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Background and Recent
Developments
Concentrated animal feed operations and
water quality. Animal cultivation in the United
States produces 133 million tons of manure per
year (on a dry weight basis) representing
13-fold more solid waste than human sanitary
waste production [U.S. Environmental
Protection Agency (U.S. EPA) 1998]. Since the
1950s (poultry) and the 1970s–1980s (cattle,
swine), most animals are now produced for
human consumption in concentrated animal
feeding operations (CAFOs). In these industri-
alized operations, the animals are held through-
out their lives at high densities in indoor stalls
until they are transported to processing plants
for slaughter. There is substantial documenta-
tion of major, ongoing impacts on aquatic
resources from CAFOs, but many gaps in
understanding remain.

Contaminants detected in waste and risk
of water contamination. Contaminants from
animal wastes can enter the environment
through pathways such as through leakage
from poorly constructed manure lagoons, or
during major precipitation events resulting in
either overflow of lagoons and runoff from
recent applications of waste to farm fields, or
atmospheric deposition followed by dry or
wet fallout (Aneja 2003). The magnitude and
direction of transport depend on factors such
as soil properties, contaminant properties,

hydraulic loading characteristics, and crop
management practices (Huddleston 1996).
Many contaminants are present in livestock
wastes, including nutrients (Jongbloed and
Lenis 1998), pathogens (Gerba and Smith
2005; Schets et al. 2005), veterinary pharma-
ceuticals (Boxall et al. 2003; Campagnolo
et al. 2002; Meyer 2004), heavy metals [espe-
cially zinc and copper; e.g., Barker and
Zublena (1995); University of Iowa and Iowa
State Study Group (2002)], and naturally
excreted hormones (Hanselman et al. 2003;
Raman et al. 2004). Antibiotics are used
extensively not only to treat or prevent micro-
bial infection in animals (Kummerer 2004),
but are also commonly used to promote more
rapid growth in livestock (Cromwell 2002;
Gaskins et al. 2002; Liu et al. 2005). In addi-
tion, pesticides such as dithiocarbamates are
applied to sprayfields (Extension Toxicology
Network 2003). Although anaerobic diges-
tion of wastes in surface storage lagoons can
effectively reduce or destroy many pathogens,
substantial remaining densities of microbial
pathogens in waste spills and seepage can
contaminate receiving surface- and ground-
waters (e.g., Burkholder et al. 1997; Mallin
2000). Pharmaceuticals can remain present as
parent compounds or degradates in manure
and leachates even during prolonged storage.
Improper disposal of animal carcasses and
abandoned livestock facilities can also

contribute to water quality problems. Siting
of livestock operations in areas prone to
flooding or where there is a shallow water
table increases the potential for environmen-
tal contamination.

The nutrient content of the wastes can be
a desirable factor for land application as fer-
tilizer for row crops, but overapplication of
livestock wastes can overload soils with both
macronutrients such as nitrogen (N) and
phosphorous (P), and heavy metals added to
feed as micronutrients (e.g., Barker and
Zublena 1995). Overapplication of animal
wastes or application of animal wastes to sat-
urated soils can also cause contaminants to
move into receiving waters through runoff
and to leach through permeable soils to vul-
nerable aquifers. Importantly, this may hap-
pen even at recommended application rates.
As examples, Westerman et al. (1995) found
3–6 mg nitrate (NO3)/L in surface runoff
from sprayfields that received swine effluent
at recommended rates; Stone et al. (1995)
measured 6–8 mg total inorganic N/L and
0.7–1.3 mg P/L in a stream adjacent to
swine effluent sprayfields. Evans et al. (1984)
reported 7–30 mg NO3/L in subsurface flow
draining a sprayfield for swine wastes,
applied at recommended rates. Ham and
DeSutter (2000) described export rates of up
to 0.52 kg ammonium m–2 year–1 from
lagoon seepage; Huffman and Westerman
(1995) reported that groundwater near swine
waste lagoons averaged 143 mg inorganic
N/L, and estimated export rates at 4.5 kg
inorganic N/day. Thus, nutrient losses into
receiving waters can be excessive relative to
levels (~ 100–200 µg inorganic N or P/L)
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Waste from agricultural livestock operations has been a long-standing concern with respect to
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known to support noxious algal blooms
(Mallin 2000). In addition to contaminant
chemical properties, soil properties and cli-
matic conditions can affect transport of cont-
aminants. For example, sandy, well-drained
soils are most vulnerable to transport of nutri-
ents to underlying groundwater (Mueller
et al. 1995). Nutrients can also readily 
move through soils under wet conditions
(McGechan et al. 2005).

