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Abstract Industrial food animal production (IFAP) is a source
of environmental microbial and chemical hazards. A growing
body of literature suggests that populations living near these
operations and manure-applied crop fields are at elevated risk
for several health outcomes. We reviewed the literature pub-
lished since 2000 and identified four health outcomes consis-

tently and positively associated with living near IFAP: respira-
tory outcomes, methicillin-resistant Staphylococcus aureus
(MRSA), Q fever, and stress/mood. We found moderate evi-
dence of an association of IFAP with quality of life and limited
evidence of an association with cognitive impairment, Clos-
tridium difficile, Enterococcus, birth outcomes, and hyperten-
sion. Distance-based exposure metrics were used by 17/33
studies reviewed. Future work should investigate exposure
through drinkingwater andmust improve exposure assessment
with direct environmental sampling, modeling, and high-
resolution DNA typing methods. Investigators should not limit
study to high-profile pathogens like MRSA but include a
broader range of pathogens, as well as other disease outcomes.

Keywords IFAP .CAFOs .Airpollution .Asthma .Zoonotic
disease . Odor

Introduction

The 20th century saw unprecedented transformation in the
scale and practices associated with food animal agriculture.
The resulting industrial model first emerged in US poultry
production over the 1930s–1950s [1], with parallel develop-
ments in Europe [2]. Industrial food animal production (IFAP)
today [2] is characterized by large-scale, highly specialized,
densely stocked operations designed to maximize output at
minimal cost to producers. In the USA, for example, the ma-
jority of swine and laying hens are confined to operations with
inventories of over 5000 swine or 100,000 birds [3]. Produc-
tion relies heavily on inputs, including specially formulated
feeds, pharmaceuticals, and synthetic hormones (in cattle), the
use of which has been implicated in the presence of environ-
mental, occupational, and/or food-borne hazards [4, 5]. This
model has become increasingly globalized, with multinational
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corporations expanding operations in Southeast Asia, Mexico,
Eastern Europe, and other parts of the world [1, 6].

Figure 1 illustrates how IFAP can lead to adverse health
effects in nearby communities via the generation and spread of
microbial and chemical hazards. Studies have identified bac-
terial pathogens, such as antibiotic-resistant strains of
Staphylococcus and Enterococcus, in and around IFAP oper-
ations, including colonizing animals and surfaces [7–10], in
manure [11–16], and carried by flies [17, 18] and rats [19] near
operations. IFAP is also a source of airborne pathogens [8,
20–22], endotoxins [23], particulate matter (PM) [24], hydro-
gen sulfide (H2S), ammonia, odorous chemicals, and other
contaminants [23, 25–28], which may be spread from opera-
tions to the downwind environment, e.g., via ventilation fans
and emissions from decomposing manure [7, 8, 26, 27,
29–32]. IFAP workers are subject to heightened exposures
to these hazards and have been shown to exhibit elevated rates
of respiratory illness [33, 34], psychological distress [35, 36],
and colonization/infectionwith resistant pathogens [5, 37, 38],

the latter potentially transmissible to workers’ communities.
Spreading IFAP waste on agricultural fields—a common
method of disposal—presents further opportunities for micro-
bial [13, 39–43] and chemical [44] contaminants (e.g., ni-
trates, antibiotic residues, heavy metals, and excreted hor-
mones) to be transported through environmental media, in-
cluding ground and surface waters. Failed containment and
extreme weather events may also lead to the discharge of
stored waste into nearby water sources [45]. Taken together,
these and other exposure pathways have been implicated in
adverse health outcomes among nearby residents.

The breadth of research on the community health effects
associated with IFAP has not been the subject of a recent
review [46–49]. A 2010 systematic review [49] examined
evidence of respiratory, gastrointestinal, and mental health
outcomes; however, this review reflects a limited subset of
the broader body of research. Furthermore, the review was
funded by two major industry groups and may have been
subject to bias from competing interests.

