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nutrient availability and crop growth: A review

Anaerobic digestion (AD) for biogas production leads to several changes in the com-
position of the resulting digestates compared to the original feedstock (ammonia
content, pH, carbon to nitrogen ratio, etc.), which are relevant for the plant availabil-
ity of macro- and micronutrients after field application. Increased NH4

+-N content
in digested slurries compared to undigested slurries does not guarantee improved
uptake efficiency of slurry nitrogen and increased savings in fertilizer nitrogen. AD
of crop residues and cover crops leads to an increase in the total amounts of mo-
bile organic manures within the farming system, resulting in a higher nitrogen use
efficiency and an increased scope for target-oriented nitrogen application in time
and space, when needed by the crop, as an alternative to the site-bound soil incor-
poration as green manures. AD of dairy manure appears to reduce the fraction of
immediate plant available phosphorus and micronutrients. This does, however, not
affect short-term crop availability under field conditions. More studies are needed
to improve current knowledge on sulfur losses during AD and fertilizer value of
digestates.
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1 Introduction

Manures from stables, crop residues, wastes from food indus-
try, municipal wastes, and dedicated energy crops are the main
feedstocks for anaerobic digestion (AD) in biogas plants (Fig. 1).
During AD about 20–95% of the feedstock organic matter (OM)
is degraded, depending on feedstock composition. The residual
product of AD, called digestate (= biogas effluents = biogas
residues, or biogas slurry, when animal manures are digested), is
usually used as fertilizer. For Germany, it was estimated that in
the year 2011, approximately 20% of the animal wastes and the
biomass harvested from an area of approximately 1.1 million ha
are used as feedstock in biogas plants [1]. No data were found
about the annual total amounts of available digestates in Ger-
many. Own calculations indicate that the German biogas plants
currently produce a total amount of approximately 65.5 mil-
lion cubic meters of digestates, containing a total amount of
390,153 Mg nitrogen (N), 74,075 Mg phosphorus (P), and
331,472 Mg potassium (K) (Table 1). Digestates are either di-
rectly spread as manures, or treated (solid–liquid separation,
drying, dilution, filtration, etc.) before field application (Fig. 1).

Correspondence: Dr. Kurt Möller (kurt.moeller@alumni.tum.de),
Institute of Crop Science, Universität Hohenheim, Fruhwirthstr. 20,
70593 Stuttgart, Germany.

Abbreviations: AD, anaerobic digestion; DM, dry matter; FM, fresh
matter; OM, organic matter

This paper addresses the effects of AD on digestate composi-
tion and their fertilizing effects, as well as the available digestate
treatment procedures. It will give an overview of the state of the
art and further research needs. Not included is potassium, as
it does not become part of structural components in the plant.
Therefore, most of the K+ in plants remains dissolved in the cell
sap and is therefore also found in dissolved form in manures and
digestates.

2 Effects of anaerobic digestion on manure
composition

Early studies about the effect of AD on manure characteris-
tics compared the composition of digestates and solid farmyard
manures. They found similar differences as commonly described
when comparing liquid slurry with solid farmyard manure [2–7].
Recently, characterizations have been made mainly for liquid
undigested and digested animal slurries as well as for digestates
derived from dedicated energy crops; available data indicate a
wide range of nutrient contents (Table 2).

Digestates have higher ammonium (NH4
+):total nitrogen

(N) ratios, decreased OM contents, decreased total and organic
carbon (C) contents, reduced biological oxygen (O2) demands
(factor 5–13), elevated pH values, smaller carbon to nitrogen
ratios (C:N ratios), and reduced viscosities than undigested an-
imal manures [8–17]. The digestate NH4

+-N content is directly
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Figure 1. Overview of the matter flows and processes during anaerobic digestion and possible treatments of the resulting digestates.

related to the original feedstock total N content [18]. Digestates
from feedstocks with a high degradability (e.g. cereal grains,
poultry and pig manures with a diet high in concentrates) are
characterized by high NH4

+-N:total N ratios and narrow C:N
ratios [8, 10, 14, 19, 20]. Cattle manures or fibrous feedstocks
low in N (e.g. silage maize) lead to a low NH4

+-N:total N ratio
[8, 14, 21].

The digestate pH value is mainly controlled by the species
NH4

+↔NH3, CO2↔HCO3
−↔CO3

2−, and CH3COOH↔
CH3 COO− [22, 23]. A pH increase is usually due to forma-
tion of ammonium carbonate ((NH4)2CO3) [18, 24] and the
removal of CO2 [25] as a result of the transformation of CO3

2−

and 2H+ to CO2 and H2O (Figs. 2 and 3). Furthermore, the
fatty acid contents of feedstocks were reduced by AD (factor
2.5–13) [16, 26]. Digestate pH is also affected by the concen-
tration of basic cations (e.g. Ca2+, K+); they increase digestate
pH because the electric charge balance of the solution has to be
neutral, thus, decreasing the concentration of H+ [23]. Simulta-
neously, precipitation of carbonates (e.g. calcite CaCO3) reduces
manure pH [23]. Mineralization and reduction of multivalent
ions in feedstocks (e.g. SO4

−2, FeIII(OH)3) increase pH, as well
as the addition of FeIII-ions to remove hydrogen sulfide (H2S).
Precipitation of Fe2+-phosphates releases protons decreasing the
pH [23]. Also, the reaction between Mg2+-, NH4

+- and PO4
3−-

ions (to form struvite) causes the release of H+ ions in solution
(Fig. 2) [27].