Presence of contaminants in water sources.
The presence of many contaminants from live-
stock waste has been documented in both sur-
face water and groundwater supplies in
agricultural areas within the United States
(e.g., Campagnolo et al. 2002; Kolpin et al.
2002; Meyer 2004). Urban wastewater streams
also contain these contaminants, and efforts to
accurately determine sources of contamination
are under way (Barnes et al. 2004; Cordy et al.
2004; Kolpin DW, unpublished data). The
U.S. Geological Survey (USGS) began pilot
surveillance programs for organic wastewater
contaminants in 1999 and expanded that
effort to a national scale over the past 5 years
(Kolpin et al. 2002). Recent USGS efforts have
focused specifically on water quality in agricul-
tural locations (Kolpin DW, unpublished
data). Nutrient levels have been detected in
high parts per million (milligrams per liter) lev-
els; pharmaceuticals and other compounds are
generally measured in low levels (ppb [micro-
grams per liter]). In Europe, surveillance efforts
conducted in Germany documented the pres-
ence of veterinary pharmaceuticals in water
resources (Hirsch et al. 1999).

Animal wastes are also rich in organics and
high in biochemical oxygen-demanding materi-
als (BOD); for example, treated human sewage
contains 20–60 mg BOD/L, raw sewage con-
tains 300–400 mg BOD/L, and swine waste
slurry contains 20,000–30,000 mg BOD/L
(Webb and Archer 1994). Animal wastes also
carry parasites, viruses, and bacteria as high as
1 billion/g (U.S. EPA 1998). Swine wastes
contain > 100 microbial pathogens that can
cause human illness and disease [see review in
Burkholder et al. (1997)]. About one-third of
the antibiotics used in the United States each
year is routinely added to animal feed to
increase growth (Mellon et al. 2001). This
practice is promoting increased antibiotic
resistance among the microbial populations
present and, potentially, increased resistance of
naturally occurring pathogens in surface
waters that receive a portion of the wastes.

Contaminant impacts. Some contami-
nants pose risks for adverse health impacts in
wildlife or humans. The effects of numerous
waterborne pathogens on humans are well
known, although little is known about poten-
tial impacts of such microorganisms on
aquatic life. With respect to nutrients, exces-
sive phosphorus levels can contribute to algal

blooms and cyanobacterial growth in surface
waters used for recreation and as sources of
drinking water. Research is beginning to
investigate the environmental effects, includ-
ing endocrine disruption and antibiotic resis-
tance issues (Burnison et al. 2003; Delepee
et al. 2004; Fernandez et al. 2004; Halling-
Sorensen et al. 2003; Sengelov et al. 2003;
Soto et al. 2004; Wollenberger et al. 2000).
However, knowledge is limited in several cru-
cial areas. These areas include information on
metabolites or environmental degradates of
some parent compounds; the environmental
persistence, fate, and transport and toxicity of
metabolites or degradates (Boxall et al. 2004);
the potential synergistic effects of various
mixtures of contaminants on target organisms
(Sumpter and Johnson 2005); and the poten-
tial transport and effects from natural and
synthetic hormones (Hanselman et al. 2003;
Soto et al. 2004). Further, limited monitoring
has been conducted of ecosystem health in
proximity to CAFOs, including monitoring
the effects on habitats from lagoon spills dur-
ing catastrophic flooding (Burkholder et al.
1997; Mallin et al. 1997; Mallin et al. 2000). 

