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ARTICLE INFO ABSTRACT

Keywords: We measured emissions from ten landfills using mobile surveys and Surface Emission Monitoring (SEM) to
Landfill determine what fraction of emissions can be identified by SEM surveys. SEM is commonly used for regulatory
Methane

compliance and leak detection at specific locations. However, evolving regulations emphasize the need to
manage methane emissions from the entire landfill site, and the suitability of SEM for this objective remains
unclear. Using mobile methane measurements and a back-trajectory attribution and rate estimation method, we
measured overall site emissions and those of individual landfill components (active face, closed cells, leachate,
etc.). We evaluated each component’s contribution to the total emissions and compared how much of emissions
captured by mobile surveys could be covered by the walking SEM survey. We found that SEM was effective for
closed sites, achieving on-average 67% rate coverage. However, SEM missed relevant emission sources at open
landfill sites, most notably from the active face, reducing its rate percent coverage to 17%. The limited rate
coverage of SEM suggests that using SEM alone is insufficient for measurement-informed management of landfill
emissions. We recommend that SEM be augmented by other methods to fill monitoring gaps and provide a more
comprehensive assessment of landfill methane emissions.

Surface emission monitoring
Gaussian dispersion
Mobile surveys

1. Introduction

The waste sector is the third largest contributor to greenhouse gas
emissions globally (Ritchie et al., 2020). Walking Surface Emission
Monitoring (SEM) is the most widely used ground-level method for
detecting methane (CHy4) leaks at landfills (Abichou et al., 2023; Bogner
etal., 1997; Scheutz et al., 2009), largely due to regulatory requirements
mandating monitoring of capped areas equipped with gas collection
systems (U.S. EPA, 2016a; Victoria, 2018). SEM involves technicians
walking in ~ 30 m grids with handheld sensors, keeping the air intake
nozzle a few centimetres above the ground.

In the United States, the regulation of landfill emissions began in the
1990s under the Clean Air Act, with the New Source Performance
Standards (NSPS) and Emission Guidelines (EG) for Municipal Solid
Waste (MSW) landfills (Clean Air Act Amendments of 1990; U.S. EPA,
2016b). These rules, codified in 40 CFR Part 60 Subpart WWW, aim
primarily to control emissions of volatile organic compounds (VOCs)
and hazardous air pollutants (HAPs). The rules require landfills under
certain criteria to install Gas Collection and Control Systems (GCCS)
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(Clean Air Act Amendments of 1990) to capture and either flare or
utilize landfill gas (U.S. EPA, CFR 40, Subpart WWW). A key compliance
requirement under Subpart WWW is quarterly SEM, which relies on
flame ionization detectors (FIDs) to detect CH4 concentrations above
500 ppm as a practical surrogate for VOC leaks (U.S. EPA, CFR 40,
Subpart WWW; U.S. EPA 2016c). While CH4 is not the regulated
pollutant under this subpart, its monitoring is used to verify landfill
surface integrity and assess GCCS performance. Methane emissions are
separately reported under the EPA’s Greenhouse Gas Reporting Program
(GHGRP), but not controlled under that program.

However, landfill CHy4 regulation is now being developed in North
America and globally, shifting from verifying gas collection system
presence toward achieving measurable CH4 emission reductions. For
example, recent EPA discussion papers (U.S. EPA, 2024) indicate
growing interest in outcome-based regulation aligned with national
emissions targets. In Canada, landfill CH,4 rules have explicitly embraced
an emissions-focused approach (Government of Canada, 2024). In both
contexts, regulation is purposefully shifting toward reducing whole-site
emissions to meet climate goals.
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However, concerns exist that SEM walking surveys do not fully cover
all landfill emission sources, limiting the method’s role in whole-site
methane management. Studies by Ute-Rower et al. (2016) and
Mgnster et al. (2019) found SEM surveys often fail to capture the het-
erogeneous nature of landfill covers and localized hotspots. These hot-
spots include active faces, gas collection infrastructure, compost, and
leachate management systems—components identified as key CHy4
sources (Scheutz et al., 2011; Akerman et al., 2007; Olaguer et al.,
2022). Active faces, where fresh waste is deposited (Scarpelli et al.,
2024; Guha et al., 2020), can emit large CH4 volumes due to rapid
decomposition of organic waste and disturbance of underlying layers
(Cusworth et al., 2024; Kumar et al., 2023; Krause et al., 2023; Manheim
etal., 2023; Yesiller et al., 2022; Cambaliza et al., 2017; Goldsmith et al.,
2012). Scarpelli et al. (2024) recently found that 79 % of CH4 emissions
from U.S. landfills originated from sites where emissions were observed
at the active faces.