Fig. 1 Studies that document selected hazards associated with IFAP,
illustrating potential pathways through the environment, and adverse
health outcomes in nearby populations. Numbers indicate study

citations. *Study investigated the presence of resistance genes, which
could be acquired by S. aureus, Enterococcus, or other pathogens
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For this review, we identified studies published after the
year 2000 by searching PubMed and Google Scholar using
key words related to animal production including IFAP, con-
centrated animal feeding operation (CAFO), livestock opera-
tion, and agriculture and key words related to health out-
comes, including health, infection, asthma, stress, and aquatic
health. We scanned the reference lists of the identified studies
for additional papers missed by our search strategy. We in-
cluded all studies that addressed health outcomes, either clin-
ical or subclinical, either in humans or in animals. Several
related areas of research were excluded or mentioned only
briefly because they were beyond the scope of this review:
studies of people living or working on a farm, measurement
of environmental hazards without an associated health out-
come, exposures related to meat consumption, issues of envi-
ronmental justice, and climate change implications. In this
article, we review 33 studies completed since 2000, identified
from our search of the scientific literature, that characterize
health effects in communities near IFAP. We also discuss
methodological challenges, policy implications, and future re-
search directions.

Exposure Assessment

Both infectious and noninfectious disease can occur as a result
of a single exposure via a single pathway, but more common-
ly, diseases are multifactorial and several pathways may act
simultaneously (e.g., odor, air pollution, weather, community
characteristics, and socioeconomic status) to influence the re-
lationship between IFAP and health outcomes. This systemic
causation partially explains why few studies have linked direct
environmental measurements to human health outcomes [50•,
51, 52]. Studies have used a variety of tools to assign exposure
to study populations: self-report, aggregation to a specified
geographical area, distance-basedmethods, interpolation from
sampled points to estimate those not sampled, direct environ-
mental sampling, and microbiologic methods [53] (Fig. 2a).

Self-Report

To evaluate exposures, many studies asked participants to re-
port presence, severity, and/or duration of livestock odor [27,
50•, 51, 52, 54–56]. Four studies, two in Germany [57, 58]
and two in the Netherlands [59, 60], asked participants about
annoyance due to livestock odor. Few studies used self-
reported livestock odor as the only exposure variable [56,
57]; many also incorporated direct measurements or used dis-
persion modeling to estimate individual-level exposure [27,
50•, 51, 52, 59, 60]. Self-reported odor has the potential to
bias estimates away from the null if those experiencing health
outcomes are more aware of and report more exposure, a
particular issue with retrospective data collection (i.e., recall

bias) [61]. Study design can reduce risk of bias. For example,
Deiters et al. and Larsen et al. [62, 63•] supplemented self-
reported livestock contact with microbiologic analysis of
methicillin-resistant Staphylococcus aureus (MRSA) strains.

Geographical Aggregation

Five studies aggregated IFAP exposure to the zip code [64,
65], municipality [63•, 66], or county [67] level. Two included
population density to account for differences in characteristics
of the aggregated units that might influence the outcome [66,
67]. Feingold et al. also assessed spatial variation in risk and
clustering of livestock-associated MRSA cases.

Distance-Based Exposure and Interpolation

Likely due to simplicity, interpretability, and data availability,
distance-based measures were the most common way to esti-
mate exposure (17/33 studies reviewed). Three types of dis-
tance metrics were used: (1) buffers around IFAP with radii
varying from 800 to 3200 m [54, 56, 57, 64, 68–71], (2)
proximity measures [55, 58, 72, 73], and (3) gravity models
(i.e., inverse distance-squared model) [74–77]. Pavilonis et al.
[76] also incorporated wind direction in their gravity model
[76].

In regions where some air pollution monitors are available,
but not at the study subject’s exact residence, researchers have
estimated exposure using validated [78] local and long-range
models [59, 60].

Direct Environmental Sampling

Direct sampling most closely captures human exposure. Re-
searchers in North Carolina set up a central monitoring trailer
for 2 weeks in study participants’ neighborhoods and contin-
uously measured H2S, semivolatile PM10, and PM10 [27, 50•,
51, 52]. In 2008, Wing et al. reported a significant positive
association between H2S concentration and self-reported odor,
adding credence to studies using self-reported odor as an ex-
posure measure [27]. In a comprehensive investigation of a Q
fever outbreak that originated at a goat dairy in the Nether-
lands, Hackert et al. took environmental samples from the
barn; blood samples from veterinarians, farmers, and their
close contacts; and aerosamples 1000 m from the barn to
characterize many phases of exposure [79•].

