethane	79-00-5	0.75	ug/L	Jul
8.1.34	DEMO	1,1,2-Trichlorotrifluoroethane	76-13-1	5000	ug/L	Jul
8.1.35	DEMO	1,1-Dichloroethane	75-34-3	25	ug/L	Jul
0 1 20		1,1-Dichloroethylene		50		1
8.1.36	DEMO	(Vinylidene chloride)	75-35-4	50	ug/L	Jul
8.1.37	DEMO	1,1-Dichloropropanone	513-88-2		ug/L	Jul
8.1.38	DEMO	1,1-Dichloropropene	563-58-6	10	ug/L	Jul
8.1.39	DEMO	1,2-(trans-) Dichloroethylene	156-60-5	10	ug/L	Jul
8.1.40	DEMO	1,2,3-Trichlorobenzene	87-61-6		ug/L	Jul

	Group					
Туре	code	Parameter	CAS	Limit	Unit	Sampling freq.
8.1.41	DEMO	1,2,3-Trichloropropane	96-18-4	0.00075	ug/L	Jul
8.1.42	DEMO	1,2,4-Trichlorobenzene	120-82-1	1	ug/L	Jul
8.1.43	DEMO	1,2,4-Trimethylbenzene	95-63-6	25	ug/L	Jul
		1,2-Dibromoethane (Ethylene				
8.1.44	DEMO	dibromide); EDB	106-93-4	0.001	ug/L	Jul
8.1.45	DEMO	1,2-Dichlorobenzene (orth-)	95-50-1	150	ug/L	Jul
8.1.46	DEMO	1,2-Dichloroethane	107-06-2	25	ug/L	Jul
8.1.47	DEMO	1,2-Dichloroethylene (cis-)	156-59-2	1.5	ug/L	Jul
8.1.48	DEMO	1,2-Dichloropropane	78-87-5	1.25	ug/L	Jul
8.1.49	DEMO	1,3,5-Trimethylbenzene	108-67-8	25	ug/L	Jul
8.1.50	DEMO	1,3-Dichlorobenzene	541-73-1	150	ug/L	Jul
8.1.51	DEMO	1,3-Dichloropropane	142-28-9		ug/L	Jul
8.1.52	DEMO	1,3-Dichloropropene	542-75-6	0.5	ug/L	Jul
8.1.53	DEMO	2-Chlorotoluene	95-49-8		ug/L	Jul
8.1.54	DEMO	4-Chlorotoluene (para-)	106-43-4		ug/L	Jul
		BETX				
		(Benzene,Ethylbenzene,Tolue				
8.1.55	DEMO	ne,Xylenes)	53		ug/L	Jul
8.1.56	DEMO	Bromobenzene	108-86-1		ug/L	Jul
		Bromochloromethane			_	
8.1.57	DEMO	(Chlorobromomethane)	74-97-5		ug/L	Jul
		Bromodichloromethane			_	
8.1.58	DEMO	(Dichlorobromomethane)	75-27-4	1.5	ug/L	Jul
8.1.59	DEMO	Bromoform	75-25-2	10	ug/L	Jul
		Bromomethane (Methyl			_	
8.1.60	DEMO	bromide)	74-83-9	2.5	ug/L	Jul
		Chlorobenzene				
8.1.61	DEMO	(Monochlorobenzene)	108-90-7	25	ug/L	Jul
		Chlorodibromomethane			4	
8.1.62	DEMO	(Dibromochloromethane)	124-48-1	2.5	ug/L	Jul
8.1.63	DEMO	Chloroethane	75-00-3		ug/L	Jul
8.1.64	DEMO	Chloroform	67-66-3	7.5	ug/L	Jul
8.1.65	DEMO	Cumene (Isopropylbenzene)	98-82-8	75	ug/L	Jul
8.1.66	DEMO	Dichlorodifluoromethane	75-71-8	175	ug/L	Jul
8.1.67	DEMO	Dichloroethylene	25323302		ug/L	Jul
8.1.68	DEMO	Dichlorofluoromethane	75-43-4	50	ug/L	Jul
8.1.69	DEMO	Ethyl ether	60-29-7	50	ug/L	Jul
8.1.70	DEMO	Ethylbenzene	100-41-4	12.5	ug/L	Jul
8.1.71	DEMO	Hexachlorobutadiene	87-68-3	0.25	ug/L	Jul
8.1.72	DEMO	Chloromethane	74-87-3	1000	ug/L	Jul
8.1.73	DEMO	Methyl ethyl ketone (MEK)	78-93-3	1000	ug/L	Jul
0 1 7 1	DEMO	Methyl isobutyl ketone (4-	100 10 1	75		1.1
8.1.74	DEMO	Methyl-2-pentanone)	108-10-1	75	ug/L	Jul
8.1.75	DEMO	Methyl-tert-butylether	1634-04-4	15	ug/L	Jul
8.1.76	DEMO	Naphthalene	91-20-3	17.5	ug/L	Jul
8.1.77	DEMO	n-Butylbenzene	104-51-8		ug/L	Jul
8.1.78	DEMO	n-Propylbenzene	103-65-1		ug/L	Jul
8.1.79	DEMO	tert-Butylbenzene	98-06-6		ug/L	Jul
8.1.80	DEMO	Tetrahydrofuran	109-99-9	50	ug/L	Jul
8.1.81	DEMO	Toluene	108-88-3	50	ug/L	Jul
8.1.82	DEMO	Trichlorofluoromethane	75-69-4	500	ug/L	Jul
8.1.83	DEMO	Vinyl chloride (chloroethene)	75-01-4	0.05	ug/L	Jul

Туре	Group code	Parameter	CAS	Limit	Unit	Sampling freq
8.1.84	DEMO	Xylene	1330-20-7	75	ug/L	Jul
8.1.85	DEMO	Xylene (M & P)	179601-23-1	2500	ug/L	Jul
8.1.86	DEMO	Xylene (o-)	95-47-6	2300	ug/L	Jul
5.1.80	DLIVIO		33-47-0			501
Groundwater Sampling						
Group 2						
8.2.1	DEMO	Alkalinity, Total as CaCO3	T-005		ug/L	Apr, Jul, Oct
		Nitrite Plus Nitrate, Total (as				
8.2.2	DEMO	N)	C005		ug/L	Jul
8.2.3	DEMO	Solids, Total Dissolved (TDS)	C010		ug/L	Apr, Jul, Oct
8.2.4	DEMO	Chloride	16887-00-6		ug/L	Jul
3.2.5	DEMO	Sulfate	14808-79-8		ug/L	Jul
8.2.6	DEMO	Arsenic	7440-38-2	2.5	ug/L	Jul
8.2.7	DEMO	Barium	7440-39-3	500	ug/L	Jul
8.2.8	DEMO	Boron	7440-42-8	250	ug/L	Apr, Jul, Oct
8.2.9	DEMO	Cadmium	7440-43-9	0.125	ug/L	Jul
8.2.10	DEMO	Chromium	7440-47-3	25	ug/L	Jul
8.2.11	DEMO	Copper	7440-50-8	250	ug/L	Jul
8.2.12	DEMO	Iron	7439-89-6		ug/L	Jul
8.2.13	DEMO	Lead	7439-92-1	7.5	ug/L	Jul
8.2.14	DEMO	Manganese	7439-96-5	25	ug/L	Apr, Jul, Oct
8.2.15	DEMO	Mercury	7439-97-6	0.5	ug/L	Jul
8.2.16	DEMO	Dissolved Oxygen, Field	T-105		ug/L	Apr, Jul, Oct
8.2.17	DEMO	Oxygen, Dissolved	7782-44-7		ug/L	Apr, Jul, Oct
8.2.18	DEMO	pH	C006		SU	Apr, Jul, Oct
8.2.19	DEMO	Specific Conductance	C-011		umhos/cm	Apr, Jul, Oct
0.2.10	DEMO	Static Water Level (Elevation,	0.011			, (p), sul, eee
8.2.20	DEMO	MSL)	PCA-001		ft msl	Apr, Jul, Oct
8.2.21	DEMO	Temperature	T-121		degrees C	Apr, Jul, Oct
8.2.22	DEMO	Turbidity	G-019		NTU	Apr, Jul, Oct
8.2.23	DEMO	Color	M002			Apr, Jul, Oct
8.2.24	DEMO	pH, Field	C006		SU	Apr, Jul, Oct
8.2.25	DEMO	Acetone	67-64-1	1000	ug/L	Apr, Jul, Oct
0.2.25	DEIVIO	Allyl chloride (3	07-04-1	1000		Αρι, σει
8.2.26	DEMO	chloropropene)	107-05-1	7.5	ug/L	Apr, Jul, Oct
8.2.20	DEMO	Benzene	71-43-2	0.5	ug/L	Apr, Jul, Oct
0.2.27	DEIVIO	Dichloromethane (Methylene	71-43-2	0.5	ug/L	Api, Jui, Oct
8.2.28	DEMO	chloride)	75-09-2	1.25	ug/L	Apr, Jul, Oct
0 2 20	DEMO	Tetrachloroethylene	407.40.5			
8.2.29	DEMO	(Perchloroethylene)	127-18-4	1	ug/L	Apr, Jul, Oct
8.2.30	DEMO	Trichloroethylene (TCE)	79-01-6	0.1	ug/L	Apr, Jul, Oct
8.2.31	DEMO	1,1,1,2-Tetrachloroethane	630-20-6	17.5	ug/L	Apr, Jul, Oct
8.2.32	DEMO	1,1,1-Trichloroethane	71-55-6	2250	ug/L	Apr, Jul, Oct
8.2.33	DEMO	1,1,2-Trichloroethane	79-00-5	0.75	ug/L	Apr, Jul, Oct
8.2.34	DEMO	1,1,2-Trichlorotrifluoroethane	76-13-1	5000	ug/L	Apr, Jul, Oct
8.2.35	DEMO	1,1-Dichloroethane	75-34-3	25	ug/L	Apr, Jul, Oct
		1,1-Dichloroethylene				
8.2.36	DEMO	(Vinylidene chloride)	75-35-4	50	ug/L	Apr, Jul, Oct
8.2.37	DEMO	1,1-Dichloropropanone	513-88-2		ug/L	Apr, Jul, Oct
8.2.38	DEMO	1,1-Dichloropropene	563-58-6		ug/L	Apr, Jul, Oct
8.2.39	DEMO	1,2-(trans-) Dichloroethylene	156-60-5	10	ug/L	Apr, Jul, Oct

Туре	Group code	Parameter	CAS	Limit	Unit	Sampling freq.
8.2.40	DEMO	1,2,3-Trichlorobenzene	87-61-6	LIIIIL	ug/L	Apr, Jul, Oct
8.2.41	DEMO	1,2,3-Trichloropropane	96-18-4	0.00075	ug/L	Apr, Jul, Oct
8.2.42	DEMO	1,2,4-Trichlorobenzene	120-82-1	1	ug/L	Apr, Jul, Oct
8.2.42	DEMO	1,2,4-Trimethylbenzene	95-63-6	25	ug/L	Apr, Jul, Oct
0.2.45	DEIVIO	1,2-Dibromoethane (Ethylene	33-03-0	25	ug/L	Αρι, Jul, Oct
8.2.44	DEMO	dibromide); EDB	106-93-4	0.001	ug/L	Apr, Jul, Oct
8.2.45	DEMO	1,2-Dichlorobenzene (orth-)	95-50-1	150	ug/L	Apr, Jul, Oct
8.2.46	DEMO	1,2-Dichloroethane	107-06-2	25	ug/L	Apr, Jul, Oct
8.2.47	DEMO	1,2-Dichloroethylene (cis-)	156-59-2	1.5	ug/L	Apr, Jul, Oct
8.2.48	DEMO	1,2-Dichloropropane	78-87-5	1.25	ug/L	Apr, Jul, Oct
8.2.49	DEMO	1,3,5-Trimethylbenzene	108-67-8	25	ug/L	Apr, Jul, Oct
8.2.50	DEMO	1,3-Dichlorobenzene	541-73-1	150	ug/L	Apr, Jul, Oct
8.2.51	DEMO	1,3-Dichloropropane	142-28-9	150	ug/L	Apr, Jul, Oct
8.2.52	DEMO	1,3-Dichloropropene	542-75-6	0.5	ug/L	Apr, Jul, Oct
8.2.53	DEMO	2-Chlorotoluene	95-49-8	0.5	ug/L	Apr, Jul, Oct
8.2.54	DEMO	4-Chlorotoluene (para-)	106-43-4		ug/L	Apr, Jul, Oct
8.2.55	DEMO	Bromobenzene	108-86-1		ug/L	Apr, Jul, Oct
0.2.55	DEMIC	Bromochloromethane	100 00 1		46/ L	
8.2.56	DEMO	(Chlorobromomethane)	74-97-5		ug/L	Apr, Jul, Oct
0.2.50	DEMIC	Bromodichloromethane	74 57 5		46/ L	
8.2.57	DEMO	(Dichlorobromomethane)	75-27-4	1.5	ug/L	Apr, Jul, Oct
8.2.58	DEMO	Bromoform	75-25-2	10	ug/L	Apr, Jul, Oct
0.2.00	DEmo	Bromomethane (Methyl	75 25 2	10	\$6/ E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
8.2.59	DEMO	bromide)	74-83-9	2.5	ug/L	Apr, Jul, Oct
0.2.00	DEmo	Chlorobenzene	71000	2.5	\$6/ E	
8.2.60	DEMO	(Monochlorobenzene)	108-90-7	25	ug/L	Apr, Jul, Oct
		Chlorodibromomethane				
8.2.61	DEMO	(Dibromochloromethane)	124-48-1	2.5	ug/L	Apr, Jul, Oct
8.2.62	DEMO	Chloroethane	75-00-3		ug/L	Apr, Jul, Oct
8.2.63	DEMO	Chloroform	67-66-3	7.5	ug/L	Apr, Jul, Oct
8.2.64	DEMO	Cumene (Isopropylbenzene)	98-82-8	75	ug/L	Apr, Jul, Oct
8.2.65	DEMO	Dichlorodifluoromethane	75-71-8	175	ug/L	Apr, Jul, Oct
8.2.66	DEMO	Dichloroethylene	25323302		ug/L	Apr, Jul, Oct
8.2.67	DEMO	Dichlorofluoromethane	75-43-4		ug/L	Apr, Jul, Oct
8.2.68	DEMO	Ethyl ether	60-29-7	50	ug/L	Apr, Jul, Oct
8.2.69	DEMO	Ethylbenzene	100-41-4	12.5	ug/L	Apr, Jul, Oct
8.2.70	DEMO	Hexachlorobutadiene	87-68-3	0.25	ug/L	Apr, Jul, Oct
8.2.71	DEMO	Chloromethane	74-87-3		ug/L	Apr, Jul, Oct
8.2.72	DEMO	Methyl ethyl ketone (MEK)	78-93-3	1000	ug/L	Apr, Jul, Oct
		Methyl isobutyl ketone (4-			0,	
8.2.73	DEMO	Methyl-2-pentanone)	108-10-1	75	ug/L	Apr, Jul, Oct
8.2.74	DEMO	Methyl-tert-butylether	1634-04-4	15	ug/L	Apr, Jul, Oct
8.2.75	DEMO	Naphthalene	91-20-3	17.5	ug/L	Apr, Jul, Oct
8.2.76	DEMO	n-Butylbenzene	104-51-8		ug/L	Apr, Jul, Oct
8.2.77	DEMO	n-Propylbenzene	103-65-1		ug/L	Apr, Jul, Oct
8.2.78	DEMO	tert-Butylbenzene	98-06-6		ug/L	Apr, Jul, Oct
8.2.79	DEMO	Tetrahydrofuran	109-99-9		ug/L	Apr, Jul, Oct
8.2.80	DEMO	Toluene	108-88-3	50	ug/L	Apr, Jul, Oct
8.2.81	DEMO	Trichlorofluoromethane	75-69-4	500	ug/L	Apr, Jul, Oct
8.2.82	DEMO	Vinyl chloride (chloroethene)	75-01-4	0.05	ug/L	Apr, Jul, Oct
8.2.83	DEMO	Xylene	1330-20-7	75	ug/L	Apr, Jul, Oct
8.2.84	DEMO	Xylene (M & P)	179601-23-1	2500	ug/L	Apr, Jul, Oct