Analyses of particle size distributions in raw and digested
slurries showed a general shift in distribution toward larger sizes.
Larger particles (i.e. >10 μm) are more resistant to degradation
[28].

It has been stated that digestates contain bioactive sub-
stances, such as phytohormones (e.g. gibberellins, indoleacetic
acid), nucleic acids, monosaccharides, free amino acids, vita-
mins and fulvic acid, etc., with the potential to promote plant
growth and to increase the tolerance to biotic and abiotic
stress [29, 30]. Digestates have higher contents of indoleacetic
acid than the original plant feedstock [31]. This increase could
only be explained by a microbial synthesis during the digestion
process.

Contradictory results have been found concerning phyto-
toxicity of digestates. Some authors reported that digestate
application has no phytotoxic effects [32, 33], others have
found phytotoxic reactions [34–36]. Phytotoxicity is related to
NH4

+-N [36, 37] and organic acid concentrations [34, 36, 37].
No data were found on the duration of possible phytotoxic ef-
fects of digestates. It is expected that the possible negative effect
of any kind of digestate phytotoxicity will decrease within a short
period of time after field application.

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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Table 1. Assessment of the annual total amounts of digestates currently produced by biogas plants in Germany, and the related amounts
of nutrients

Feedstocks Total nutrient amounts (Mg)a) Amountsc) (1000 m3)

N P K

Dedicated energy crops Assumed area (ha)d) Digestate FMb)

Silage maize 629 063 131 474 24 219 128 014 26 295
Cereals 163 090 16 146 3 425 4 893 245
Whole plant silage (cereal) 58 247 8 155 1 456 5 679 1 092
Other (potatoes, sugar beets, etc.) 58 247 7 405 1 631 11 727 1 797
Grassland 191 354 59 320 9 185 52 431 4 736
Sum 1 100 000 222 499 39 916 202 744 34 165

Animal excrements Assumed amounts
(1000 Mg FM)

Cattle slurry 18 641 80 158 12 303 77 361 18 641
Pig slurry 4 924 22 651 4 530 9 011 4 826
Mixed slurries 5 116 22 766 4 042 15 297 5 065
Solid farmyard manures 1 727 12 259 3 246 9 894 1 606
Poultry manures 1 533 26 820 10 038 17 165 1 165
Sum 164 654 34 159 128 728 31 302
Total 387 153 74 075 331 472 65 467

a)Calculations based on nutrient contents and mean yields provided by [136].
b)FM = Fresh matter.
c)Calculations based on assumed feedstock availability and “volume reduction factors” provided by Heidenreich (cited by [21]).
d)Data based on the assumption that feedstocks are produced on an area of 1,1 Mio ha, including 5% of the total German grassland area; arable land
feedstock composition: 69% silage maize, 18% cereal grains, 6.5% whole plant silage, and 6.5% others [1].

Table 2. Digestate characteristics

Absolute values Changea) References

DM (%) 1.5–13.2 −1.5 to −5.5 [21, 137–141]
Organic DM (% DM) 63.8–75.0 −5 to −15 [12, 137, 141]
Total N (% DM) 3.1–14.0% b) [8, 12, 14, 137, 141]
Total N (kg Mg−1 FM) 1.20–9.10 ≈ 0 [8, 10, 14, 138, 139,142]
Total NH4

+ (kg Mg−1 FM) 1.5–6.8 ? [139]
NH4

+ share on total N (%) 44–81% +10 to +33 [8, 12, 14, 16, 140]
Total C content (% DM) 36.0–45.0 –2 to –3 [12]
C:N ratio 3.0–8.5 –3 to –5 [12, 14, 142]
Total P content (% DM) 0.6–1.7 b) [10, 21, 137, 141]
Total P (kg Mg−1 FM) 0.4–2.6 ≈ 0 [21, 138, 139, 142]
Water soluble P (% of total P) 25–45 –20 to –47 [65, 143]
Total K (% DM) 1.9–4.3 b) [10, 21, 137, 141]
Total K (kg Mg−1 FM) 1.2–11.5 ≈ 0 [21, 138, 139]
Total Mg (kg Mg−1 FM) 0.3–0.7 ≈ 0 [137, 141, 142]
Total Ca (kg Mg−1 FM) 1.0–2.3 ≈ 0 [10, 141, 142]
Total S (kg Mg−1 FM) 0.2–0.4 ? [142]
pH 7.3–9.0 +0.5 to +2 units [8, 10, 12, 14, 18, 26, 112, 142, 144]

a)In comparison to undigested liquid animal manures, absolute values.
b)Increases with degree of DM degradation.
DM = Dry matter.
FM = Fresh matter.
? = No data found/no data available.
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Figure 2. Factors affecting pH-value of digestates.

Figure 3. Nitrogen turnover in biogas digesters.