Microbiologic

Microorganisms sampled from IFAP and the community must
be characterized with high-resolution DNA typing methods to
determine whether isolates found in people with no livestock
exposure are linked to the livestock reservoir. Over the years,
several typing methods have been used, including phenotypic
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characterization, DNA fingerprinting, single-locus and
multilocus sequence typing, DNA microarrays, optical map-
ping, and whole-genome sequence typing (WGST) [80]. The
increased use of WGST is bound to improve our understand-
ing of the relationship of microorganisms at the animal-human
interface in the coming years. Its discriminatory power has
already been shown in a number of retrospective outbreak
investigations, but the technology still has to be translated
from a research tool into one that is useful in routine surveil-
lance programs and early warning systems.

Outcome Ascertainment

In studies reviewed, outcome ascertainment methods were
less variable than exposure assessment. Researchers used just
three types: self-reported outcome, self-report of clinical out-
come or a validated questionnaire, or a medically documented
clinical diagnosis (Fig. 2b). Clinical diagnoses were most
common (18/33 reviewed studies) and the only method used
for zoonotic pathogen research.

Empirical Work on IFAP and Health Outcomes

Respiratory Outcomes

A small number of studies in a few locations (Iowa [70, 76]
and North Carolina [50•, 51, 55] in the USA, as well as north-
western Germany [32, 58] and the Netherlands [77]) have
examined relationships between IFAP and the occurrence of
respiratory outcomes in nearby residents or schoolchildren.

All studies included swine operations, though some also in-
cluded other animal species (chickens, cows, goats, sheep, and
mink).

Assessed respiratory outcomes varied across studies. Most
studies used self-reported wheeze/whistle, medication use or
prescription, or asthma diagnosis, collected through question-
naires [32, 51, 55, 58, 70, 76]. Fewer studies also used objec-
tive clinical measurements of lung function, including forced
expiratory volume in one second (FEV1) and peak expiratory
flow (PEF) or clinical diagnosis codes [32, 51, 58, 77]. A
study of children attending schools near IFAP examined func-
tional limitations (in the form of missed school or activity
limitations) stemming from asthma symptoms [55].

With some exceptions, the limited available evidence sug-
gests a relationship between exposures to air pollutants from
IFAP and respiratory morbidity (Table 1). One strength of this
small database includes the notion that using multiple varia-
tions of exposure assessment (proximity- or density/gravity-
based, objective pollutant measurement, and subjective odor
monitoring) yields generally consistent relationships between
exposures and outcomes related to asthma (diagnosis, wheeze,
and medication use). Another strength is that many of the
observed effects (asthma, wheezing, and COPD) are consis-
tent with those seen in hog confinement workers who are more
highly exposed [81]. Despite these strengths, some limitations
exist, especially in regard to study design; the majority of the
studies available are cross sectional. Only one prospective
cohort study of respiratory outcomes was identified [51],
and while its findings were consistent with other findings,
the overall confidence in the relationships would be bolstered
with additional prospective studies. In addition, the literature
has focused on swine, making it difficult to draw conclusions

Fig. 2 Methods of exposure
assessment and outcome
ascertainment in reviewed health
outcome research since 2000. a
Main method of exposure
assessment (n=33 studies); all are
mutually exclusive except for
self-report, which complemented
other methods in many studies. b
Main method of outcome
ascertainment (n=33 studies); all
are mutually exclusive
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about broiler, egg layer, cattle, and dairy operations with re-
gard to respiratory health. Of the few studies that relied upon
objective pollutant measurements to characterize exposure,
H2S and fine PM were found to be predictors of reporting
chest tightness and wheeze, respectively [51]; a different study
relying on interpolated estimates of measured ammonia con-
centrations did not find significant associations with wheeze
[32].

Two other studies painted a blurrier picture of the relation-
ship between IFAP and respiratory outcomes. One study
which built upon an earlier investigation that did find signif-
icant relationships relied upon interpolated ammonia expo-
sures from area monitors to assign exposure and did not find
associations with wheeze or allergic rhinitis but did show a
significant increase in allergen sensitization and a significant
decrease in FEV1 [32]. Another study in the Netherlands used
electronic health records and multiple methods of farm pollu-
tion exposure assessment and found significant inverse rela-
tionships with asthma, allergic rhinitis, and COPD [77].