Ecologic and wildlife impacts. Anoxic
conditions and extremely high concentrations
of ammonium, total phosphorus, suspended
solids, and fecal coliform bacteria throughout
the water column for approximately 30 km
downstream from the point of entry have
been documented as impacts of waste effluent
spills from CAFOs (Burkholder et al. 1997;
Mallin et al. 2000). Pathogenic microorgan-
isms such as Clostridium perfringens have been
documented at high densities in receiving sur-
face waters following CAFO waste spills
(Burkholder et al. 1997). These degraded con-
ditions, especially the associated hypoxia/anoxia
and high ammonia, have caused major kills of
freshwater fish of all species in the affected
areas, from minnows and gar to largemouth
bass, and estuarine fish, including striped bass
and flounder (Burkholder et al. 1997). Waste
effluent spills also stimulated blooms of toxic
and noxious algae. In freshwaters, these blooms
include toxic and noxious cyanobacteria while
in estuaries, harmful haptophytes and toxic
dinoflagellates arise. Most states monitor only
water-column fecal coliform densities to assess
whether waterways are safe for human contact.
World Health Organization (WHO) guide-
lines for cyanobacteria in recreational water are
20,000 cyanobacterial cells/mL, which indi-
cates low probability of adverse health effects,
and 100,000 cyanobacterial cells/mL, which
indicates moderate probability of adverse
health effects (WHO 2003). Yet fecal bacteria
and other pathogenic microorganisms typically
settle out to the sediments where they
can thrive at high densities for weeks to
months following CAFO waste effluent spills
(Burkholder et al. 1997). 

The impacts from CAFO pollutant load-
ings to direct runoff are more substantial after
such major effluent spills or when CAFOs are
flooded and in direct contact with surface
waters (Wing et al. 2002). Although the acute
impacts are often clearly visible—dead fish
floating on the water surface, or algal over-
growth and rotting biomass—the chronic,
insidious, long-term impacts of commonly
accepted practices of CAFO waste manage-
ment on receiving aquatic ecosystems are also
significant (U.S. EPA 1998). One purpose of
manure storage basins is to reduce the N con-
tent of the manure through volatilization of
ammonia and other N-containing molecules.
Many studies have shown, for example, that
high nutrient concentrations (e.g., ammonia
from swine CAFOs, or ammonia oxidized to
NO3, or phosphorus from poultry CAFOs)
commonly move off-site to contaminate the
overlying air and/or adjacent surface and sub-
surface waters (Aneja et al. 2003; Evans et al.
1984; Sharpe and Harper 1997; Sharpley and
Moyer 2000; Stone et al. 1995; U.S. EPA
1998; Webb and Archer 1994; Westerman
et al. 1995; Zahn et al. 1997). Inorganic N
forms are added to the atmosphere during
spray practices, and both ammonia and phos-
phate can also adsorb to fine particles (dust)
that can be airborne. The atmospheric deposi-
tions are noteworthy, considering that a signifi-
cant proportion of the total ammonium from
uncovered swine effluent lagoons and effluent
spraying (an accepted practice in some states)
reenters surface waters as local precipitation or
through dry fallout (Aneja et al. 2003; U.S.
EPA 1998, 2000). The contributed nutrient
concentrations from the effluent greatly exceed
the minimal levels that have been shown to
promote noxious algal blooms (Mallin 2000)
and depress the growth of desirable aquatic
habitat species (Burkholder et al. 1992). The
resulting chronically degraded conditions of
nutrient overenrichment, while not as extreme
as during a major waste spill, stimulate algal
blooms and long-term shifts in phytoplankton
community structure from desirable species
(e.g., diatoms) to noxious species.

A summary of the findings from a
national workshop on environmental impacts
of CAFOs a decade ago stated that there was
“a surprising lack of information about envi-
ronmental impacts of CAFOs to adjacent
lands and receiving waters” (Thu K,
Donham K, unpublished data). Although the
knowledge base has expanded since that
time, especially regarding adverse effects of
inorganic N and P overenrichment and
anoxia, impacts of many CAFO pollutants
on receiving aquatic ecosystems remain
poorly understood. As examples, there is
poor understanding of the impacts of fecal
bacteria and other microbial pathogens from
CAFO waste effluent contamination on
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aquatic communities; impacts of antibiotic-
resistant bacteria created from CAFO wastes
on aquatic life; impacts of organic nutrient
forms preferred by certain noxious plankton;
impacts from the contributed pesticides and
heavy metals; and impacts from these pollu-
tants acting in concert, additively or synergis-
tically. This lack of information represents a
critical gap in our present ability to assess the
full extent of CAFO impacts on aquatic
natural resources.