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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3 Effects of anaerobic digestion on nutrient
availability after digestate application

3.1 Nitrogen

Complex organic N compounds are mineralized to NH4
+-N

in the digester. A part of the NH4
+-N is used by the digester

microorganism for growth. Further processes are formation of
struvite and ammonium carbonate, traces are volatilized in the
biogas stream (<1%) (Fig. 3). The essential major element N
is found in the plant in both inorganic and organic forms. A
range of processes is triggered by field application of digestates.
Priming effects [38], as well as an inorganic N immobilization
[39–41], have been detected. A significant, negative correlation
between net N-mineralization and mineralized-C has been re-
ported [41]. Remaining organic compounds induce soil biolog-
ical activity, partially immobilizing inorganic N [39, 41]. How-
ever, the fundamental environmental changes (anoxic conditions
in the digestate stores, oxic or semioxic conditions in the soil)
may also induce decomposition of compounds, which need oxic
conditions for decomposition, as present in the soil after field
application [42]. The biochemical O2 demand, the dissolved
organic C, and the corresponding organic C:total N ratio of dis-
solved substances can be considered the most reliable indicators
in describing digestate biodegradability [41].

For the year of application of organic manures, it is gen-
erally assumed that the fraction of plant available N is closely
associated to the manures’ NH4

+-N contents [14,43–45]. Com-
parisons of digestate applications with mineral N fertilizers based
on equivalent amounts of total N have been shown lower fer-
tilizer N-values than the mineral N fertilizers [46]. However, if
the application was only based on equivalent amounts of the
NH4

+-N fraction in the digestate, comparable apparent NH4
+-

N recoveries of digestates and mineral fertilizers were reported
[14, 20, 47]. Simultaneously, with digestate field application soil
organic nitrogen (Norg)-accumulation takes place, enhancing soil
Norg-mineralization even after a single digestate application [14].
The net Norg-mineralization within a six-month experimental
period was 12% [47]. Though, it might be difficult to transfer
these results to other kinds of digestates, as the C:N ratio of di-
gestates varies widely in range, and the total carbon to organic
N ratio (Corg:Norg ratio) is a crucial factor for the short-term N
availability [12, 14]. Even organic manures with a similar C:N
ratio may mineralize different amounts of N, due to differences
in their chemical composition [48].

Comparisons between digested and undigested slurry in pot
experiments, with equivalent amounts of applied NH4

+-N, in-
dicate a higher apparent N recovery for digested than for undi-
gested slurry [20]. Field experiments with the application of
equivalent amounts of total N indicate that the uptake of N
from liquid digested animal slurry equaled that of undigested
slurry after surface application, despite the higher NH4

+-N con-
tent of the digestate [12, 49]. A significant effect of AD on crop
yields and N uptake could only be found in experiments where
the manures are incorporated into the soil shortly after field
application [12], indicating that substantial parts of N might
have been volatilized as NH3 [11, 50]. This is supported by
pot experiments based on application of equivalent amounts
of total N, where the N uptake from digestates from animal

slurry exceeded that from undigested slurry by about 10% to
25% [8, 16, 51, 52].

3.2 Phosphorus

As a constituent of adenylates, nucleic acids and phospholipids,
phosphorus is an important plant macronutrient. The natu-
ral supply of P in most soils is small and the availability of P
in the soil solution is usually very low. It is often stated that
degradation processes during AD will improve phosphorus (P)
plant availability [53–55]. However, most available results from
field experiments indicated no effects of AD on manure P avail-
ability [56–58]. AD has potentially the opposite influence on
crop P availability, as often stated. Manure pH strongly influ-
ences the solubility of P and micronutrients. Raising the pH
moves the chemical equilibrium toward the formation of phos-
phate (HPO4

2− → PO4
3−) and subsequent precipitation as cal-

cium (Ca)- or magnesium (Mg)-phosphate (e.g. Ca3(PO4)2)
[23, 59–61] (Fig. 4). Simultaneously, the binding form of other
elements such as iron (Fe) may also be influenced by AD, affect-
ing P turnover and precipitation processes during AD [62–64].
The fraction of dissolved P, mineralized during AD, associates
with suspended solids [65]. The water-extractable P-fraction and
ratios of extractable nutrient:total-nutrient for Ca and Mg de-
creased substantially during AD (Table 2) [65]. Mineralization
of N, P, and Mg combined with a substantial increase of the
manure pH can enhance the formation and crystallization of
struvite [23,27,66]. This process can be used to remove N and P
from manures to reduce the P and N loadings [64,66]. Many ionic
species (e.g. Ca2+, K+, CO2

−3) can influence struvite formation
by reacting with its component ions [27]. Therefore, digestates
contain only trace amounts of Ca2+, Mg2+, and inorganic P in
solution [22, 23].

Concerning the effects of AD on P losses, while passing
through the biogas plant, small amounts of P (<10%) are lost
[65,67,68]. Few papers indicate much higher P losses up to 25%
[69] or even 36% [28]. The probable causes are partial retention
in the digesters due to the precipitation processes [28,65,67,69],
(Fig. 4). No studies about the effects of AD on P losses via leach-
ing and runoff after field application were found. The loss of P in
surface runoff occurs as sediment-bound and in dissolved forms
[70].