The European GABRIEL Advanced Studies have shown a
protective effect against asthma and atopic sensitization for

children who grew up on a farm that both raised cows and
cultivated feed crops, though associations were less clear for
atopy [82]. In contrast, research in Iowa found higher preva-
lence of asthma among children growing up on a farm raising
swine (with an elevated effect for swine farms that use antibi-
otics), even among those with lower rates of atopy and per-
sonal histories of allergies [83]. Many studies of respiratory
outcomes in our database did not account for farm contact/
residence in assessment of relationships between respiratory
outcomes and animal operations.

Zoonotic Diseases in Humans Living in Close Proximity
to IFAP

IFAP is an enormous reservoir of zoonotic bacteria (including
those resistant to important antimicrobials for human use)
such as Salmonella spp., Campylobacter spp., Escherichia
coli, and Enterococcus spp., Coxiella burnetii, S. aureus (in-
cluding MRSA), and Clostridium difficile. Although food an-
imals are the primary hosts of these microorganisms, theymay
also be present in IFAP workers and in the surrounding

Table 1 Summary of health outcomes and proportion of studies reporting an association between living near industrial food animal production and
poor health outcomes

Health outcome Study design Proportion with greater
than or equal to one
significant association
with IFAP

Weight of evidence References

Respiratory

Asthma Observational/Cross sectional 3/4

Mostly consistent evidence of
an association, stronger for
asthma and lung function

[51, 58, 70, 76, 77]
Longitudinal 1/1

Wheeze Observational/Cross sectional 2/4 [32, 51, 55, 58, 70]
Longitudinal 1/1

Lung function (FEV1,
PEF, and COPD)

Observational/Cross sectional 2/3 [32, 51, 58, 77]
Longitudinal 1/1

Allergic rhinitis Observational/Cross sectional 1/3 [32, 58, 77]

Cognitive impairment Experimental 0/1 Weak evidence of an association [69, 87]
Observational/Cross sectional 1/1

Stress/Mood Experimental 0/1 Sufficient evidence of an association [52, 54, 59, 60,
69, 87, 88]Cross sectional 4/4

Longitudinal 2/2

Quality of life and activities
of daily living

Ethnography 1/1 Moderate evidence of an association [27, 56, 57, 59, 71]
Observational/Cross sectional 4/4

Zoonotic disease

MRSA Observational 6/6 Sufficient evidence of an association [62, 63•, 66, 68,
74, 75]

C. difficile Observational/Longitudinal
(humans) and Observational (swine)

1/1 Insufficient evidence of an association [85]

Enterococcus Observational 1/1 Insufficient evidence of an association [64]

Q fever Observational/Cross sectional 1/1 Sufficient evidence of an association [72, 73, 79•]
Longitudinal 2/2

Birth outcomes Ecologic 1/6 Insufficient evidence of an association [65, 67]

Blood pressure Observational/Longitudinal, short term 1/1 Weak evidence of an association [50•]
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environment, which could put people living in close proximity
at risk for acquisition and infection.

In particular, C. burnetii, the cause of Q fever in humans,
and MRSA have been increasingly recognized as important
pathogens in people living near IFAP. Sheep, goats, and cattle
are considered the most common reservoirs of C. burnetii,
which is excreted in milk, urine, feces, and birth material from
infected animals [84]. In the Netherlands, Smit et al. demon-
strated a strong association between human Q fever and the
number of goats within a 5-km radius of the residential ad-
dress [73]. In another study of a large single-point source
outbreak of Q fever in the Netherlands, Hackert et al. showed
that most community cases were scattered downwind from the
index farm and that the risk of C. burnetii exposure and de-
velopment of Q fever increased with residential proximity to
the index farm [79•]. Most recently, Hermans et al. demon-
strated a strong spatiotemporal relationship between residen-
tial proximity to goat-manure-applied crop fields and human
Q fever in the Netherlands [72]. Taken together, these studies
support the conclusion that exposure to a contaminated envi-
ronment is a primary source of Q fever in community settings.