Despite their widespread use, antibiotics
have only recently received attention as envi-
ronmental contaminants. Most antibiotics are
designed to be quickly excreted from the
treated organism. Thus, it is not surprising
that antibiotics are commonly found in
human and animal waste (Christian et al.
2003; Dietze et al. 2005; Glassmeyer et al.
2005; Meyer 2004) and in water resources
affected by sources of waste (Glassmeyer et al.
2005; Kolpin et al. 2002). Although some
research has been conducted on the environ-
mental effects from antibiotics (e.g., Brain
et al. 2005; Jensen et al. 2003), much is yet to
be understood pertaining to long-term expo-
sures to low levels of antibiotics (both individ-
ually and as part of complex mixtures of
organic contaminants in the environment).
The greatest risks appear to be related to
antibiotic resistance (Khachatourians 1998;
Kummerer 2004) and natural ecosystem
functions such as soil microbial activity and
bacterial denitrification (Costanzo et al. 2005;
Thiele-Bruhn and Beck 2005).

Human health impacts. Exposure to
waterborne contaminants can result from
both recreational use of affected surface water
and from ingestion of drinking water derived
from either contaminated surface water or
groundwater. High-risk populations are gen-
erally the very young, the elderly, pregnant
women, and immunocompromised individu-
als. Recreational exposures and illnesses
include accidental ingestion of contaminated
water that may result in diarrhea or other gas-
trointestinal tract distress from waterborne
pathogens, and dermal contact during swim-
ming that may cause skin, eye, or ear infec-
tions. Drinking water exposures to pathogens
could occur in vulnerable private wells; under
normal circumstances community water utili-
ties disinfect water sufficiently before distribu-
tion to customers. Cyanobacteria (blue–green
algae) in surface water can produce toxins
(e.g., microcystins) that are known neuro-
toxins and hepatotoxins. Acute and chronic
health impacts from these toxins can occur
from exposures to both raw water and treated
water (Carmichael et al. 2001; Rao et al.
2002). Removal of cyanotoxins during drink-
ing water treatment is a high priority for the
drinking water industry (Hitzfield et al. 2000;
Rapala et al. 2002). The WHO has set a

provisional drinking water guideline of 1 µg
microcystin-LR/L (Chorus and Bartram
1999). While there are no drinking water
standards in the United States for cyanobacte-
ria, they are on the U.S. EPA Unregulated
Contaminant Monitoring Rule List 3 (U.S.
EPA 2006).

Exposure to chemical contaminants can
occur in both private wells and community
water supplies, and may present health risks.
High nitrate levels in water used in mixing
infant formula have been associated with risk
for methemoglobinemia (blue-baby syn-
drome) in infants under 6 months of age,
although other health factors such as diarrhea
and respiratory disease have also been impli-
cated (Ward et al. 2005). The U.S. EPA
drinking water standard of 10 mg/L NO3–N
and the WHO guideline of 11 mg/L NO3–N
were set because of concerns about methemo-
globinemia. (Note: “nitrate” refers to nitrate–
nitrogen). Epidemiologic studies of noncancer
health outcomes and high nitrate levels in
drinking water have reported an increased risk
of hyperthyroidism (Seffner 1995) from long-
term exposure to levels between 11–61 mg/L
(Tajtakova et al. 2006). Drinking water nitrate
at levels < 10 mg/L has been associated with
insulin-dependent diabetes (IDDM; Kostraba
et al. 1992), whereas other studies have shown
an association with IDDM at nitrate levels
> 15 mg/L (Parslow et al. 1997) and
> 25 mg/L (van Maanen et al. 2000). Increased
risks for adverse reproductive outcomes,
including central nervous system malforma-
tions (Arbuckle et al. 1988) and neural tube
defects (Brender et al. 2004; Croen et al.
2001), have been reported for drinking water
nitrate levels < 10 mg/L. 

Anecdotal reports of reproductive effects
of nitrate in drinking water include a case
study of spontaneous abortions in women
consuming high nitrate water (19–26 mg/L)
from private wells (Morbidity and Mortality
Weekly Report 1996). 