Given the regulatory shift toward climate outcomes, monitoring
approaches must also be reconsidered to assess their contribution to
these goals. This study investigates the proportion of total landfill
emissions detectable by SEM, evaluating its potential role within
emerging climate-focused CH4 regulations. Using mobile surveys, we
mapped emissions from key landfill components across multiple sites
and assessed what share of these emissions, by area and emissions rate,
could be captured through SEM. Our results aim to inform policymakers
and stakeholders in drafting more effective methane legislation in
Canada and internationally.

2. Methodology and materials
2.1. Methodological framework

To evaluate the effectiveness of SEM in detecting CH4 emissions at
landfills, we compare SEM’s areal coverage with quantitative emission
estimates derived from mobile surveys. The methodology involved three
main steps:

1. Mobile CH4 Surveys and Emission Mapping
We conducted multi-day mobile CH4 surveys at ten landfills using
vehicle-mounted analyzers and wind sensors. Methane hotspots were
identified using wind-informed triangulation, and emission rates
were estimated using a Gaussian plume dispersion model. Landfill
components were mapped from site observations and official records
and emissions were attributed to the components based on a back-
trajectory method.
2. SEM Survey Coverage Assessment
SEM surveys were conducted independently by a third-party
contractor following a standard 30 x 30 m walking grid protocol.
We did not use SEM data to estimate emissions. Instead, we calcu-
lated areal coverage (the proportion of component area covered by
SEM) and rate coverage (the proportion of mobile-derived emissions
that occurred in SEM-covered areas).
3. Coverage Analysis and Comparative Assessment
We assessed SEM effectiveness by comparing its spatial and rate
coverage across landfill components at both open and closed sites.
This comparison helps determine whether SEM, as currently applied,
can adequately support whole-site emission management in line with
evolving regulatory frameworks.

2.2. Mobile measurements

Mobile CH4 transect measurements using vehicle-mounted ana-
lyzers, although not yet common in landfill emission studies, have been
widely applied in the oil and gas sector—particularly for emission
detection and source attribution. One notable example is the U.S. EPA’s
Other Test Method 33A (OTM 33A) (U.S. EPA, 2020), which formalizes
mobile ground-based surveys as a recognized method for CH4 plume
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detection and quantification. Several large-scale North American
methane source apportionment and inventory studies have used mobile
platforms to map emissions at high spatial resolution and quantify fluxes
using wind-informed models (Swarthout et al., 2015; Omara et al.,
2024).

For our mobile laboratory, we equipped a sports utility vehicle with a
Gill WindSonicM Ultrasonic Wind Sensor, compass, GPS (Garmin 18x-5
Hz GPS), and gas analyzers attached via tubing for sampling. A Los Gatos
Research Ultra-Portable Greenhouse Gas Analyzer or an LGR-ICOS
Microportable Gas Analyzer (GLA131 Series) with a precision of 1.4
ppb for CH4 measured the CH4 concentrations in ppmv. The anemom-
eter measured wind speed with 3 % precision and wind direction with an
accuracy of + 3°. Before each daily measurement session, we calibrated
the compass towards the four cardinal directions and benchmarked the
gas analyzers using a standard gas cylinder to ensure data accuracy and
check for any instrument drift. We also recorded the instrument’s
response lag before starting each measurement to guarantee the accu-
rate location of the concentration readings.