3.3 Sulfur

Sulfur (S) is a major essential nutrient, and S deficiency becomes
problematic in a growing number of regions [71]. Redox level
is an important factor when determining S reactions in a sys-
tem [73]. Therefore, degradation of OM forms sulfate, which,
in the absence of O2, reacts with protons to H2S and other
molecules [72–74] increasing the digester pH and leading to a
strong decrease of sulfate concentration and increase of sulfide
and C-bonded S concentrations, metal-sulfide precipitation, and
sulfur volatilization (Fig. 5). The formation of H2S, methanethiol
(CH3-SH), dimethyl-sulfide ((CH3)2S), and dimethyl disulfide
(CH3SSCH3) in slurry is redox dependent, while carbonyl sulfide
(COS) and carbon disulfide (CS2) are relatively constant and in
low amounts at all redox levels. Most of the S emanating from

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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Figure 4. Phosphorus turnover in biogas digesters.

the slurry is produced under anaerobic conditions between 0
and -200 mV [74]. H2S contents are proportional to feedstock
S contents [72, 73]. Protein-rich feedstocks may increase H2S
content in biogas [72, 75], as S is introduced mainly as a con-
stituent of amino acids.

No data were found addressing the digestate plant S availabil-
ity. Sulfate (SO4

2−) is the plant available sulfur form [71, 76].
Sulfide is expected to be readily oxidized to sulfate under oxic
conditions [75]. Lloyd [77] found an effectiveness of S as plant
nutrient in cattle slurry of 55% compared with S in gypsum.
However, there are also reports of very low plant availabilities of
slurry S [75]. Possible causes are S-volatilization (e.g. H2S, CS2,
COS, CH3SSCH3, etc.), soil S-immobilization as metallic sulfides
(e.g. FeS2, FeS), or sorption to soil constituents [75,78]. In most
cases, more than 50% of S is potentially volatile sulfide or C-
bonded S [75]. Although no data were found about S volatiliza-
tion after field application of digestates, a high volatilization
risk during manure storage and after manure spreading can
be expected due to the high proportion of potentially volatile
S compounds in digestates.

There are only few data available regarding S losses in biogas
plants. Some reports indicate that a part of the S is retained or
lost during AD [28,69]. Less than 50% of S leaves the biodigester
via digestates [69]. A part of the introduced S may potentially
leave the digester with the gaseous products (Fig. 5) [79]. The
lower the pH and temperature, the higher the H2S concentration

in solution. Several methods are used to partially remove H2S
from the biogas stream. A common technique is to convert the
S2− in H2S to S0 after biooxidation [72]. Iron-salts also remove
H2S from the gaseous products.

More research is needed to assess the S turnover processes
in the digester depending on the inputs into the biogas plant.
For example, there is no research available on the influence of
different technologies for H2S removal from the biogas stream
on S losses and S speciation in digestates. Research addressing
the influence of S- and Fe-loads via feedstocks (or via addition
of supplements) on nutrient speciation and precipitation in the
sludge is also needed. Current knowledge about the S fertilizer
value of digestates is very scarce.

3.4 Ca, Mg, and micronutrients

Many studies dealt with the effect of AD on micronutrient distri-
bution and bioavailability in sewage sludge, but rarely any with
digestates. Because of the complexity of the processes in the ma-
trix, micronutrients may be involved in many physico–chemical
processes including:

(i) precipitation as sulfide (except Cr), carbonate, phosphates,
and hydroxides,

(ii) sorption to the solid fraction, either biomass or inert sus-
pended matter, and

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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Figure 5. Sulfur turnover in biogas digesters.

(iii) formation of complexes in solution with intermediates and
product compounds produced during AD [62, 80, 81].

There are only few studies available addressing aspects of Ca,
Mg, and micronutrient turnover in digester. For example, on
average, 8.7% of Ca, 21.0% of Mn, 18.4% of Zn, and 41.5% of
Cu was retained in bioreactors [69]. However, the authors did
not find a statistically significant K, Fe, Mg, and sodium reten-
tion in the digesters. Significant losses have also been observed
for Ca, Mg, and manganese with 44%, 32.5%, and 32% of the
respective elements, respectively [28]. They partially crystallize
out as phosphates and carbonates.

The total metal concentration, the conditions during diges-
tion such as pH and redox potential, and the kinetics of reduc-
tion, precipitation, complexation, and adsorption are expected
to play a key role influencing the chemical speciation of mi-
cronutrients in liquid manures [62, 80, 82]. The increasing pH
decreases solubility of metals in the matrix [59, 83]. The pre-
cipitation of metals by sulfide (S2−), carbonate (CO3

2−), and
phosphate (PO4

3−), and their deposition in the bioreactor sludge
plays an important role in the nutrient turnover of macro- and
micronutrients [28, 62, 84, 85]. There is also probably a strong
interaction of added Fe and the micronutrients in the matrix: mi-
cronutrients may react with the Fe-sulfide releasing Fe2+ [81,86]
(Fig. 5). The resulting Fe2+ may form precipitates as hydroxides

(Fe(OH)2) or carbonates (FeCO3) [80]. Consequently, biore-
actors have a considerable ability to sequester Fe2+-ions in the
sludge [87]. Simultaneously, nonalkali metals (e.g. Ca2+, Mg2+)
form soluble ion pairs with a number of anions: HCO3

−, CO3
2−,

OH−, SO4
2−, S2−, Se2- [62]. A possible advantage of the precip-

itation processes is that the heavy metal loads in digestates can
be reduced.