Туре	Group code	Parameter	CAS	Limit	Unit	Sampling freq.
8.2.85	DEMO	Xylene (o-)	95-47-6		ug/L	Apr, Jul, Oct
Leachate						
Sampling						
Group						
					6	Apr, Jul, Oct,
8.3.1	MSWL	Arsenic	7440-38-2		ug/L	Dec
8.3.2	MSWL	Barium	7440-39-3		ug/L	Apr, Jul, Oct, Dec
0.3.2	IVISVL	Ballulli	7440-39-3		ug/L	Apr, Jul, Oct,
8.3.3	MSWL	Aluminum	7429-90-5		ug/L	Dec
0.0.0			7 125 50 5		~8/ L	Apr, Jul, Oct,
8.3.4	MSWL	Antimony	7440-36-0		ug/L	Dec
						Apr, Jul, Oct,
8.3.5	MSWL	Beryllium	7440-41-7		ug/L	Dec
						Apr, Jul, Oct,
8.3.6	MSWL	Boron	7440-42-8		ug/L	Dec
						Apr, Jul, Oct,
8.3.7	MSWL	Cadmium	7440-43-9		ug/L	Dec
0.2.0	NACIA/I	Calainas	7440 70 2			Apr, Jul, Oct,
8.3.8	MSWL	Calcium	7440-70-2		ug/L	Dec Apr, Jul, Oct,
8.3.9	MSWL	Chromium	7440-47-3		ug/L	Dec
8.3.9	IVISVL	enionium	7440-47-3			Apr, Jul, Oct,
8.3.10	MSWL	Chromium, Hexavalent (as Cr)	18540-29-9		ug/L	Dec
		Chromium, Trivalent, Dry				Apr, Jul, Oct,
8.3.11	MSWL	Weight, (as Cr)	18540-29-9		ug/L	Dec
						Apr, Jul, Oct,
8.3.12	MSWL	Cobalt	7440-48-4		ug/L	Dec
						Apr, Jul, Oct,
8.3.13	MSWL	Copper	7440-50-8		ug/L	Dec
0 2 1 4	NACIA/I	luce	7420 80 6			Apr, Jul, Oct,
8.3.14	MSWL	Iron	7439-89-6		ug/L	Dec Apr, Jul, Oct,
8.3.15	MSWL	Lead	7439-92-1		ug/L	Dec
0.0.10	INIS IVE		7433 32 1		06/ L	Apr, Jul, Oct,
8.3.16	MSWL	Lithium	7439-93-2		ug/L	Dec
						Apr, Jul, Oct,
8.3.17	MSWL	Magnesium	7439-95-4		ug/L	Dec
						Apr, Jul, Oct,
8.3.18	MSWL	Manganese	7439-96-5		ug/L	Dec
						Apr, Jul, Oct,
8.3.19	MSWL	Mercury	7439-97-6		ug/L	Dec
8.3.20	MSWL	Molybdenum	7439-98-7		ug/L	Apr, Jul, Oct, Dec
0.3.20	IVISVVL	worybuenum	1433-30-1		ug/L	Apr, Jul, Oct,
8.3.21	MSWL	Nickel	7440-02-0		ug/L	Dec
					~0/ -	Apr, Jul, Oct,
8.3.22	MSWL	Nitrate (as Nitrogen)	14797-55-8		ug/L	Dec
						Apr, Jul, Oct,
8.3.23	MSWL	Potassium	7440-09-7		ug/L	Dec
8.3.24	MSWL	Selenium	7782-49-2		ug/L	Apr, Jul, Oct,

DEPARTMENT OF NATURAL RESOURCES

Minnesota Department of Natural Resources Division of Ecological & Water Resources 500 Lafayette Road, Box 25 St. Paul, MN 55155-4025

September 13, 2021 Correspondence # ERDB 20220026

> Ms. Kirsten Pauly Sunde Engineering, PLLC 10830 Nesbitt Avenue South Bloomington, MN 55437

RE: Natural Heritage Review of the proposed Dem-Con Landfill Expansion, T115N R23W Sections 21 & 28; Scott County

Dear Ms. Pauly,

As requested, the Minnesota Natural Heritage Information System has been queried to determine if any rare species or other significant natural features are known to occur within an approximate one-mile radius of the proposed project. Based on this query, rare features have been documented within the search area (for details, please visit the <u>Rare Species Guide Website</u> for more information on the biology, habitat use, and conservation measures of these rare species). Please note that the following rare features may be adversely affected by the proposed project:

Ecologically Significant Areas

• There are areas ranked *Below* within the project boundary that the Minnesota Biological Survey considered for Sites of Biodiversity Significance, but were determined to be below the minimum biodiversity threshold for statewide significance. These areas, however, have conservation value at the local level as habitat for native plants and animals, corridors for animal movements, buffers surrounding higher quality natural areas, or as areas with high potential for restoration of native habitat. GIS shapefiles of MBS Sites can be downloaded from the <u>MN Geospatial Commons</u>. Please contact me if you do not have access to the appropriate mapping services.

State-listed Species

• Kitten-tails (*Besseya bullii*), a state-listed threatened plant, has been documented in the vicinity of the proposed project. This species is found in savannas, prairies, and oak woodlands and prefers open upper slopes of buffs. Minnesota's Endangered Species Statute (Minnesota

Statutes, section 84.0895) and associated Rules (Minnesota Rules, part 6212.1800 to 6212.2300 and 6134) prohibit the take of threatened or endangered species without a permit. Given the presence of state-protected species in the direct vicinity of the proposed project and the likely presence of potential habitat for other state-listed species, a qualified surveyor will need to conduct a botanical survey in any potential habitat that will be impacted by the proposed project. A habitat assessment can be conducted to determine potential habitat and avoidance areas. If impacts to potential habitat can be avoided, a survey is not needed. Surveys must follow the standards contained in the attached Rare Species Survey Process and Rare Plant Guidance. Project planning should take into account that any botanical survey needs to be conducted during the appropriate time of the year, which may be limited. Please consult with Lisa Joyal, the Endangered Species Environmental Review Coordinator (lisa.joyal@state.mn.us) regarding this process.

• The Loggerhead Shrike (*Lanius ludovicianus*), a state-listed endangered bird, Lark Sparrow (*Chondestes grammacus*), and Purple Martin (*Progne subis*), both state-listed bird species of special concern, have been documented in the vicinity of the project site.

Loggerhead Shrikes and Lark Sparrows are found in open, grassland areas with scattered trees and shrubs. Loggerhead Shrike nest in small trees or shrubs, while the Lark Sparrow typically nests on the ground. If the project boundary contains undisturbed grassland, then these birds may breed in the area. Given the potential for Loggerhead Shrikes to be found in the vicinity of the project, avoid tree and shrub removal during the breeding season, typically April through July. **Contact me if any tree or shrub removal will occur during the breeding season, as the DNR may request that a survey for active nests be conducted prior to construction.** As Lark Sparrows nest on the ground, we recommend initial ground disturbance in potential habitat May 15th through August 15th to avoid disturbance of these nesting birds.

Purple Martins nest in colonies and typically along stream and woodland edges. In urban areas, they nest almost exclusively in nest boxes; while in rural areas they can be found nesting in cavities, such as woodpeckerholes. Purple Martins typically nest May through late July and use roost sites late July through early September. If feasible, avoid tree removal in nesting habitat from May through late July to avoid disturbance of nesting birds.

• State-listed aquatic species have been documented in the Minnesota River in the vicinity of the proposed project. These species are particularly vulnerable to deterioration in water quality, especially increased siltation. As such, the project should not be allowed to negatively affect the water quality of the river. Sound erosion and sediment control practices should be implemented and maintained for the duration of the project and incorporated into any stormwater management system.

Federally Protected Species

Northern long-eared bat (*Myotis septentrionalis*), federally listed as threatened and state-listed as special concern, and little brown bat (*Myotis lucifugus*), also a state-listed as special concern, have been documented in the vicinity of the proposed project. During the winter these species typically hibernate in caves and mines. During the active season (approximately April-October) they roost underneath bark, in cavities, or in crevices of both live and dead trees; and in human structures such as buildings and bridges. Pup rearing is during June and July. Activities that may impact this species include, but are not limited to, wind farm operation, any disturbance to hibernacula, and destruction/degradation of habitat. As such, we recommend avoiding tree removal during pup rearing season, June 1st through July 31st.

Regarding the northern long-eared bat, the U.S. Fish and Wildlife Service (USFWS) has published a final 4(d) rule that identifies prohibited take. To determine whether you need to contact the USFWS, please refer to the USFWS Key to the <u>Northern Long-Eared Bat 4(d) Rule</u>. **Please note** there are known roost trees within three-quarters of a mile from the proposed new trail segment in T40N R18W Section 18.

• To ensure compliance with federal law, conduct a federal regulatory review using the U.S. Fish and Wildlife Service's (USFWS) online Information for Planning and Consultation (IPaC) tool.

Environmental Review and Permitting

- The Environmental Assessment Worksheet should address whether the proposed project has the potential to adversely affect the above rare features and if so, it should identify specific measures that will be taken to avoid or minimize disturbance. Sufficient information should be provided so the DNR can determine whether a takings permit will be needed for any of the above protected species.
- Please include a copy of this letter in any state or local license or permit application. Please note that measures to avoid or minimize disturbance to the above rare features may be included as restrictions or conditions in any required permits or licenses.

The Natural Heritage Information System (NHIS), a collection of databases that contains information about Minnesota's rare natural features, is maintained by the Division of Ecological and Water Resources, Department of Natural Resources. The NHIS is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. However, the NHIS is not an exhaustive inventory and thus does not represent all of the occurrences of rare features within the state. Therefore, ecologically significant features for which we have no records may exist within the project area. If additional information becomes available regarding rare features in the vicinity of the project, further review may be necessary. For environmental review purposes, the results of this Natural Heritage Review are valid for one year; the results are only valid for the project location (noted above) and the project description provided on the NHIS Data Request Form. Please contact me if project details change or construction has not occurred within one year as additional review may be required.

The Natural Heritage Review does not constitute review or approval by the Department of Natural Resources as a whole. Instead, it identifies issues regarding known occurrences of rare features and potential effects to these rare features. For information on the environmental review process or other natural resource concerns, you may contact your <u>DNR Regional Environmental Assessment Ecologist</u>.

Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources. An invoice will be mailed to you under separate cover.

Sincerely,

Samantha Bump

Samantha Bump Natural Heritage Review Specialist Samantha.Bump@state.mn.us

- Enc. Rare Species Survey Protocol
- Links: Rare Species Guide
 - http://www.dnr.state.mn.us/rsg/index.html DNR Regional Environmental Assessment Ecologist Contact Info http://www.dnr.state.mn.us/eco/ereview/erp_regioncontacts.html MBS Sites of Biodiversity Significance http://www.dnr.state.mn.us/eco/mcbs/biodiversity_guidelines.html MN Geospatial Commons https://gisdata.mn.gov/ BWSR Native Vegetation/Seed Mixes http://www.bwsr.state.mn.us/native_vegetation/ USFWS Key to the Northern Long-Eared Bat 4(d) Rule for Non-Federal Activities http://www.fws.gov/midwest/endangered/mammals/nleb/KeyFinal4dNLEB.html USFWS Key to the Northern Long-Eared Bat 4(d) Rule for Federal Actions http://www.fws.gov/midwest/endangered/mammals/nleb/KeyFinal4dNLEBFedProjects.html USFWS Northern Long-eared Bat Website http://www.fws.gov/midwest/endangered/mammals/nleb/index.html USFWS Northern Long-eared Bat Fact Sheet http://www.fws.gov/midwest/endangered/mammals/nleb/nlebFactSheet.html
- Cc: Mellissa Collins and Leslie Parris

Kirsten Pauly

From: Sent:	Cinadr, Thomas <thomas.cinadr@mnhs.org> Wednesday, April 6, 2011 8:17 AM</thomas.cinadr@mnhs.org>
То:	'Nick Monserud'
Subject:	RE: Merriam Junction - Environmental Review of an Existing Non-Metallic Mineral Mining Area WITH ATTACHMENTS
Attachments:	Archaeologyt.rtf; Historic.rtf

THIS EMAIL IS NOT A PROJECT CLEARANCE.

This message simply reports the results of the cultural resources database search you requested. The database search produced results for only previously known archaeological sites and historic properties. Please read the note below carefully.

Archaeological sites and historic properties were identified in a search of the Minnesota Archaeological Inventory and Historic Structures Inventory for the search area requested. **Reports containing the results of the search are attached.**

The result of this database search provides a listing of recorded archaeological sites and historic architectural properties that are included in the current SHPO databases. Because the majority of archaeological sites in the state and many historic architectural properties have not been recorded, important sites or structures may exist within the search area and may be affected by development projects within that area. Additional research, including field survey, may be necessary to adequately assess the area's potential to contain historic properties.

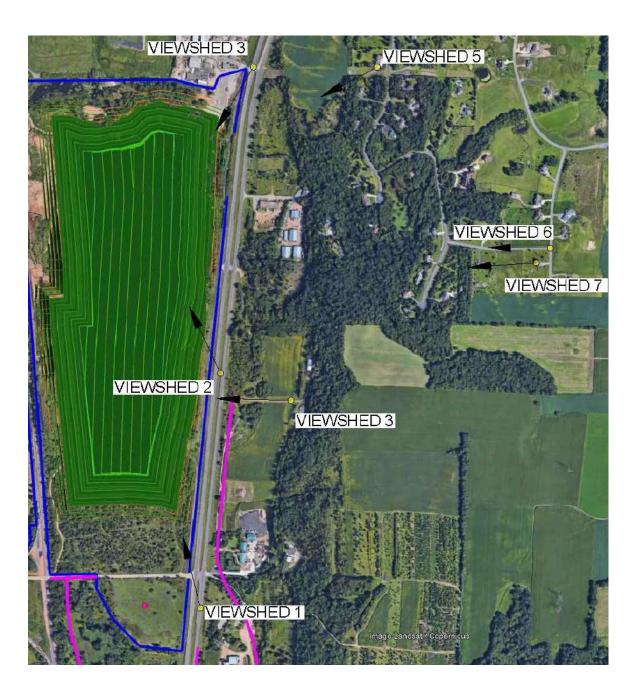
If you require a comprehensive assessment of a project's potential to impact archaeological sites or historic architectural properties, you may need to hire a qualified archaeologist and/or historian. If you need assistance with a project review, please contact Kelly Gragg-Johnson in Review and Compliance @ 651-259-3455 or by email at kelly.graggjohnson@mnhs.org.

The Minnesota SHPO Survey Manuals and Database Metadata and Contractor Lists can be found at http://www.mnhs.org/shpo/survey/inventories.htm

SHPO research hours are 8:00 AM – 4:00 PM Tuesday-Friday. The Office is closed on Mondays. Tom Cinadr Survey and Information Management Coordinator Minnesota State Historic Preservation Office Minnesota Historical Society 345 Kellogg Blvd. West St. Paul, MN 55102

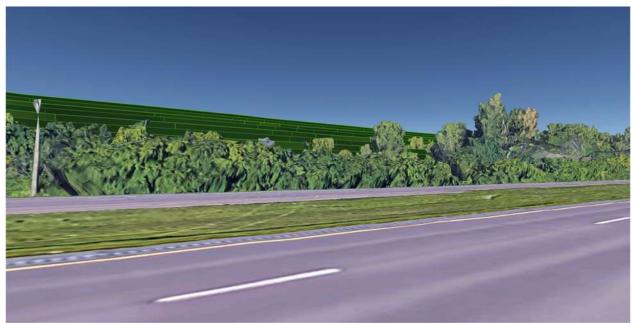
651-259-3453

From: Nick Monserud [mailto:nmonserud@sundecivil.com]
Sent: Thursday, March 31, 2011 8:12 AM
To: Cinadr, Thomas
Subject: Merriam Junction - Environmental Review of an Existing Non-Metallic Mineral Mining Area

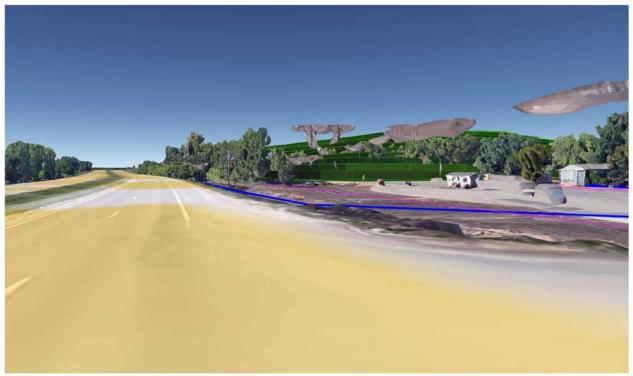

Tom,

Could you please review your database and let me know if there are any archaeological or historic sites located within the area on the attached location map.

Malkerson Sales has asked us to do a comprehensive environmental review of the on-going non-metallic mineral mining area located in portions of Sections 16, 20, 21, 28, and 29, Township 115, Range 23 in Scott County (South of Hwy 41 and West of Hwy 169).


Thank you for you assistance. Please let me know if you have any questions.

Nick Monserud, P.E. **Sunde Engineering, PLLC.** 10830 Nesbitt Avenue South Bloomington, MN 55437-3100 Phone: (952) 881-3344 Direct: (952) 229-8675 Fax: (952) 881-1913 Viewsheds illustrate the viewshed of the landfill from various perspectives. Landfill modelled in green to final elevations. All images Google Earth.



Viewshed 1 -Northbound 169 approaching landfill from south

Viewshed 2- Northbound along US 169 corridor

Viewshed 3 – Southbound 169 approaching landfill from the north

Viewshed 4 – Looking west along Doucette driveway

Viewshed 5 – from 13470 skyline circle

Viewshed 6 intersection 139th Street West and Tracy Ave.

Viewshed 7 – second floor view 13920 Tracy Avenue

MINNESOTA POLLUTION CONTROL AGENCY

520 Lafayette Road North | St. Paul, Minnesota 55155-4194 | 651-296-6300 800-657-3864 | Use your preferred relay service | info.pca@state.mn.us | Equal Opportunity Employer

May 3, 2022

Bill Keegan, President Dem-Con Companies 13020 Dem-Con Drive Shakopee, MN 55379

RE: Applicability Determination Request for Dem-Con Landfill

Dear Bill Keegan:

The Minnesota Pollution Control Agency (MPCA) staff received your application for an applicability determination request on January 7, 2022 for Dem-Con Landfill (facility) located at 13020 Dem-Con Drive, Shakopee, Minnesota. In this applicability determination, you asked the MPCA to determine if an air permit is required for the facility and proposed solid waste permit modification.

The MPCA issued the facility Industrial Solid Waste Permit (ISWMP) SW-290 on April 6, 2010. Dem-Con Landfill is a construction and demolition (C&D) landfill. Dem-Con recently submitted an application for a major modification and reissuance for their solid waste permit. The proposed major modification is for a horizontal expansion of the construction and demolition (C&D) landfill, and Dem-Con does not propose any changes to the landfill operation or existing solid waste permit conditions.