We measured each landfill for a total of 5-12 days during winter and
summer. During each field day, we drove all accessible areas of the
landfill continuously for about seven hours, collecting about 50,000
geolocated concentrations measurements. This included both onsite and
perimeter measurements, ensuring comprehensive coverage of the
landfill. During each day, and between days, winds would shift, so we
intercepted plumes in different locations as we travelled the accessible
landfill roads, allowing us to triangulate emission sources.

Fig. 1(a) shows an example of data measured from a mobile survey of
LF3’s perimeter. We depicted the operational features of the landfills on
landfill maps using polygons. The polygons represented the active face,
closed cells with intermediate and final covers, leachate and gas
collection systems, composting sites, and other infrastructure of each
landfill. Any component related to wastewater such as tanks, manholes,
sumps, piping, or wastewater ponds was classified as part of the leachate
management system.

To identify the source of emissions and to quantify the fluxes, we
attributed all peaks in our measured CHy time series to potential point
sources, determined from triangulation, within the polygons. Starting
from the location of a CH4 concentration peak in the time series, we
traced the wind direction to identify all upwind path intersections as
potential origins of the plume (Omidi et al, 2024). We applied a Kernel
Density Estimate (KDE) to smooth the distribution of the triangulated
points, weighted by the measured concentrations, and mapped them
across the landfill’s geographic area ((b)).

We identified local maxima and used the Gaussian dispersion model
represented in Eq. (1) at the maximum concentration to quantify the
emissions (Turner, 2020). We assumed we had measured directly
downwind from the emission source (y = 0):

Q y? —(z+H) —(z—H)®
C(x,y,z) = Wexp (2—0}2,) (exp <(T§)> + exp <(T§)>)
(@)

whereQ = pollutant emission rate (g s’l)oz = vertical standard deviation
of the concentration distribution (m)s, = crosswind standard deviation
of the concentration distribution (m)U = mean horizontal wind velocity
at pollutant release height (m s 1)C(x,y,z) = concentration at location
x,y,2) (g m3H = pollutant release height (m)

We estimated fluxes from the mobile transects, keeping in mind that
the ground-based measurement and Gaussian estimation from truck
measurement could underestimate actual emission rates (Fairley and
Fischer, 2015; Hossian et al., 2024).

2.3. Surface emission monitoring surveys

For the walking SEM surveys, we engaged a third-party contractor to
conduct walking surveys in ten Canadian landfills, with seven landfills
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Fig. 1. (a) Examples of on site mobile measurements at LF3. The colors on the map represent different CH4 concentrations, with red indicating the highest values and
dark blue showing the lowest or background levels. (b) A map of CH,4 hotspots identified using triangulation, with landfill components tagged. A wind rose in the top-
left corner illustrates wind speed and direction (mainly from the west) during the mobile measurements.

surveyed twice and three landfills surveyed once. They used two sensors
for the measurement, Toxic Vaper Analyser (TVA 2020) and RKI EAGLE
2. The TVA 2020 reports CH4 concentrations with an accuracy of + 10 %
of the readings or + 1 ppm, whichever is greater. The RKI EAGLE 2
provides an accuracy of & 5 % of the readings or + 2 % of full scale, with
the full scale defined as 0-100 % CH4 by volume—corresponding to a
potential error of + 2 % absolute at any point on that scale.
Characteristics of each landfill are listed in Table 1. We provided no
special instructions or requests to the contractor; we simply asked that

all surveys represent industry norms and that the measurements reflect
standard practice.