Complexation reactions play an important role in bioreactors
making a particular metal either more or less bioavailable [62].
The level of soluble metals in the presence of CO3

2− and S2−

may be increased by a factor of up to 104 by complexation [83],
avoiding precipitation as carbonates or sulfides. Several authors
describe a shift of micronutrients away from mobile forms to-
ward more stable and less reactive and bioavailable forms during
AD [84, 88–90]. However, in a growth chamber experiment, it
has been found that AD does not reduce the plant bioavailability
of micronutrients [90]. The relevant processes driving the un-
derlying effects are not well understood. Furthermore, no data
were found concerning the effects of a long-term digestate field
application on the heavy metal accumulation in the soil and their
bioavailability to plants.

No data are available on the nutrient and micronutrient loads
of the sludge of biogas reactors. It is probable that the nutrient
loads are very high in the reactor sludge, demanding an accurate
management of the sludge after removal from the bioreactor, in

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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order to avoid high application of nutrients or pollutants on a
small area.

4 Effects of feedstocks on the digestates’
fertilizer values

To address the effects of different feedstocks on the digestates’
quality and on crop growth after digestate application, three
approaches should be discussed separately:

(i) The digestion of animal manures alone, AD is commonly
an additional intermediate step in the whole nutrient cycle.
The effects on the overall inner farm nutrient flows are
limited [91].

(ii) The digestion of green manure crops and crop residues in
combination with animal manures does not alter the total
amounts of available organic manures, however it modifies
the manure flows within the farming system, influencing
their allocation in time and space [91].

(iii) The digestion of dedicated energy crops alone or in com-
bination with animal manures leads to additional amounts
of organic manures [91, 92].

Concerning (i), contradictory effects on crop yields have been
found between undigested and digested cattle slurry after sur-
face application under field conditions: some authors report no
effects on crop yield [10,12,56], others report a positive effect of
AD on crop yields [93]. On grassland, it seems that AD of slurry
positively affects yields, but only in some years [12, 94, 95]. In
pot experiments, however, a significant positive effect of AD of
slurries on the manuring effect and crop yields have been con-
gruently found [8,16,39,51,52,96]. The contradictions of the re-
sults obtained with pot experiments versus field conditions with
surface amended digestates were likely based on methodologi-
cal reasons. In pot experiments, digestates were usually mixed
immediately with soil, reducing N losses [12]. Probable causes
of the reported inhomogeneous results depending on manured
crop and application technique are:

(a) Higher ammonia losses after spreading digested slurry, be-
cause manure AD increases NH4

+ concentration as well
as pH value and both factors promote gaseous N losses
[10, 12, 50, 97].

(b) Vegetation periods in pot experiments are often short and
soil volume is often limited, reducing the fertilization ef-
fects to immediately available nutrients, for nitrogen mainly
NH4

+
, promoting digestates with a higher share of NH4

+

on total N. In field experiments with a longer vegetation
period and a larger rooting area Norg of undigested ma-
nures may, however, have enough time to become partially
mineralized and available to crops [12, 52, 98].

Regarding AD of green manure crops and crop residues (ii)
increased soil N availability, crop yield and N use efficiency in
comparison to direct soil incorporation of feedstocks have been
found [12, 91, 99, 100]. Short-term availability of plant N is in-
creased when digestates are returned to soil, compared with
direct soil incorporation as green manure or crop residues af-

ter harvest. Another factor that must be considered when green
manure and crop residues are used for AD is the spatial nutri-
ent translocations within the farming system. A yield increase
of between 15% and 28% have been found for organic cropping
systems, where fertilization is based on AD of crop residues and
green manure crops and reallocation via digestates [99,100]. In-
stead of a site-bound manure incorporated directly by soil tillage,
AD, thus, enables the farmer to remove the plant biomass, includ-
ing their nutrients for digestion, leading to a “mobile” manure.
The “degree of freedom” of fertilization organic manures is in-
creased, as they can be applied to crops with higher N demand at
an optimal application time. In conventional cropping systems,
such mass and nutrient reallocations within the cropping system
will result in an equivalent reduction of mineral fertilizer require-
ments. In organic cropping systems, the reallocation opens for
a more target-oriented application of fertilizers, thus, reducing
potential losses by an improved synchronization of crop nutrient
demand and nutrient availability.

AD of dedicated energy crops (iii, e.g. silage maize) gener-
ally results in additional amounts of available organic manures
within the farming system, as animal stocking is often only
slightly influenced by the implementation of biogas plants [92].
Very often, additional feedstocks are purchased from surround-
ing farms. In principle, these factors lead to similar consequences
and risks as reported for increased animal stocks, e.g. higher
nutrient surpluses, increased manure application in autumn in
order to clear the stores, lower N use efficiency, etc. [91, 92].
Thus, challenges in manure handling and allocation are increas-
ing so that high nutrient use efficiencies and low emissions can
be obtained.

