STATE OF NEW MEXICO COUNTY OF LINCOLN TWELFTH JUDICIAL DISTRICT FILED
12th JUDICIAL DISTRICT COURT
Lincoln County
10/11/2022 10:32 AM
AUDREY HUKARI
CLERK OF THE COURT
Yazmin Helmick

DALE A. ANTILLA, et. al.,

Plaintiffs,

v.

No. D-1226-CV-2021-00241 (consolidated with)

ROPER CONSTRUCTION, INC.

Defendant,

and

JAMES A. MILLER, SARAH L. MILLER and JOSHUA C. BOTKIN,

Plaintiffs/Counter-Defendants,

v.

No. D-1226-CV-2021-00261

ROPER CONSTRUCTION, INC. and ROPER INVESTMENTS, LLC,

Defendants/Counter-Plaintiffs.

NOTICE OF NMED DECISION IN RELATED PROCEEDING

Defendant Roper Construction, Inc. ("Roper") hereby provides notice that the Air Quality Bureau within the Environmental Protection Division of the New Mexico Environment Department ("NMED") has approved Roper's revised air quality permit application, in advance of the scheduled October 18, 2022 hearing before the New Mexico Environmental Improvement Board to address Roper's objections to / appeal of the NMED's May 2022 denial of Air Quality Permit No. 9295. A copy of the approved revised NMED draft permit, No. 9295 Version 2022-10-3, is attached herewith. NMED has further taken the position in the appeal that Roper's previous draft air quality permit complied with all applicable state and federal requirements for approval,

and otherwise generally agreed with Roper's statement of objections to the May 2022 denial. *See* NMED Answer to Petition. All briefing by the parties concerning the appeal can be found at https://www.env.nm.gov/opf/docketed-matters/ - Environmental Improvement Board folder - *EIB* 22-34: In the Matter of the Petition for Hearing on Air Quality Permit No. 9295, Roper Construction Inc.'s Alto Concrete Batch.

Respectfully submitted,

MONTGOMERY & ANDREWS, P.A.

By: /s/ Shelly L. Dalrymple
Shelly L. Dalrymple
Jocelyn Barrett-Kapin
Troy S. Lawton
P.O. Box 2307
Santa Fe, NM 87504-2307
(505) 982-3873
sdalrymple@montand.com
jbarrettkapin@montand.com
tlawton@montand.com

Attorneys for Defendants

CERTIFICATE OF SERVICE

I hereby certify that on October 11, 2022, the foregoing was filed electronically with the Court's electronic filing system, with a copy electronically served on the following:

Thomas M. Hnasko
Julie A. Sakura
Hinkle Shanor LLP
P.O. Box 2068
Santa Fe, NM 87504
thnasko@hinklelawfirm.com
jsakura@hinklelawfirm.com
Attorneys for Plaintiffs

/s/ Shelly L. Dalrymple
Shelly L. Dalrymple

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	A: Identification	
1	Name of facility:	Alto Concrete Batch Plant
2	Name of company:	Roper Construction, Inc
3	Current Permit number:	New Permit #9295
4	Name of applicant's modeler:	Paul Wade
5	Phone number of modeler:	(505) 830-9680 ext6
6	E-mail of modeler:	pwade@montrose-env.com

16	16-B: Brief								
1	Was a modeling protocol submitted and approved? Original Submitted 04/18/2021; No Approval; This is revised modeling for site layout change. Yes⊠ No□								
2	Why is the modeling being done?	Moving Equipment							
3	Describe the permit changes relevant to the modeling.								
	Revised modeling will address reduction in daily throughput and reduction in daily operation hours.								
4	What geodetic datum was used in the modeling?								
5	How long will the facility be at this location?	Permanent							
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠						