While amassing experimental data suggest
a role for nitrate in the formation of carcino-
genic N-nitroso compounds, clear epidemio-
logic findings are lacking on the possible
association of nitrate in drinking water with
cancer risk. Ecologic studies have reported
mixed results for cancers of the stomach,
bladder, and esophagus (Barrett et al. 1998;
Cantor 1997; Eicholzer and Gutzwiller 1990;
Morales-Suarez-Varela et al. 1993, 1995) and
non-Hodgkin lymphoma (Jensen 1982;
Weisenburger 1993), positive findings for
cancers of the nasopharynx (Cantor 1997),
prostate (Cantor 1997), uterus (Jensen 1982;
Thouez et al. 1981), and brain (Barrett et al.
1998), and negative findings for ovarian can-
cer (Jensen 1982; Thouez et al. 1981).
Positive findings have generally been for long-
term exposures at > 10 mg/L nitrate.

Case–control studies have reported mixed
results for stomach cancer (Cuello et al. 1976;
Rademacher et al. 1992; Yang et al. 1998);
positive results for non-Hodgkin lymphoma
at > 4 mg/L nitrate (Ward et al. 1996) and
colon cancer at > 5 mg/L (De Roos et al.
2003); and negative results for cancers of the
brain (Mueller et al. 2001; Steindorf et al.
1994), bladder (Ward et al. 2003), and rec-
tum (De Roos et al. 2003), all at < 10 mg/L.
Cohort studies have reported no association
between nitrate in drinking water and stom-
ach cancer (Van Loon et al. 1998); positive
associations with cancers of the bladder and
ovary at long-term exposures > 2.5 mg/L
(Weyer et al. 2001); and inverse associations
with cancers of the rectum and uterus, again
at > 2.5 mg/L (Weyer et al. 2001).

Exposure to low levels of antibiotics and
other pharmaceuticals in drinking water (gen-
erally at micrograms per liter or nanograms
per liter) represent unintentional doses of sub-
stances generally used for medical purposes to
treat active disease or prevent disease. The
concern is more related to possible cumulative
effects of long-term low-dose exposures than
on acute health effects (Daughton and Ternes
1999). A recent study conducted in Germany
found that the margin between indirect daily
exposure via drinking water and daily
therapeutic dose was at least three orders of
magnitude, concluding that exposure to
pharmaceuticals via drinking water is not a
major health concern (Webb et al. 2003). It
should be noted that when prescribing medi-
cations, providers ensure patients are not tak-
ing incompatible drugs, but exposure via
drinking water is beyond their control.

Endocrine-disrupting compounds are
chemicals that exhibit biological hormonal
activity, either by mimicking natural estro-
gens, by canceling or blocking hormonal
actions, or by altering how natural hormones
and their protein receptors are made
(McLachlan and Korach 1995). Although
very low levels of estrogenic compounds can
stimulate cell activity, the potential for
human health effects, such as breast and
prostate cancers, and reproductive effects
from exposure to endocrine disruptors, is in
debate (Weyer and Riley 2001). 

Workshop Recommendations 

Priority research needs.
• Ecosystems monitoring: Systematic sustained

studies of ecosystem health in proximity to
large CAFOs are needed, including effects of
input spikes during spills or flooding events. 

• Toxicologic assessment of contaminants:
Identification and prioritization of contami-
nants are needed to identify those that are
most significant to environmental and public
health. Toxicity studies need to be conducted
to identify and quantify contaminants
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(including metabolites), and to investigate
interactions (synergistic, additive, and
antagonistic effects). 

• Fate and transport: Studies of parent com-
pounds and metabolites in soil and water
must be conducted, and the role of sediment
as a carrier and reservoir of contaminants
must be evaluated. 

• Surveillance programs: Programs should be
instituted to assess private well water quality
in high-risk areas. Biomonitoring programs
should be designed and implemented to assess
actual dose from environmental exposures. 

Translation of science to policy. 
• Wastewater and drinking water treatment:

Processes for water treatment must be mon-
itored to ensure adequate removal or inacti-
vation of emerging contaminants. 

• Pollution prevention: Best management
practices should be implemented to prevent
or minimize release of contaminants into
the environment.

• Education: Educational materials should be
continued to be developed and distributed
to agricultural producers.
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