Dem-Con stated that the C&D debris accepted at the facility "consists primarily of inert materials that do not produce air emissions". However, the facility is aware of odors generated at the landfill and has gas monitors along the southeastern perimeter of the facility to monitor for methane gas on a regular basis.

The facility is also aware of the production of hydrogen sulfide gas that can occur at C&D facilities when debris, notably gypsum drywall, decomposes in an anaerobic condition. The facility uses mitigation efforts to limit moisture infiltration and prevent decomposition of these materials. This landfill does not have a gas collection system and therefore no flares, engines, or heaters are used at the facility.

Dem-Con is not able to quantify emissions from the facility. There are no established emission factors for air pollutants in the U.S. Environmental Protection Agency's AP-42: Compilation of Air Emissions Factors for C&D landfills. There are also no other known sources for emission factors and no site-specific data to estimate emissions.

No federal standard for municipal solid waste (40 CFR pt. 63, subp. AAAA - National Emission Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills, 40 CFR pt. 60, subp. XXX - Standards of Performance for Municipal Solid Waste Landfills That Commenced Construction, Reconstruction, or Modification After July 17, 2014, and 40 CFR pt. 62, subp. OOO - Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction On or Before July 17, 2014 and Have Not Been Modified or Reconstructed Since July 17, 2014) apply because Dem-Con is a C&D facility.

Bill Keegan, President Page 2 May 3, 2022

Dem-Con is subject to 40 CFR pt. 61, subp. M - National Emission Standard for Asbestos, which is included in the facility's ISWMP. 40 CFR pt. 61, subp. M is the only standard under the Code of Federal Regulations Dem-Con is subject to. Therefore, as provided under Minn. R. 7007.0300, subp. 1(C), "any stationary source that would be covered by a permit solely because it is subject to Code of Federal Regulations, title 40, part 61, subpart M, National Emission Standard for Hazardous Air Pollutants for Asbestos, section 61.145, Standard for Demolition and Renovation, or 61.154, Standard for Active Waste Disposal Sites" is not required to obtain a permit.

Determination

Based on the information available in the applicability request, the facility's November 2021 Environmental Assessment Worksheet, and discussions with the facility, Dem-Con does not need an air permit at this time. If the landfill changes operations in any way, or if the landfill is producing hydrogen sulfide gas that can be measured, this determination should be reconsidered.

This determination applies only to the facility and project as presented at the time of this submittal. If you have any questions, please contact me at <u>jared.lafave@state.mn.us</u> or at 651-757-2514.

Sincerely,

Jared Latave

This document has been electronically signed. Jared LaFave, P.E. Supervisor, Air Quality Permits Unit 4 Air Quality Permits Section Industrial Division

JL:lao

cc: Ross Provow, MPCA Toni Volkmeier, MPCA Jared LaFave, MPCA

Technical Memorandum

To:Kirsten Pauly, Sunde EngineeringFrom:Andrew Skoglund, PESubject:Dem-Con EAW Air Assessment ReviewDate:August 22, 2022c:Jim Aiken, Barr Engineering

Executive Summary

Sunde Engineering asked Barr Engineering Co. (Barr) to provide an assessment of potential air emissions from the Dem-Con Landfill's proposed expansion area. The purpose of the assessment is to help determine if the project's air emissions have the potential for significant environmental effects. The assessment was performed in accordance with the MPCA's guidance document Environmental Review Unit Environmental Assessment Worksheet Air Assessment Practices (p-ear1-10) included as Attachment 1 of this memorandum. It was determined that NAAQS criteria pollutants or MAAQS criteria pollutant emissions are not expected from the landfill vents. Generation and emission of Hydrogen Sulfide (H₂S, a MAAQS pollutant) would be indicative of an upset to the disposal methodology and not part of expected operations at the landfill. Therefore, the Project is not expected to create significant air emissions.

Background

The Project will not generate stationary source air emissions from boilers or exhaust stacks and there are no stationary sources associated with landfill construction and operation until the final landfill cover system is placed. Six passive landfill gas vents will be installed over the Expansion Area (241 acres) as a final cover preventative maintenance measure. The passive vents may be considered stationary sources. The purpose of the passive venting system is to allow venting of any landfill gas generation that may occur and to allow exchange of air to accommodate changes in barometric pressure without damage to the synthetic cover system. The vents themselves are not connected to a fan or vacuum system and the emissions from the natural draft ventilation system are not expected to be significant.

Although most Construction and Demolition (C&D) waste is inert, portions of the waste stream are composed of organics, wood and paper products, that may slowly decompose and generate landfill gas. The composition of landfill gas emissions from the organic faction of C&D waste is primarily Methane (CH₄) and Carbon Dioxide (CO₂) as indicated in the EPA's Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM) Management Practices Chapters, Chapter 6 Landfilling, November 2020. "When ... paper, and wood are landfilled, anaerobic bacteria degrade the materials, producing methane (CH4) and carbon dioxide (CO2)." CH₄ and CO₂ are not criteria pollutants. In addition to CH₄ and CO₂, under specific fermenting conditions (anaerobic environment, sulfate-reducing bacteria, moisture, and certain pH) drywall can produce Hydrogen Sulfide (H₂S). The

To:Kirsten Pauly, Sunde EngineeringFrom:Andrew Skoglund, PESubject:Dem-Con EAW Air Assessment ReviewDate:August 22, 2022Page:2

majority of H₂S that is produced ends up in the leachate, but some H₂S gas can also be produced and is readily identified by its sulfur (rotten egg) odor. Dem-Con operates the landfill in a manner to eliminate or reduce these conditions needed for H₂S generation.

Assessment

MPCA has identified the steps in form p-ear1-10 to follow for assessment whether modeling is required as part of the EAW air review pathway. Step 1 asks "will the project result in the emission of air pollutants?" The landfill vents could be viewed as potential point sources (i.e., they have an airflow). However, the minimal emissions of regulated pollutants subject to modeling requirements leads to the conclusion there is no need to complete a modeling assessment. Because there are no combustion sources, the NAAQS criteria pollutants would not be expected in the vent emissions. The historical H₂S emissions at the site were associated with prior operational modes/scenarios that are no longer used. Specifically, prior operations at Dem-Con utilized a different method for disposal of gypsum board product, which has been discontinued to minimize potential H₂S generation. Significant H₂S generation in the C&D waste as currently managed is a very unlikely outcome and would represent a failure of the Dem-Con management system.

As additional support that there would be no meaningful H₂S emissions from the project vents, MPCA in its air permitting applicability determination notes there are <u>no</u> emission factors for H₂S from C&D landfills given the minimal generation expected from this waste. Further review has found no additional source for potential emission factors, as H₂S emissions from the waste being accepted by Dem-Con are not expected. As noted by the air permit applicability determination, no significant emissions are expected from the project that would necessitate modeling. Given the revised process for waste disposal of the gypsum board minimizes the exposure to moisture, H₂S generation from breakdown of this material will be inconsequential.

Further, airflow from the vents is expected to be minimal, as they are installed as a measure to prevent gas buildup under the cover due to differential pressure changes caused by changes in atmospheric conditions. Gas generation in properly managed C&D waste is expected to be minimal. Given emissions of H₂S would reflect non-optimal operation of the disposal system, we would assert that there are not expected emissions of air pollutants. This would allow Dem-Con to answer no to the Step 1 question. No NAAQS criteria pollutants are expected from the landfill vents, and generation and emission of H₂S (a MAAQS pollutant) would be indicative of an upset to the disposal methodology and not part of expected operations at the landfill.

Even if MPCA does not allow Dem-Con to screen out of further air analysis via Step 1, Step 2 looks at the availability of background monitoring data for the pollutant(s) of interest. In particular, the section asks whether there is at least a Screening Value's worth of space below the respective standard (H₂S MAAQS) in this case. MPCA does not maintain background H₂S monitoring values and instead monitors specific industrial facilities for assessment of compliance, or in response to specific complaints. Dem-Con has not received complaints regarding H₂S odor since changing their operational method for disposal of gypsum

board materials. The H₂S MAAQS is intended to provide a usable concentration surrogate to avoid odor and possible headache and nausea impacts to the public. While there is not background monitoring data to quantitatively demonstrate available space for a project below the MAAQS, the lack of odor complaints (with a range of odor thresholds for H₂S starting at 0.5 ppb) since changing disposal methods indicates that this element is likely fulfilled.

If one assumes neither Step 1 or 2 were sufficient to demonstrate no further analysis is needed, Step 3 would require a modeling analysis to be performed. As noted above and in MPCA's analysis of air permit applicability there are no representative emission factors for H₂S from C&D waste vents. The effective rate for modeling is expected to be zero, since emissions of H₂S are not an expected part of the project when operating as proposed.

It is our understanding that Dem-Con intends to continue operating the facility in a manner which avoids gypsum board as an exposed capping material. Without this exposure, H_2S gas generation from the C&D waste is expected to be minimal. As noted in the MPCA's air permit applicability evaluation, if there are measurable H_2S emissions, then there would be a requirement to assess them. This is consistent with our expectation, that there are not expected to be meaningful H_2S emissions from the C&D landfill vents and thus no further air quality analysis is required.

Conclusion

The Project is not expected to create significant air emissions. NAAQS criteria pollutants or MAAQS criteria pollutant emissions are not expected from the landfill vents. Generation and emission of H_2S (a MAAQS pollutant) would be indicative of an upset to the disposal methodology and not part of expected operations at the landfill.

Attachment 1 MPCA: Air Assessment Practices p-earl-10

Environmental Review Unit Environmental Assessment Worksheet air assessment practices

Applicability

The practices described in this document apply to projects (Minn. R. 4410.0200, subp. 65) that require the preparation of an Environmental Assessment Worksheet (EAW) (Minn. R. 4410.1000), where the Minnesota Pollution Control Agency (MPCA) is the Responsible Governmental Unit (RGU). An exception to this are feedlot EAWs, which have their own air assessment process.

This document also does not apply to projects which require the preparation of an Environmental Impact Statement (EIS). Air assessments for projects requiring an EIS are developed on a case-by-case basis through the scoping process.

The air assessment practices described in this document are an addition to, not a replacement of, any other applicable air assessment requirements that may apply as part of the MPCA's air emission permitting process.

Disclaimer

This document is guidance, it does not replace provisions or regulations of the Clean Air Act or any state statute or rule, nor is it a regulation itself. It does not impose binding, enforceable requirements on any party. The provisions in this document may not apply to particular situations based upon unique or unusual circumstances.

Purpose

The MPCA's Environmental Review Unit (ERU) uses the air assessment process to help determine if the project's air emissions have the potential for significant environmental effects.

Air assessment administrative process

The ERU's air assessment process generally follows the approach presented below:

- Project proposer determines that the project will require preparation of an EAW.
- Project proposer determines if the project will result in air emissions described in this document and if so, project proposer prepares and submits a proposed air modeling protocol to the MPCA. If not, project proposer documents their findings and submits them to the MPCA ERU.
- MPCA receives, reviews, and approves air modeling protocol (when it is complete).
- Project proposer determines if the project will require an air emissions permit. If so, project proposer prepares and submits an air emissions permit application. If project proposer determines that an air emissions permit is not required, it submits this determination to the MPCA ERU. The MPCA ERU may require the project proposer submit a <u>permit applicability determination</u> to the MPCA air permitting program to confirm that an air permit is not necessary.
- Project proposer conducts the air assessment (e.g., screening or refined air dispersion modeling, and AERA) and submits the results to the ERU with its initial EAW data submittal.
- ERU reviews the project proposer's EAW data submittal and begins preparation of the EAW.

If you have any questions regarding this process please call 651-296-6300 or 800-657-3864 and ask for the ERU Air Assessments Coordinator.

How to evaluate a project's potential air quality impacts for an EAW

The EAW air assessment process takes into consideration both the project's potential direct impact to air quality as well as its potential cumulative impact. Direct impacts means the air quality impact of the project alone. Cumulative impacts include the project's direct air quality impacts as well as a representative ambient air quality background conditions (i.e., applicable air quality design value for the project area) and nearby sources air impacts. Minn. R. 4410.1200(E) require EAWs to identify cumulative potential effects.

The EAW air assessment is done for two separate sets of air pollutants which are listed in Parts 1 and 2 of this document. Part 1 pollutants are contained in Tables 1 and 2 below and are derived from the National Ambient Air Quality Standards (NAAQS) and Minnesota Ambient Air Quality Standards (MAAQS). Part 2 pollutants are air toxic pollutants (see Air Assessment Part 2 below for how to find the list of air toxic pollutants).

Air assessment Part 1 – This part describes the recommended steps involved in assessing the project's impact on air quality from emissions of the NAAQS and MAAQS air pollutants listed in Tables 1 and 2 below. Note: The values in Tables 1 and 2 are accurate as of the date of this document. Be sure to verify the current values by consulting Section 1.0 of the <u>MPCA Air Dispersion Modeling Practices Manual</u>.

Part 1 process steps are numbered to correspond to the Part 1 flow chart below.

Pollutant	Averaging Period	Significant Impact Level (SIL) (μg/m³)	NAAQS (µg/m³)
Carbon Monoxide (CO)	1-hour	2000	40,071.5
	8-hour	500	10,304.1
Particulate Matter ≤10 _microns (PM ₁₀)	24-hour	5	150
Particulate Matter ≤2.5	24-hour	1.2	35
microns (PM _{2.5})	Annual	0.3	12.0
Nitrogen Dioxide (NO ₂)	1-hour	7.52	188.0
	Annual	1	99.7
Sulfur Dioxide (SO ₂)	1-hour	7.52	196.4
/	3-hour	25	1309.3
	24-hour	5	366.6
	Annual	1	78.6

Table 1. (NAAQS Pollutants)

Table 2. (MAAQS Pollutants)

Pollutant	Averaging Period	Screening Value (SV) (µg/m³)	MAAQS (µg/m³)
Hydrogen Sulfide (H₂S)	30-minutes ¹	10	70.0
	30-minutes ²	10	42.0

 $^{\rm 1}$ 30-minute average not to be exceeded more than two times in a year

² 30-minute average not to be exceeded more than two times in five consecutive days

The following are the steps for completing air assessment Part 1:

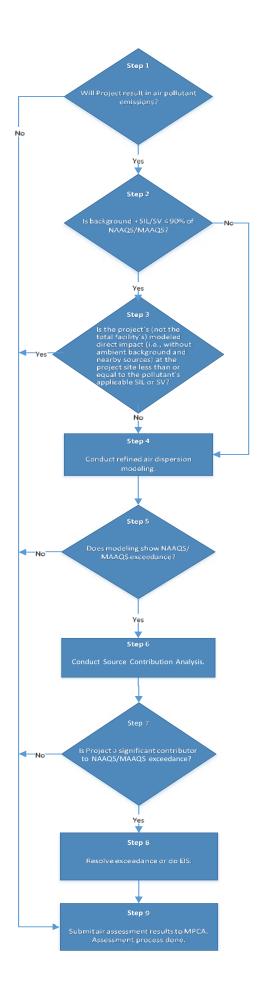
- **Step 1** Will the project result in the emission of air pollutants?
 - If "yes", go to Step 2.
 - If "no", go to Step 9.
- Step 2 Is the representative ambient air quality background concentration (i.e., applicable ambient air quality design value for the project area) plus the pollutant's significant impact level (SIL) or screening value (SV) less than or equal to 90% of the pollutant's NAAQS or MAAQS? Be sure to use the SIL, SV, NAAQS, and MAAQS values and units listed in Tables 1 and 2 of this document.
 - If "yes", go to Step 3.
 - If "no", go to Step 4.
- Step 3 Is the project's (not the total facility's) modeled direct impact (i.e., without ambient background and nearby sources) at the project site less than or equal to the pollutant's applicable SIL or SV? For the NAAQS pollutants listed in Table 1, the project site means at the project's fence line or related Ambient Boundary Control Line. For the MAAQS pollutants listed in Table 2, the project site means at the project's property line.
 - If "yes", go to Step 9.
 - If "no", go to Step 4.

Please refer to <u>Appendix D of the MPCA Air Dispersion Modeling Practices Manual</u> for more detail on where to place modeling receptors at the project site.

The ERU strongly prefers AERMOD for screening level analysis as it looks at both the direct project impacts and the cumulative impacts. In limited circumstances, the MPCA will consider the use of AERSCREEN as an alternative to AERMOD, if the project proposer can demonstrate that its use is appropriate for the project, and will give a more conservative analysis. However, the MPCA would have to agree that the use of AERSCREEN is appropriate before it can be used. The MPCA will not approve the use of SCREEN3, as it is no longer supported or used by either EPA or MPCA.

The MPCA ERU will not accept any air dispersion modeling results or an EAW data submittal until the MPCA's Risk Evaluation and Air Modeling (REAM) unit has approved the air modeling protocol for the project.

Air modeling protocols and modeling information requests should be submitted to the REAM unit using the Air Modeling e-Service. For more information on setting up an e-Service account, getting access to a facility in e-Services, and the forms and data required for an Air Modeling e-Service submission, visit the following webpages:


- Preparing for and submitting an Air Modeling e-Service submittal
- <u>Air Quality Dispersion Modeling Forms</u>

Any questions about the Air Modeling e-Service should be sent to airmodeling.pca@state.mn.us

- Step 4 Conduct refined air dispersion modeling and then go to step 5. The ERU requires all refined air dispersion modeling use AERMOD and follow the procedures in the <u>MPCA Air Dispersion Modeling Practices Manual</u>. The modeling must consider the air impact of the project (and any associated facility), nearby sources, and a representative ambient air background concentration.
- **Step 5** Did the air dispersion modeling show that the pollutant will exceed the applicable NAAQS or MAAQS?
 - If "yes", go to Step 6.
 - If "no", go to Step 9.
- Step 6 Conduct a source contribution analysis according to <u>Appendix A of the MPCA Air Dispersion</u> <u>Modeling Practices Manual</u> and then go to Step 7.