,	Identify the Air Quality Control Region (AQCR) in which the facility is located 153											
	List the PSD baseline	e dates for this region	n (minor or major,	as appropriate).		•						
	NO2			08/02/1995								
8	SO2			N/A								
	PM10			06/16/2000	06/16/2000							
Ī	PM2.5			N/A								
9	Provide the name and	d distance to Class I	areas within 50 kr	n of the facility (300 km for	PSD permi	its).					
	White Mountain Wilderness Area, 1.91 kilometers											
10	Is the facility located	in a non-attainment	area? If so descri	be below			Yes□	No⊠				
	Describe any special modeling requirements, such as streamline permit requirements.											
11	None											
16-	·C: Modeling	History of I	Facility									
	Describe the modeli											
	Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling											
	waivers).											
	Pollutant	Latest permit ar		Date of Permit	Commen	nte						
	Tonutant	pollutant facility		Date of Fernit	Commen	103						
	CO				New Per	mit – No P	revious M	Iodeling				
	NO_2					mit – No P						
1	SO_2				_	mit – No P	revious M	Iodeling				
	H ₂ S				Not Emi							
	PM2.5					mit – No P						
	PM10					mit – No P	revious M	lodeling				
	Lead				None	(D. D						
	Ozone (PSD only) NM Toxic Air				Not a PS	D Permit						
	Pollutants				Not Emi	tted						
	(20.2.72.402 NMAC	C)			Not Lim	iicu						
				1	1							
16-	D: Modeling	_										
	For each pollutant, i						DOL					
	Choose the most cor analysis were also pe		applicable for that	pollutant, i.e., cu	ilpability an	nalysis assu	imes ROI	and cumulative				
	analysis were also po	CHOHIICU.						Pollutant not				
1	Pollutant	ROI	Cumulative analysis	Culpability analysis	V	Waiver app	roved	emitted or not changed.				
	CO	\boxtimes										
	NO ₂	\boxtimes	\boxtimes									
	SO_2	\boxtimes										
	1		1									

	H_2S									\boxtimes		
	PM2.5		\boxtimes									
	PM10		\boxtimes									
	Lead										\boxtimes	
	Ozone									\boxtimes		
	State air to (20.2.72.40 NMAC)											
			•			•						
16	16-E: New Mexico toxic air pollutants modeling											
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None											
	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.											
2	Pollutant		on Rate s/hour)	Emission Rate Scree Level (pounds/hour)	_	tack Height neters)	Correc	ction Factor			Emission Rate/ Correction Factor	
16-F: Modeling options												
1	Was the late	test versi	on of AER	MOD used with regula	atory defa	ault options? I	f not exp	lain	Yes		No□	
	For volume	e sources	were proc	essed in flat terrain mo	ode.							
	<u> </u>											
4.0	Q Q		T.									
	-G: Sur	round	ding so	ource modelin	ıg							
1	Date of sur	rrounding	g source re	rieval	Marc	h 16, 2021						
_	sources mo	odeled dit	ffer from tl	ntory provided by the ne inventory provided. ows as needed.								
2	AQB Sour	ce ID	Description	n of Corrections								
16	H: Bui	lding	and st	ructure down	nwash	l						
1	How many	/ building	gs are prese	ent at the facility?	1 - O	ffice						
2	How many the facility		round stora	age tanks are present a	t 1 – C	Cement/Fly As	sh Storage	e Silo				

3	Was building downwash modeled for all buildings and	Yes⊠	No□	
4	Building comments			

16-	16-I: Receptors and modeled property boundary									
1	"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility. Describe the fence or other physical barrier at the facility that defines the restricted area.									
	Site is fenced on all sides of the facility with gates at entrances.									
2	Receptors must be placed along publicly accessible roads in the restricted area. Are there public roads passing through the restricted area? Yes□ No⊠									
3	Are restricted a		Yes⊠	No□						
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.									
	Grid Type	Shape	Spacing	Start distance from restricted area or center of facility	End distance from restricted area or center of facility	Comme	Comments			
4	Very fine	Cartesian	25	0	250 meters			,		
	Very fine	Cartesian	50	250	500 meters					
	Fine	Cartesian	100	500 meters	1000 meters					
	Course	Cartesian	250	1000 meters	3000 meters					
	Describe recept	or spacing alo	ong the fence l	ine.						
5	25 meters									
	Describe the PS									
6	100 meters space	cing across ea	st side of Whi	te Mountain Wildernes	s Area					

16-	-J: Sensitive areas		
1	Are there schools or hospitals or other sensitive areas near the facility? If so describe below. This information is optional (and purposely undefined) but may help determine issues related	Yes□	No⊠
	to public notice.		