5 Digestates as fertilizers for vegetable
crops

Few publications address the use of digestates as fertilizers for
vegetables demonstrating that digestates are an effective nutrient
source [29,101,102]. Digestates may be most beneficial in organic
vegetable cultivation, where quick release fertilizers are lacking
[101, 102]. Incubation studies carried out under different soil
temperatures (8 and 16◦C) demonstrate that the short-term N-
release of digestate N is similar (e.g. blood meal, vinasse, etc.)
or even higher (e.g. castor cake, poultry solid manure, feather
meal, meat and bone meal, etc.) than the N-release of many
commercial organic fertilizers often used as manures in organic
vegetable crops, especially under low soil temperatures [102].
This indicates the high suitability of digestates as a fertilizer
even in the cool season (e.g. early spring), especially for high N
demanding vegetables with a short growing period.

Under soilless conditions, digestates from animal slurries are
an effective nutrient source in vegetable production. Undiluted
digestates with high electrical conductivity are not suitable [29].
The key problems obstructing their application in soilless cul-
ture are the variability of components and the imbalance in the
elemental composition [103]. Appropriate dilutions are 1:4 to
1:8 (digestate:water) [29].

Also hydroponic production of lettuce using digestates or
the liquid fraction after a solid–liquid separation in adequate
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dilution was comparable to a commercial hydroponic fertilizer
regime [104, 105]. In tomatoes, a conversion of NH4

+-N to ni-
trate and a supplementation with Mg were required before di-
gestate application in hydroponic culture [105, 106]. This was
necessary because of the high sensitivity of tomatoes to high
NH4

+-N levels, and the low content and availability of Mg in
digestates [105], due to struvite formation and precipitation
during AD. Other studies have reported that supplementation
by addition of P and micronutrients (particularly Fe) increases
the shoot biomass of lettuce [103]. Such a supplementation bal-
ances the relative P deficiency compared to N and improves Fe
availability [103].

Most investigations have shown that the vegetable nitrate
content decreased significantly, when applying digestates as an
alternative to mineral fertilizers under soilless [29] and sand cul-
ture [107], as well as in pot experiments [108]. The reduction in
nitrate content has been related to differences in N composition.
In contrast to nutrient solutions supplying nitrate, biogas diges-
tates supply NH4

+-N and as organic components mainly amino-
and amide-N [29,107]. In one study, no effects were found under
field conditions [101]. It seems that described effects are most
relevant when vegetables are fertilized with nutrients solution.

Results on the effect of application of digestates derived from
animal wastes on vitamin C content of vegetables are incon-
sistent [103, 108]. The use of concentrated digestates (fertilizer
obtained after solid–liquid separation, filtration, etc., see Fig. 1)
from animal manures had significant effects on tomato fruits,
including decreases in water content, and increases in electrical
conductivity, contents of total N, total P, amino acids, proteins,
soluble sugars, β-carotene, tannins, and vitamin C [30].

6 Agronomical relevant effects
of digestate treatment

Manure treatment technologies include physical (e.g. solid–
liquid separation), chemical (e.g. flocculation, precipitation),
and biological (e.g. composting) approaches. Commonly, the
first step of each digestate treatment procedure is the physical
solid–liquid separation (Fig. 1), e.g. with a screw-press separa-
tor. Mostly, the resulting solid manure high in dry matter (DM)
and the liquid manure low in DM is directly applied as fertilizer
[1]. Further treatments, for example drying of solid digestates
or water removal from the liquids by membrane technologies to
produce concentrates are not widespread.

6.1 Solid–liquid separation

Separation of digestates creates two products, a liquid and a fi-
brous material, both need to be stored and handled separately
(Fig. 1). Separation is performed in approximately 7% of the
German biogas plants [1] and facilitates controlling the nu-
trient content of manure fractions and the NH3 losses from
the liquid fractions [109]. The solid phase often comprises ap-
proximately 20–25% of the total digestate fresh matter derived
from dedicated energy crops (with a high silage maize and grass
share) and has DM contents similar to solid farmyard manure

(Table 3). The higher the DM content of the inflow to the sep-
arator, the lower the proportion of the liquid phase [110, 111].
The composition of separated solid digestates can vary greatly
(Table 3). The relatively high mineral N content of solids in-
dicates a high potential for N losses during manure handling
and application [112–115], in particular ammonia volatilization,
leaching and gaseous loses by denitrification after nitrification of
the NH4

+ to NO3
− during (partially) aerobic storage and han-

dling [21 and references therein]. Most of the total P is allocated
to the solid phase. The liquid phase is characterized by low DM
and P contents and high N and K contents [14,21]. Therefore, N
and K of digestates are partitioned according to the proportion
of solid and liquid phases [12,21,105,111]. A total of 45–80% of
the N in the liquid phase is present as NH4

+-N.
No data were found about the influence of a single feed-

stock on the separation index (ratio of solid to liquid fractions)
and on the nutrient content of both components. Furthermore,
no data are available addressing the N-turnover processes (e.g.
N-immobilization and -(re)mineralization) after application of
separated liquid or solid digestates, and how these processes are
influenced by the digestate composition, as previously done for
example for separated animal slurries [116]. Field application of
digested and separated liquids resulted in similar yields and N
uptake in comparison to plots treated with commercially avail-
able N fertilizers [14, 105, 117, 118]. Available data indicate that
a considerable share of Norg fractions, in separated liquid diges-
tates, is rapidly mineralized in soil [14]. Application of the solids
results in significant lower yields compared to the liquids and to
reference plots with mineral fertilizer [14, 105, 117]. Incubation
experiments indicated a net N immobilization after application
of separated solid digestates [14,119]. Other studies indicate that
considerable N losses during storage reduced the plant available
N [114].