- **Step 7** Did the source contribution analysis show that the project is a "significant contributor" to the modeled exceedance of the applicable NAAQS or MAAQS?
 - If "yes", go to Step 8.
 - If "no", go to Step 9.
- **Step 8** The project will either need to resolve the modeled exceedance(s) by accepting air emission permit limits and/or air pollution controls, or conduct an EIS. Decide approach to be taken and go to Step 9.
- Step 9 Part 1 of the air assessment is done. Submit the results to the MPCA's ERU and complete Part 2 of the air assessment below.

The following is a flow chart for completing the air assessment for Part 1. This flow chart corresponds to the steps above and is provided as an alternative description of the steps in Part 1.

The following are the steps for completing air assessment Part 2:

Air assessment Part 2 – This part describes the recommended steps involved in assessing the project's impact on air quality from its toxic pollutant emissions. Air Toxics are a group of pollutants that cause or may cause cancer or other serious health effects or adverse environmental and ecological effects. Air toxics include, but are not limited to, the Hazardous Air Pollutants (<u>HAPs</u>) specified in the Clean Air Act Amendments. For a full list of air toxics, see the MPCA Risk Analysis Screening Spreadsheet (<u>RASS</u>).

- Step 1 Will the project result in the emission of air pollutants?
 - If "no", Part 2 of the air assessment is done. Submit results to the MPCA's ERU with the result from Part 1.
 - If "yes", go to Step 2.
- **Step 2** Complete an Air Emissions Risk Analysis (AERA) according to the process and guidance on the <u>MPCA's AERA webpage</u> and submit results to the MPCA's ERU with the result from Part 1.

Short tons of waste type landfilled on annual basis

Annual Volume of Waste Landfilled					
Annual waste received					
waste type				volume	unit
C& D lined				874,727	cy-gate
C&D unlined				181,628	
Industrial				246,262	
	Dem-	-Con Waste	ł	•	
Туре	Cy - Gate			Amount (Cu. Yds.)/year	Tons/year
C&D Waste lined	874,727		Conversion ¹		
C&D Waste unlined	181,628				
	1,056,355				
	2,000,000				
C&D Waste Material Metro Area	% Composition	cy gate	#/cy - gate	Short tons/vear	WARM Category
Concrete	14.8		860		concrete
		/ -			
Roofing Shingles	31	327,470	731	119,690	asphalt shingles
Brick	4.1	43,311	860	18,624	clay bricks
Dirt/Sand/Gravel/Rock				63,163	
Dirt/Sand	4.7	49,649	929	23,062	concrete
Rock/Gravel	7.6	,	999	40,101	concrete
Gypsum Board				19,239	
Clean	4.7	49,649	467	11,593	drywall
Painted	3.1	32,747	467	7,646	drywall
Clean Wood				8,033	
Un Treated Dim Lumber	2.5	26,409	169	2,232	Dim. Lumber
Un Treated Eng Wood	2.9		268	4,105	Dim. Lumber
Wood Pallets/Crates/spools	1.9	20,071	169	1,696	Dim. Lumber
Metal				2,614	
Appliances	0			-	
Composite Metals	0			-	
Ferrous Scrap	1.5	15,845	225	1,783	steel cans
Non-Ferrous Scrap	0.7	7,394	225	832	aluminum ingot
Plastics					
	0.1	1.05.0	25	55	
Durable Plastic Items	0.1	1,056	35	18	HDPE
Film Plastic	0.1	1,056	35	18	LDPE
HDPE Buckets				-	
Plastic furniture	0		25	- 10	
R/C and other plastics	0.1	1,056	35	18	mixed plastics
General C&D				33,088	
Acoustic Tiling	0.1	1,056	484	256	Fiberglass Insulation
Asbestos	0	-	484	-	
Asphalt	3.1	32,747	773	12,657	asphalt concrete
Carpet	0.6		147	466	carpet
Carpet padding	0.1		62	33	carpet
Ceramics/Porcelain	1.2	12,676	484	3,068	clay bricks
Flat Glass	0.2	2,113	484	511	, glass
HVAC Ducting	0			-	0.000
Insulation	0.3		100	158	fiberglass insulation
Plastic Piping	0.1		484	256	PVC
Plastic Siding/Decking	0.2		484	511	vinyl flooring
R/C and other C&D	4.9		484	12,526	mixed plastics
		J1./U1	404		

tyvek building wrap	0	-		-	
R/C and other paper	0.1	1,056	500	264	mixed paper
R/C and other glass	0.1	1,056	380	201	glass
Uncoated OCC	0.7	7,394	106	392	corrugated containers
Treated/Painted/Processed wood				6,962	
Painted Stained Wood	6.6	69,719	169	5,891	wood flooring
Treated Wood	0.8	8,451	169	714	wood flooring
Wood Furniture (Built-ins)	0.4	4,225	169	357	wood flooring
Total	100	1,056,355			
¹ From Volume to weight conversion F	actors USEPA Office	e of Resource Conse	ervation and Reco	overy April 2016	
where no converion available for cate					
R/C: Remainder and Composite					
Industrial waste					
		from annual repor	t		
		cy - gate	#/cy-gate	short tons	
Asbestos Fraible		15,044	484	3,641	fiberglass insulation
Asbestos non friable		7,137	484	1,727	fiberglass insulation
Ash		7,621	484	1,844	Fly Ash
Grit and bar screening		1,001	929	465	Concrete
Shredder fluff		2,275	200	228	fiberglass insulation
Sludge		845	999	422	Concrete
Street sweepings		6,662	929	3,094	Concrete
Autoclave Waste		1,788	484	433	Concrete
Reycycling residue		39,355	100	1,968	Mixed Metals
Bldg. Manuf.		62,929	484	15,229	Mixed platics
alt daily cover		64,113	484	15,515	Concrete
cont soils		36,379	929	16,898	Concrete
dirt		604	292	88	Concrete
sand blast media		508	929	236	Concrete
		246,261			

Scope 1 Emissions from Landfilling Activity

Help

SEPA CENTER FOR CORPORATE CLIMATE LEADERSHIP

Guidance

- (A) Enter annual waste data in ORANGE cells. Example entry is shown in first row (GREEN Italics).
- (B) Choose the appropriate material and disposal method from the drop down options. For the average-data method, use one of the mixed material types, such as mixed
- MSW. If the exact waste material is not available, consider an appropriate proxy. For example, dimensional lumber can be used as a proxy for wood furniture.
- (C) Choose an appropriate disposal method. Note that not all disposal methods are available for all materials. If there is a #NA or # Value error in the emissions column, you must pick a new material type or appropriate disposal method.

Table 1. Waste Disposal Weight by Waste Material and Disposal Method $(CO_2, CH_4 \text{ and } N_2O)$