3	The modeling review process may need to be accelerated if there is a public hearing. Are there likely to be public comments opposing the permit application?	Yes□	No⊠

16-K: Modeling Scenarios

Identify, define, and describe all modeling scenarios. Examples of modeling scenarios include using different production rates, times of day, times of year, simultaneous or alternate operation of old and new equipment during transition periods, etc. Alternative operating scenarios should correspond to all parts of the Universal Application and should be fully described in Section 15 of the Universal Application (UA3).

The concrete batch plant will limit hourly processing rate to 125 cubic yard per hour and 500,000 cubic yard per year. The hours of operation are presented below in Table 1. Seasonal daily throughputs are presented in Table 2.

TABLE 1: CBP Plant Hours of Operation (MST)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
12:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	1	1	1	1	1	1	0	0	0
6:00 AM	0	0	1	1	1	1	1	1	1	1	0	0
7:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
8:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
9:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
10:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
11:00 AM	1	1	1	1	1	1	1	1	1	1	1	1
12:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
1:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
2:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
3:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
4:00 PM	1	1	1	1	1	1	1	1	1	1	1	1
5:00 PM	0	0	1	1	1	1	1	1	1	1	0	0
6:00 PM	0	0	0	1	1	1	1	1	1	0	0	0
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Total	10	10	12	14	14	14	14	14	14	12	10	10

TABLE 2: HMA Daily Production Rates and Corresponding Max Hours of Production

Month	Cubic Yards Per Day	At Max Hourly Throughput – Hours per Day
November - February	750	6
March, October	750	6
April - September	750	6

Table 3 presents the 3 model scenarios modeled hours for showing compliance with the worst-case operating scenario.

TABLE 3: HMA Model Scenario Time Segments - Particulate

Model Scenario	Time Segments 10-Hour Blocks November - February	Time Segments 12-Hour Blocks March & October	Time Segments 14-Hour Blocks April - September
1	7 AM to 1 PM	6 AM to 12 PM	5 AM to 11 AM
2	9 AM to 3 PM	8 AM to 2 PM	7 AM to 1 PM
3	11 AM to 5 PM	10 AM to 4 PM	9 AM to 3 PM
4	11 AM to 5 PM	12 PM to 6 PM	11 AM to 5 PM
5	11 AM to 5 PM	12 PM to 6 PM	1 PM to 7 PM

2	Which scen	Which scenario produces the highest concentrations? Why?										
2		PM10 – Scenario 1 – Year 2019, low wind speed. PM2.5 - Scenario 1 – Year 2016, low wind speed.										
3	Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ No⊠											
4	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources:											
	Hour of Day	Factor	Hour of Day	Factor								
	1		13									
	2		14									
	3		15									
	4		16									
5	5		17									
	6		18									
	7		19									
	8		20									
	9		21									
	10		22									
	11		23									
	12		2/									

	If hourly, variable emission rates were used that were not described above, describe them below.				
6	Were different emission rates used for short-term and annual modeling? If so describe below.	Yes⊠	No□		
Ü	An hourly factor was used for the PM2.5 annual averaging period. If based on all hours of operation rate would be 273,750 cubic yards. Since the annual throughput will be limited to 50 0.18 for all hours of operations will reduce the annual modeled emissions to proposed maximum $(50,000 \text{ cy/yr} / 273,750 \text{ cy/yr} = 0.18)$,000 cubic yard	s a factor of		

16-	L: NO ₂	Modeling					
	Which types Check all th	of NO_2 modeling were used? at apply.					
	\boxtimes	ARM2					
1		100% NO _X to NO ₂ conversion					
		□ PVMRM					
	□ OLM						
		Other:					
2	Describe the NO ₂ modeling.						
	ARM2 for both 1-hour and annual averaging period modeling. All ARM2 default values were used.						
3	Were default NO₂/NO _X ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes⊠ No□						
4	Describe the	design value used for each averaging period modeled.					
		percentile as calculated by AERMOD e Year Annual Average					

16-	16-M: Particulate Matter Modeling						
	Select the pollutants for which plume depletion modeling was used.						
1		PM2.5					
_	\boxtimes	PM10					
		None					
	Describe	the particle size distributions used. Include the source of infor	rmation.				
	Represer	ntative average particle densities were obtained from NA	MED accepted values.				
			_				
2							
	Material Density (g/cm³) Reference						
		Road Dust – Roper Construction	2.5	NMED Value			
		Road Dust – Ropel Collstruction	2.3	NIVIED Value			
		Cement – Roper Construction	3.3	NMED Value			

Fly Ash – Roper Construction	1.04	NMED Value
Combustion – Roper Construction and Neighbor	1.5	NMED Value
Fugitive Dust – Roper Construction and Neighbor	2.5	NMED Value

The densities and size distribution for PM_{10} emission sources are presented in Tables 4 - 8.