For each SEM survey, the CH4 mixing ratios were recorded in parts
per million by volume (ppmv) at designated grid points, with each point
representing a 30 x 30 m? grid square. The contractor used a serpentine
walking pattern along the predefined grid squares holding the scanner
upright with the extension rod contacting the ground surface. Stationary
readings were taken for at least 3 s at each grid point. In cases where the
instrument did not stabilize, minimum and maximum mixing ratios



A. Omidi et al.

Table 1
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Site Descriptions and total site emissions estimates. ECCC is Environment Climate Change Canada and GCCS stands for Gas Collection and Control System. Cumulative

total waste disposal data for Site LF6 were unavailable.

Landfill Operational GCCS Surface Area Cumulative Total Waste 2023 ECCC Methane Generation Mobile Survey Estimate (t yr™)
D Status (~ha) Disposal (Mt) Estimate (t yr’l) using transects
LF1 Closed None 53 4.49 1584 1391

LF2 Open Existing 60 2.47 3969 2160

LF3 Open None 23 1.32 3070 3537

LF4 Open None 47 4.46 5588 1068

LF5 Open None 57 3.58 3759 987

LF6 Closed None 66 6350 11,522

LF7 Open None 107 0.60 879 924

LF8 Open Existing 42 1.28 2610 3545

LF9 Open Existing 27 0.95 1252 1523

LF10 Open Existing 64 0.93 2387 4737

were recorded and averaged. Fig. 2 presents an example of measured
SEM points at LF4 (details of the landfill can be found in Table 2), cross-
referenced with photographs.

2.4. SEM areal and rate coverage estimation

We evaluate how effectively SEM captures high-emission sources by
comparing SEM areal coverage with quantitative emission estimates
from mobile surveys. Although SEM is typically used to qualitatively
locate leaks, we assessed its ability to detect the most impactful sources.
By linking SEM’s areal coverage to the emission rates of different landfill
components, we quantified its effectiveness in terms of both spatial and
emission rate coverage.

We found the areal coverage ratio of component i measured by SEM
by

n; x 30 x 30
Al‘ ’

i —
areal —

where A; is the total area of component i in m?; n; is the total number of
SEM measurements; and 30 x 30 is the grid cell size in m2.

To estimate how much the SEM data contributed to the total
component emissions, we multiplied the SEM areal coverage (Cfmaz) by
the component emission rate, measured by the mobile survey (Qﬁ,wbﬂe).

W e calculated the proportion of the total landfill emission rate covered
by the SEM measurements of that component using the formula

i x C

i _ mobile areal
Crate - Z i
i €S ~<mobile

S represents the set of all the components of the landfill. The overall SEM
emission rate coverage for the landfill was

i .

C o = Qmobile x C::(real

rate = E ~ i
i€S ZieSQmobile

We compared the proportion of total landfill emissions captured by SEM
measurements to the emissions estimated with mobile measurement
data across all landfill components. Details of the measured components
for each landfill are in Table S.1 of the Supplementary Materials.

3. Results and discussion

Table 1 contains the estimated fluxes from the mobile landfill tran-
sects. We used Gaussian dispersion models to quantify the aggregate CHy4
emission rate for each landfill.

Fewer than 1 % of the SEM sample points over all the surveys
exceeded the 500 ppm regulated threshold. Given that eight of the

-
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Fig. 2. Examples of source types and locations from SEM surveys of LF4.
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Table 2
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Summary of source contributions for open landfills, categorized by the presence or absence of GCCS. The table shows the mean emission rate per area (kg hr' ha™'), the
average contribution percentage of each source, and the standard deviation of these contributions. The averages and standard deviations are calculated over the
measurement days, which varied from landfill to landfills ranging from 5 to 12 days. The “Others” source incorporates variable areas not commonly found across the
surveyed landfills, such as compost piles, office, garbage truck garages, and forest patches, which differ from one landfill to another.