C&DconcreteconcreteLandfilled67,226short ton1,344,520C&DVasteroofing shinglesAsphalt ShinglesLandfilled119,690short ton2,333,800C&DbrickClay BricksLandfilled18,624short ton372,480C&Ddirt/sand/rock/gravelconcreteLandfilled63,163short ton1,263,260C&DWastegyspum boardDrywallLandfilled19,239short ton384,780C&DVasteclean woodDimensional LumberLandfilled8,033short ton356,601C&DVasteferrous scrapSteel CansLandfilled1,83short ton36,600C&D Wastenon-ferrous scrapAluminum IngotLandfilled18short ton36,600C&D Wastenon-ferrous scrapAluminum IngotLandfilled18short ton36,600C&D Wastedurable plastic itemsHDPELandfilled18short ton36,600C&D Wastedurable plastic itensHDPELandfilled18short ton36,600<	Source ID	Source Description	Waste Material	Disposal Method	Weight	Unit	CO ₂ e Emissions (kg)
CAD Waste config shingles Asphalt Shingles Landfilled 119.800 birot ton 2.393.800 CAD Waste dir/sandrock/gravel concrete Landfilled 158.624 birot ton 1.727.460 CAD Waste dir/sandrock/gravel concrete Landfilled 158.624 birot ton 1.727.460 CAD Waste clean wood Dimensional Lumber Landfilled 18.333 biort ton 1.536.60 CAD Waste clean wood Dimensional Lumber Landfilled 1.738 biort ton 1.536.60 CAD Waste chrous scrap Aluminum Ingol Landfilled 1.83< biort ton	Bldg-012	East Power Plant Finished Goods	Steel Cans	Landfilled	1,000	metric ton	22,040
CAD Waste brick City Bricks Landfilled 18.624 short tom 372,460 CAD Waste grypun board Drywall Landfilled 63,153 short tom 1,262,200 CAD Waste grypun board Drywall Landfilled 19,239 short tom 384,780 CAD Waste Gen wood Dimensional Lumber Landfilled 8,033 short tom 1,785,840 CAD Waste Gen woods Dimensional Lumber Landfilled 18,733 short tom 1,866,00 CAD Waste Gurdels plastic terms HOPE Landfilled 18 short tom 380 CAD Waste Gurdels plastics More Plastics Landfilled 18 short tom 380 CAD Waste RC and other plastics More Plastics Landfilled 18 short tom 390 CAD Waste Gan other plastics More Plastics Landfilled 18 short tom 923 CAD Waste Gan other plastics Mare Plastics Landfilled 18 short tom 923 CAD Waste Garpet Carpet Landfilled 18 short tom 923 CAD Waste Garpet plastic short Carpet Landfilled 18 short tom 923 CAD Waste Garpet plasti short tom 16,102 16,102	C&D Waste	concrete	concrete	Landfilled	67,226	short ton	1,344,520
CAD Waste brick City Bricks Landfilled 18.624 short tom 372,460 CAD Waste grypun board Drywall Landfilled 63,153 short tom 1,262,200 CAD Waste grypun board Drywall Landfilled 19,239 short tom 384,780 CAD Waste Gen wood Dimensional Lumber Landfilled 8,033 short tom 1,785,840 CAD Waste Gen woods Dimensional Lumber Landfilled 18,733 short tom 1,866,00 CAD Waste Gurdels plastic terms HOPE Landfilled 18 short tom 380 CAD Waste Gurdels plastics More Plastics Landfilled 18 short tom 380 CAD Waste RC and other plastics More Plastics Landfilled 18 short tom 390 CAD Waste Gan other plastics More Plastics Landfilled 18 short tom 923 CAD Waste Gan other plastics Mare Plastics Landfilled 18 short tom 923 CAD Waste Garpet Carpet Landfilled 18 short tom 923 CAD Waste Garpet plastic short Carpet Landfilled 18 short tom 923 CAD Waste Garpet plasti short tom 16,102 16,102	C&D Waste	roofing shingles	Asphalt Shingles	Landfilled	119,690	short ton	2,393,800
CAD Waste gypum bard Dywail Landfilled 19.239 short ton 394,720 CAD Waste ferrous scrap Steel Cans Landfilled 1.763 short ton 356,670 CAD Waste ferrous scrap Aluminingpt Landfilled 1.783 short ton 556,670 CAD Waste durable plastic items HOPE Landfilled 18,8 short ton 356,600 CAD Waste durable plastic items HOPE Landfilled 18,8 short ton 360 CAD Waste RC and other plastics Mused Plastics Landfilled 18,8 short ton 360 CAD Waste durable plastic items HOPE Landfilled 18,8 short ton 360 CAD Waste durable plastic items HOPE Landfilled 18,8 short ton 360 CAD Waste acoustic tiling LLDPE Landfilled 18,8 short ton 56,00 CAD Waste acoustic tiling Clarpet Landfilled 14,8 short ton 56,00 CAD Waste acoustic tiling Clarpet Landfilled 14,80 56,100 CAD Waste acapet padding Carpet Landfilled 36,80 56,00 CAD Waste carpet padding Carpet Landfilled 51,80 51	C&D Waste	brick	Clay Bricks	Landfilled	18,624	short ton	372,480
CAD Waste gypum board Dywail Landfilled 19.238 phort ton 394,720 CAD Waste ferrous scrap Steel Cans Landfilled 1.733 phort ton 1.556,610 CAD Waste ferrous scrap Aluminingot Landfilled 1.783 phort ton 556,610 CAD Waste dnable plastic terms HDPE Landfilled 1.8 phort ton 66,640 CAD Waste durable plastic terms HDPE Landfilled 1.8 phort ton 390 CAD Waste RC and other plastics Mixed Plastics Landfilled 1.8 phort ton 390 CAD Waste durable plastic terms HDPE Landfilled 1.8 phort ton 390 CAD Waste durable plastics LDPE Landfilled 1.8 phort ton 390 CAD Waste acoustic tiling LLDPE Landfilled 1.2 sphort ton 7.6 not ton 5.6 10 CAD Waste acoustic tiling CLDPE Landfilled 1.4 sphort ton 2.6 37.1 40 CAD Waste carept Agading Carept Landfilled 3.0 8 phort ton 6.6 10 CAD Waste carept Agading Carept Landfilled 3.0 8 phort ton 6.6 20 CAD Waste carept Agading Carept Landf	C&D Waste	dirt/sand/rock/gravel					
C&D Waste clean wood Dimensional Lumber Landfilled 8.033 short ton 1,7385.670 C&D Waste non-ferrous scrap Aluminum ingpt Landfilled 8.03 short ton 17,895.670 C&D Waste non-ferrous scrap Aluminum ingpt Landfilled 18,8 short ton 16,6 40 C&D Waste film plastic LDPE Landfilled 18,8 hort ton 390 C&D Waste RC and other plastes Maste Landfilled 18,8 hort ton 390 C&D Waste durable plastic itens HDPE Landfilled 18,8 hort ton 390 C&D Waste durable plastic itens HDPE Landfilled 18,8 hort ton 390 C&D Waste daoustic ting LDPE Landfilled 18,8 hort ton 390 C&D Waste acoustic ting LDPE Landfilled 12,65 short ton 5,120 C&D Waste asphait Asphait Concrete Landfilled 12,65 short ton 9,320 C&D Waste carpet Carpet Landfilled 3,8 hort ton 6,1300 C&D Waste carpet padding Carpet Landfilled 5,13 hort ton 16,300 C&D Waste fild glass Glass Landfilled 3,8 hort ton	C&D Waste		Drywall	Landfilled			
C&D Waste for-us scrap Steel Cans Landfilled 1.783 short ton 9.56.00 CAD Waste durabe plastic terms HDPE Landfilled 18 short ton 9.90 CAD Waste durabe plastic terms HDPE Landfilled 18 short ton 9.90 CAD Waste durabe plastic terms HDPE Landfilled 18 short ton 9.90 CAD Waste durabe plastic iterns HDPE Landfilled 18 short ton 9.90 CAD Waste durabe plastic iterns HDPE Landfilled 18 short ton 9.90 CAD Waste durabe plastic iterns HDPE Landfilled 1.85 short ton 5.70 CAD Waste assystic asphit Asphati Concrete Landfilled 1.85 short ton 9.82 CAD Waste asphit Asphati Concrete Landfilled 1.85 short ton 9.82 CAD Waste asphit Asphati Concrete Landfilled 1.85 short ton 1.6 stort CAD Waste asphit Asphati Concrete Landfilled 1.85 short							
CAD Waste on-ferrous scrap Aluminum ingot Landfilled 632 Bort ton 16.6-40 CAD Waste durable plastic items HDPE Landfilled 18 Bort ton 390 CAD Waste RVC and other plastics More dP Plastics Landfilled 18 bort ton 390 CAD Waste durable plastic itens HDPE Landfilled 18 bort ton 390 CAD Waste durable plastic itens HDPE Landfilled 18 bort ton 390 CAD Waste for and other plastics Maxed Plastics Landfilled 18 bort ton 390 CAD Waste acoustic tiling LLDPE Landfilled 18 bort ton 5120 CAD Waste acoustic tiling Capret Landfilled 180 bort ton 69,300 CAD Waste carpet padding Capret Landfilled 38 bort ton 66,1300 CAD Waste carpet padding Capret Landfilled 518 bort ton 61,300 CAD Waste carpet padding Capret Landfilled 518 bort ton 61,300 CAD Waste plastic piping PVC Landfilled 518 bort ton 51,200 CAD Waste plasti							
C&D Waste durable plastic tens HDPE Landfilled 18 short ton 3900 CAD Waste RC and other plastics Mixed Plastics Landfilled 18 short ton 3900 CAD Waste durable plastic itens HDPE Landfilled 18 short ton 3900 CAD Waste durable plastic itens HDPE Landfilled 18 short ton 3900 CAD Waste durable plastic itens LDPE Landfilled 18 short ton 5900 CAD Waste acoustic tiling LLDPE Landfilled 1265 short ton 57100 CAD Waste acptel Carget Landfilled 1265 short ton 57100 CAD Waste carget plastic itens Glass Landfilled 13 short ton 61630 CAD Waste carget plastic itens Glass Landfilled 13 short ton 61630 CAD Waste carget plastic itens Glass Landfilled 15 short ton 10 (200 CAD Waste plastic soling/decking Viny Flooring Landfilled 15 short ton							
CAD Waste Him plastic LDPE Landilied 16 short ton 390 CAD Waste RC and ther plastics Markel Plastics Landilied 16 short ton 390 CAD Waste film plastic LDPE Landilied 16 short ton 390 CAD Waste film plastic LDPE Landilied 18 short ton 740 CAD Waste acustic tiling LLDPE Landilied 18 short ton 510 CAD Waste acustic tiling LLDPE Landilied 12 short ton 5120 CAD Waste acputs Carpet Landilied 46 short ton 9.320 CAD Waste carpet plastics Glass Landilied 30 short ton 61.360 CAD Waste carpet plastic Carpet Landilied 30 short ton 61.360 CAD Waste carpet plastic siling/decking Carpet Landilied 30 short ton 61.360 CAD Waste flat glass Glass Landilied 15 short ton 61.360 CAD Waste plastic siling/decking Viry Flooring Landilied 15 short ton 61.360 CAD Waste plastic siling/decking Viry Flooring Landilied 151 short ton 61.220 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
CAD Waste R/C and other plastics Mixed Plastics Landfilled 161 by bot ton 360 CAD Waste durable plastic tens HDPE Landfilled 18 short ton 390 CAD Waste fim plastic LDPE Landfilled 18 short ton 390 CAD Waste acoustic ting LLDPE Landfilled 18 short ton 360 CAD Waste acoustic ting LLDPE Landfilled 1265 short ton 253,140 CAD Waste carpet Carpet Landfilled 12,657 short ton 263,140 CAD Waste carpet padding Carpet Landfilled 35 short ton 660 CAD Waste carpet padding Carpet Landfilled 35 short ton 6160 CAD Waste carpet padding Carpet shorts Landfilled 151 short ton 10,220 CAD Waste insulation Fibreglass insulation Landfilled 158 short ton 3,160 CAD Waste plastic ciping P/C Landfilled 151 short ton 6,220 CAD Waste plastic ciping P/C Landfilled 12,526 short on 5,120 CAD Waste plastic ciping P/C Landfilled 12,526 short on 5,120							
CAD Waste durable plastic litens HDPE Landfilled 18 hort ton 3900 CAD Waste fire and other plastics Mixed Plastics Landfilled 18 hort ton 5900 CAD Waste acoustic tiling LLDPE Landfilled 12 hort ton 5120 CAD Waste asphatt Asphalt Concrete Landfilled 12 £57 short ton 9253 short ton 9250 CAD Waste carpet padding Carpet Landfilled 33 short ton 6600 CAD Waste carpet padding Carpet Landfilled 30 short ton 6600 CAD Waste carpet padding Carpet Landfilled 31 short ton 6100 CAD Waste carpet padding Carpet Landfilled 31 short ton 6100 CAD Waste carpet padding Carpet Landfilled 518 short ton 610220 CAD Waste insulaton Fiberglass insulation Landfilled 518 short ton 5120 CAD Waste plastic siding/decking Viryl Flooring Landfilled 518 short ton 5120 CAD Waste rubber products Tires Landfilled 118 short ton 600 short ton 5120 CAD Waste rubber products Tires							
CAD Waste Ifm plastic LDPE Landfilled 37 short ton 740 CAD Waste acoustic tiling LLDPE Landfilled 18 short ton 500 CAD Waste acoustic tiling LLDPE Landfilled 12.657 short ton 5120 CAD Waste acoustic tiling LLDPE Landfilled 12.657 short ton 62.3740 CAD Waste carpet Clandfilled 12.657 short ton 62.3740 CAD Waste carpet adding Carpet Landfilled 33 short ton 66.300 CAD Waste carpet adding Carpet Landfilled 3.680 short ton 67.300 CAD Waste insultaton Fiberglass Insultaton Landfilled 15.850 short ton 5.120 CAD Waste plastic piping PVC Landfilled 15.526 short ton 5.120 CAD Waste plastic piping PVC Landfilled 12.526 short ton 25.720 CAD Waste plastic piping PVC Landfilled 12.526 short ton 25.720 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CAD Waste I/c and other plastics Mixed Plastics Landfilled 18 short ton 9800 CAD Waste acphait Asphait Concrete Landfilled 12.657 short ton 9.5120 CAD Waste carpet Carpet Landfilled 12.657 short ton 9.323 CAD Waste carpet padding Carpet Landfilled 3.668 short ton 9.323 CAD Waste carpet padding Clay Fricks Landfilled 3.068 short ton 6.600 CAD Waste carpet padding Clay Fricks Landfilled 5.113 short ton 6.10.220 CAD Waste plastic sping PVC Landfilled 15.85 short ton 5.120 CAD Waste plastic siding/decking Yiny Flooring Landfilled 15.155 short ton 5.120 CAD Waste ric and other CAD Mixed Plastics Landfilled 12.525 short ton 2.50.520 CAD Waste ric and other paper Mixed Plastics Landfilled 12.520 short ton 2.57.20 CAD Waste ric and other cAD Mixed Plastics </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CAD Waste apousite tiling LDPE Landfilled 256 short ton 5.120 CAD Waste carpet Landfilled 12.657 short ton 253.140 CAD Waste carpet padding Carpet Landfilled 33 short ton 9.320 CAD Waste carpet padding Carpet Landfilled 3.068 short ton 6.150 CAD Waste carpet padding Carpet Landfilled 3.068 short ton 6.150 CAD Waste carnics/porcelain City Bricks Landfilled 5.161 6.151 CAD Waste insulation Fiberglass insulation Landfilled 5.11 short ton 0.1220 CAD Waste plastic piping PVC Landfilled 11 short ton 10.220 CAD Waste plastic siting/decking Viryl Flooring Landfilled 11 short ton 10.220 CAD Waste plastic siting/decking Viryl Flooring Landfilled 12.526 short ton 25.02 CAD Waste nuber products Tres Landfilled 12.526 short ton 25.02 CAD Waste nuber products Tres Landfilled 24.94 25.96 CAD Waste nuber products Tres Landfilled 35.120 C							
CAD Waste asphalt Applati Concrete Landfilled 12.657 short ton 25.31.40 CSD Waste carpet padding Carpet Landfilled 33 short ton 6600 CSD Waste carpet padding Carpet Landfilled 33 short ton 6600 CAD Waste carranics.porcelain City Shriks Landfilled 3.068 short ton 61.360 CAD Waste carranics.porcelain City Shriks Landfilled 3.068 short ton 61.360 CAD Waste plastic piping PVC Landfilled 15.8 short ton 3.160 CAD Waste plastic sing/decking Viryl.Flooring Landfilled 15.1 short ton 10.220 CAD Waste nother CAD Mixed Plastics Landfilled 17.79 short ton 25.6 short ton 25.6 short ton 26.5 25.6 short ton 26.2 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
C&D WastecarpetLandfilled466short ton9.320C&B Wastecarpet padingCarpetLandfilled33short ton6620C&D Wasteceramics/porcelainClay BricksLandfilled3.068short ton661.300C&D Wasteflat glassGlassLandfilled511short ton671.300C&D WasteinsulationFiberglass InsulationLandfilled158short ton51.200C&D Wasteplastic pipingPVCLandfilled268short ton51.200C&D Wasteplastic simg/deckingVinyl FlooringLandfilled12.928short ton52.520C&D Waster/c and other C&DMixed PlasticsLandfilled12.928short ton250.520C&D Waster/c and other gaperMixed PlasticsLandfilled12.928short ton250.520C&D Wasterubber productsTiresLandfilled264short ton35.780C&D Wastenubber paperMixed PlasticsLandfilled201short ton271.200C&D Wasteruber paperMixed Plastic simg/disas insulationLandfilled3.618short ton72.280CAD Wastefreated/painted/processed woodWood FlooringLandfilled3.618short ton72.280Mixed MasteAsbestos - friablefiberglass insulationLandfilled3.618short ton36.380Mixustrial WasteGrit and Bar ScreeningConcreteLandfilled3.644 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
CAD Wastecarpet paddingCarpetLandfilled33 short ton660CBA Wastecaramics/porcelainClay BricksLandfilled3.068short ton61,360CAD WasteinsulationFiberglass InsulationLandfilled511short ton61,220CAD Wasteplastic pipingPVCLandfilled158short ton5,120CAD Wasteplastic siding/deckingViryl FlooringLandfilled511short ton10,220CAD Wasteplastic siding/deckingViryl FlooringLandfilled1256short ton250,520CAD Waster/c and other CADMixed PlasticsLandfilled12,526short ton250,520CAD Waster/c and other glassGlassLandfilled201short ton271,200CAD WasteR/C and other glassGlassLandfilled201short ton322,800CAD WasteUncoated OCCCorrugated ContainersLandfilled302short ton71,420CAD WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton72,280Industrial WasteAshFly AshLandfilled1,844short ton72,280Industrial WasteGirt and Bar ScreeningConcreteLandfilled445short ton46,880Industrial WasteStreet SweepingsConcreteLandfilled422short ton64,840Industrial WasteStreet SweepingsConcreteLandfilled422							
CAD Wasteceramics/porcelainClay BricksLandfilled3,068short ton61,360CAB Wastefilst glassGlassLandfilled511short ton10,220CAD Wasteplastic pipingPVCLandfilled158short ton5,120CAD Wasteplastic siling/deckingViryl FlooringLandfilled151short ton5,120CAD Wasteplastic siling/deckingViryl FlooringLandfilled12,526short ton5,120CAD Waster/b and other C&DMixed PlasticsLandfilled1,789short ton250,520CAD Waster/b and other paperMixed PlasticsLandfilled264short ton251,200CAD WasteR/C and other paperMixed Paper generalLandfilled201short ton4,020Loncoated OCCCorrugated ContainersLandfilled201short ton4,020CAD WasteAredypainted/processed woodWood FlooringLandfilled7,319short ton7,220Aindustrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton34,540Aindustrial WasteGrit and Bar ScreeningConcreteLandfilled1,228short ton36,800ndustrial WasteShort dorfGrit and Bar ScreeningConcreteLandfilled3,044short on4,560ndustrial WasteShort dorfShort dorfGassLandfilled3,044short on6,1800ndustrial Waste<		carpet	Carpet		466	short ton	9,320
CAD Waste flat glass Glass Landfilled 511 short ton 10.220 CAD Waste plastic piping PVC Landfilled 158 short ton 3.160 CAD Waste plastic siding/decking Viryl Flooring Landfilled 256 short ton 5.120 CAD Waste plastic siding/decking Viryl Flooring Landfilled 511 short ton 10.220 CAD Waste r/e and other C&D Mixed Plastics Landfilled 511 short ton 250.520 CAD Waste rubber products Tires Landfilled 1.789 short ton 250.520 CAD Waste rubber products Tires Landfilled 2.04 short ton 2.11.200 CAD Waste R/C and other paper Mixed Paper general Landfilled 2.04 short ton 4.250, 520 CAD Waste Uncoated OCC Corrugated Containers Landfilled 3.91 short ton 3.92,800 CAD Waste Asbestos - friable fiberglass insulation Landfilled 7.31 short ton 3.4,540 Industrial Waste Asbestos - friable fiberglass insulation Landfilled 4.44 short ton 3.6828		carpet padding	Carpet	Landfilled	33	short ton	660
C&D WasteinsulationFiberglass InsulationLandfilled158short ton3,160C&D Wasteplastic pipingPVCLandfilled256short ton5,120C&D Wasteplastic siding/deckingVinyl FlooringLandfilled12,526short ton10,220C&D Waster/c and other C&DMixed PlasticsLandfilled17,85short ton250,520C&D Waster/c and other paperMixed Paper generalLandfilled1,78short ton36,780C&D WasteR/C and other paperMixed Paper generalLandfilled244short ton211,200C&D WasteUncoated OCCCorrugated ContainersLandfilled232short ton352,200C&D WasteInceated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton36,680Industrial WasteAshFly AshLandfilled1,844short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4228short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4228short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4242short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4228short ton4,660 <td>C&D Waste</td> <td>ceramics/porcelain</td> <td>Clay Bricks</td> <td>Landfilled</td> <td>3,068</td> <td>short ton</td> <td></td>	C&D Waste	ceramics/porcelain	Clay Bricks	Landfilled	3,068	short ton	
C&D WasteinsulationFiberglass InsulationLandfilled158short ton3,160C&D Wasteplastic siding/deckingVinyl FlooringLandfilled256short ton5,120C&D Waster/c and other C&DMixed PlasticsLandfilled12,526short ton250,520C&D Waster/c and other C&DMixed PlasticsLandfilled17,85short ton250,520C&D Wasterubber productsTiresLandfilled1,78short ton35,780CAD WasteR/C and other paperMixed Paper generalLandfilled264short ton211,200CAD WasteUncoated OCCCorrugated ContairersLandfilled239short ton35,280C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton17,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton36,680Industrial WasteAshFly AshLandfilled1,844short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled1,844short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4,228short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4,242short ton36,680Industrial WasteShreder flufffiberglass insulationLandfilled4,262short ton6,680 <td>C&D Waste</td> <td></td> <td></td> <td>Landfilled</td> <td></td> <td></td> <td></td>	C&D Waste			Landfilled			
C&D Waste plastic piping PVC Landfilled 256 short ton 5.120 C&D Waste plastic siding/decking Vinyl Flooring Landfilled 151 short ton 2020 C&D Waste r/c and other C&D Mixed Plastics Landfilled 1.256 short ton 2.560 C&D Waste rubber products Tires Landfilled 1.789 short ton 35.780 C&D Waste R/C and other glass Glass Landfilled 201 short ton 201.200 R/C and other glass Glass Landfilled 332 short ton 352.800 Uncoated OCC Corrugated Containers Landfilled 341 short ton 7.279 CAD Waste Absetos - friable fiberglass insulation Landfilled 3.614 short ton 7.278 Aindustrial Waste Asbetos - friable fiberglass insulation Landfilled 1.727 short ton 34.540 Industrial Waste Ash Fly Ash Landfilled 4.84 short ton 36.880 Industrial Waste Gift and Bar Screening Concrete Landfilled 4.842 short ton 4.560 Industrial Waste Stheed fulf	C&D Waste						
C&D Wasteplastic siding/deckingVinyl FlooringLandfilled511short ton10.220C&D Waster/c and other C&DMixed PlasticsLandfilled12,526short ton250,520CAD Wasterubber productsTiresLandfilled17.08short ton250,520CAD WasteR/C and other paperMixed Paper generalLandfilled17.08short ton211,200R/C and other glassGlassLandfilled201short ton4,020Uncoated OCCCorrugated ContainersLandfilled392short ton4,52,68C&D Wastetreated/painted/processed woodWood FlooringLandfilled3,614short ton1,317,420Industrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton34,540Industrial WasteAshFly AshLandfilled1,844short ton39,800Industrial WasteShredder flufffiberglass insulationLandfilled4,228short ton4,560Industrial WasteShredder flufffiberglass insulationLandfilled4,228short ton39,800Industrial WasteShredder flufffiberglass insulationLandfilled4,228short ton8,440Industrial WasteStreet SweepingsConcreteLandfilled4,33short ton6,680Industrial WasteAutoclave WasteConcreteLandfilled1,928short ton39,960Industrial WasteMariad Flasti							
C&D Waster/c and other C&DMixed PlasticsLandfilled12,526short ton250,520CAD Wasterubber productsTiresLandfilled1,789short ton337,780RC and other paperMixed Paper generalLandfilled201short ton211,200R/C and other glassGlassLandfilled201short ton4,020Uncoated OCCCorrugated ContainersLandfilled332short ton352,800C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton38,640Industrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton38,640Industrial WasteGrit and Bar ScreeningConcreteLandfilled1,844short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled4,228short ton4,560Industrial WasteStudgeConcreteLandfilled4,024short ton6,660Industrial WasteAutoclave WasteConcreteLandfilled4,304short ton6,660Industrial WasteMaufacturing residualsMixed PlasticsLandfilled1,529short ton30,4500Industrial WasteMaufacturing residualsConcreteLandfilled1,529short ton6,660Industrial WasteMaufacturing res							
C&D WasteTiresLandfilled1,789short ton35,780R/C and other paperMixed Paper generalLandfilled264short ton211,200R/C and other paperGlassLandfilled201short ton4,020Uncoated OCCCorrugated ContainersLandfilled392short ton4,020C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton7,278Industrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton23,580Aindustrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton23,680Industrial WasteAshFly AshLandfilled1,844short ton23,680Industrial WasteGrit and Bar ScreeningConcreteLandfilled1,844short ton9,300Industrial WasteShreder flufffiberglass insulationLandfilled422short ton4,640Industrial WasteStreed SweepingsConcreteLandfilled4,924short ton6,640Industrial WasteAutoclave WasteConcreteLandfilled1,968short ton6,840Industrial WasteMaunfacturing residualsMixed PlasticsLandfilled1,968short ton6,640Industrial WasteMaunfacturing residualsMixed PlasticsLandfilled1,968short ton39,360Industrial WasteMaunfacturing residualsMixed Plastics <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
R/C and other paperMixed Paper generalLandfilled264short ton211,200R/C and other glassGlassLandfilled201short ton4,020Uncoated OCCCorrugated ContainersLandfilled392short ton392C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled1,727short ton24,540Industrial WasteAshFly AshLandfilled1,727short ton36,880Industrial WasteAshFly AshLandfilled1,844short ton36,880Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton9,300Industrial WasteShudgeConcreteLandfilled3,044short ton61,880Industrial WasteStreet SweepingsConcreteLandfilled3,044short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled1,968short ton61,880Industrial WasteMaufacturing residueGiassLandfilled1,968short ton61,880Industrial WasteMaufacturing residueGiassLandfilled1,968short ton61,880Industrial WasteMaufacturing residueGiassLandfilled1,968short ton9,3900Industrial WasteMaufacturing residueGiassLandfilled16,898shor							
R/C and other glassGlassLandfilled201short ton4,020Uncoated OCCCorrugated ContainersLandfilled302short ton332,800C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos ritablefiberglass insulationLandfilled3,614short ton72,280Aindustrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton34,540Industrial WasteAshFly AshLandfilled1,844short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled4,625short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled4,225short ton4,660Industrial WasteStreet SweepingsConcreteLandfilled3,094short ton8,840Industrial WasteAutoclave WasteConcreteLandfilled4,023short ton8,660Industrial WasteAutoclave WasteConcreteLandfilled1,968short ton309,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,515short ton304,580Industrial WasteContaminated soilsConcreteLandfilled15,515short ton304,580Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,515short ton304,580Indus	COD Waste						
Uncoated OCCCorrugated ContainersLandfilled392short ton352,800C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled3,614short ton72,280Aindustrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton34,540Industrial WasteAshFly AshLandfilled1,844short ton36,880Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton4,560Industrial WasteShredder flufffiberglass insulationLandfilled422short ton4,560Industrial WasteSludgeConcreteLandfilled3,094short ton61,880Industrial WasteStreet SweepingsConcreteLandfilled433short ton61,880Industrial WasteRecycling ResidueGlassLandfilled15,229short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,515short ton39,4580Industrial WasteConcreteLandfilled15,515short ton337,960Industrial WasteConcreteLandfilled16,898short ton337,960Industrial WasteContaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirt/sand/rock/gravel <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
C&D Wastetreated/painted/processed woodWood FlooringLandfilled7,319short ton1,317,420Industrial WasteAsbestos - friablefiberglass insulationLandfilled3,614short ton72,280Industrial WasteAshFloglass insulationLandfilled1,727short ton34,540Industrial WasteAshFly AshLandfilled1,844short ton36,880Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled422short ton8,460Industrial WasteStredder flufffiberglass insulationLandfilled422short ton8,440Industrial WasteStredder fluffGlassLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled433short ton61,880Industrial WasteManufacturing residualsMixed PlasticsLandfilled433short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled16,898short ton310,300Industrial Wastealt daily coverConcreteLandfilled15,515short ton310,300Industrial Wasteontaminated solisConcreteLandfilled16,898short ton310,300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Industrial WasteAsbestos - friablefiberglass insulationLandfilled3,614short ton72,280Aindustrial WasteAsbestos non-friablefiberglass insulationLandfilled1,727short ton34,540Industrial WasteAshFly AshLandfilled1,844short ton36,880Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled422short ton9,300Industrial WasteStreet SweepingsConcreteLandfilled422short ton8,440Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,460Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton304,580Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,515short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton304,580Industrial Wastecontaminated soilsConcreteLandfilled15,515short ton304,580Industrial Wastecontaminated soilsConcreteLandfilled15,515short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled88short ton1,760 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Aindustrial Waste Asbestos non-friable fiberglass insulation Landfilled 1,727 short ton 34,540 Industrial Waste Ash Fly Ash Landfilled 1,844 short ton 36,880 Industrial Waste Grit and Bar Screening Concrete Landfilled 465 short ton 4,560 Industrial Waste Shredder fluff fiberglass insulation Landfilled 422 short ton 4,560 Industrial Waste Sludge Concrete Landfilled 30,94 short ton 6,680 Industrial Waste Autoclave Waste Concrete Landfilled 422 short ton 6,660 Industrial Waste Recycling Residue Glass Landfilled 1,968 short ton 39,360 Industrial Waste Manufacturing residuals Mixed Plastics Landfilled 15,229 short ton 304,580 Industrial Waste Contraminated soils Concrete Landfilled 15,515 short ton 304,580 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 15,515 short ton 310,300							
Industrial WasteAshFly AshLandfilled1,844short ton36,880Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled228short ton4,560Industrial WasteSludgeConcreteLandfilled422short ton8,440Industrial WasteStreed SweepingsConcreteLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled1,968short ton61,880Industrial WasteRecycling ResidueGlassLandfilled1,968short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton310,300Industrial Wastecontaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled16,898short ton17,60Industrial WasteDirt/sand/rock/gravelConcreteLandfilled238short ton4,720C&D Wastemetals to New UlmMixed MetalsRecycled767short ton176,410							
Industrial WasteGrit and Bar ScreeningConcreteLandfilled465short ton9,300Industrial WasteShredder flufffiberglass insulationLandfilled228short ton4,560Industrial WasteSludgeConcreteLandfilled422short ton61,880Industrial WasteStreet SweepingsConcreteLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled1,968short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial WasteconcreteLandfilled15,515short ton310,300Industrial Wastecontaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled8short ton1,760Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720Industrial Wastesand blasting media <t< td=""><td>Aindustrial Waste</td><td>Asbestos non-friable</td><td>fiberglass insulation</td><td>Landfilled</td><td>1,727</td><td>short ton</td><td>34,540</td></t<>	Aindustrial Waste	Asbestos non-friable	fiberglass insulation	Landfilled	1,727	short ton	34,540
Industrial WasteShredder flufffiberglass insulationLandfilled228short ton4,560Industrial WasteSludgeConcreteLandfilled422short ton8,440Industrial WasteStreet SweepingsConcreteLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton304,580Industrial Wastecontaminated soilsConcreteLandfilled15,515short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled28short ton1,760Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720C&D Wastemetals to New UlmMixed MetalsRecycled767short ton176,410	Industrial Waste	Ash	Fly Ash	Landfilled	1,844	short ton	36,880
Industrial WasteSludgeConcreteLandfilled422short ton8,440Industrial WasteStreet SweepingsConcreteLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton307,960Industrial Wastecontaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled238short ton4,720Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720C&D Wastemetals to New UlimMixed MetalsRecycled767short ton17,640	Industrial Waste	Grit and Bar Screening	Concrete	Landfilled	465	short ton	9,300
Industrial WasteSludgeConcreteLandfilled422short ton8,440Industrial WasteStreet SweepingsConcreteLandfilled3,094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton39,360Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton307,960Industrial Wastecontaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirt/sand/rock/gravelConcreteLandfilled238short ton4,720Industrial Wastesand blasting mediaConcreteLandfilled238short ton4,720C&D Wastemetals to New UlimMixed MetalsRecycled767short ton17,640	Industrial Waste	Shredder fluff	fiberglass insulation	Landfilled	228	short ton	4,560
Industrial WasteStreet SweepingsConcreteLandfilled3.094short ton61,880Industrial WasteAutoclave WasteConcreteLandfilled433short ton8,660Industrial WasteRecycling ResidueGlassLandfilled1,968short ton8,660Industrial WasteManufacturing residualsMixed PlasticsLandfilled15,229short ton304,580Industrial Wastealt daily coverConcreteLandfilled15,515short ton310,300Industrial Wastecontaminated soilsConcreteLandfilled16,898short ton337,960Industrial WasteDirl/sand/rock/gravelConcreteLandfilled286short ton1,760Industrial WasteBiotating mediaConcreteLandfilled236short ton1,760ConcreteLandfilledRecycled76							
Industrial Waste Autoclave Waste Concrete Landfilled 433 short ton 8,660 Industrial Waste Recycling Residue Glass Landfilled 1,968 short ton 39,360 Industrial Waste Manufacturing residuals Mixed Plastics Landfilled 15,229 short ton 304,580 Industrial Waste alt daily cover Concrete Landfilled 15,515 short ton 310,300 Industrial Waste contaminated soils Concrete Landfilled 16,898 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 88 short ton 1,760 Industrial Waste Sand blasting media Concrete Landfilled 236 short ton 1,760 Industrial Waste sand blasting media Concrete Landfilled 236 short ton 1,760 Industrial Waste sand blasting media Concrete Landfilled 236 short ton 1,760 C&D Waste metals to New Ulm Mixed Metals Recycled 767 short ton 176,410 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Industrial Waste Recycling Residue Glass Landfilled 1,968 short ton 39,360 Industrial Waste Manufacturing residuals Mixed Plastics Landfilled 15,229 short ton 304,580 Industrial Waste alt daily cover Concrete Landfilled 15,515 short ton 310,300 Industrial Waste contaminated soils Concrete Landfilled 16,808 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 88 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 238 short ton 4,720 Industrial Waste sand blasting media Concrete Landfilled 238 short ton 4,720 C&D Waste metals to New Ulim Mixed Metals Recycled 767 short ton 176,410							
Industrial Waste Manufacturing residuals Mixed Plastics Landfilled 15,229 short ton 304,580 Industrial Waste alt daily cover Concrete Landfilled 15,515 short ton 310,300 Industrial Waste contaminated soils Concrete Landfilled 16,898 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 688 short ton 1,760 Industrial Waste sand blasting media Concrete Landfilled 238 short ton 4,720 C&D Waste metals to New Ulm Mixed Metals Recycled 767 short ton 176,410							
Industrial Waste alt daily cover Concrete Landfilled 15,515 short ton 310,300 Industrial Waste contaminated soils Concrete Landfilled 16,898 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 88 short ton 1,760 Industrial Waste Sand/rock/gravel Concrete Landfilled 236 short ton 1,760 Industrial Waste Concrete Landfilled 236 short ton 1,760 Industrial Waste Concrete Landfilled 236 short ton 4,720 C&D Waste metals to New Ulm Mixed Metals Recycled 767 short ton 176,410							
Industrial Waste contaminated soils Concrete Landfilled 16,898 short ton 337,960 Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 88 short ton 1,760 Industrial Waste sand blasting media Concrete Landfilled 236 short ton 4,720 Industrial Waste metals to New Ulm Mixed Metals Recycled 767 short ton 176,410							
Industrial Waste Dirt/sand/rock/gravel Concrete Landfilled 88 short ton 1,760 Industrial Waste sand blasting media Concrete Landfilled 236 short ton 4,720 Industrial Waste image: stand blasting media image: stand blast							
Industrial Waste sand blasting media Concrete Landfilled 236 short ton 4,720 C&D Waste metals to New Ulm Mixed Metals Recycled 767 short ton 176,410							
C&D Waste Mixed Metals Recycled 767 short ton 176,410							
	Industrial Waste	sand blasting media	Concrete	Landfilled	236	short ton	4,720
C&D Wastemixed recyclable to D-C CampusMixed RecyclablesRecycled100short ton9,000Image: Second S							
<table-container>Image: section of the section of t</table-container>	C&D Waste	mixed recyclable to D-C Campus	Mixed Recyclables	Recycled	100	short ton	9,000
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>							
<table-container>Image: section of the section of t</table-container>							
Image: series of the series							
Image: series of the series							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: system Image: s							
Image: system Image: s							
Image: sector of the sector							
Image: system Image: s							
Image: select							
Image: select							
Image: second							
Image: select							
Image: second							
							I