TABLE 4: Unpaved Road Vehicle Fugitive Dust Depletion Parameters

	_		
Particle Size Category (µm)	Category Particle Diameter		Density (g/cm³)
	PM1	0	
0 - 2.5	1.57	25.0	2.5
2.5 - 10	6.91	75.0	2.5

Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007

TABLE 5: Cement Baghouse Source Depletion Parameters

Particle Size Category (μm)	Mass Mean Particle Diameter (µm)	Mass Weighted Size Distribution (%)	Density (g/cm³)		
	PM10				
0-2.5	1.57	25	3.3		
2.5-10	6.91	75	3.3		

Parameters based on baghouse exhaust capture percentages.

TABLE 6: Fly Ash Baghouse Source Depletion Parameters

Particle Size Category (µm)	Mass Mean Particle Diameter (µm)	Mass Weighted Size Distribution (%)	Density (g/cm³)		
	PM10				
0-2.5	1.57	25	3.3		
2.5-10	6.91	75	3.3		

Parameters based on baghouse exhaust capture percentages

TABLE 7: Combustion Source Depletion Parameters

Particle Size Category (µm)	Mass Mean Particle Diameter (μm)	Mass Weighted Size Distribution (%)	Density (g/cm³)			
	PM10					
0 - 2.5	1.57	100	1.5			

Based on NMED Particle Size Distribution Spreadsheet – April 25, 2007

	Particle Categ (µm	ory	Mass Mean Particle Diameter (µm)	Mass Weighted Size Distribution (%)	Density (g/cm³)	
			PN	110		
	2.5 -		3.88 7.77	22.6	2.5	
3	Sources that emit at lea	st 40 tons per year	of NO _X or at least 40	ast 40 tons per year of SO ₂ ? O tons per year of SO ₂ are account for secondary	Yes□	No⊠
1	formation of PM2.5. Was secondary PM mo	deled for PM2.5?			Yes□	No⊠
4	formation of PM2.5. Was secondary PM mo		dary PM2.5 fill out tl	ne information below. If anoth		
4	formation of PM2.5. Was secondary PM mo If MERPs were used to		•	ne information below. If anoth		ed descri

16-	-N: Setback Distances
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.
	Permanent Site
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.
	N/A

16-	16-O: PSD Increment and Source IDs					
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-modeling files. Do these match? If not, provide a cross-referen if they do not match below.	Yes□	No⊠			
1	Unit Number in UA-2 Unit Number in Modeling Files		S			
	Concrete Plant Truck Load Baghouse (Unit 7,8)		вн			
	Concrete Plant Cement Silo Baghouse (Unit 9) CSB					
	Concrete Plant Fly Ash Baghouse (Unit 10)	FAS	ВН			