Several studies from Europe have shown that the distribu-
tion of human cases of MRSA strains belonging to clonal
complex 398 (MRSA CC398) is concentrated in rural areas
where food animals are raised [62, 63•, 66]. Worryingly, a
substantial proportion of these people have no direct animal
contact, suggesting that MRSA CC398 is spreading from
IFAP into surrounding communities [62, 63•, 66]. In Den-
mark, living in the same municipality as an IFAP worker with
MRSA CC398 infection was associated with a 2.5-fold higher
risk of developing an MRSA CC398 infection in the general
population [63•]. It remains unclear how spread into the com-
munity occurs. While MRSA usually spreads through human-
to-human contact, it is possible that other modes of transmis-
sion play a role, including spread via contaminated environ-
mental media, pests, and fomites. A study from Germany
found low numbers of MRSA CC398 in air samples (<15
bacteria/m3) and on soil surfaces downwind of IFAP opera-
tions [8]. It is unknown, however, whether these concentra-
tions are high enough to represent a risk for human acquisition
and development of infection. In the USA, living in close
proximity to IFAP operations and manure fields has been as-
sociated with an increased overall risk ofMRSA infection and
carriage [68, 74]. Nearby IFAP operations and manure fields
were not sampled and MRSA isolates from the patient popu-
lations were not available for typing due to the retrospective
study designs, thereby hindering molecular tracking of the
source. In a prospective study, some MRSA types seemed to
predominate in people living in close proximity to IFAP [75],
but again, there was no sampling of local IFAP operations. US
studies were unable to directly control for livestock contact
and therefore did not exclude IFAP workers from the analysis.
However, Casey et al. showed that adjusting for the

prevalence of livestock workers at the community level did
not change the results [74].

Only a few studies have investigated whether other micro-
organisms can spread from IFAP into the surrounding com-
munities. In the Netherlands, Goorhuis et al. found that the
human infections with C. difficile ribotype 078 were concen-
trated in more rural areas where pigs are raised and that iso-
lates from pigs and humans were closely genetically related
[85]. Kelesidis and Chow showed that daptomycin-
nonsusceptible enterococci cases lived in close proximity to
animal and crop operations in Los Angeles County, but this
study did not attempt to track the source of these microorgan-
isms [64]. Conversely, Odoi et al. found no link between cattle
density or intensity of manure application IFAP and human
Giardia lamblia infection in Ontario [86].

Few studies have directly measured the transmission of
antibiotic-resistant zoonotic pathogens into communities
proximal to livestock production. The most robust studies
have been conducted on livestock-associated MRSA, and the-
se show strong evidence for transmission to communities near
IFAP. Additional studies are needed to assess the risk due to
other pathogens resistant to clinically important antibiotics.

Cognitive Impairment, Stress, and Mood

Only two studies evaluated cognitive impairment from expo-
sure to IFAP, providing weak evidence [69, 87]. In an exper-
imental design, Schiffman et al. found no effect of acute (1 h)
exposure to swine IFAP air (i.e., air containing elevated levels
of H2S, NH3, PM, and endotoxin) compared to exposure to
1 h of clean air on attention, memory, or mood [87]. During
short-term exposure, volunteers did experience increased
headaches, eye irritation, or nausea. Kilburn et al. compared
people living <3 km from a hog manure lagoon (n=25) to
those living >3 km (n=22), to evaluate chronic exposure to
IFAP, and found significantly more neurobehavioral abnor-
malities in those living <3 km [69]. They also reported worse
moods (as measured by the Profile of Mood States, e.g., ten-
sion, depression, anger, vigor, fatigue, and confusion) among
those living <3 km from manure lagoons. When restricting
analysis to those <3 km from a lagoon, shorter distances to a
lagoon were not associated with stronger effects, perhaps due
to low power, unobserved confounding, or selection bias.

Several studies in the USA have evaluated the effect of
exposures to swine IFAP on stress or mood, using cross-
sectional [69], experimental [87], and longitudinal designs
[52, 54]. Horton et al. used a community-based, longitudinal
design among 101 participants living near swine IFAP opera-
tions and found self-reported odor, and directly sampled H2S,
and semivolatile PM10 were each associated with feelings of
stress or annoyance and nervousness or anxiety [52]. In an
earlier community-based study, Avery et al. had 15 partici-
pants living <1.5 mi from a swine operation take twice-daily
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salivary samples after rating livestock odor and found evi-
dence that exposure to odor reduced the function of the mu-
cosal immune system (as measured by secretory immunoglob-
ulin A) [54]. Although not directly measured, they hypothe-
sized that this association was mediated by stress caused by
odor exposure.