GHG Emissions

Total Emissions by Disposal Method

Waste Material	CO ₂ e (kg)
Recycled	185,410
Landfilled	10,944,570
Combusted	-
Composted	-
Anaerobically Digested (Dry Digestate with Curing)	-
Anaerobically Digested (Wet Digestate with Curing)	-

Scope 1 Construction Emissions from Mobile Sources

Guidance

(A) Enter annual data for each vehicle or group of vehicles (grouped by vehicle type, vehicle year, and fuel type) in ORANGE cells in Table 1. Example entry is shown in first row (REEN Italics). Only enter<u>vehicles owned or leased</u>by your organization on this sheet. All other vehicle use such as employee commuting or business travel is considered a scope 3 emissions source and here the source of the owner of the owner of the type.

- It is sheet. An ourier vehicle use such as employee community of scalarse during obstances as experient
 and should be reported in the corresponding scope 3 sheets.
 Select "On-Road" or "Non-Road" from drop down box to determine the Vehicle Types available.
 Select "Vehicle Type" from drop down box (closest type available).
 Enter "Fuel Usage" in appropriate units (units appear when vehicle type is selected).
 - - If mileage or fuel usage is unknown, estimate using approximate fuel economy values (seReference Table below).
 - Vehicle year and Miles traveled are not necessary for non-road equiment

(B) When using biofuels, typically the biofuel (biodiesel or ethanol) is mixed with a petroleum fuel (diesel or gasoline) for use in vehicles. Enter the biodiesel and ethanol percentages of the fuel if known, or leave default values.

Biodiesel Percent: Ethanol Percent:

(C) Biomass CO₂ emissions from biodiesel and ethanol are not reported in the total emissions, but are reported separately at the bottom of the sheet.

Table 1. Mobile Source Fuel Combustion and Miles Traveler

Source ID	Source Description	On-Road or Non-Road?	Vehicle Type	Vehicle Year	Fuel Usage	Units	Miles Traveled
Fleet-012	HQ Fleet	NonRoad	Ships and Boats - Diesel	1990	500	gal	3,670
	construction equipment	NonRoad	Construction/Mining Offroad Trucks - Diesel		1,500	gal	

Reference Table: Average Fuel Economy by Vehicle Type

Vehicle Type	Average Fuel Economy (mpg)
Passenger Cars	24.1
Motorcycles	44.0
Diesel Buses (Diesel Heavy-Duty Vehicles)	7.3
Other 2-axle, 4-Tire Vehicles	17.6
Single unit 2-Axle 6-Tire or More Trucks	7.5
Combination Trucks	6.1

GHG Emissions

Total Organization-Wide Mobile Source Fuel Usage and CC_2 Emissions (On-Road and Off-Road Vehicles

Fuel Type	Fuel Usage	Units	CO ₂	
			(kg)	
Motor Gasoline	0	gallons	0.0	
Diesel Fuel	1,500	gallons	15,315.0	
Residual Fuel Oil	0	gallons	0.0	
Aviation Gasoline	0	gallons	0.0	
Kerosene-Type Jet Fuel	0	gallons	0.0	
Liquefied Petroleum Gas (LPG)	0	gallons	0.0	
Ethanol	0	gallons	0.0	Note: emissions here are only for the g
Biodiesel	0	gallons	0.0	Note: emissions here are only for the d
Liquefied Natural Gas (LNG)	0	gallons	0.0	
Compressed Natural Gas (CNG)	0	scf	0.0	

Total Organization-Wide Non-Road Mobile Source Fuel Usage and $\text{Cl}_4/\text{N}_2\text{O}$ Emissions

Vehicle Type	Fuel Type	Fuel Usage (gallons)	CH4 (g)	N ₂ O (g)
	Residual Fuel Oil	-	-	-
China and Boota	Gasoline (2 stroke)	-	-	-
hips and Boats comotives ircraft gricultural Equipment gricultural Offroad Trucks onstruction/Mining Equipment onstruction/Mining Offroad Truck awn and Garden Equipment irport Equipment dustrial/Commercial Equipment bogging Equipment	Gasoline (4 stroke)	-	-	-
	Diesel	-	-	-
Locomotives	Diesel	-	-	-
A:	Jet Fuel	-	-	-
Aircrait	Aviation Gasoline	-	-	-
	Gasoline (2 stroke)	-	-	-
	Gasoline (4 stroke)	-	-	-
Agricultural Equipment	Diesel	-	-	-
	LPG	-	-	-
	Gasoline	-	-	-
Agricultural Offroad Trucks	Diesel	-	-	-
	Gasoline (2 stroke)	-	-	-
	Gasoline (4 stroke)	-	-	-
	Diesel	-	-	-
	LPG	-	-	-
Construction/Mining Offroad Trucks	Gasoline	-	-	-
Construction/Mining Offroad Trucks	Diesel	1,500	195	735
	Gasoline (2 stroke)	-	-	-
own and Cardon Equipment	Gasoline (4 stroke)	-	-	-
Lawn and Garden Equipment	Diesel	-	-	-
	LPG	-	-	-
	Gasoline	-	-	-
Airport Equipment	Diesel	-	-	-
	LPG	-	-	-
	Gasoline (2 stroke)	-	-	-
	Gasoline (4 stroke)	-	-	-
Industrial/Commercial Equipment	Diesel	-	-	-
	LPG	-	-	-
	Gasoline (2 stroke)	-	-	-
Logging Equipment	Gasoline (4 stroke)	-	-	-
	Diesel	-	-	-
	Gasoline	-	-	-
Railroad Equipment	Diesel			-
Edabulau	LPG	-	-	-
	Gasoline (2 stroke)	-	-	-
	Gasoline (4 stroke)			-
Recreational Equipment	Diesel			-
	LPG	-		

Total CO ₂ Equivalent Emissions (metric tons) - Mobile Source:	15.5
Total Biomass CO ₂ Equivalent Emissions (metric tons) - Mobile Sources	0.0

1. Average mpg values from the U.S. Department of Transportation, Federal Highway Administration, Highway Statistics 2019 (Nov 2020), Table VM-1.

SHORT TONS =

SEPA CENTER FOR CORPORATE CLIMATE LEADERSHIP

80

SEPA CENTER FOR CORPORATE

CLIMATE LEADERSHIP U.S. Environmental Protection Agency

Scope 1 Emissions from Stationary Combustion Sources

Guidance

(A) Enter annual data for each combustion unit, facility, or site (by fuel type) in ORANGE cells on **Table 1**. Example entry is shown in first row (*GREEN Italics*).

- Select "Fuel Combusted" from drop down box.

- Enter "Quantity Combusted" and choose the appropriate units from the drop down box in the unit column. If it's necessary to convert units, common heat contents can be found on the "Heat Content" sheet and unit conversions on the "Unit Conversion" sheet.

(B) If fuel is consumed in a facility but stationary fuel consumption data are not available, an estimate should be made for completeness. See the "Items to Note" section of the Help sheet for suggested estimation approaches.

(C) Biomass CO₂ emissions are not reported in the total emissions, but are reported separately at the bottom of the sheet.