	Concrete Batch Plan	t Heater (Unit 12)		СВРН			
	Feed Hopper Loadin	g (Unit 2)			F	Н	
	Feed Hopper Unload	ling to Conveyor (Uni	t 3)	TP			
	Aggregate Bin Load	ing (Unit 4)		AB			
	Aggregate Weigh Ba	atcher and Conveyor (Unit 5,6)		W	Ή	
	Storage Piles (Aggre	egate) (Unit 11)			SI	21	
	Storage Piles (Aggregate) (Unit 11)				SI	22	
	Storage Piles (Aggre	egate) (Unit 11)			SI	23	
	Storage Piles (Sand)	(Unit 11)			SI	24	
	Storage Piles (Sand)	(Unit 11)			SI	25	
	Storage Piles (Sand)	(Unit 11)			SI	26	
	Aggregate Haul True	cks Volume 1 (Unit 1))		AGG_0001 -	25 One W	ay
	Concrete Cement Fly	y Ash Haul Trucks Vo	olume1 (Unit 1)		CON_0001 -	7 Round T	rip
		n the Tables 2-E and 2	2-F should match the	ones in the mod	eling files. Do	Yes□	No⊠
	these match? If not,	explain why below. ion rates for material l	nandling sources (En	nissions calculate	ed using AP-42	Section 13	2.4) are calculated
		e windspeed for Ruido					
		es the silo baghouse p					·
							_
	Emission		PN			PM2.5	
2	Point #		Process Unit Description			lbs/hr	
2	FH		d Hopper Loading (Unit 2)			0.04144	
	SP1		orage Piles (Aggregate) (Unit 11)			0.00904	
	SP2	Storage Piles (Aggre			0.05970	0.00904	
	SP3	Storage Piles (Aggre	• • • • • •		0.05970	0.00904	
	SP4	Storage Piles (Sand)			0.05970	0.00904	
	SP5	Storage Piles (Sand)			0.05970	0.00904	
	SP6	Storage Piles (Sand)	<u> </u>		0.05970	0.00904	
	CSBH	Concrete Plant Cem	ent Silo Baghouse (U	Jnit 9)	0.01436	0.00331	
	FASBH	Concrete Plant Fly A		•	0.00908	0.00209	
3	been modeled?	R exempt sources or T		activities" (Table	(2-B) sources	Yes□	No⊠
	Which units consum	e increment for which	pollutants?				
	Unit ID	NO ₂	SO_2	P	M10	PM	2.5
	TMBH	1102		X		1111	
	CSBH			X			
4	FASBH			X			
	СВРН	X		X			
	FH			X			
	TP AB			X X			
	WH			X			
	SP1			X			
		1		I			

	SP2				X			
	SP3				X			
	SP4				X			
	SP5				X			
	SP6				X			
	AGG_0001 - 25				X			
	CON_0001 - 7				X			
5	PSD increment descript (for unusual cases, i.e., l after baseline date).	ion for sources. baseline unit expanded emi	ssions	Baseline ur	nit expanded emission	ons afte	er minor t	paseline date
6	Are all the actual installation dates included in Table 2A of the application form, as required?							No⊠
	Facility has not been ins	stalled. Is a new facility that	at will consu	me incremen	nt for NO ₂ and PM ₁₀			

16-P: Flare Modeling									
1	For each flare or flaring scenario, complete the following								
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)					
	NA								

16-	Q: Volume and	Related Sources							
	Were the dimensions of vo Bureau (AQB) Modeling (uality	v =	_					
1	If not please explain how i installation dates below.	ncrement consumption status is determined for the missing		Yes□	No⊠				
	Volume sources for storage	Volume sources for storage piles are based on 8 feet release height and 50 feet width.							
	Describe the determination	of sigma-Y and sigma-Z for fugitive sources.							
2	For storage piles, the model inputs were based on the size (50 feet) of the pile/4.3 (sigma-Y) and a release height of 8 feet or a sigma-Z of 8ft*2/2.15. All others followed standard dimensions from Air Quality Bureau (AQB) Modeling Guidelines.								
	Describe how the volume so Or say they are the same.	Describe how the volume sources are related to unit numbers. Or say they are the same.							
2		Source							
3	Model ID	Description							
	TMBH	Concrete Plant Truck Load Baghouse (Unit 7,8)							
	CSBH	Concrete Plant Cement Silo Baghouse (Unit 9)							
	FASBH	Concrete Plant Fly Ash Baghouse (Unit 10)							
	СВРН	Concrete Batch Plant Heater (Unit 12)							

	FH	Feed Hopper Loading (Unit 2)							
	TP	Feed Hopper Unloading to Conveyor (Unit 3)							
	AB	Aggregate Bin Loading (Unit 4)							
	WH Aggregate Weigh Batcher and Conveyor (Unit 5,6)								
	SP1 Storage Piles (Aggregate) (Unit 11)								
	SP2 Storage Piles (Aggregate) (Unit 11) SP2 Unit 11)								
	SP3	Storage Piles (Aggregate) (Unit 11)							
	SP4	Storage Piles (Sand) (Unit 11)							
	SP5	Storage Piles (Sand) (Unit 11)							
	SP6	Storage Piles (Sand) (Unit 11)							
	AGG_0001-0025	Aggregate Haul Trucks (Unit 1)							
	CON_0001-0007	Concrete Cement Fly Ash Haul Trucks (Unit 1)							
	Describe any open pits.	, , , , , , , , , , , , , , , , , , , ,							
4									
	None								
	Describe emission units included in each open pit.								
5									
	None								
16-	R: Background	Concentrations							
		kground concentrations used? Identify the background station used							
	below. If non-NMED provided background concentrations were used describe the data that Yes⊠ No□ was used.								
	CO: Del Norte High School	ol (350010023)							
	NO ₂ : Outside Carlsbad (35								
1	PM2.5: Las Cruces Distric								
	PM10: Las Cruces City W								
	SO ₂ : Bloomfield(350450009) Other:								
	Other.								
	Comments:								
				<u> </u>					
2	Were background concentr	rations refined to monthly or hourly values? If so describe below.	Yes□	No⊠					