In summary, the solid phase may be characterized as an or-
ganic fertilizer comparable with solid animal manure, but, with
highly available N and P contents having a high potential for
gaseous N losses, best suited to application on arable land in
order to increase soil humus reproduction and to substitute P
losses via harvested P-rich biomass such as grains. Separated
liquid digestates are characterizes as N–K fertilizers comparable
to mineral N–K fertilizers or animal urine. A digestate solid–
liquid separation, with a target-oriented separate application of
the liquid and solid phase, is, therefore, a technique for further
improvement of the nutrient use efficiency after field application
due to the following effects:

(i) Production of a liquid fraction, which is easy to handle
and therefore allows the implementation of more sophis-
ticated field application techniques, such as liquid manure
injection with a reduced risk of blockages of tubes [59].

(ii) Implementation of application strategies that increase the
agronomic value of manure by matching the crop nutrient
requirements more closely, both in amount and in time
[21, 69].

(iii) Production of liquids with distinctly reduced levels of P
and heavy metals [59, 120].

(iv) Improved plant uptake of digestate-derived N in the liquid
phase due to a high NH4

+:total N share, lower organic car-
bon contents and therefore lower N immobilization after

C© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.els-journal.com
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Table 3. Digestate characteristics after solid–liquid separation

Liquid fraction of digestates Solid fraction of digestates References

DM (%) 4.5–6.6 19.3–24.7 [21, 111, 139, 140, 111]
Organic DM (% DM) 40–86 [145]
Total N (% DM) 7.7–9.2 2.2–3.0 [21, 140]
Total N (kg Mg−1 FM) 4.0–5.1 4.6–6.5 [21, 111, 139, 140]
Total NH4

+ (kg Mg−1 FM) 1.8–3.0 2.6–2.7 [21, 139, 140]
NH4

+ share on total N (%) 40–80 26.0–49.4 [12, 14, 21, 105, 139, 140]
Total C (% DM) 48.0 39.6–40.0 [12, 111, 145]
C:N ratio 3.7–4.8 11.2–19.3 [12, 21]
Total P (% DM) 0.4–0.7 1.9 [12, 21]
Total P (kg Mg−1 FM) 0.7–1.0 2.0–2.5 [21, 111, 139]
Total K (% DM) 3.9 3.6 [12, 21]
Total K (kg Mg−1 FM) 3.5–5.2 3.4–4.8 [12, 21, 111, 139]
Total Mg (% DM) ? 0.2–0.4 [12]
pH 7.9 8.5 [140]

DM = Dry matter; FM = Fresh matter.
? = No data found/no data available.

field spreading, faster soil infiltration, and higher short-
term N-manuring effects resulting in a better control of
the applied N [121, 122].

(v) Reduction of the required storage volume for liquid phase
[21].

(vi) Creation of separated solid manure rich in OM and nu-
trients (mainly P) with higher maximum economically
feasible transport distances of the manure [21].

(vii) Lower requirement for stirring of the liquid prior to
spreading.

6.2 Drying or composting of separated
solid digestates

To improve the economically feasible transport distance, it was
proposed to dry the digestates [123]. This is done in approxi-
mately 1% of the German agricultural biogas plants [1]. Drying
of digestates is related to significant N losses as NH3 [123, 124].
Long-term aerobic incubation experiments with thermally dried
pig slurry demonstrated that such manures enhanced N avail-
ability only to a limited extent compared to an unmanured con-
trol [125]. Dried digestates can be pelletized before field spread-
ing: no data were found on the agronomical implications of
pelletizing manures or digestates (nutrient composition, nutri-
ent availability, effects of used field spreading technology, e.g.
broadcast application versus application near crop rows).

Another often discussed option for the treatment of solid
digestates is composting [34, 35, 126, 127]. However, also com-
posting is related to strong losses of N [113–115, 128]. Beside
direct NH3 losses, this is due to denitrification (N2O and N2),
following nitrification of the NH4

+ component to NO3
− during

aerobic turnover. From application of fresh and composted solid
animal manures, it is known that the effect on N availability and
on soil humus reproduction of fresh manures directly applied
to the soil is comparable to composts derived from the same
amounts of fresh manures [129,130]. Therefore, composting re-
duces the fertilizer value of digestates in terms of direct nutrient

availability and probably also the effect on long-term preser-
vation of soil fertility, and is related to strong emissions of
greenhouse gases (N2O among others). Consequently, from a
plant nutrition point of view, composting is not an appropri-
ate management option for solid digestates. After a solid–liquid
separation of digestates, the solid manures should be—whenever
possible—applied to the fields as soon as possible, as the main
emissions take place in the first weeks of storage [131, 132],
especially during the warmer season due to the temperature de-
pendency of the emission rates [131]. If storage is unavoidable,
anaerobic conditions should be maintained.