Table 1. Stationary Source Fuel Combustion

Back to Intro

Source ID BLR-012	Source Description	Source Area (sq ft)	Fuel Combusted	Quantity Combusted	Units
BLR-012	East Power Plant	12,517	Natural Gas	10,000	MMBtu
D-C	Heating office space		Natural Gas Natural Gas	10,000 853	Therm
-					
-					
-					

Total Organization-Wide Stationary Source Combustion by Fuel Type

Fuel Type	Quantity	Units
	Combusted	
Anthracite Coal	0	short tons
Bituminous Coal	0	short tons
Sub-bituminous Coal	0	short tons
Lignite Coal	0	short tons
Natural Gas	83,171	scf
Distillate Fuel Oil No. 2	0	gallons
Residual Fuel Oil No. 6	0	gallons
Kerosene	0	gallons
Liquefied Petroleum Gases (LPG)	0	gallons
Wood and Wood Residuals	0	short tons
Landfill Gas	0	scf

Total Organization-Wide CO₂, CH₄ and N₂O Emissions from Stationary Source Fuel Combustion

Fuel Type	CO ₂ (kg)	CH ₄ (g)	N ₂ O (g)
Anthracite Coal	0.0	0.0	0.0
Bituminous Coal	0.0	0.0	0.0
Sub-bituminous Coal	0.0	0.0	0.0
Lignite Coal	0.0	0.0	0.0
Natural Gas	4,527.8	85.7	8.3
Distillate Fuel Oil No. 2	0.0	0.0	0.0
Residual Fuel Oil No. 6	0.0	0.0	0.0
Kerosene	0.0	0.0	0.0
Liquefied Petroleum Gases (LPG)	0.0	0.0	0.0
Total Fossil Fuel Emissions	4,527.8	85.7	8.3
Wood and Wood Residuals	0.0	0.0	0.0
Landfill Gas	0.0	0.0	0.0
Total Non-Fossil Fuel Emissions	0.0	0.0	0.0
Total Emissions for all Fuels	4,527.8	85.7	8.3

Total CO ₂ Equivalent Emissions (metric tons) - Stationary Combustion	4.5
Total Biomass CO₂ Equivalent Emissions (metric tons) - Stationary Combustion	0.0

Back to Intro Back to Summary Help

CLIMATE LEADERSHIP

Scope 1 Emissions from Refrigeration and Air Conditioning Equipment

Guidance

- (A) HFC, PFC, CO2, and SF6 refrigerants from facilities and vehicles are required to be included in the GHG inventory. Ozone depleting substances, such as CFCs and HCFCs, are regulated internationally and are typically excluded from a GHG inventory or reported as a memo item
- (B) Select ONE of the three options with which to estimate emissions. Options range from most preferred method (Option 1) to least preferred method (Option 3). If option 3, screening method, is used and emissions are determined to be
 - significant when compared to other emission sources, then one of the other methods should be applied to calculate emissions more accurately

(C) Enter annual data in ORANGE cells as appropriate for the selected option.

Option 1. Material Balance Method: Enter organization-wide total gases stored and transferred (by gas) in Table 1. Choose the appropriate gas from the Gas drop down menu. Inventory Change = difference of gas stored in inventory from beginning to end of reporting period

- (Includes only gas stored on-site (i.e. cylinders) and not gas contained within equipment). Transferred Amount = gas purchased minus gas sold/disposed during reporting period.
- Gas purchased includes: Purchases for inventory, as part of equipment servicing (not from inventory), within purchased equipment, and gas returned to the site after off-site recycling. -- Gas sold/disposed includes: Returns to supplier, sales or disposals (including within equipment),
- and gas sent off-site for recycling, reclamation, or destruction.
- Capacity Change capacity of all units at beginning minus capacity of all units at end of reporting period. (can be assumed to be capacity of new units minus capacity of retired units).

Table 1. Organization-Wide Refrigeration Gas CO2 Equivalent Emissions - Material Balance

Gas	Gas GWP	Inventory Change (Ib)	Transferred Amount (lb)	Capacity Change (Ib)	CO ₂ Equivalent Emissions (Ib)

Option 2. Material Balance Method (Simplified): Enter organization-wide total gases in units (by gas) in Table 2. Choose the appropriate gas from the drop down menu.

- New units are those installed during reporting period (do not include any data for new units pre-charged by supplier), disposed units were disposed of during the reporting period, and existing units are all others.
- Charge/Recharge = gas added to units by organization or a contractor (do not include pre-charge by manufacturer). Capacity = sum of the full capacity for all units (do not include new units pre-charged by manufacturer).
- Amount recovered = total gas recovered from all retired units.

Table 2. Organization-Wide Refrigeration Gas CO₂ Equivalent Emissions - Simplified Material Balance

Gas	Gas	New	New Units Existing Units Disposed Units		CO ₂ Equivalent		
	GWP	Charge	Capacity	Recharge	Capacity	Recovered	Emissions
		(lb)	(lb)	(lb)	(lb)	(lb)	(lb)

Screening Method: Enter refrigerant information for each unit or group of units (by refrigerant) in Table 3. Option 3.

- Select the "Type of Equipment" (closest available) and "Gas" from the drop down box.
 - Enter amount of refrigerant added to new units by the organization (not pre-charged amount from manufacturer).
 - Enter refrigerant capacity (by equipment type and refrigerant) for all units operating and disposed during reporting period. -- For each unit added or removed during reporting period, multiply its capacity by a usage factor (0.0 to 1.0).
 - For example, if the equipment was installed in June, multiply by 0.5 or (6/12), if it was installed in September you would multiply by 0.33 (4/12).
 - -- If data entered for multiple units, sum the capacities or charge quantity for all like units. -- If capacity of unit(s) is not known, use upper value of default capacity provided in the Reference Table below.

- See example entry in first row (GREEN Italics).

Table 3. Source Level Refrigeration Gas CO₂ Equivalent Emissions - Screening Method

Source ID	Type of Equipment	Gas	Gas	New Units	Capaci	ty	CO ₂
			GWP	Charge (kg)	Operating Units (kg)	Disposed Units (kg)	Equivalent Emissions (kg)
Bldg-012	Domestic Refrigeration	HFC-32	675	1000	0.5	0.25	6,792.2
-		5 (01)	10				
		R-401A	16				0.6
	Car A/C Units	HFC-134a	1,430	3.0			21.5

Reference Table: Type of Equipment and Default Capacity Ranges (Lower to Upper Range) for Table 3

	Domestic refrigeration units (capacity 0.05 to 0.5 kg)
Stand-Alone Commercial	Stand alone commercial applications (capacity 0.2 to 6 kg)
	Medium and large commercial refrigeration units (capacity 50 to 2,000 kg)
Transport Refrigeration	Transportation refrigeration units (capacity 3 to 8 kg)
	Industrial, food processing and cold storage units (capacity 10 to 10,000 kg)
Chillers	Commercial chillers (default capacity 10 to 2,000 kg)
Residential/Commercial A/C	Residential and commercial units, including heat pumps (capacity 0.5 to 100 kg)
Car A/C Units	Passenger car A/C units (capacity 0.5 kg)
Light-Duty Truck A/C Units	Light-duty truck A/C units (capacity 1.5 kg)

0.02

GHG Emissions

Total CO₂ Equivalent Emissions (metric tons) - Refrigeration and AC Equipment

Notes

1. CO2 emissions estimated using emission factors provided in Table 3 of the Center for Corporate Climate LeadershipGreenhouse Gas Inventory Guidance Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression and Industrial Gases. (Dec 2020).

2. GWPs are from Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) 0.02

Short Tons =

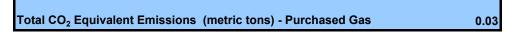
SEPA CENTER FOR CORPORATE CLIMATE LEADERSHIP U.S. Environmental Protection Agency

Scope 1 Emissions from Purchased Gases

Guidance

(A) Any use and release of the seven major greenhouse gases (CO₂, CH₄, N₂O, PFCs, HFCs, SF₆, and NF₃) is required to be included in the GHG inventory. Ozone depleting substances, such as CFCs and HCFCs, are regulated internationally and are typically excluded from a

GHG


- (B) Select the gas you purchase from the drop down menu and the amount purchased for the annual inventory reporting period in the ORANGE cells.
- (C) It is assumed that all gas purchased in the reporting period used and released during the reporting period. If your business makes bulk purchases and plans on using the gas for several years, divide the bulk amount by the years of usage and report that amount.

Tip: If you purchase bulk gas, remember to report it for future years as well.

Table 1. Purchased Gases

Gas	Gas GWP	Amount (lb)	CO ₂ Equivalent Emissions (lb)
CO2	1	75.0	75.0

GHG Emissions

Notes:

1. GWPs are from Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007).

Short Tons

0.04

Back to Summary Back to Intro

Help - Market-Based Method

Help

SEPA CENTER FOR CORPORATE CLIMATE LEADERSHIP

Scope 2 Emissions from Purchase of Electricity

Guidance

The Indirect Emissions from Purchased Electricity Guidance document provides guidance for quantifying two scope 2 emissions totals, using a location-based method and a market-based method. The organization should quantify and report both totals in its GHG inventory. The location-based method considers average emission factors for the electricity grids that provide electricity. The market-based method considers contractual arrangements under which the organization procures electricity from specific sources, such as renewable energy

(A) Enter total annual electricity purchased in kWh and each eGRID subregion for each facility or site in ORANGE cells of Table 1. (B) If electricity consumption data are not available for a facility, an estimate should be made for completeness

(c) it solutionly consumption calls on the Help sheet for suggested estimation approaches.
 (C) Select "eGRID subregion" from drop box and enter "Electricity Purchased."

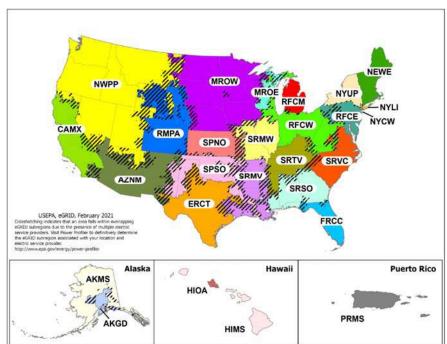
 Use map (Figure 1) at bottom of sheet to determine appropriate eGRID subregion. If subregion cannot be determined from the map, find the correct subregion by entering the location's zip code into EPA's Power Profiler:

https://www.epa.gov/egrid/power-profiler#/

(D) See the market-based emission factor hierarchy on the market-based method Help sheet. If any of the first four types of emission factors are applicable, enter the factors in the yellow cells marked as "<enter factor>". If not, leave the

velow cells as is, and eGRID subregion factors will be used for market-based emissions. xample entry is shown in first row (*GREEN Italics*) for a facility that purchases RECs for 100% of its consumption, and therefore has a market-based emission factor of 0. Exa

Tips: Enter electricity usage by location and then look up the eGRID subregion for each location. If you purchase renewable energy that is less than 100% of your site's electricity, see the


Market-Based Location-Based example in the market-based method Help sheet. Use these cells to enter applicable market-based emission factors Em Table 1. Total Amount of Electricity Purchased by eGRID Subregion Emise on Fac Source eGRID Subregion Electricity CO₂ CH₄ N₂O CO₂ CH₄ N₂O CO₂ CH N₂O Source Source Emissio (lb) Emiss ID Description Area (sq ft) where electricity is consu Emissions (lb/MWh) Emissio Fmis -Emissic (lb) Emis Purchase E Emissio Emissions (lb/MWh) (lb/MWh) (kWh) (lb) (lb) (lb) (lb) 8ldg-012 ast Power Plant 12.517 scellaneous IMS (HICC M 0.0 12.9 0.0 118,<u>627.2</u> <u>4.4</u> 1.8 -----0.0 237,120.0 28.6 12.9 r facto nter facto ROW (MRO West) 108,000 enter factor> enter factor enter factor> enter factor nter facto enter factor enter factor ente tor tor **MVEC 2021** Power Portfolio 60% 50% 40% 30% 20% 10% 1000 0% Nuclear Coal Hydro Natural Gas Market Renewable GRE (60%) 19% 54% 1% 0% 25% 1% Basin (30%) 16% 8% 18% 5596 1% 2% ■ Alliant (10%) 21% 42% 0% 31% 0% 6% nter factor enter factor> enter factor enter factor enter factor enter factor> enter factor> nter factor nter factor enter factor> nter factor> nter factor nter factor al Emissions for All Sc 108 118,62

Help - Market-Based Method

54.2
54.2

 CO₂, CH₄ and N₂O emissions are estimated using methodology provided in EPA's Center for Corporate Climate Leadership Greenhouse Gas Inventory Guidance - Indirect Emissions from Purchased Electricity (January 2016).

Figure 1. EPA eGRID2019, February 2021

SEPA CENTER FOR CORPORATE

CLIMATE LEADERSHIP U.S. Environmental Protection Agency

Scope 3 Emissions from Leachate Transport for Off-Site Disposal

Guidance

(A) Enter annual data in ORANGE cells in the table corresponding to the transport method. Example entry is shown in first row GREEN Italics).

(B) For rail, water, or air shipments, enter short ton-mile data in Table 2. See Help sheet for details on calculating short ton-miles. (C) For road shipments, if your organization's product is the only product transported in the vehicle (i.e. full truckload shipment) then enter

the vehicle type and miles for each leg of transport in Table 1. Emissions are calculated using vehicle-miles.

(D) For road shipments, if your organization's product makes up only part of the truck load (i.e. less-than-load or LTL shipment), then enter the vehicle type and short ton-miles (product weight (short tons) x distance) for each leg of transport in Table 2. Emissions are calculated using short ton-miles. See Help sheet for details on calculating ton-miles.

Tip: Make sure all transport legs are accounted for from manufacturing facility to distribution to customer.

Table 1. On-Road Vehicle Product Transport by Vehicle-Miles (CO₂, CH₄ and N₂O)

Source ID	Source Description	Vehicle Type	Vehicle- Miles (miles)	CO ₂ Emissions (kg)	CH₄ Emissions (g)	N ₂ O Emissions (g)
Bldg-012	East Power Plant Finished Goods	Medium- and Heavy-duty Truck	100	141	1.3	3.3
	leachate hauling	Medium- and Heavy-duty Truck	15,554	21,884	202.2	513.3
Total for Prod	uct Transport by Vehicle-Miles			21,884	202.2	513.3

Table 2. Product Transport by Ton-Miles (CO₂, CH₄ and N₂O)

Source ID	Source Description	Vehicle Type	Short Ton-		CH₄	N ₂ O
Bldg-012	East Power Plant Finished Goods	Medium- and Heavy-Duty Truck	100	141	1.30	3.30
Total for all Pr	otal for all Product Transport by Ton-Miles				0.0	0.0

GHG Emissions

Total Emissions by Product Transport Type

Transport Type	CO ₂ (kg)	CH₄ (g)	N ₂ O (g)
Medium- and Heavy-Duty Truck	21,884	202	513
Light-Duty Truck	-	-	-
Passenger Car	-	-	-
Rail	-	-	-
Aircraft	-	-	-
Waterborne Craft	-	-	-

Total CO ₂ Equivalent Emissions	(motric tone) Produ	uct Transport	22
	(Ineliic lons) - Fioul		ZZ.

Short tons

24.30

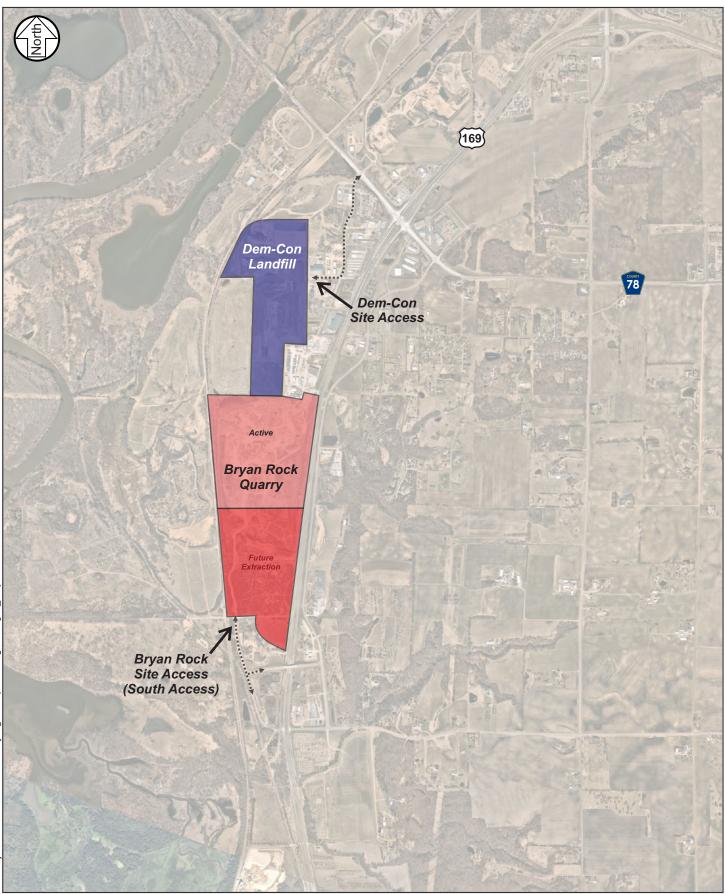
Landfill Sequestration MTCO2E/Short Ton (from WARM)

Waste Type	Material	WARM Category	Activity	Weight		Landfill Carbon	Emissions	Emissions Short
			-	-		Sequestration	MTCO2E	CO2E (Short Tons)
						MTCO2E/Short Ton ¹		
C&D Waste	gyspum board	Drywall	Landfilled	19,239	short ton	(0.08)	(1,539)	(1,697)
C&D Waste	clean wood	Dimensional Lumber	Landfilled	8,033	short ton	(1.09)	(8,756)	(9,652)
C&D Waste	treated, painted processed wood	Wood Flooring	Landfilled	6,962	short ton	(1.04)	(7,240)	(7,981)
C&D Waste	other paper	Mixed Paper general	Landfilled	264	short ton	(0.72)	(190)	(210)
C&D Waste	uncoated occ recyclable	Corrugated Containers	Landfilled	392	short ton	(0.72)	(282)	(311)
TOTAL SINK							(18,008)	(19,850)
¹ Landfill Carbon Sequestration factors from From US EPA WARM v.15								

Memorandum

SRF No. 15559.00

То:	Mark Pahl Dem-Con Landfill LLC				
From:	Jeff Bednar, TOPS, Senior Traffic Engineering Specialist Brent Clark, PE, Traffic Studies Lead				
Date:	April 22, 2022				
Subject:	Dem-Con Demolition, Construction, and Industrial Landfill Expansion Updated Traffic Review				


Introduction

SRF has completed a traffic review for the proposed Dem-Con Landfill Demolition, Construction, and Industrial expansion in Louisville Township, Scott County (see Figure 1: Project Location). This study does not contemplate a municipal solid waste landfill expansion. The existing Bryan Rock Quarry has a remaining life of approximately 10 years. The Dem-Con Landfill plans to expand into areas of the Quarry that have finalized mining operations/reclamation grading. Therefore, the main objectives of this review are to determine existing and future trip generation and routing associated with the Dem-Con Landfill expansion and perform a high-level traffic review to identify potential improvements, if necessary. The following information provides the assumptions, analysis, and study recommendations offered for your consideration.