16-	S: Meteorological Data		
1	Was NMED provided meteorological data used? If so select the station used.	Yes□	No⊠
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discussional handled, how stability class was determined, and how the data were processed.	ss how missing	data were
	Dispersion model meteorological input files were created from meteorological data collected at years 2016 - 2020, about 45 miles south-southwest from the site. The similar elevation, topogra		

climate of both sites make this meteorological data representative of the model area. Figure 3 shows wind rose diagram of the meteorological wind speed versus direction data that has been collected for the years 2016 - 2020.

AERMET wind speed threshold for surface data is 0.5 meters per second.

Santa Teresa Airport 2016-2020 data was used for upper air.

Since the meteorological input data does not include turbulence data, the adjust U* option in AERMET was used during processing of the meteorological data.

AERMET/AERMOD requires that several additional parameters be input during data processing in AERMET:

- Surface roughness length (m)
- Albedo
- Bowen Ratio

The surface roughness length influences the surface shear stress and is an important factor in determining the magnitude of mechanical turbulence and the stability of the boundary layer. The albedo is the fraction of total incident solar radiation reflected by the surface back to space without absorption. The daytime Bowen ratio, an indicator of surface moisture, is the ratio of sensible heat flux to latent heat flux and, together with albedo and other meteorological observations, is used for determining planetary boundary layer parameters for convective conditions driven by the surface sensible heat flux.

These parameters would be obtained using AERSURFACE (*Version 20060*). AERSURFACE requires the input of land cover data from the U.S. Geological Survey (USGS) National Land Cover Data (NLCD) 2016 archives, which it uses to determine the land cover types for the Alamogordo airport-specified location. AERSURFACE matches the 2016 NLCD land cover categories to seasonal values of albedo, Bowen ratio, and surface roughness. Values of surface characteristics are calculated based on the land cover data for the study area and output in a format for input into AERMET Stage 3.

Site descriptive questions required by AERSURFACE include:

- Meteorological data from airport
- Continuous snowcover for a month in winter
- Arid climate
- Dry climate

For the Holloman AFB meteorological data, YES was checked for airport data, NO was checked for continuous snowcover in winter, YES was checked for arid climate, and YES was checked for dry climate. For each parameter, data was extracted from land cover data for each month of the year and 12 equal sectors radiating from the Alamogordo Airport.

The meteorological data was processed using AERMET (*Version 19191*) and upper air from Santa Teresa Airport for the same time period. The upper air and surface data are considered to be representative and comparable with both the Holloman AFB and Roper Construction's Alto CBP site. The Holloman AFB meteorological data files, Santa Teresa upper air files, and Holloman AFB surface air file are submitted to the NMED-AQB Modeling Section for review with this modeling protocol.

No missing hours were substituted.

16-	16-T: Terrain							
1	Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□					

2	What was the source of the terrain data?
	NED

16	-U: Modeling Files							
	Describe the modeling files:							
	File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)					
	RoperAltaCombustionROI	CO, NO2, SO2	ROI					
	RoperAltaPMROIS1-5	PM10, PM2.5	ROI					
1	RoperAltaCIANO21Hr	NO2	Cumulative					
	RoperAltaCIAPM10dS1-5	PM10 24 Hour and Annual Increment	Cumulative, PSD Class II Increment					
	RoperAltaCIAPM25_24S1-5	PM2.5 24 Hour	Cumulative					
	RoperAltaCIAPM25_YrS1-5	PM2.5 Annual	Cumulative					
	RoperAltaNO2IncSIL	NO2	Class I Increment SIL					
	RoperAltaPM10dS1IncSIL – S5	PM10	Class I Increment SIL					
	RoperAltaPM10dS1Inc – S5	PM10 24 Hour and Annual	Class I Increment Cumulative					