6.3 Effects of other digestate treatment procedures

Currently, further digestate treatment procedures are in a devel-
oping stage, as burning solid digestates, or water removal from
liquid digestates by using more sophisticated technologies, e.g.
membrane technologies (Fig. 1). Regarding burning, it is well
known that most of the N and S compounds volatilize above 200
and 375◦C, respectively [133], resulting in a loss of the fertilizer
value of the remaining wastes. No data were found concerning
the use of solid digestates as a feedstock for biochar produc-
tion and the related agronomical implications. Similarly, only
few published data were found regarding the effects of the use
of membrane technologies to produce concentrates from diges-
tates on nutrient composition and the agronomical implications
of their use as fertilizer [e.g. 23, 30].

7 Feedstock scheduling in biogas plants

Digestates are produced throughout the year and must therefore
be stored until field application. The efficiency of N applied via
organic manures is much higher when field application takes
place in spring and not in autumn [134, 135]. Calculations of
the nutrient outputs from digesters indicated that only approxi-
mately 50% of the N outputs are available for spring application,
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whereas approximately 20–25% and 25–30% are available for ap-
plication in summer and autumn, respectively [21]. To achieve
high N use efficiencies and to minimize N emissions, a high share
of total N for late winter until early summer applications would
be desirable using digestates with narrow C:N ratios. To meet
this demand, three approaches can be identified to optimize the
management of the biogas digester from a plant nutritional point
of view:

(i) Utilization of feedstocks high in N contents during late
autumn and winter (for digestate application in spring)
and utilization of feedstocks low in N contents in summer
(for digestate application in autumn) [21].

(ii) Utilization of feedstocks with a high biodegradability in late
autumn and winter (for digestate application in spring),
leading to a narrower digestate C:N ratio.

(iii) Use of feedstocks with high water content especially in
spring. Higher digestate water contents decrease the risk of
N losses via NH3 volatilization during summer.

(iv) Introduction of feedstocks with high DM content in au-
tumn and winter (for digestate application in spring). Di-
gester capacity is limited by the OM inputs. Therefore,
feedstocks high in OM content and low in water content re-
duce the needs of reactor and in particular storage volume.
The latter opens for more seasonal flexibility in storage and
target-oriented application.

8 Conclusions

Digestates have potential benefits regarding N availability and
crop yields in comparison to untreated animal manures, as
shown by pot experiments. However, under field conditions,
the available data on agronomic assessments of digestates from
animal slurries differ in their results with small or inconsistent
benefits compared to undigested slurries (Table 4). Increased
slurry NH4

+-N share in digested slurries does not guarantee
improved utilization efficiencies of slurry N. Significant posi-
tive effects can only be expected if the digestates are applied
directly with incorporation into the soil immediately after field
spreading. Handled like this, digestates provide plant available N
corresponding to their NH4

+-N content plus a small part of the
Norg fractions (10–20%). The contradiction of the results from
pot and field experiments emphasizes the need of field experi-
ments to get a reliable assessment of the most important factors
driving the agronomic effects of digestate application.

There are no systematic studies available on the influence
of single feedstocks on nutrient contents and nutrient specia-
tion in digestates, also including the Corg and organic N (Norg)
components. For a better understanding of the driving factors
governing N turnover in the soil, an accurate characterization
of digestates’ nutrient and OM composition, combined with ex-
periments to assess the N-mineralization and N-immobilization
processes after field spreading, would be essential for a better
characterization of the driving factors governing N turnover in
the soil. Research addressing the influence of the single feedstocks
and the design of the fermentation process on composition of
digestates is also needed. Furthermore, a better knowledge on
the influence of single feedstocks on digestate composition is an

Table 4. Effects of anaerobic digestion on digestate composition
and main agronomic effects depending on the kind of feedstock

Digestates from

Liquid
animal

manures

Crop residues
and green
manures

Dedicated
energy
crops

Total amounts of organic
manures within the
farming system

0 0 +++

Manure handling and
allocation

+ +++ +++

NH4
+/total N ratio + +++ +++

Manure pH ++ ++ ++
Biological O2 demand - - - - -a) - - -a)

N availability 0 ++ ++
N immobilization - - - -a) - - -a)

N use efficiency 0 + +++ –
P availability 0 0 0
S availability ? ? ?
Heavy metal

solubility/availability
0 - 0 - 0 -

Crop growth 0 ++ +++
- - - = Very strong reduction; - - = Strong reduction; - = Small reduction;
0 = No effects or contradictory effects; += Small increase; ++= Strong
increase; +++ = Very strong increase.
a)Assumed, as no data are available.
? = Unclear effects, no data found.

important key for optimization of the feedstock management
throughout the year, in order to obtain a higher share of the
circulating N for spring amendments.

AD of crop residues and cover crops leads to an increase in
the total amounts of mobile organic manures within the farm-
ing system, resulting in higher N use efficiency and an increased
scope for target-oriented N application. AD of dedicated energy
crops often leads to an increase of the total amounts of organic
fertilizers within the farming system, with all potential risks. AD
of dairy manure does not affect short-term crop P availability
under field conditions. AD potentially increases plant S availabil-
ity, but simultaneously also the risk of S volatilization. However,
current knowledge about the S fertilizer value of digestates is
very scarce.
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