Source Open Landfill Mean Emission Rate Per Component Area (kghr Average Contribution Standard Deviation of Contribution
Status tha 1) (%) (%)
Active Face Without GCCS 5.37 42.35 13.96
Closed Cell Intermediate Cover ~ Without GCCS 3.73 31.37 22.47
Compost Facility Without GCCS 1.33 7.85 7.28
Others Without GCCS 5.10 11.74 7.29
Leachate Management Without GCCS 1.21 12.37 21.06
Closed Cell Final Cover Without GCCS 0.02 0.41 -
Active Face GCCS 14.17 69.12 22.65
Closed Cell Intermediate Cover ~ GCCS 2.34 16.76 13.50
Compost Facility GCCs 2.89 7.28 7.73
Others GCCS 0.85 3.89 4.31
Flare and Gas Collection GCCS 1.43 0.29 0.41
System
Leachate Management GCCS 0.20 0.69 0.55
Closed Cell Final Cover GCCS 1.82 13.86 22.37

surveyed sites were among the 270 large Canadian landfills that account
for approximately 85 % of Canada’s estimated landfill-related eCO5
emissions (Canada, 2022), we expected a higher number of exceedances.
For those landfills surveyed more than once, we also noticed variations
in CH4 levels between visits, indicating possible fluctuations in emis-
sions due to seasonality and different atmospheric conditions (e.g., wind

patterns).

Fig. 3 shows the mapped interpolated SEM points for both visits for
some of the landfills (also Fig. S1 in Supplementary Materials). We used
Akima’s bivariate interpolation method (Gebhardt et al., 2022). Landfill
components like composting areas, gas collection systems, and leachate/
flare systems, which showed emissions from mobile survey data, were

LF1 - Visit 1 LF1 - Visit 2 LF3 - Visit 1 LF3 - Visit 2
700
600
500
[}
400
300 )
200
100
0
O S O & & O S O S S P °O £ S P
LF2 - Visit 2 LF5 - Visit 1 LF5 - Visit 2
800 1000 1000 E
800 800
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é 600 600
8 400
§ 400 400
(2]
a - 200 200 Q
J\ar
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S N & Ea o 9 & RS B O & O S &
H ncentration (PPMV _
CHj Concentration ( ) 1 3 10 2550100 1000 4000

Fig. 3. SEM maps of surveyed landfills. LF1 (closed), LF2, LF3, and LF5 from Visit 1, conducted between August and September 2023, and Visit 2, conducted between
October and November 2023. The colored areas represent the SEM CH, survey; the SEM concentrations were interpolated. The black borders outline the landfill
perimeters and the component areas. Red borders highlight active face zones, identified as major contributors to emissions at most sites. These active areas are

typically not covered by SEM measurements.
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not covered by the SEM surveys. We excluded the limited number of
SEM measurements from the active face from Fig. 3 and from the areal
and rate coverage analysis in this section because draft Canadian gov-
ernment regulations do not require fresh waste gas monitoring
(Government of Canada, 2024).

To evaluate surface CH4 concentrations, we analyzed the SEM data
across all landfills. Fig. 4(a) shows the surface CH4 concentrations. In the
figure, the red vertical line depicts the regulatory threshold of 500
ppmv. Fig. 4(b) compares the areal coverage (Cgrq) and rate coverage
(Crate) of SEM across measured landfills.

Generally, closed landfills showed higher averaged SEM coverage.
LF1 had Cgyeq of 36 % and a C,qr of 47 %, while LF6 showed even more
coverage, with a Cgeq Of 66 % and a Crye of 88.43 %. There was a
noticeable variation in the SEM coverage of LF1 across two visits with a
standard deviation of 36 % which highlights the challenge of consis-
tently capturing emissions, especially during colder seasons, even in
closed landfills.

The overall spatial coverage for the open landfills remained low due
to SEM’s limited ability in covering active landfill components (i.e.,
active face, leachate, compost, and gas collection system). On average,
the surveyed open landfills exhibited a Cgeq; 0f 21 % and a Cyqre of 17 %.
The highest recorded C,q was 36 % at LF4, and LF9 showed the
maximum Cgrq at 36 % (Fig. 4(b)). Additionally, large error bars at
some sites highlighted discrepancies in the monitoring of accessible
landfill sections.