Project Description

The Bryan Rock Quarry is made up of two quadrants; the north quadrant is actively being mined, whereas the south quadrant is planned to be mined once the north side mining is complete. The north quarry has begun its final phase of mining, and will begin transitioning into reclamation grading, which is expected to begin in the next two (2) to three (3) years. The south quadrant of the quarry will then begin to be mined, which has an expected life of up to 10 years. As this process occurs, the Dem-Con Landfill plans to expand into the areas of the quarry where mining operations/reclamation grading has been finalized. It should be noted that the quarry operations are currently accessed from the south. While there is currently a right-in/right-out site access on US 169, this access is generally limited to reclamation fill and construction uses only.

Dem-Con Landfill site-generated trips are based on traffic demand at the existing landfill operation and the current truck haul routes are not expected to change within the near future. Dem-Con will not adjust the truck haul routes (i.e., utilize the south access) until the Bryan Rock quarry mining is completed and no further Bryan Rock trips are generated (both Dem-Con and Bryan Rock want to avoid any overlap). After that point, the scale and scale house for incoming waste materials that are bound for the landfill may be relocated to the south. The remaining non-landfill loads will continue to access Dem-Con's environmental campus at the existing northern (TH 41) access point.

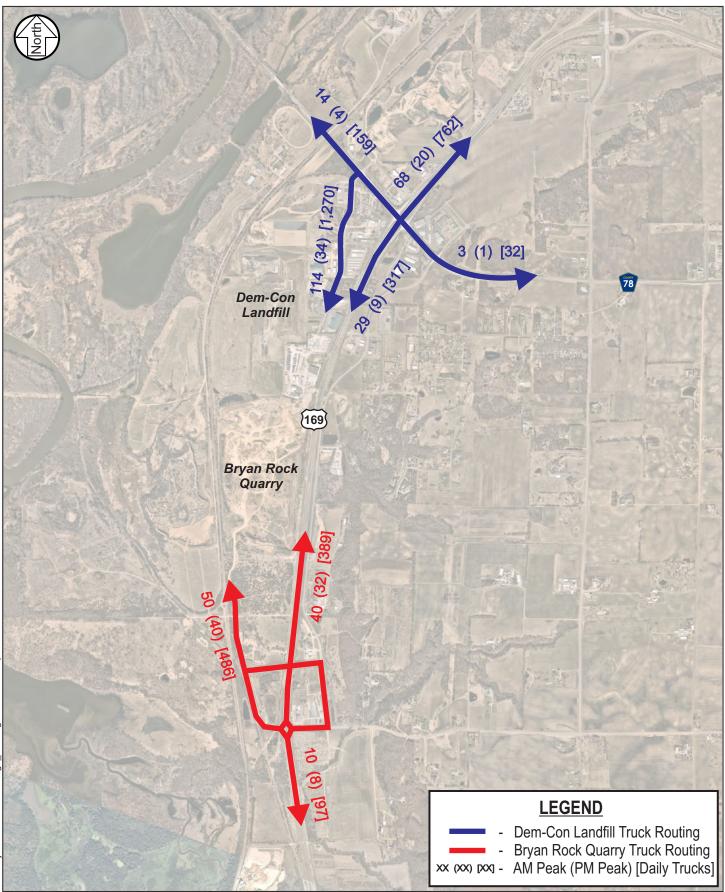
Project Location

Dem-Con Expansion Traffic Review Scott County

Trip Generation

To understand the current and future operations of the facilities, existing and future trip generation and routing estimates were developed. The Dem-Con trip generation is based on traffic counts at the existing landfill operation. Note that the Dem-Con trip generation is dependent on market demand and can fluctuate with the economy and/or the construction industry. Truck routes are only expected to change once Bryan Rock mining is completed and the landfill expansion area has progressed far enough to the south. At this point, Dem-Con may route landfill traffic to the south (Adjusted Routing), or they may keep the current traffic management system in place (Unadjusted Routing). Both alternatives were analyzed. Trip generation estimates were based on data provided by Dem-Con:

- Based on the number of truck tickets at the facility from May 1, 2020 to July 25, 2021, which was historically a high year for the landfill, therefore, the truck estimates are considered conservative.
- Dem-Con currently has 150 employees with typical shifts ranging from 6-8 a.m. until 3-6 p.m.
- User data shows that most trucks arrive during the daytime/off-peak hours, with a very low percentage expected during p.m. peak hour.
- Based on project team provided truck operations data for the 10-year period from 2012 (49,107 truckloads) through 2021 (83,538 truckloads), the Dem-Con Landfill associated truck traffic annual growth rate for the period was 5.46 percent. This growth rate was applied to current truck trip generation rates to develop the Future 2040 Forecasts in Table 1.

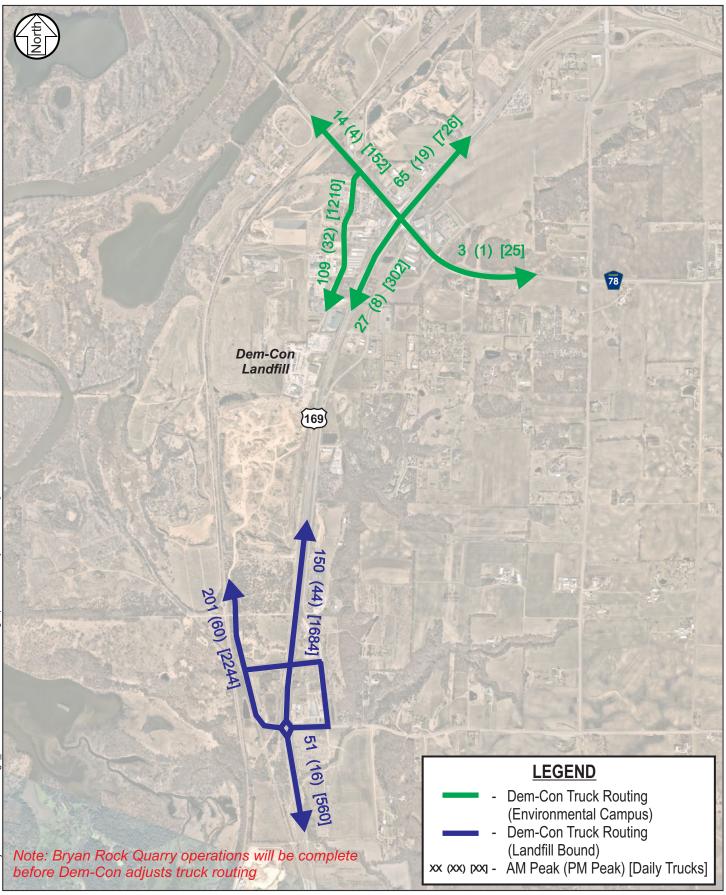

The vehicle trips included trucks accessing the Dem-Con Landfill, as well as the other solid waste facilities on Dem-Con's environmental campus including metal recycling, materials recovery facility, and transfer stations. Table 1 truck trip generation rates includes both Landfill and environmental campus traffic. Landfill bound trucks represent approximately 65 percent of all truck trips generated by Dem-Con Companies overall. Heavy vehicle estimates for the current Bryan Rock facility were provided by the development team and were based on calculating the amount of trucks needed for a one (1) million-ton annual production rate.

Figures 2, 3 and 4 show existing and future year 2040 truck routing (Adjusted and Unadjusted), respectively, based on the project description section and the trip generation estimates shown in Table 1. Once Bryan Rock mining activity is completed Bryan Rock truck volumes will be removed from the study area. Also included are the reclamation/construction fill trucks that utilize the US 169 right-in/right-out and occur over two- or three-month period annually. These reclamation/construction fill truck trips are expected to continue after the Bryan Rock mining is completed.

Land Lice	A.M. Peak Hour		P.M. Peak Hour		Daily
Land Use		Out	In	Out	Trips
Dem-Con Landfill/Environmental Campus (Existing)	57	57	17	17	1,270
Dem-Con Landfill/Environmental Campus (2040 Forecasts)	155	155	46	46	3,454
Bryan Rock Quarry (Future – to be removed)	25	25	20	20	486
Reclamation/Construction Fill (Existing & Future) ⁽¹⁾	7	7	6	6	154

 Table 1.
 Truck Trip Generation Estimates

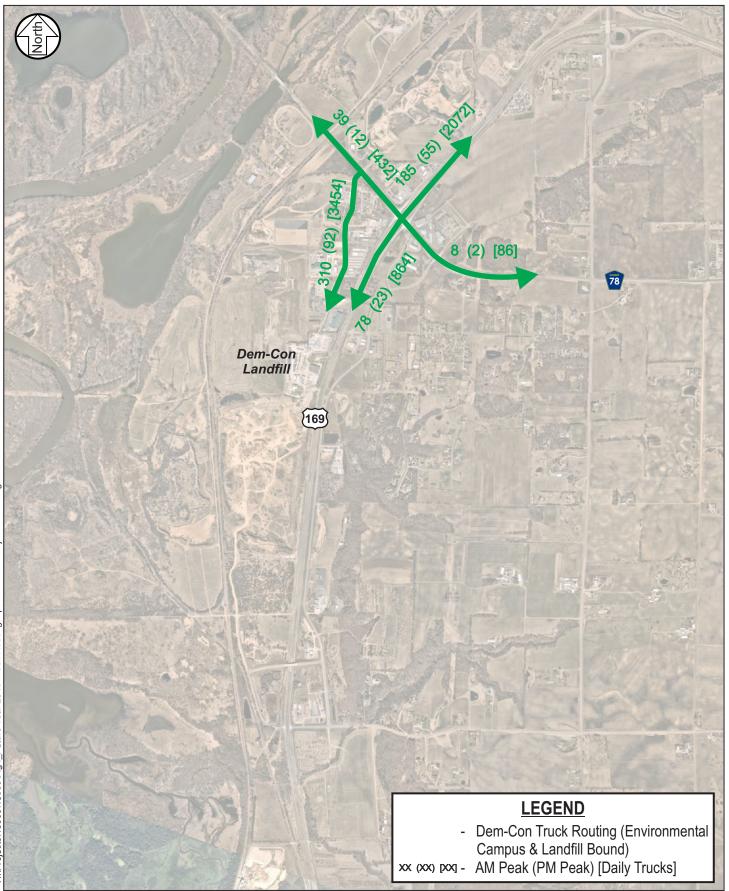
(1) As mentioned previously, reclamation/construction fill trips are expected to utilize the US 169 right-in/right-out. These are expected to only occur over a 2- or 3-month period annually and are expected to continue after Bryan rock mining is completed.


H:\Projects\15000\15559\Fig2_Existing Truck Route Operations.cdr

SRF

02115559 April 2022

Existing Truck Routing Operations


Dem-Con Expansion Traffic Review Scott County Figure 2

Future Year 2040 Truck Routing Operations - Adjusted Routing

Dem-Con Expansion Traffic Review Scott County

02115559 April 2022

Future Year 2040 Truck Routing Operations - Unadjusted Routing

Dem-Con Expansion Traffic Review Scott County

Figure 4

02115559 April 2022

Future Study Area Conditions

A comparison of the future Dem-Con Landfill year 2040 traffic forecasts with historical traffic forecasts in the study area (i.e., US 169 at TH 41 Intersection Study - Traffic Forecasts, November, 2016, by SEH), was made to determine if previous analysis remains valid. Based on the findings of this comparison and taking recent roadway system improvements into account, when considering the Dem-Con 2040 unadjusted routing scenario (the most critical scenario) the levels of service would remain the same as those in the 2016 US 169 at TH 41 Intersection Study, thus, no significant future traffic issues are expected. Therefore, the Dem-Con Landfill Expansion and forecasted landfill and regional traffic growth will not generate the need for further study area roadway system improvements.

Other/Adjacent Study Area Concurrent Events

The adjacent Minnesota Renaissance Festival generally runs only on Saturdays and Sunday's from late August to early October. Hours of operation are generally 9 a.m. to 7 p.m. There are other more limited events such as Trail of Terror and weddings held on site that generate minimal traffic volume.

The nearby Sever's Festivals are planning to run their Fall Festival (Corn Maze) generally on weekends from early September through October. Hours of operation are generally 10 a.m. to 10 p.m. There are also other more limited events planned such as drive-through visual adventure and lighting displays to be held on site that generate minimal traffic volume.

While Bryan Rock is permitted to operate at all hours, it is typically closed on festival weekends, thus creating minimal conflict with the primarily weekend held Minnesota Renaissance Festival (MRF) and/or Sever's Festival. Dem-Con is also permitted to operate at all hours; however, Saturday and Sunday are typically low volume days. The number of trucks entering while open during weekends is less than 50 percent of a normal weekday, based on user data provided by the project team. Therefore, the traffic conflict between Dem-Con and the MRF and/or Sever's Festivals events is minimal.

Adjacent/Nearby Proposed Projects

The "*Traffic Review – Proposed SMSC ORF Site*" was developed by Bolton and Menk, Inc. in June 2021, and evaluated the potential traffic impacts associated with the relocation of the SMSC Organics Recycling Facility (ORF). The study primarily focused on the private site access along TH 41, which is also referred to as the TH 41/Malkerson Site Access. Results of the study indicated that due to the combination of existing traffic, potential expansion to the mining operations, and the proposed ORF, that roadway improvements were needed.

Northbound and southbound left-turn lanes on TH 41 at the Malkerson Site Access, were recommended to improve traffic operations and safety for motorists turning from TH 41 onto the private access road. These recommended improvements are expected to mitigate any issues associated with the ORF and will provide benefits to the TH 41 transportation system as a whole. Note that the ORF traffic study considered Dem-Con's existing truck traffic generated trips on TH 41. Since the proposed expansion is not expected to significantly increase traffic, the results of the ORF study correctly reflects the proposed expansion. Dem-Con generates minimal trips at the TH 41/Malkerson Site Access intersection, and that these left-turn lane improvements are not expected to impact Dem-Con expansion trip generation or travel patterns.

Summary of Findings, Conclusions and Recommendations

Based on this traffic review for the proposed Dem-Con Landfill Demolition, Construction, and Industrial expansion the following summary of findings, conclusions and recommendations is offered for your consideration:

- 1. Dem-Con Landfill existing site-generated trips and the current truck haul routes are not expected to change within the near future.
- 2. Dem-Con will not adjust the truck haul routes until the Bryan Rock quarry mining is completed and no Bryan Rock trips are generated (both Dem-Con and Bryan Rock want to avoid any overlap). After that point, Dem-Con's landfill bound trucks may enter from the south (adjusted routing scenario) or the current traffic management system may remain in place (unadjusted routing scenario).
- 3. Based on project team provided truck operations data for the 10-year period from 2012 (49,107 truckloads) through 2021 (83,538 truckloads), the Dem-Con Landfill associated truck traffic annual growth rate for the period was 5.46 percent. This growth rate was used to develop the forecast 2040 Landfill peak hour traffic generation estimates.
- 4. Landfill bound trucks represent approximately 65 percent of all truck trips generated by Dem-Con Companies overall. The analysis includes both landfill and environmental campus traffic.
- 5. Based on the findings of a comparison of the future Dem-Con Landfill year 2040 traffic forecasts with historical traffic forecasts and analysis in the study area and taking the recent roadway system improvements into account, the Dem-Con 2040 unadjusted routing scenario (the most critical scenario) levels of service would remain the same as those in the 2016 US 169 at TH 41 Intersection Study, thus, no significant future traffic issues are expected. Therefore, the Dem-Con Landfill Expansion and forecasted landfill and regional traffic growth will not generate the need for further study area roadway system improvements.
- 6. Traffic conflict between Dem-Con and the primarily seasonal weekend occurring Minnesota Renaissance Festival or Sever's Festivals events would be minimal.
- 7. A recent traffic study evaluated the traffic impacts of the TH 41/Malkerson Site intersection associated with the relocation of the SMSC Organics Recycling Facility. The study recommended northbound and southbound left-turn lanes at the intersection, which should improve operations and safety along TH 41. These roadway improvements are not expected to impact trip generation or travel patterns associated with the Dem-Con expansion project.
- 8. The proposed Dem-Con Landfill expansion project does not represent a significant traffic impact to the study area, and it will not generate the need for study area roadway system improvements.

 $H: \label{eq:linear} H: \label{eq:linear} Projects \ 15559 \ Dem Con Expansion \ Updated Traffic Review \ 220422. docx$