European studies have focused on odor annoyance due to
exposure to livestock (i.e., swine, poultry, and cattle) and
cross-sectional studies have consistently reported odor annoy-
ance among participants living in areas with high livestock
density [58–60, 88], with attenuated affects for those living
or working on a farm [57, 59, 60]. Hooiveld et al. also noted
that while self-reported symptoms (e.g., respiratory, gastroin-
testinal, and stress) were associated with higher self-reported
odor annoyance, few participants sought health care services
to resolve their concerns [88]. This finding highlights the im-
portance of measuring symptoms directly or carefully
selecting health outcomes for research that are available in
the health care record.

Despite differences in exposure assessment, outcome as-
certainment, and study design, six out of seven studies report-
ed at least one significant association between IFAP exposure
and cognition, mood, or stress, providing sufficient evidence
of an association. Schiffman et al. did not observe any effects
of an acute laboratory exposure, suggesting that chronic, un-
predictable exposures are more salient [87].

Quality of Life

Three studies in the USA [27, 56, 71] and two in Europe [57,
59] have considered the relationship between odors from
IFAP and quality of life. Four of the five studies assessed
exposure by proximity to livestock operations and self-
reported odor; one used modeled annual ammonia concentra-
tion at the household [59]. All studies used self-reported
outcomes.

Wing et al. provided early evidence by interviewing 100
individuals in North Carolina who lived near swine or cattle
operations and 55who did not (N=155) [71]. Of all symptoms
recorded, the greatest differences between communities were
seen on quality of life questions; for example, those living
within 2 mi of a swine operation reported being unable to go
outside 15.4 times (on average) in the prior 6 months, com-
pared to 2.1 times for those not living near an operation. Ra-
don et al. assessed quality of life with the Short-Form 12
Health Survey (SF-12), a reliable and valid measure of phys-
ical and mental health in a variety of contexts. In analyses
adjusted for factors like age, sex, schooling, and smoking,
they reported a strong association between odor annoyance
and reductions in physical and emotional SF-12 scores [57].

Blanes-Vidal et al. found evidence supporting a coping
hypothesis: Odor leads to behavioral interference (e.g., disrup-
tion of lifestyle or unwanted changes in social behavior),

mediated by annoyance perception [59]. In a Danish sample,
they reported that modeled ammonia exposure was associated
with increased odds of behavioral interference and health risk
perception and that odor annoyance mediated 81 and 44 % of
the relationships, respectively. Two community-based partici-
patory research projects also found support for this hypothesis
where residents living near swine operations commonly
changed their activities, including social interactions, physical
activities, and sleep, due to odor [27, 56]. Tajik et al. reported
that even in the absence of odor, participants felt stress and
anxiety regarding the potential impact to daily routines or
embarrassment if guests were present when odor occurred
[56]. Taken together, these studies provide moderate evidence
that exposure to IFAP impacts activities of daily living or
quality of life.

Other Studies

Two ecologic studies evaluated the effect of geographically
aggregated livestock exposure on indices of infant health and
mortality [65, 67]. Sneeringer conducted a time-series analysis
using two decades of US, nationwide, county-level data on
livestock numbers (i.e., beef, dairy, swine, and poultry) and
infant births and deaths [67]. While accounting for county-
level confounding variables, she found that a 100,000 head
increase in livestock was associated with a 7.3 % increase in
county infant mortality rate. No association was seen between
livestock count and four birth outcomes: continuous birth
weight, low birth weight, 5-min Apgar score, or preterm birth.
The author proposed an underlying air pollution mechanism
based on several secondary analyses. Similarly, Blake did not
find an association between zip code-level counts of dairy
cows in the San Joaquin Valley in California and birth weight
but found cow density to be associated with higher nitrate
levels in well water [65].

We also identified a single study of the relationship be-
tween air pollution from animal operations and blood pressure
[50•]. Using a case-crossover design, Wing et al. found that,
after adjusting for stress, increases in community H2S mea-
surements, but not PM, were significantly associated with
rising systolic blood pressure. This finding provides support
for a psychophysiological mechanism where stress from odor
triggers physiological response.