Table 2 lists the average contributions from each landfill feature
across the open landfills, with and without landfill GCCS. We see that the
active face is, on average, the biggest source contributor: 69 % and 42 %
for landfills with and without GCCS, respectively. Since SEM does not
cover the active face, the maximum effectiveness is bounded to 31 % and
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58 % of emissions at these site types. SEM also does not typically cover
other components like leachate systems or compost. These areas are
large contributors to total emissions, so failing to capture these emission
sources resulted in a reduced overall emission coverage as shown in
Fig. 4(b) where SEM captured maximally 36 % of emissions at open sites.

Fig. 4(b) shows that closed landfills had much better emission rate
coverage from SEM coverage, and the open landfills had much lower
coverage. It appears that comprehensive SEM coverage is possible at
closed sites where intermediate or final cover dominates, in addition to
GCCS infrastructure. There are however still gaps, and we note that
although SEM at LF6 achieved > 80 % rate coverage, its leachate
management source—including all wastewater-related infra-
structure—was emitting approximately 50 kg hr'! CH,4 (Table S.2), yet
this source was not covered by SEM at this closed site.

4. Conclusion

This study assessed how well SEM surveys captured emissions from
different sources at landfills. We evaluated how much different landfill
components contributed to total emissions and compared the results
with the areal coverage of SEM at ten Canadian landfills.

Our findings showed that SEM effectively captured sources of
emissions from closed sites, with an average rate coverage of 68 %.
While this level of coverage may not represent full quantification, it may
be adequate if SEM is used in combination with other measurement
strategies and if the expected emission reductions from such sites do not
exceed this coverage level.

At open landfill sites, the story is different. SEM coverage misses
most of the sources and thus it is not recommended to be used alone in a
regulatory framework trying to mitigate emissions. It is important to

a) b)
o - ™
i —{T1+ n= 160 b
LF9 -1 —
) o .
LF8 T
LF7 == .
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23 I8
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LF3 el _—
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Fig. 4. (a) Box plots showing CH,4 concentrations (ppmv) across landfills over multiple visits. The boundaries of each box represent the interquartile range (25th to
75th percentiles), and the lines within the boxes represent the median values for each landfill’s SEM measurements. The red vertical line indicates the regulatory
proposed threshold for a single location, set at 500 ppmv, while n indicates the number of SEM measurements. (b) Bar chart showing the average total areal and rate
coverage (Cgreq and Crq) across visits for each landfill, with error bars representing the standard deviation.
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note that the total emissions were assumed to be those derived from
mobile survey CH4 measurements using Gaussian plume modeling. If we
use SEM as the default approach to manage emissions, we are expending
significant effort and cost to influence a small percentage of total site
emissions. For open landfill sites we would suggest that regulators
specify the use of alternative measurement methodologies capable of
assessing emissions from all landfill components to cover all under some
form of measurement-informed management. Applicable methodologies
are available to replace SEM (Hossian et al., 2024; Mgnster et al., 2019)
and potentially at a lower cost. These may include mobile surveys, eddy
covariance, drone- or aircraft-based measurements (Hossian et al.,
2024). Regulators need to send clear signals on what performance re-
quirements are needed. For example, it would be reasonable to specify
minimum detection thresholds at 90 % probability of detection
(Government of Canada, 2023; U.S. EPA, 2023). SEM could be used as a
supplementary method to measure GCCS infrastructure and identify
points of emissions but should not be the default or sole strategy. We also
recommend that measurement and emissions management re-
quirements for the active face be mandated in new regulations, given the
importance of this source. Lastly, measurement requirements should be
flexible and adaptable based on individual landfill operations since not
all measurement approaches are available or useful everywhere. By
combining SEM with other technologies, operators and regulators will
build a more complete picture of landfill emissions and will be able to
reduce methane emissions much further than is possible under the status
quo.
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