16-	16-V: PSD New or Major Modification Applications								
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No⊠						
2	If not, did AQB approve an exemption from preconstruction monitoring? Yes□ No⊠								
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.								
	NA								
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.								
	NA								
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No⊠						
	Total facility emissions of NO2, SO2, and VOC are all less than <1.0 tons per year								

16-W: Modeling Results								
1	If ambient standards are exceeded because of surrounding sources, a culpability analysis is required for the source to show that the contribution from this source is less than the significance levels for the specific pollutant. Was culpability analysis performed? If so describe below.	Yes□	No⊠					
2	Identify the maximum concentrations from the modeling analysis. Rows may be modified, adas necessary.	ded and remove	ed from the table below					

Pollutant, Time Period	Modeled Facility	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration (µg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location			
and Standard	Concentration (µg/m3)	Surrounding Sources (µg/m3)	(μg/m3)	(μg/m3)				UTM E (m)	UTM N (m)	Elevation (ft)	
NO ₂ 1 Hour H8H	16.1	-	-	38.7	54.8	188.03	29.1	438227.4	3697886.7	2209.64	
NO ₂ Annual H1H	0.96	-	-	-	-	SIL-1	96.0	438323.1	3697946.9	-	
NO ₂ Annual Class II	0.96	-	ı	1	1	SIL-1	96.0	438323.1	3697946.9	-	
NO ₂ Annual Class I	0.0052	-	ı	1	1	SIL-0.1	52.0	437055.0	3699583.7	-	
CO 1 Hour H1H	41.4	-	1	1	1	SIL-2000	2.1	438160.0	3697961.5	-	
CO 8 Hour H1H	8.69	-	ı	1	1	SIL-500	1.7	438150.0	3697950.0	-	
SO ₂ 1 Hour H1H	0.53	-	ı	1	1	SIL-7.8	6.8	438160.0	3697961.5	-	
SO ₂ 3 Hour H1H	0.20	-	ı	1	1	SIL-25	0.8	438325.0	3697950.0	-	
SO ₂ 24 Hour H1H	0.07	-	ı	1	1	SIL-5	1.4	438251.6	3697885.1	-	
SO ₂ Annual H1H	0.01	-	-	-	-	SIL-1	1.0	438209.9	3698032.4	-	
PM _{2.5} 24 Hour H8H	3.2	3.4	-	14.9	18.3	35	52.3	438232.3	3698033.1	2208.8	

29.3

9.23

0.58

30

17

8

SIL-0.2

97.7

54.3

7.3

4.2

438209.9

438232.3

437142.4

437055.0

3698032.4

3698033.1

3699642.1

3699583.7

2209.71

2208.8

2195.77

2222.57

Hour Class

 PM_{10}

Annual

Class II PM₁₀ 24

Class I

Hour Class I PM_{10} Annual

29.1

9.19

0.32

0.0083

29.3

9.23

0.58

Pollutant, Time Period	Modeled Facility	Modeled Concentration with	Secondary PM	Background Concentration	Cumulative Concentration	Value of	Percent		Location	
and Standard	Concentration (µg/m3)	Surrounding Sources (µg/m3)	(μg/m3)	(μg/m3)	(µg/m3)	Standard (µg/m3)	of Standard	UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} Annual H1H	0.42	0.44	1	5.1	5.54	12	46.2	438232.3	3698033.1	2208.8
PM ₁₀ 24 Hour H2H	29.1	29.3	-	94.7	124.0	150	82.7	438209.9	3698032.4	2209.71
PM ₁₀ 24										

16-X: Summary/conclusions

1

A statement that modeling requirements have been satisfied and that the permit can be issued.

Dispersion modeling was performed for all regulated sources at Roper Construction's Alto CBP. All facility pollutants with ambient air quality standards were modeled to show compliance with those standards. All results of this modeling analysis showed the facility is in compliance with applicable ambient air quality standards and PM₁₀ and NO₂ PSD Class I and Class II increment limits. Based on the dispersion modeling analysis, the permit can be issued.