Susceptibility/Vulnerability Factors

Certain populations, including the young and old, the im-
mune-compromised, the uninsured, racial and ethnic minori-
ties, and the poor and those living in deprived communities,
are at particular risk of health effects from IFAP exposure.
These susceptible or vulnerable populations may lack neigh-
borhood resources necessary to buffer or avoid IFAP expo-
sures [89]. Indeed, several studies have suggested that
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livestock operations are more likely to be sited in communities
of color or low socioeconomic status [55, 90–92]. This envi-
ronmental injustice contributes to health disparities [93].

Aquatic Toxicology Studies

Animals living near IFAP experience similar exposures as
humans. Aquatic toxicology studies, which describe effects in
high-exposure animals, can inform us about IFAP-associated
health risks in both human and animal populations. Several stud-
ies have evaluated the effect of steroidal hormones from beef
cattle feedlot runoff on aquatic life [94–99]. The body of evi-
dence suggests that androgens, specifically trenbolone acetate
used to promote muscle growth in cattle and its metabolites
17α-trenbolone and 17 β-trenbolone, which appear relatively
stable in manure [100], bind readily to fish androgen receptors
[101] and have been detected in waterways near feedlots [95, 97,
99] and can cause problems in fish.

Leet et al. found that fathead minnows exposed to an IFAP
effluentmixture for 45 dayswere significantly heavier and longer
than the controls and further analysis revealed ovaries in the
testes of 84 % of exposed males, compared to 0 % of controls
[96]. In IFAP ditchwater-exposed wild fish, Leet et al. also ob-
served lower species richness, faster growth, and worse repro-
ductive conditions compared to reference site fish [95]. The au-
thors reported a male-skewed sex ratio in fathead minnows ex-
posed to IFAP ditchwater for their first 6 weeks of life (60.4±
3.3%males in the IFAP-exposed group vs. 48.7±3.9%males in
control group). They did not detect an estrogenic effect (mea-
sured by vitelloeginin activity) in fathead minnows during a 7-
day in situ exposure, suggesting that androgens might have a
greater impact on aquatic life [95]. These ecotoxicological stud-
ies could have implications in humans reliant on impacted
groundwater.

Methodological Issues in Community Health IFAP
Studies

Access to Populations and Health Outcomes

IFAP is usually sited in rural areas, which have lower population
densities, more diffuse health care, and a population that may
have medical skepticism [102] or indirect involvement in IFAP
[103], all of which present potential barriers to their involvement
in research. Wing and colleagues in North Carolina have effec-
tively used community-based participatory research [104] to en-
gage community members in academic health research [27, 50•,
51, 52, 54, 56, 71]. In theUSA, state and national agencies do not
require reporting of most diseases associated with IFAP (with the
exception of Q fever), so data acquisition on diseases of interest
is challenging. Despite this barrier, most studies utilized a clini-
cally diagnosed outcome (Fig. 2b). Casey et al. used data from

the Geisinger Health System, which provides medical care in an
area covering 69,000 km2 to study associations of IFAP and
MRSA infection [74, 75]. Databases available in several Euro-
pean countries also enabled studies on individuals dispersed
across large geographies.

Exposure Characterization

In comparison to outcome assessment, access to information
about IFAP is extremely limited. In the USA, swine and poultry
operations are generally vertically integrated, privately owned,
and inaccessible to researchers. Unlike in some European coun-
tries, almost no information exists about antibiotic type, quantity,
or duration of use in US IFAP [105]. Most studies reviewed
relied on self-report or distance-based exposure estimates, some-
times paired contemporaneously with self-reported outcomes,
potentially biasing results of either or both measurements.

In addition, in the few studies that were able to measure
environmental media, samples were restricted to indicator pol-
lutants (e.g., H2S, PM, or ammonia) or bacteria (e.g., MRSA)
[27, 50•, 51, 52]. IFAP exposures are multifactorial, including
not only air pollution but also water pollution, odor, and po-
tential impacts on housing values [106] that might have addi-
tive, multiplicative, or nonlinear effects on health outcomes.

Establishing Causality

Randomized experiments allow causal inference by allowing us
to assume that exposed individuals represent what would have
happened to the unexposed if they had been exposed. However,
in environmental health, randomizing people to a harmful expo-
sure is not an option. In IFAP research, as in many observational
studies [107], it might not be possible to fully account for
individual-level characteristics, like income or education, that
are also related to health and to living near IFAP (i.e., confound-
ing bias). Additionally, sicker individuals or people with certain
health behaviors might be more likely to live near to IFAP (i.e.,
selection bias).

To investigate how IFAP impacts health, researchers should
take advantage of available data, natural experiments [108], and
creative sensitivity analyses. Government agencies often collect
wind data, which future studies should consider incorporating in
distance-based models, since bacteria, antibiotics, and antibiotic-
resistant genes are more common downwind from farms [8, 30,
31] and wind can affect the spread of air pollution and odor [25,
31, 109]. In a sensitivity analysis, Casey et al. assessed the odds
of anMRSA infection in those living near a manure-applied crop
field compared to those living near any crop field and found that
risk was only associated with manure-applied crop fields [74].
For acute outcomes, researchers have used cases as their own
controls in a short-term longitudinal design to reduce the number
of necessary participants and to handle unmeasured confounders
[27, 50•, 51, 52, 54, 87]. Long-term longitudinal designs to
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establish temporality and reduce selection bias are another im-
portant step toward causal inference.

Discussion and Future Directions

Some important strides have been made in characterizing the
public health burdens placed on communities by IFAP. We
found sufficient evidence of an association between living
near IFAP and respiratory outcomes, MRSA, Q fever, and
stress/mood. To date, much of the existing epidemiologic lit-
erature describes investigations that follow on observational,
cross-sectional design. While these studies are useful, more
prospective studies, especially those that involve primary data
collection for both exposures and outcomes, are needed to
generate additional, stronger evidence.

In addition, characterization of chemical exposures typical-
ly involves measurement of a narrow set of indicator pollut-
ants, while it is well understood that emissions from IFAP
operations tend to be complex multipollutant mixtures [81,
110, 111]. More sophisticated approaches that examine the
spatiotemporal patterns of mixtures and that may not track
well with traditionally used indicator chemicals are needed
[112]. Building on improvements in exposure characteriza-
tion, novel approaches aimed at disentangling the contribu-
tions of individual contaminants and multicontaminant syner-
gies within mixtures [113] should be applied in the context of
IFAP. These techniques have increasingly been used in the
urban context for air pollution research but may also be useful
in evaluating exposures to rural mixtures.

Future studies should explicitly investigate community ex-
posure through water pollution. Given the potential for land-
applied animal waste to impact groundwater [65, 114–116],
and the reliance of rural communities on these sources for
drinking water [117], it is prudent to directly consider their
potential contributions to morbidity and mortality.

One strength of the existing body of literature is that it
includes community-driven studies [50•, 51, 55, 118]; these
studies build upon established trust between researchers and
communities bymeaningfully involving community members
to design, conduct, contextualize, and disseminate research
[119]. Continued use of this approach holds promise for an-
swering questions relevant to community-identified needs.

In the case of microorganisms, future investigations should
not be limited to high-profile antibiotic-resistant pathogens
like MRSA but should also include a broader range of poten-
tially infectious microorganisms to quantify the total infec-
tious disease burden borne by people living near IFAP. New
studies should include samples from IFAP operations, envi-
ronmental media, and people with and without direct livestock
contact and use high-resolution DNA typing methods to iden-
tify the transmission pathways into the community and risk
factors for human colonization and infection. In addition,

emphasis should be placed upon clinically relevant health out-
comes such as infection, rather than colonization, especially
for microorganisms where the risk of infection given coloni-
zation is not well understood. This knowledge would inform
evidence-based intervention strategies to control the spread of
these microorganisms into the community.

Conclusions

We reviewed 33 studies of community exposure to IFAP and
human health outcomes, 17 published since the last review was
conducted in 2010. Residence near IFAP has consistent positive
associations with respiratory outcomes, MRSA infection and
colonization,Q fever, and stress/mood outcomes. Future research
should improve exposure assessment through direct environmen-
tal sampling, taking into account pollutant mixtures, and contin-
ued efforts at community-based participatory research.
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